wireshark/epan/emem.c

1604 lines
35 KiB
C

/* emem.c
* Wireshark memory management and garbage collection functions
* Ronnie Sahlberg 2005
*
* $Id$
*
* Wireshark - Network traffic analyzer
* By Gerald Combs <gerald@wireshark.org>
* Copyright 1998 Gerald Combs
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdarg.h>
#include <ctype.h>
#include <time.h>
#ifdef HAVE_SYS_TIME_H
#include <sys/time.h>
#endif
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
#include <glib.h>
#include <proto.h>
#include "emem.h"
#include <wiretap/file_util.h>
#ifdef _WIN32
#include <windows.h> /* VirtualAlloc, VirtualProtect */
#include <process.h> /* getpid */
#endif
/*
* Tools like Valgrind and ElectricFence don't work well with memchunks.
* Uncomment the defines below to make {ep|se}_alloc() allocate each
* object individually.
*/
/* #define EP_DEBUG_FREE 1 */
/* #define SE_DEBUG_FREE 1 */
/* Do we want to use guardpages? if available */
#define WANT_GUARD_PAGES 1
/* Do we want to use canaries ? */
#define DEBUG_USE_CANARIES 1
#ifdef WANT_GUARD_PAGES
/* Add guard pages at each end of our allocated memory */
#if defined(HAVE_SYSCONF) && defined(HAVE_MMAP) && defined(HAVE_MPROTECT) && defined(HAVE_STDINT_H)
#include <stdint.h>
#include <sys/types.h>
#include <sys/mman.h>
#if defined(MAP_ANONYMOUS)
#define ANON_PAGE_MODE (MAP_ANONYMOUS|MAP_PRIVATE)
#elif defined(MAP_ANON)
#define ANON_PAGE_MODE (MAP_ANON|MAP_PRIVATE)
#else
#define ANON_PAGE_MODE (MAP_PRIVATE) /* have to map /dev/zero */
#define NEED_DEV_ZERO
#endif
#ifdef NEED_DEV_ZERO
#include <fcntl.h>
static int dev_zero_fd;
#define ANON_FD dev_zero_fd
#else
#define ANON_FD -1
#endif
#define USE_GUARD_PAGES 1
#endif
#endif
/* When required, allocate more memory from the OS in this size chunks */
#define EMEM_PACKET_CHUNK_SIZE 10485760
/* The maximum number of allocations per chunk */
#define EMEM_ALLOCS_PER_CHUNK (EMEM_PACKET_CHUNK_SIZE / 512)
#ifdef DEBUG_USE_CANARIES
#define EMEM_CANARY_SIZE 8
#define EMEM_CANARY_DATA_SIZE (EMEM_CANARY_SIZE * 2 - 1)
static guint8 ep_canary[EMEM_CANARY_DATA_SIZE], se_canary[EMEM_CANARY_DATA_SIZE];
#endif /* DEBUG_USE_CANARIES */
typedef struct _emem_chunk_t {
struct _emem_chunk_t *next;
unsigned int amount_free_init;
unsigned int amount_free;
unsigned int free_offset_init;
unsigned int free_offset;
char *buf;
#ifdef DEBUG_USE_CANARIES
#if ! defined(EP_DEBUG_FREE) && ! defined(SE_DEBUG_FREE)
unsigned int c_count;
void *canary[EMEM_ALLOCS_PER_CHUNK];
guint8 cmp_len[EMEM_ALLOCS_PER_CHUNK];
#endif
#endif /* DEBUG_USE_CANARIES */
} emem_chunk_t;
typedef struct _emem_header_t {
emem_chunk_t *free_list;
emem_chunk_t *used_list;
} emem_header_t;
static emem_header_t ep_packet_mem;
static emem_header_t se_packet_mem;
#if !defined(SE_DEBUG_FREE)
#if defined (_WIN32)
static SYSTEM_INFO sysinfo;
static OSVERSIONINFO versinfo;
static int pagesize;
#elif defined(USE_GUARD_PAGES)
static intptr_t pagesize;
#endif /* _WIN32 / USE_GUARD_PAGES */
#endif /* SE_DEBUG_FREE */
#ifdef DEBUG_USE_CANARIES
/*
* Set a canary value to be placed between memchunks.
*/
void
emem_canary(guint8 *canary) {
int i;
static GRand *rand_state = NULL;
if (rand_state == NULL) {
rand_state = g_rand_new();
}
for (i = 0; i < EMEM_CANARY_DATA_SIZE; i ++) {
canary[i] = (guint8) g_rand_int(rand_state);
}
return;
}
#if !defined(SE_DEBUG_FREE)
/*
* Given an allocation size, return the amount of padding needed for
* the canary value.
*/
static guint8
emem_canary_pad (size_t allocation) {
guint8 pad;
pad = EMEM_CANARY_SIZE - (allocation % EMEM_CANARY_SIZE);
if (pad < EMEM_CANARY_SIZE)
pad += EMEM_CANARY_SIZE;
return pad;
}
#endif
#endif /* DEBUG_USE_CANARIES */
/* Initialize the packet-lifetime memory allocation pool.
* This function should be called only once when Wireshark or TShark starts
* up.
*/
void
ep_init_chunk(void)
{
ep_packet_mem.free_list=NULL;
ep_packet_mem.used_list=NULL;
#ifdef DEBUG_USE_CANARIES
emem_canary(ep_canary);
#endif /* DEBUG_USE_CANARIES */
#if !defined(SE_DEBUG_FREE)
#if defined (_WIN32)
/* Set up our guard page info for Win32 */
GetSystemInfo(&sysinfo);
pagesize = sysinfo.dwPageSize;
/* calling GetVersionEx using the OSVERSIONINFO structure.
* OSVERSIONINFOEX requires Win NT4 with SP6 or newer NT Versions.
* OSVERSIONINFOEX will fail on Win9x and older NT Versions.
* See also:
* http://msdn.microsoft.com/library/en-us/sysinfo/base/getversionex.asp
* http://msdn.microsoft.com/library/en-us/sysinfo/base/osversioninfo_str.asp
* http://msdn.microsoft.com/library/en-us/sysinfo/base/osversioninfoex_str.asp
*/
versinfo.dwOSVersionInfoSize = sizeof(OSVERSIONINFO);
GetVersionEx(&versinfo);
#elif defined(USE_GUARD_PAGES)
pagesize = sysconf(_SC_PAGESIZE);
#ifdef NEED_DEV_ZERO
dev_zero_fd = open("/dev/zero", O_RDWR);
g_assert(dev_zero_fd != -1);
#endif
#endif /* _WIN32 / USE_GUARD_PAGES */
#endif /* SE_DEBUG_FREE */
}
/* Initialize the capture-lifetime memory allocation pool.
* This function should be called only once when Wireshark or TShark starts
* up.
*/
void
se_init_chunk(void)
{
se_packet_mem.free_list=NULL;
se_packet_mem.used_list=NULL;
#ifdef DEBUG_USE_CANARIES
emem_canary(se_canary);
#endif /* DEBUG_USE_CANARIES */
}
#if !defined(SE_DEBUG_FREE)
static void
emem_create_chunk(emem_chunk_t **free_list) {
#if defined (_WIN32)
BOOL ret;
char *buf_end, *prot1, *prot2;
DWORD oldprot;
#elif defined(USE_GUARD_PAGES)
int ret;
char *buf_end, *prot1, *prot2;
#endif /* _WIN32 / USE_GUARD_PAGES */
/* we dont have any free data, so we must allocate a new one */
if(!*free_list){
emem_chunk_t *npc;
npc = g_malloc(sizeof(emem_chunk_t));
npc->next = NULL;
#ifdef DEBUG_USE_CANARIES
#if ! defined(EP_DEBUG_FREE) && ! defined(SE_DEBUG_FREE)
npc->c_count = 0;
#endif
#endif /* DEBUG_USE_CANARIES */
*free_list = npc;
#if defined (_WIN32)
/*
* MSDN documents VirtualAlloc/VirtualProtect at
* http://msdn.microsoft.com/library/en-us/memory/base/creating_guard_pages.asp
*/
/* XXX - is MEM_COMMIT|MEM_RESERVE correct? */
npc->buf = VirtualAlloc(NULL, EMEM_PACKET_CHUNK_SIZE,
MEM_COMMIT|MEM_RESERVE, PAGE_READWRITE);
if(npc->buf == NULL) {
THROW(OutOfMemoryError);
}
buf_end = npc->buf + EMEM_PACKET_CHUNK_SIZE;
/* Align our guard pages on page-sized boundaries */
prot1 = (char *) ((((int) npc->buf + pagesize - 1) / pagesize) * pagesize);
prot2 = (char *) ((((int) buf_end - (1 * pagesize)) / pagesize) * pagesize);
ret = VirtualProtect(prot1, pagesize, PAGE_NOACCESS, &oldprot);
g_assert(ret != 0 || versinfo.dwPlatformId == VER_PLATFORM_WIN32_WINDOWS);
ret = VirtualProtect(prot2, pagesize, PAGE_NOACCESS, &oldprot);
g_assert(ret != 0 || versinfo.dwPlatformId == VER_PLATFORM_WIN32_WINDOWS);
npc->amount_free_init = prot2 - prot1 - pagesize;
npc->amount_free = npc->amount_free_init;
npc->free_offset_init = (prot1 - npc->buf) + pagesize;
npc->free_offset = npc->free_offset_init;
#elif defined(USE_GUARD_PAGES)
npc->buf = mmap(NULL, EMEM_PACKET_CHUNK_SIZE,
PROT_READ|PROT_WRITE, ANON_PAGE_MODE, ANON_FD, 0);
if(npc->buf == MAP_FAILED) {
/* XXX - what do we have to cleanup here? */
THROW(OutOfMemoryError);
}
buf_end = npc->buf + EMEM_PACKET_CHUNK_SIZE;
/* Align our guard pages on page-sized boundaries */
prot1 = (char *) ((((intptr_t) npc->buf + pagesize - 1) / pagesize) * pagesize);
prot2 = (char *) ((((intptr_t) buf_end - (1 * pagesize)) / pagesize) * pagesize);
ret = mprotect(prot1, pagesize, PROT_NONE);
g_assert(ret != -1);
ret = mprotect(prot2, pagesize, PROT_NONE);
g_assert(ret != -1);
npc->amount_free_init = prot2 - prot1 - pagesize;
npc->amount_free = npc->amount_free_init;
npc->free_offset_init = (prot1 - npc->buf) + pagesize;
npc->free_offset = npc->free_offset_init;
#else /* Is there a draft in here? */
npc->buf = malloc(EMEM_PACKET_CHUNK_SIZE);
if(npc->buf == NULL) {
THROW(OutOfMemoryError);
}
npc->amount_free_init = EMEM_PACKET_CHUNK_SIZE;
npc->amount_free = npc->amount_free_init;
npc->free_offset_init = 0;
npc->free_offset = npc->free_offset_init;
#endif /* USE_GUARD_PAGES */
}
}
#endif
/* allocate 'size' amount of memory with an allocation lifetime until the
* next packet.
*/
void *
ep_alloc(size_t size)
{
void *buf;
#ifndef EP_DEBUG_FREE
#ifdef DEBUG_USE_CANARIES
void *cptr;
guint8 pad = emem_canary_pad(size);
#else
static guint8 pad=8;
#endif /* DEBUG_USE_CANARIES */
emem_chunk_t *free_list;
#endif
#ifndef EP_DEBUG_FREE
/* Round up to an 8 byte boundary. Make sure we have at least
* 8 pad bytes for our canary.
*/
size += pad;
/* make sure we dont try to allocate too much (arbitrary limit) */
DISSECTOR_ASSERT(size<(EMEM_PACKET_CHUNK_SIZE>>2));
emem_create_chunk(&ep_packet_mem.free_list);
/* oops, we need to allocate more memory to serve this request
* than we have free. move this node to the used list and try again
*/
if(size>ep_packet_mem.free_list->amount_free
#ifdef DEBUG_USE_CANARIES
|| ep_packet_mem.free_list->c_count >= EMEM_ALLOCS_PER_CHUNK
#endif /* DEBUG_USE_CANARIES */
){
emem_chunk_t *npc;
npc=ep_packet_mem.free_list;
ep_packet_mem.free_list=ep_packet_mem.free_list->next;
npc->next=ep_packet_mem.used_list;
ep_packet_mem.used_list=npc;
}
emem_create_chunk(&ep_packet_mem.free_list);
free_list = ep_packet_mem.free_list;
buf = free_list->buf + free_list->free_offset;
free_list->amount_free -= size;
free_list->free_offset += size;
#ifdef DEBUG_USE_CANARIES
cptr = (char *)buf + size - pad;
memcpy(cptr, &ep_canary, pad);
free_list->canary[free_list->c_count] = cptr;
free_list->cmp_len[free_list->c_count] = pad;
free_list->c_count++;
#endif /* DEBUG_USE_CANARIES */
#else /* EP_DEBUG_FREE */
emem_chunk_t *npc;
npc=g_malloc(sizeof(emem_chunk_t));
npc->next=ep_packet_mem.used_list;
npc->amount_free=size;
npc->free_offset=0;
npc->buf=g_malloc(size);
buf = npc->buf;
ep_packet_mem.used_list=npc;
#endif /* EP_DEBUG_FREE */
return buf;
}
/* allocate 'size' amount of memory with an allocation lifetime until the
* next capture.
*/
void *
se_alloc(size_t size)
{
void *buf;
#ifndef SE_DEBUG_FREE
#ifdef DEBUG_USE_CANARIES
void *cptr;
guint8 pad = emem_canary_pad(size);
#else
static guint8 pad=8;
#endif /* DEBUG_USE_CANARIES */
emem_chunk_t *free_list;
#endif
#ifndef SE_DEBUG_FREE
/* Round up to an 8 byte boundary. Make sure we have at least
* 8 pad bytes for our canary.
*/
size += pad;
/* make sure we dont try to allocate too much (arbitrary limit) */
DISSECTOR_ASSERT(size<(EMEM_PACKET_CHUNK_SIZE>>2));
emem_create_chunk(&se_packet_mem.free_list);
/* oops, we need to allocate more memory to serve this request
* than we have free. move this node to the used list and try again
*/
if(size>se_packet_mem.free_list->amount_free
#ifdef DEBUG_USE_CANARIES
|| se_packet_mem.free_list->c_count >= EMEM_ALLOCS_PER_CHUNK
#endif /* DEBUG_USE_CANARIES */
){
emem_chunk_t *npc;
npc=se_packet_mem.free_list;
se_packet_mem.free_list=se_packet_mem.free_list->next;
npc->next=se_packet_mem.used_list;
se_packet_mem.used_list=npc;
}
emem_create_chunk(&se_packet_mem.free_list);
free_list = se_packet_mem.free_list;
buf = free_list->buf + free_list->free_offset;
free_list->amount_free -= size;
free_list->free_offset += size;
#ifdef DEBUG_USE_CANARIES
cptr = (char *)buf + size - pad;
memcpy(cptr, &se_canary, pad);
free_list->canary[free_list->c_count] = cptr;
free_list->cmp_len[free_list->c_count] = pad;
free_list->c_count++;
#endif /* DEBUG_USE_CANARIES */
#else /* SE_DEBUG_FREE */
emem_chunk_t *npc;
npc=g_malloc(sizeof(emem_chunk_t));
npc->next=se_packet_mem.used_list;
npc->amount_free=size;
npc->free_offset=0;
npc->buf=g_malloc(size);
buf = npc->buf;
se_packet_mem.used_list=npc;
#endif /* SE_DEBUG_FREE */
return buf;
}
void* ep_alloc0(size_t size) {
return memset(ep_alloc(size),'\0',size);
}
gchar* ep_strdup(const gchar* src) {
guint len = strlen(src);
gchar* dst;
dst = strncpy(ep_alloc(len+1), src, len);
dst[len] = '\0';
return dst;
}
gchar* ep_strndup(const gchar* src, size_t len) {
gchar* dst = ep_alloc(len+1);
guint i;
for (i = 0; (i < len) && src[i]; i++)
dst[i] = src[i];
dst[i] = '\0';
return dst;
}
void* ep_memdup(const void* src, size_t len) {
return memcpy(ep_alloc(len), src, len);
}
gchar* ep_strdup_vprintf(const gchar* fmt, va_list ap) {
va_list ap2;
guint len;
gchar* dst;
G_VA_COPY(ap2, ap);
len = g_printf_string_upper_bound(fmt, ap);
dst = ep_alloc(len+1);
g_vsnprintf (dst, len, fmt, ap2);
va_end(ap2);
return dst;
}
gchar* ep_strdup_printf(const gchar* fmt, ...) {
va_list ap;
gchar* dst;
va_start(ap,fmt);
dst = ep_strdup_vprintf(fmt, ap);
va_end(ap);
return dst;
}
gchar** ep_strsplit(const gchar* string, const gchar* sep, int max_tokens) {
gchar* splitted;
gchar* s;
guint tokens;
guint str_len;
guint sep_len;
guint i;
gchar** vec;
enum { AT_START, IN_PAD, IN_TOKEN } state;
guint curr_tok = 0;
if ( ! string
|| ! sep
|| ! sep[0])
return NULL;
s = splitted = ep_strdup(string);
str_len = strlen(splitted);
sep_len = strlen(sep);
if (max_tokens < 1) max_tokens = INT_MAX;
tokens = 1;
while (tokens <= (guint)max_tokens && ( s = strstr(s,sep) )) {
tokens++;
for(i=0; i < sep_len; i++ )
s[i] = '\0';
s += sep_len;
}
vec = ep_alloc_array(gchar*,tokens+1);
state = AT_START;
for (i=0; i< str_len; i++) {
switch(state) {
case AT_START:
switch(splitted[i]) {
case '\0':
state = IN_PAD;
continue;
default:
vec[curr_tok] = &(splitted[i]);
curr_tok++;
state = IN_TOKEN;
continue;
}
case IN_TOKEN:
switch(splitted[i]) {
case '\0':
state = IN_PAD;
default:
continue;
}
case IN_PAD:
switch(splitted[i]) {
default:
vec[curr_tok] = &(splitted[i]);
curr_tok++;
state = IN_TOKEN;
case '\0':
continue;
}
}
}
vec[curr_tok] = NULL;
return vec;
}
void* se_alloc0(size_t size) {
return memset(se_alloc(size),'\0',size);
}
/* If str is NULL, just return the string "<NULL>" so that the callers dont
* have to bother checking it.
*/
gchar* se_strdup(const gchar* src) {
guint len;
gchar* dst;
if(!src){
return "<NULL>";
}
len = strlen(src);
dst = strncpy(se_alloc(len+1), src, len);
dst[len] = '\0';
return dst;
}
gchar* se_strndup(const gchar* src, size_t len) {
gchar* dst = se_alloc(len+1);
guint i;
for (i = 0; (i < len) && src[i]; i++)
dst[i] = src[i];
dst[i] = '\0';
return dst;
}
void* se_memdup(const void* src, size_t len) {
return memcpy(se_alloc(len), src, len);
}
gchar* se_strdup_vprintf(const gchar* fmt, va_list ap) {
va_list ap2;
guint len;
gchar* dst;
G_VA_COPY(ap2, ap);
len = g_printf_string_upper_bound(fmt, ap);
dst = se_alloc(len+1);
g_vsnprintf (dst, len, fmt, ap2);
va_end(ap2);
return dst;
}
gchar* se_strdup_printf(const gchar* fmt, ...) {
va_list ap;
gchar* dst;
va_start(ap,fmt);
dst = se_strdup_vprintf(fmt, ap);
va_end(ap);
return dst;
}
/* release all allocated memory back to the pool.
*/
void
ep_free_all(void)
{
emem_chunk_t *npc;
#ifndef EP_DEBUG_FREE
#ifdef DEBUG_USE_CANARIES
guint i;
#endif /* DEBUG_USE_CANARIES */
#endif
/* move all used chunks over to the free list */
while(ep_packet_mem.used_list){
npc=ep_packet_mem.used_list;
ep_packet_mem.used_list=ep_packet_mem.used_list->next;
npc->next=ep_packet_mem.free_list;
ep_packet_mem.free_list=npc;
}
/* clear them all out */
npc = ep_packet_mem.free_list;
while (npc != NULL) {
#ifndef EP_DEBUG_FREE
#ifdef DEBUG_USE_CANARIES
for (i = 0; i < npc->c_count; i++) {
if (memcmp(npc->canary[i], &ep_canary, npc->cmp_len[i]) != 0)
g_error("Per-packet memory corrupted.");
}
npc->c_count = 0;
#endif /* DEBUG_USE_CANARIES */
npc->amount_free = npc->amount_free_init;
npc->free_offset = npc->free_offset_init;
npc = npc->next;
#else /* EP_DEBUG_FREE */
emem_chunk_t *next = npc->next;
g_free(npc->buf);
g_free(npc);
npc = next;
#endif /* EP_DEBUG_FREE */
}
#ifdef EP_DEBUG_FREE
ep_init_chunk();
#endif
}
/* release all allocated memory back to the pool.
*/
void
se_free_all(void)
{
emem_chunk_t *npc;
emem_tree_t *se_tree_list;
#ifndef SE_DEBUG_FREE
#ifdef DEBUG_USE_CANARIES
guint i;
#endif /* DEBUG_USE_CANARIES */
#endif
/* move all used chunks over to the free list */
while(se_packet_mem.used_list){
npc=se_packet_mem.used_list;
se_packet_mem.used_list=se_packet_mem.used_list->next;
npc->next=se_packet_mem.free_list;
se_packet_mem.free_list=npc;
}
/* clear them all out */
npc = se_packet_mem.free_list;
while (npc != NULL) {
#ifndef SE_DEBUG_FREE
#ifdef DEBUG_USE_CANARIES
for (i = 0; i < npc->c_count; i++) {
if (memcmp(npc->canary[i], &se_canary, npc->cmp_len[i]) != 0)
g_error("Per-session memory corrupted.");
}
npc->c_count = 0;
#endif /* DEBUG_USE_CANARIES */
npc->amount_free = npc->amount_free_init;
npc->free_offset = npc->free_offset_init;
npc = npc->next;
#else /* SE_DEBUG_FREE */
emem_chunk_t *next = npc->next;
g_free(npc->buf);
g_free(npc);
npc = next;
#endif /* SE_DEBUG_FREE */
}
#ifdef SE_DEBUG_FREE
se_init_chunk();
#endif
/* release/reset all se allocated trees */
for(se_tree_list=se_trees;se_tree_list;se_tree_list=se_tree_list->next){
se_tree_list->tree=NULL;
}
}
ep_stack_t ep_stack_new(void) {
ep_stack_t s = ep_new(struct _ep_stack_frame_t*);
*s = ep_new0(struct _ep_stack_frame_t);
return s;
}
/* for ep_stack_t we'll keep the popped frames so we reuse them instead
of allocating new ones.
*/
void* ep_stack_push(ep_stack_t stack, void* data) {
struct _ep_stack_frame_t* frame;
struct _ep_stack_frame_t* head = (*stack);
if (head->above) {
frame = head->above;
} else {
frame = ep_new(struct _ep_stack_frame_t);
head->above = frame;
frame->below = head;
frame->above = NULL;
}
frame->payload = data;
(*stack) = frame;
return data;
}
void* ep_stack_pop(ep_stack_t stack) {
if ((*stack)->below) {
(*stack) = (*stack)->below;
return (*stack)->above->payload;
} else {
return NULL;
}
}
#ifdef REMOVED
void print_tree_item(emem_tree_node_t *node, int level){
int i;
for(i=0;i<level;i++){
printf(" ");
}
printf("%s KEY:0x%08x node:0x%08x parent:0x%08x left:0x%08x right:0x%08x\n",node->u.rb_color==EMEM_TREE_RB_COLOR_BLACK?"BLACK":"RED",node->key32,(int)node,(int)node->parent,(int)node->left,(int)node->right);
if(node->left)
print_tree_item(node->left,level+1);
if(node->right)
print_tree_item(node->right,level+1);
}
void print_tree(emem_tree_node_t *node){
if(!node){
return;
}
while(node->parent){
node=node->parent;
}
print_tree_item(node,0);
}
#endif
/* routines to manage se allocated red-black trees */
emem_tree_t *se_trees=NULL;
emem_tree_t *
se_tree_create(int type, const char *name)
{
emem_tree_t *tree_list;
tree_list=malloc(sizeof(emem_tree_t));
tree_list->next=se_trees;
tree_list->type=type;
tree_list->tree=NULL;
tree_list->name=name;
tree_list->malloc=se_alloc;
se_trees=tree_list;
return tree_list;
}
void *
emem_tree_lookup32(emem_tree_t *se_tree, guint32 key)
{
emem_tree_node_t *node;
node=se_tree->tree;
while(node){
if(key==node->key32){
return node->data;
}
if(key<node->key32){
node=node->left;
continue;
}
if(key>node->key32){
node=node->right;
continue;
}
}
return NULL;
}
void *
emem_tree_lookup32_le(emem_tree_t *se_tree, guint32 key)
{
emem_tree_node_t *node;
node=se_tree->tree;
if(!node){
return NULL;
}
while(node){
if(key==node->key32){
return node->data;
}
if(key<node->key32){
if(node->left){
node=node->left;
continue;
} else {
break;
}
}
if(key>node->key32){
if(node->right){
node=node->right;
continue;
} else {
break;
}
}
}
/* If we are still at the root of the tree this means that this node
* is either smaller thant the search key and then we return this
* node or else there is no smaller key availabel and then
* we return NULL.
*/
if(!node->parent){
if(key>node->key32){
return node->data;
} else {
return NULL;
}
}
if(node->parent->left==node){
/* left child */
if(key>node->key32){
/* if this is a left child and its key is smaller than
* the search key, then this is the node we want.
*/
return node->data;
} else {
/* if this is a left child and its key is bigger than
* the search key, we have to check if any
* of our ancestors are smaller than the search key.
*/
while(node){
if(key>node->key32){
return node->data;
}
node=node->parent;
}
return NULL;
}
} else {
/* right child */
if(node->key32<key){
/* if this is the right child and its key is smaller
* than the search key then this is the one we want.
*/
return node->data;
} else {
/* if this is the right child and its key is larger
* than the search key then our parent is the one we
* want.
*/
return node->parent->data;
}
}
}
static inline emem_tree_node_t *
emem_tree_parent(emem_tree_node_t *node)
{
return node->parent;
}
static inline emem_tree_node_t *
emem_tree_grandparent(emem_tree_node_t *node)
{
emem_tree_node_t *parent;
parent=emem_tree_parent(node);
if(parent){
return parent->parent;
}
return NULL;
}
static inline emem_tree_node_t *
emem_tree_uncle(emem_tree_node_t *node)
{
emem_tree_node_t *parent, *grandparent;
parent=emem_tree_parent(node);
if(!parent){
return NULL;
}
grandparent=emem_tree_parent(parent);
if(!grandparent){
return NULL;
}
if(parent==grandparent->left){
return grandparent->right;
}
return grandparent->left;
}
static inline void rb_insert_case1(emem_tree_t *se_tree, emem_tree_node_t *node);
static inline void rb_insert_case2(emem_tree_t *se_tree, emem_tree_node_t *node);
static inline void
rotate_left(emem_tree_t *se_tree, emem_tree_node_t *node)
{
if(node->parent){
if(node->parent->left==node){
node->parent->left=node->right;
} else {
node->parent->right=node->right;
}
} else {
se_tree->tree=node->right;
}
node->right->parent=node->parent;
node->parent=node->right;
node->right=node->right->left;
if(node->right){
node->right->parent=node;
}
node->parent->left=node;
}
static inline void
rotate_right(emem_tree_t *se_tree, emem_tree_node_t *node)
{
if(node->parent){
if(node->parent->left==node){
node->parent->left=node->left;
} else {
node->parent->right=node->left;
}
} else {
se_tree->tree=node->left;
}
node->left->parent=node->parent;
node->parent=node->left;
node->left=node->left->right;
if(node->left){
node->left->parent=node;
}
node->parent->right=node;
}
static inline void
rb_insert_case5(emem_tree_t *se_tree, emem_tree_node_t *node)
{
emem_tree_node_t *grandparent;
emem_tree_node_t *parent;
parent=emem_tree_parent(node);
grandparent=emem_tree_parent(parent);
parent->u.rb_color=EMEM_TREE_RB_COLOR_BLACK;
grandparent->u.rb_color=EMEM_TREE_RB_COLOR_RED;
if( (node==parent->left) && (parent==grandparent->left) ){
rotate_right(se_tree, grandparent);
} else {
rotate_left(se_tree, grandparent);
}
}
static inline void
rb_insert_case4(emem_tree_t *se_tree, emem_tree_node_t *node)
{
emem_tree_node_t *grandparent;
emem_tree_node_t *parent;
parent=emem_tree_parent(node);
grandparent=emem_tree_parent(parent);
if(!grandparent){
return;
}
if( (node==parent->right) && (parent==grandparent->left) ){
rotate_left(se_tree, parent);
node=node->left;
} else if( (node==parent->left) && (parent==grandparent->right) ){
rotate_right(se_tree, parent);
node=node->right;
}
rb_insert_case5(se_tree, node);
}
static inline void
rb_insert_case3(emem_tree_t *se_tree, emem_tree_node_t *node)
{
emem_tree_node_t *grandparent;
emem_tree_node_t *parent;
emem_tree_node_t *uncle;
uncle=emem_tree_uncle(node);
if(uncle && (uncle->u.rb_color==EMEM_TREE_RB_COLOR_RED)){
parent=emem_tree_parent(node);
parent->u.rb_color=EMEM_TREE_RB_COLOR_BLACK;
uncle->u.rb_color=EMEM_TREE_RB_COLOR_BLACK;
grandparent=emem_tree_grandparent(node);
grandparent->u.rb_color=EMEM_TREE_RB_COLOR_RED;
rb_insert_case1(se_tree, grandparent);
} else {
rb_insert_case4(se_tree, node);
}
}
static inline void
rb_insert_case2(emem_tree_t *se_tree, emem_tree_node_t *node)
{
emem_tree_node_t *parent;
parent=emem_tree_parent(node);
/* parent is always non-NULL here */
if(parent->u.rb_color==EMEM_TREE_RB_COLOR_BLACK){
return;
}
rb_insert_case3(se_tree, node);
}
static inline void
rb_insert_case1(emem_tree_t *se_tree, emem_tree_node_t *node)
{
emem_tree_node_t *parent;
parent=emem_tree_parent(node);
if(!parent){
node->u.rb_color=EMEM_TREE_RB_COLOR_BLACK;
return;
}
rb_insert_case2(se_tree, node);
}
/* insert a new node in the tree. if this node matches an already existing node
* then just replace the data for that node */
void
emem_tree_insert32(emem_tree_t *se_tree, guint32 key, void *data)
{
emem_tree_node_t *node;
node=se_tree->tree;
/* is this the first node ?*/
if(!node){
node=se_tree->malloc(sizeof(emem_tree_node_t));
switch(se_tree->type){
case EMEM_TREE_TYPE_RED_BLACK:
node->u.rb_color=EMEM_TREE_RB_COLOR_BLACK;
break;
}
node->parent=NULL;
node->left=NULL;
node->right=NULL;
node->key32=key;
node->data=data;
node->u.is_subtree = EMEM_TREE_NODE_IS_DATA;
se_tree->tree=node;
return;
}
/* it was not the new root so walk the tree until we find where to
* insert this new leaf.
*/
while(1){
/* this node already exists, so just replace the data pointer*/
if(key==node->key32){
node->data=data;
return;
}
if(key<node->key32) {
if(!node->left){
/* new node to the left */
emem_tree_node_t *new_node;
new_node=se_tree->malloc(sizeof(emem_tree_node_t));
node->left=new_node;
new_node->parent=node;
new_node->left=NULL;
new_node->right=NULL;
new_node->key32=key;
new_node->data=data;
new_node->u.is_subtree=EMEM_TREE_NODE_IS_DATA;
node=new_node;
break;
}
node=node->left;
continue;
}
if(key>node->key32) {
if(!node->right){
/* new node to the right */
emem_tree_node_t *new_node;
new_node=se_tree->malloc(sizeof(emem_tree_node_t));
node->right=new_node;
new_node->parent=node;
new_node->left=NULL;
new_node->right=NULL;
new_node->key32=key;
new_node->data=data;
new_node->u.is_subtree=EMEM_TREE_NODE_IS_DATA;
node=new_node;
break;
}
node=node->right;
continue;
}
}
/* node will now point to the newly created node */
switch(se_tree->type){
case EMEM_TREE_TYPE_RED_BLACK:
node->u.rb_color=EMEM_TREE_RB_COLOR_RED;
rb_insert_case1(se_tree, node);
break;
}
}
static void* lookup_or_insert32(emem_tree_t *se_tree, guint32 key, void*(*func)(void*),void* ud, int is_subtree) {
emem_tree_node_t *node;
node=se_tree->tree;
/* is this the first node ?*/
if(!node){
node=se_tree->malloc(sizeof(emem_tree_node_t));
switch(se_tree->type){
case EMEM_TREE_TYPE_RED_BLACK:
node->u.rb_color=EMEM_TREE_RB_COLOR_BLACK;
break;
}
node->parent=NULL;
node->left=NULL;
node->right=NULL;
node->key32=key;
node->data= func(ud);
node->u.is_subtree = is_subtree;
se_tree->tree=node;
return node->data;
}
/* it was not the new root so walk the tree until we find where to
* insert this new leaf.
*/
while(1){
/* this node already exists, so just return the data pointer*/
if(key==node->key32){
return node->data;
}
if(key<node->key32) {
if(!node->left){
/* new node to the left */
emem_tree_node_t *new_node;
new_node=se_tree->malloc(sizeof(emem_tree_node_t));
node->left=new_node;
new_node->parent=node;
new_node->left=NULL;
new_node->right=NULL;
new_node->key32=key;
new_node->data= func(ud);
new_node->u.is_subtree = is_subtree;
node=new_node;
break;
}
node=node->left;
continue;
}
if(key>node->key32) {
if(!node->right){
/* new node to the right */
emem_tree_node_t *new_node;
new_node=se_tree->malloc(sizeof(emem_tree_node_t));
node->right=new_node;
new_node->parent=node;
new_node->left=NULL;
new_node->right=NULL;
new_node->key32=key;
new_node->data= func(ud);
new_node->u.is_subtree = is_subtree;
node=new_node;
break;
}
node=node->right;
continue;
}
}
/* node will now point to the newly created node */
switch(se_tree->type){
case EMEM_TREE_TYPE_RED_BLACK:
node->u.rb_color=EMEM_TREE_RB_COLOR_RED;
rb_insert_case1(se_tree, node);
break;
}
return node->data;
}
/* When the se data is released, this entire tree will dissapear as if it
* never existed including all metadata associated with the tree.
*/
emem_tree_t *
se_tree_create_non_persistent(int type, const char *name)
{
emem_tree_t *tree_list;
tree_list=se_alloc(sizeof(emem_tree_t));
tree_list->next=NULL;
tree_list->type=type;
tree_list->tree=NULL;
tree_list->name=name;
tree_list->malloc=se_alloc;
return tree_list;
}
/* This tree is PErmanent and will never be released
*/
emem_tree_t *
pe_tree_create(int type, char *name)
{
emem_tree_t *tree_list;
tree_list=g_malloc(sizeof(emem_tree_t));
tree_list->next=NULL;
tree_list->type=type;
tree_list->tree=NULL;
tree_list->name=name;
tree_list->malloc=(void *(*)(size_t)) g_malloc;
return tree_list;
}
/* create another (sub)tree using the same memory allocation scope
* as the parent tree.
*/
static emem_tree_t *
emem_tree_create_subtree(emem_tree_t *parent_tree, char *name)
{
emem_tree_t *tree_list;
tree_list=parent_tree->malloc(sizeof(emem_tree_t));
tree_list->next=NULL;
tree_list->type=parent_tree->type;
tree_list->tree=NULL;
tree_list->name=name;
tree_list->malloc=parent_tree->malloc;
return tree_list;
}
static void* create_sub_tree(void* d) {
emem_tree_t *se_tree = d;
return emem_tree_create_subtree(se_tree, "subtree");
}
/* insert a new node in the tree. if this node matches an already existing node
* then just replace the data for that node */
void
emem_tree_insert32_array(emem_tree_t *se_tree, emem_tree_key_t *key, void *data)
{
emem_tree_t *next_tree;
if((key[0].length<1)||(key[0].length>100)){
DISSECTOR_ASSERT_NOT_REACHED();
}
if((key[0].length==1)&&(key[1].length==0)){
emem_tree_insert32(se_tree, *key[0].key, data);
return;
}
next_tree=lookup_or_insert32(se_tree, *key[0].key, create_sub_tree, se_tree, EMEM_TREE_NODE_IS_SUBTREE);
if(key[0].length==1){
key++;
} else {
key[0].length--;
key[0].key++;
}
emem_tree_insert32_array(next_tree, key, data);
}
void *
emem_tree_lookup32_array(emem_tree_t *se_tree, emem_tree_key_t *key)
{
emem_tree_t *next_tree;
if((key[0].length<1)||(key[0].length>100)){
DISSECTOR_ASSERT_NOT_REACHED();
}
if((key[0].length==1)&&(key[1].length==0)){
return emem_tree_lookup32(se_tree, *key[0].key);
}
next_tree=emem_tree_lookup32(se_tree, *key[0].key);
if(!next_tree){
return NULL;
}
if(key[0].length==1){
key++;
} else {
key[0].length--;
key[0].key++;
}
return emem_tree_lookup32_array(next_tree, key);
}
/* Strings are stored as an array of uint32 containing the string characters
with 4 characters in each uint32.
The first byte of the string is stored as the most significant byte.
If the string is not a multiple of 4 characters in length the last
uint32 containing the string bytes are padded with 0 bytes.
After the uint32's containing the string, there is one final terminator
uint32 with the value 0x00000001
*/
void
emem_tree_insert_string(emem_tree_t* se_tree, const gchar* k, void* v, guint32 flags)
{
emem_tree_key_t key[2];
guint32 *aligned=NULL;
guint32 len = strlen(k);
guint32 div = (len+3)/4+1;
guint32 i;
guint32 tmp;
aligned = malloc(div * sizeof (guint32));
/* pack the bytes one one by one into guint32s */
tmp = 0;
for (i = 0;i < len;i++) {
unsigned char ch;
ch = (unsigned char)k[i];
if (flags & EMEM_TREE_STRING_NOCASE) {
if(isupper(ch)) {
ch = tolower(ch);
}
}
tmp <<= 8;
tmp |= ch;
if (i%4 == 3) {
aligned[i/4] = tmp;
tmp = 0;
}
}
/* add required padding to the last uint32 */
if (i%4 != 0) {
while (i%4 != 0) {
i++;
tmp <<= 8;
}
aligned[i/4-1] = tmp;
}
/* add the terminator */
aligned[div-1] = 0x00000001;
key[0].length = div;
key[0].key = aligned;
key[1].length = 0;
key[1].key = NULL;
emem_tree_insert32_array(se_tree, key, v);
free(aligned);
}
void *
emem_tree_lookup_string(emem_tree_t* se_tree, const gchar* k, guint32 flags)
{
emem_tree_key_t key[2];
guint32 *aligned=NULL;
guint32 len = strlen(k);
guint32 div = (len+3)/4+1;
guint32 i;
guint32 tmp;
void *ret;
aligned = malloc(div * sizeof (guint32));
/* pack the bytes one one by one into guint32s */
tmp = 0;
for (i = 0;i < len;i++) {
unsigned char ch;
ch = (unsigned char)k[i];
if (flags & EMEM_TREE_STRING_NOCASE) {
if(isupper(ch)) {
ch = tolower(ch);
}
}
tmp <<= 8;
tmp |= ch;
if (i%4 == 3) {
aligned[i/4] = tmp;
tmp = 0;
}
}
/* add required padding to the last uint32 */
if (i%4 != 0) {
while (i%4 != 0) {
i++;
tmp <<= 8;
}
aligned[i/4-1] = tmp;
}
/* add the terminator */
aligned[div-1] = 0x00000001;
key[0].length = div;
key[0].key = aligned;
key[1].length = 0;
key[1].key = NULL;
ret = emem_tree_lookup32_array(se_tree, key);
free(aligned);
return ret;
}
static gboolean
emem_tree_foreach_nodes(emem_tree_node_t* node, tree_foreach_func callback, void *user_data)
{
gboolean stop_traverse = FALSE;
if (!node)
return FALSE;
if(node->left) {
stop_traverse = emem_tree_foreach_nodes(node->left, callback, user_data);
if (stop_traverse) {
return TRUE;
}
}
if (node->u.is_subtree == EMEM_TREE_NODE_IS_SUBTREE) {
stop_traverse = emem_tree_foreach(node->data, callback, user_data);
} else {
stop_traverse = callback(node->data, user_data);
}
if (stop_traverse) {
return TRUE;
}
if(node->right) {
stop_traverse = emem_tree_foreach_nodes(node->right, callback, user_data);
if (stop_traverse) {
return TRUE;
}
}
return FALSE;
}
gboolean
emem_tree_foreach(emem_tree_t* emem_tree, tree_foreach_func callback, void *user_data)
{
if (!emem_tree)
return FALSE;
if(!emem_tree->tree)
return FALSE;
return emem_tree_foreach_nodes(emem_tree->tree, callback, user_data);
}
static void
emem_tree_print_nodes(emem_tree_node_t* node, int level)
{
int i;
if (!node)
return;
for(i=0;i<level;i++){
printf(" ");
}
printf("NODE:%p parent:%p left:0x%p right:%px key:%d data:%p\n",
(void *)node,(void *)(node->parent),(void *)(node->left),(void *)(node->right),
(node->key32),node->data);
if(node->left)
emem_tree_print_nodes(node->left, level+1);
if(node->right)
emem_tree_print_nodes(node->right, level+1);
}
void
emem_print_tree(emem_tree_t* emem_tree)
{
if (!emem_tree)
return;
printf("EMEM tree type:%d name:%s tree:%p\n",emem_tree->type,emem_tree->name,(void *)(emem_tree->tree));
if(emem_tree->tree)
emem_tree_print_nodes(emem_tree->tree, 0);
}