wireshark/epan/dissectors/packet-usb-ccid.c

871 lines
36 KiB
C

/* packet-usb-ccid.c
* Dissector for the Integrated Circuit Card Interface Device Class
*
* References:
* http://www.usb.org/developers/devclass_docs/DWG_Smart-Card_CCID_Rev110.pdf
*
* Copyright 2011, Tyson Key <tyson.key@gmail.com>
*
* Wireshark - Network traffic analyzer
* By Gerald Combs <gerald@wireshark.org>
* Copyright 1998 Gerald Combs
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
*/
#include "config.h"
#include <epan/packet.h>
#include <epan/prefs.h>
#include "packet-usb.h"
static int proto_ccid = -1;
static int hf_ccid_bMessageType = -1;
static int hf_ccid_dwLength = -1;
static int hf_ccid_bSlot = -1;
static int hf_ccid_bSeq = -1;
static int hf_ccid_bStatus = -1;
static int hf_ccid_bError = -1;
static int hf_ccid_bRFU = -1;
static int hf_ccid_abRFU = -1;
static int hf_ccid_bChainParameter = -1;
static int hf_ccid_bPowerSelect = -1;
static int hf_ccid_bClockStatus = -1;
static int hf_ccid_bProtocolNum = -1;
static int hf_ccid_bBWI = -1;
static int hf_ccid_wLevelParameter = -1;
static int hf_ccid_bcdCCID = -1;
static int hf_ccid_bMaxSlotIndex = -1;
static int hf_ccid_bVoltageSupport = -1;
static int hf_ccid_bVoltageSupport18 = -1;
static int hf_ccid_bVoltageSupport30 = -1;
static int hf_ccid_bVoltageSupport50 = -1;
static int hf_ccid_dwProtocols = -1;
static int hf_ccid_dwProtocols_t0 = -1;
static int hf_ccid_dwProtocols_t1 = -1;
static int hf_ccid_dwDefaultClock = -1;
static int hf_ccid_dwMaximumClock = -1;
static int hf_ccid_bNumClockSupported = -1;
static int hf_ccid_dwDataRate = -1;
static int hf_ccid_dwMaxDataRate = -1;
static int hf_ccid_bNumDataRatesSupported = -1;
static int hf_ccid_dwSynchProtocols = -1;
static int hf_ccid_dwMechanical = -1;
static int hf_ccid_dwFeatures = -1;
static int hf_ccid_dwFeatures_autoParam = -1;
static int hf_ccid_dwFeatures_autoIccActivation = -1;
static int hf_ccid_dwFeatures_autoIccClk = -1;
static int hf_ccid_dwFeatures_autoBaudRate = -1;
static int hf_ccid_dwMaxCCIDMessageLength = -1;
static int hf_ccid_bClassGetResponse = -1;
static int hf_ccid_bClassEnvelope = -1;
static int hf_ccid_wLcdLayout = -1;
static int hf_ccid_wLcdLayout_lines = -1;
static int hf_ccid_wLcdLayout_chars = -1;
static int hf_ccid_bPINSupport = -1;
static int hf_ccid_bPINSupport_modify = -1;
static int hf_ccid_bPINSupport_vrfy = -1;
static int hf_ccid_bMaxCCIDBusySlots = -1;
static int hf_ccid_Reserved = -1;
static int hf_ccid_bmSlotICCState = -1;
static int hf_ccid_bmSlotICCState_slot0Current = -1;
static int hf_ccid_bmSlotICCState_slot0Changed = -1;
static int hf_ccid_bmSlotICCState_slot1Current = -1;
static int hf_ccid_bmSlotICCState_slot1Changed = -1;
static int hf_ccid_bmSlotICCState_slot2Current = -1;
static int hf_ccid_bmSlotICCState_slot2Changed = -1;
static int hf_ccid_bmSlotICCState_slot3Current = -1;
static int hf_ccid_bmSlotICCState_slot3Changed = -1;
static int hf_ccid_bHardwareErrorCode = -1;
static dissector_handle_t usb_ccid_handle;
static const int *bVoltageLevel_fields[] = {
&hf_ccid_bVoltageSupport18,
&hf_ccid_bVoltageSupport30,
&hf_ccid_bVoltageSupport50,
NULL
};
static const int *dwProtocols_fields[] = {
&hf_ccid_dwProtocols_t0,
&hf_ccid_dwProtocols_t1,
NULL
};
static const int *bFeatures_fields[] = {
/* XXX - add the missing components */
&hf_ccid_dwFeatures_autoIccActivation,
&hf_ccid_dwFeatures_autoParam,
&hf_ccid_dwFeatures_autoIccClk,
&hf_ccid_dwFeatures_autoBaudRate,
NULL
};
static const int *bPINSupport_fields[] = {
&hf_ccid_bPINSupport_modify,
&hf_ccid_bPINSupport_vrfy,
NULL
};
static const int *bmSlotICCState_fields[] = {
&hf_ccid_bmSlotICCState_slot0Current,
&hf_ccid_bmSlotICCState_slot0Changed,
&hf_ccid_bmSlotICCState_slot1Current,
&hf_ccid_bmSlotICCState_slot1Changed,
&hf_ccid_bmSlotICCState_slot2Current,
&hf_ccid_bmSlotICCState_slot2Changed,
&hf_ccid_bmSlotICCState_slot3Current,
&hf_ccid_bmSlotICCState_slot3Changed,
NULL
};
/* smart card descriptor, as defined in section 5.1
of the USB CCID specification */
#define USB_DESC_TYPE_SMARTCARD 0x21
/* Standardised Bulk Out message types */
#define PC_RDR_SET_PARAMS 0x61
#define PC_RDR_ICC_ON 0x62
#define PC_RDR_ICC_OFF 0x63
#define PC_RDR_GET_SLOT_STATUS 0x65
#define PC_RDR_SECURE 0x69
#define PC_RDR_T0APDU 0x6A
#define PC_RDR_ESCAPE 0x6B
#define PC_RDR_GET_PARAMS 0x6C
#define PC_RDR_RESET_PARAMS 0x6D
#define PC_RDR_ICC_CLOCK 0x6E
#define PC_RDR_XFR_BLOCK 0x6F
#define PC_RDR_MECH 0x71
#define PC_RDR_ABORT 0x72
#define PC_RDR_DATA_CLOCK 0x73
/* Standardised Bulk In message types */
#define RDR_PC_DATA_BLOCK 0x80
#define RDR_PC_SLOT_STATUS 0x81
#define RDR_PC_PARAMS 0x82
#define RDR_PC_ESCAPE 0x83
#define RDR_PC_DATA_CLOCK 0x84
/* Standardised Interupt IN message types */
#define RDR_PC_NOTIF_SLOT_CHNG 0x50
#define RDR_PC_HWERROR 0x51
void proto_register_ccid(void);
void proto_reg_handoff_ccid(void);
static const value_string ccid_descriptor_type_vals[] = {
{USB_DESC_TYPE_SMARTCARD, "smart card"},
{0,NULL}
};
static value_string_ext ccid_descriptor_type_vals_ext =
VALUE_STRING_EXT_INIT(ccid_descriptor_type_vals);
static const value_string ccid_opcode_vals[] = {
/* Standardised Bulk Out message types */
{PC_RDR_SET_PARAMS , "PC_to_RDR_SetParameters"},
{PC_RDR_ICC_ON , "PC_to_RDR_IccPowerOn"},
{PC_RDR_ICC_OFF , "PC_to_RDR_IccPowerOff"},
{PC_RDR_GET_SLOT_STATUS , "PC_to_RDR_GetSlotStatus"},
{PC_RDR_SECURE , "PC_to_RDR_Secure"},
{PC_RDR_T0APDU , "PC_to_RDR_T0APDU"},
{PC_RDR_ESCAPE , "PC_to_RDR_Escape"},
{PC_RDR_GET_PARAMS , "PC_to_RDR_GetParameters"},
{PC_RDR_RESET_PARAMS , "PC_to_RDR_ResetParameters"},
{PC_RDR_ICC_CLOCK , "PC_to_RDR_IccClock"},
{PC_RDR_XFR_BLOCK , "PC_to_RDR_XfrBlock"},
{PC_RDR_MECH , "PC_to_RDR_Mechanical"},
{PC_RDR_ABORT , "PC_to_RDR_Abort"},
{PC_RDR_DATA_CLOCK , "PC_to_RDR_SetDataRateAndClockFrequency"},
/* Standardised Bulk In message types */
{RDR_PC_DATA_BLOCK , "RDR_to_PC_DataBlock"},
{RDR_PC_SLOT_STATUS , "RDR_to_PC_SlotStatus"},
{RDR_PC_PARAMS , "RDR_to_PC_Parameters"},
{RDR_PC_ESCAPE , "RDR_to_PC_Escape"},
{RDR_PC_DATA_CLOCK , "RDR_to_PC_DataRateAndClockFrequency"},
/* Standardised Interupt IN message types */
{RDR_PC_NOTIF_SLOT_CHNG , "RDR_to_PC_NotifySlotChange"},
{RDR_PC_HWERROR , "RDR_to_PC_HardwareError"},
/* End of message types */
{0x00, NULL}
};
static const value_string ccid_messagetypes_vals[] = {
/* Standardised Bulk Out message types */
{PC_RDR_SET_PARAMS , "PC to Reader: Set Parameters"},
{PC_RDR_ICC_ON , "PC to Reader: ICC Power On"},
{PC_RDR_ICC_OFF , "PC to Reader: ICC Power Off"},
{PC_RDR_GET_SLOT_STATUS , "PC to Reader: Get Slot Status"},
{PC_RDR_SECURE , "PC to Reader: Secure"},
{PC_RDR_T0APDU , "PC to Reader: T=0 APDU"},
{PC_RDR_ESCAPE , "PC to Reader: Escape"},
{PC_RDR_GET_PARAMS , "PC to Reader: Get Parameters"},
{PC_RDR_RESET_PARAMS , "PC to Reader: Reset Parameters"},
{PC_RDR_ICC_CLOCK , "PC to Reader: ICC Clock"},
{PC_RDR_XFR_BLOCK , "PC to Reader: Transfer Block"},
{PC_RDR_MECH , "PC to Reader: Mechanical"},
{PC_RDR_ABORT , "PC to Reader: Abort"},
{PC_RDR_DATA_CLOCK , "PC to Reader: Set Data Rate and Clock Frequency"},
/* Standardised Bulk In message types */
{RDR_PC_DATA_BLOCK , "Reader to PC: Data Block"},
{RDR_PC_SLOT_STATUS , "Reader to PC: Slot Status"},
{RDR_PC_PARAMS , "Reader to PC: Parameters"},
{RDR_PC_ESCAPE , "Reader to PC: Escape"},
{RDR_PC_DATA_CLOCK , "Reader to PC: Data Rate and Clock Frequency"},
/* Standardised Interupt IN message types */
{RDR_PC_NOTIF_SLOT_CHNG , "Reader to PC: Notify Slot Change"},
{RDR_PC_HWERROR , "Reader to PC: Hardware Error"},
/* End of message types */
{0x00, NULL}
};
static const value_string ccid_voltage_levels_vals[] = {
/* Standardised voltage levels */
{0x00, "Automatic Voltage Selection"},
{0x01, "5.0 volts"},
{0x02, "3.0 volts"},
{0x03, "1.8 volts"},
/* End of voltage levels */
{0x00, NULL}
};
static const value_string ccid_clock_states_vals[] = {
/* Standardised clock states */
{0x00, "Clock running"},
{0x01, "Clock stopped in state L"},
{0x02, "Clock stopped in state H"},
{0x03, "Clock stopped in an unknown state"},
/* End of clock states */
{0x00, NULL}
};
static const value_string ccid_proto_structs_vals[] = {
/* Standardised clock states */
{0x00, "Structure for protocol T=0"},
{0x01, "Structure for protocol T=1"},
/* Marked as RFU, but added for completeness: */
{0x80, "Structure for 2-wire protocol"},
{0x81, "Structure for 3-wire protocol"},
{0x82, "Structure for I2C protocol"},
/* End of protocol structures */
{0x00, NULL}
};
/* Subtree handles: set by register_subtree_array */
static gint ett_ccid = -1;
static gint ett_ccid_desc = -1;
static gint ett_ccid_voltage_level = -1;
static gint ett_ccid_protocols = -1;
static gint ett_ccid_features = -1;
static gint ett_ccid_lcd_layout = -1;
static gint ett_ccid_pin_support = -1;
static gint ett_ccid_slot_change = -1;
/* Table of payload types - adapted from the I2C dissector */
enum {
SUB_DATA = 0,
SUB_ISO7816,
SUB_GSM_SIM_CMD,
SUB_PN532,
SUB_ACR122_PN532,
SUB_GSM_SIM_RSP,
SUB_MAX
};
typedef gboolean (*sub_checkfunc_t)(packet_info *);
static dissector_handle_t sub_handles[SUB_MAX];
static gint sub_selected = SUB_DATA;
static gint
dissect_usb_ccid_descriptor(tvbuff_t *tvb, packet_info *pinfo _U_,
proto_tree *tree, void *data _U_)
{
gint offset = 0;
guint8 descriptor_type;
guint8 descriptor_len;
proto_item *freq_item;
proto_tree *desc_tree;
guint8 num_clock_supp;
proto_item *lcd_layout_item;
proto_tree *lcd_layout_tree;
descriptor_len = tvb_get_guint8(tvb, offset);
descriptor_type = tvb_get_guint8(tvb, offset+1);
if (descriptor_type!=USB_DESC_TYPE_SMARTCARD)
return 0;
desc_tree = proto_tree_add_subtree(tree, tvb, offset, descriptor_len,
ett_ccid_desc, NULL, "SMART CARD DEVICE CLASS DESCRIPTOR");
dissect_usb_descriptor_header(desc_tree, tvb, offset,
&ccid_descriptor_type_vals_ext);
offset += 2;
proto_tree_add_item(desc_tree, hf_ccid_bcdCCID, tvb,
offset, 2, ENC_LITTLE_ENDIAN);
offset += 2;
proto_tree_add_item(desc_tree, hf_ccid_bMaxSlotIndex, tvb,
offset, 1, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_bitmask(desc_tree, tvb, offset,
hf_ccid_bVoltageSupport, ett_ccid_voltage_level, bVoltageLevel_fields,
ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_bitmask(desc_tree, tvb, offset,
hf_ccid_dwProtocols, ett_ccid_protocols, dwProtocols_fields,
ENC_LITTLE_ENDIAN);
offset += 4;
freq_item = proto_tree_add_item(desc_tree, hf_ccid_dwDefaultClock, tvb,
offset, 4, ENC_LITTLE_ENDIAN);
proto_item_append_text(freq_item, " kHz");
offset += 4;
freq_item = proto_tree_add_item(desc_tree, hf_ccid_dwMaximumClock, tvb,
offset, 4, ENC_LITTLE_ENDIAN);
proto_item_append_text(freq_item, " kHz");
offset += 4;
num_clock_supp = tvb_get_guint8(tvb, offset);
freq_item = proto_tree_add_item(desc_tree, hf_ccid_bNumClockSupported, tvb,
offset, 1, ENC_LITTLE_ENDIAN);
if (num_clock_supp==0)
proto_item_append_text(freq_item, " (only default and maximum)");
offset++;
proto_tree_add_item(desc_tree, hf_ccid_dwDataRate,
tvb, offset, 4, ENC_LITTLE_ENDIAN);
offset += 4;
proto_tree_add_item(desc_tree, hf_ccid_dwMaxDataRate,
tvb, offset, 4, ENC_LITTLE_ENDIAN);
offset += 4;
proto_tree_add_item(desc_tree, hf_ccid_bNumDataRatesSupported,
tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
/* skip dwMaxIFSD */
offset += 4;
proto_tree_add_item(desc_tree, hf_ccid_dwSynchProtocols,
tvb, offset, 4, ENC_LITTLE_ENDIAN);
offset += 4;
proto_tree_add_item(desc_tree, hf_ccid_dwMechanical,
tvb, offset, 4, ENC_LITTLE_ENDIAN);
offset += 4;
proto_tree_add_bitmask(desc_tree, tvb, offset,
hf_ccid_dwFeatures, ett_ccid_features, bFeatures_fields,
ENC_LITTLE_ENDIAN);
offset += 4;
proto_tree_add_item(desc_tree, hf_ccid_dwMaxCCIDMessageLength,
tvb, offset, 4, ENC_LITTLE_ENDIAN);
offset += 4;
proto_tree_add_item(desc_tree, hf_ccid_bClassGetResponse,
tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_item(desc_tree, hf_ccid_bClassEnvelope,
tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
lcd_layout_item = proto_tree_add_item(desc_tree, hf_ccid_wLcdLayout,
tvb, offset, 2, ENC_LITTLE_ENDIAN);
lcd_layout_tree = proto_item_add_subtree(
lcd_layout_item, ett_ccid_lcd_layout);
proto_tree_add_item(lcd_layout_tree, hf_ccid_wLcdLayout_lines,
tvb, offset+1, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(lcd_layout_tree, hf_ccid_wLcdLayout_chars,
tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset += 2;
proto_tree_add_bitmask(desc_tree, tvb, offset,
hf_ccid_bPINSupport, ett_ccid_pin_support, bPINSupport_fields,
ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_item(desc_tree, hf_ccid_bMaxCCIDBusySlots,
tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
return offset;
}
static gint
dissect_ccid(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data)
{
proto_item *item;
proto_tree *ccid_tree;
guint8 cmd;
tvbuff_t *next_tvb;
usb_conv_info_t *usb_conv_info;
/* Reject the packet if data is NULL */
if (data == NULL)
return 0;
usb_conv_info = (usb_conv_info_t *)data;
col_set_str(pinfo->cinfo, COL_PROTOCOL, "USBCCID");
col_set_str(pinfo->cinfo, COL_INFO, "CCID Packet");
/* Start with a top-level item to add everything else to */
item = proto_tree_add_item(tree, proto_ccid, tvb, 0, 10, ENC_NA);
ccid_tree = proto_item_add_subtree(item, ett_ccid);
proto_tree_add_item(ccid_tree, hf_ccid_bMessageType, tvb, 0, 1, ENC_LITTLE_ENDIAN);
cmd = tvb_get_guint8(tvb, 0);
col_append_fstr(pinfo->cinfo, COL_INFO, " - %s", val_to_str_const(cmd, ccid_messagetypes_vals, "Unknown"));
switch (cmd) {
case PC_RDR_SET_PARAMS:
proto_tree_add_item(ccid_tree, hf_ccid_dwLength, tvb, 1, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(ccid_tree, hf_ccid_bSlot, tvb, 5, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(ccid_tree, hf_ccid_bSeq, tvb, 6, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(ccid_tree, hf_ccid_bProtocolNum, tvb, 7, 1, ENC_LITTLE_ENDIAN);
/* Placeholder for abRFU */
proto_tree_add_item(ccid_tree, hf_ccid_Reserved, tvb, 8, 2, ENC_LITTLE_ENDIAN);
if (tvb_get_letohl(tvb, 1) != 0)
{
next_tvb = tvb_new_subset_remaining(tvb, 10);
call_dissector(sub_handles[SUB_DATA], next_tvb, pinfo, tree);
}
break;
case PC_RDR_ICC_ON:
proto_tree_add_item(ccid_tree, hf_ccid_dwLength, tvb, 1, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(ccid_tree, hf_ccid_bSlot, tvb, 5, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(ccid_tree, hf_ccid_bSeq, tvb, 6, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(ccid_tree, hf_ccid_bPowerSelect, tvb, 7, 1, ENC_LITTLE_ENDIAN);
/* Placeholder for abRFU */
proto_tree_add_item(ccid_tree, hf_ccid_Reserved, tvb, 8, 2, ENC_LITTLE_ENDIAN);
break;
case PC_RDR_ICC_OFF:
proto_tree_add_item(ccid_tree, hf_ccid_dwLength, tvb, 1, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(ccid_tree, hf_ccid_bSlot, tvb, 5, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(ccid_tree, hf_ccid_bSeq, tvb, 6, 1, ENC_LITTLE_ENDIAN);
/* Placeholder for abRFU */
proto_tree_add_item(ccid_tree, hf_ccid_Reserved, tvb, 7, 3, ENC_LITTLE_ENDIAN);
break;
case PC_RDR_GET_SLOT_STATUS:
proto_tree_add_item(ccid_tree, hf_ccid_dwLength, tvb, 1, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(ccid_tree, hf_ccid_bSlot, tvb, 5, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(ccid_tree, hf_ccid_bSeq, tvb, 6, 1, ENC_LITTLE_ENDIAN);
/* Placeholder for abRFU */
proto_tree_add_item(ccid_tree, hf_ccid_Reserved, tvb, 7, 3, ENC_LITTLE_ENDIAN);
break;
case PC_RDR_GET_PARAMS:
proto_tree_add_item(ccid_tree, hf_ccid_dwLength, tvb, 1, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(ccid_tree, hf_ccid_bSlot, tvb, 5, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(ccid_tree, hf_ccid_bSeq, tvb, 6, 1, ENC_LITTLE_ENDIAN);
/* Placeholder for abRFU */
proto_tree_add_item(ccid_tree, hf_ccid_Reserved, tvb, 7, 3, ENC_LITTLE_ENDIAN);
break;
case PC_RDR_XFR_BLOCK:
case PC_RDR_ESCAPE:
proto_tree_add_item(ccid_tree, hf_ccid_dwLength, tvb, 1, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(ccid_tree, hf_ccid_bSlot, tvb, 5, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(ccid_tree, hf_ccid_bSeq, tvb, 6, 1, ENC_LITTLE_ENDIAN);
if (cmd == PC_RDR_ESCAPE) {
proto_tree_add_item(ccid_tree, hf_ccid_abRFU, tvb, 7, 3, ENC_NA);
} else {
proto_tree_add_item(ccid_tree, hf_ccid_bBWI, tvb, 7, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(ccid_tree, hf_ccid_wLevelParameter, tvb, 8, 2, ENC_LITTLE_ENDIAN);
}
if (tvb_get_letohl(tvb, 1) != 0)
{
next_tvb = tvb_new_subset_remaining(tvb, 10);
/* See if the dissector isn't Data */
if (sub_selected != SUB_DATA) {
if (sub_selected == SUB_PN532) {
call_dissector_with_data(sub_handles[sub_selected], tvb_new_subset_remaining(tvb, 10), pinfo, tree, usb_conv_info);
} else if (sub_selected == SUB_ACR122_PN532) {
pinfo->p2p_dir = P2P_DIR_SENT;
call_dissector_with_data(sub_handles[sub_selected], tvb_new_subset_remaining(tvb, 10), pinfo, tree, usb_conv_info);
} else if (sub_selected == SUB_ISO7816) {
/* sent/received is from the perspective of the card reader */
pinfo->p2p_dir = P2P_DIR_SENT;
call_dissector(sub_handles[SUB_ISO7816], next_tvb, pinfo, tree);
} else { /* The user probably wanted GSM SIM, or something else */
call_dissector(sub_handles[sub_selected], next_tvb, pinfo, tree);
}
} else if (usb_conv_info->deviceVendor == 0x072F && usb_conv_info->deviceProduct == 0x2200) {
pinfo->p2p_dir = P2P_DIR_SENT;
call_dissector_with_data(sub_handles[SUB_ACR122_PN532], tvb_new_subset_remaining(tvb, 10), pinfo, tree, usb_conv_info);
} else { /* The user only wants plain data */
call_dissector(sub_handles[SUB_DATA], next_tvb, pinfo, tree);
}
}
break;
case RDR_PC_DATA_BLOCK:
case RDR_PC_ESCAPE:
proto_tree_add_item(ccid_tree, hf_ccid_dwLength, tvb, 1, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(ccid_tree, hf_ccid_bSlot, tvb, 5, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(ccid_tree, hf_ccid_bSeq, tvb, 6, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(ccid_tree, hf_ccid_bStatus, tvb, 7, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(ccid_tree, hf_ccid_bError, tvb, 8, 1, ENC_LITTLE_ENDIAN);
if (cmd == RDR_PC_ESCAPE)
proto_tree_add_item(ccid_tree, hf_ccid_bRFU, tvb, 9, 1, ENC_LITTLE_ENDIAN);
else
proto_tree_add_item(ccid_tree, hf_ccid_bChainParameter, tvb, 9, 1, ENC_LITTLE_ENDIAN);
if (tvb_get_letohl(tvb, 1) != 0)
{
next_tvb = tvb_new_subset_remaining(tvb, 10);
if (sub_selected == SUB_PN532) {
next_tvb= tvb_new_subset_length(tvb, 10, tvb_get_guint8(tvb, 1));
call_dissector_with_data(sub_handles[SUB_PN532], next_tvb, pinfo, tree, usb_conv_info);
} else if (sub_selected == SUB_ACR122_PN532) {
pinfo->p2p_dir = P2P_DIR_RECV;
call_dissector_with_data(sub_handles[SUB_ACR122_PN532], tvb_new_subset_remaining(tvb, 10), pinfo, tree, usb_conv_info);
} else if (sub_selected == SUB_GSM_SIM_CMD) { /* Try to dissect responses to GSM SIM packets */
call_dissector(sub_handles[SUB_GSM_SIM_RSP], next_tvb, pinfo, tree);
} else if (sub_selected == SUB_ISO7816) {
pinfo->p2p_dir = P2P_DIR_RECV;
call_dissector(sub_handles[SUB_ISO7816], next_tvb, pinfo, tree);
} else if (usb_conv_info->deviceVendor == 0x072F && usb_conv_info->deviceProduct == 0x2200) {
pinfo->p2p_dir = P2P_DIR_RECV;
call_dissector_with_data(sub_handles[SUB_ACR122_PN532], tvb_new_subset_remaining(tvb, 10), pinfo, tree, usb_conv_info);
} else {
call_dissector(sub_handles[SUB_DATA], next_tvb, pinfo, tree);
}
}
break;
case RDR_PC_SLOT_STATUS:
proto_tree_add_item(ccid_tree, hf_ccid_dwLength, tvb, 1, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(ccid_tree, hf_ccid_bSlot, tvb, 5, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(ccid_tree, hf_ccid_bSeq, tvb, 6, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(ccid_tree, hf_ccid_bStatus, tvb, 7, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(ccid_tree, hf_ccid_bError, tvb, 8, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(ccid_tree, hf_ccid_bClockStatus, tvb, 9, 1, ENC_LITTLE_ENDIAN);
break;
case RDR_PC_PARAMS:
proto_tree_add_item(ccid_tree, hf_ccid_dwLength, tvb, 1, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(ccid_tree, hf_ccid_bSlot, tvb, 5, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(ccid_tree, hf_ccid_bSeq, tvb, 6, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(ccid_tree, hf_ccid_bStatus, tvb, 7, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(ccid_tree, hf_ccid_bError, tvb, 8, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(ccid_tree, hf_ccid_bProtocolNum, tvb, 8, 1, ENC_LITTLE_ENDIAN);
break;
/*Interupt IN*/
case RDR_PC_NOTIF_SLOT_CHNG:
proto_tree_add_bitmask(ccid_tree, tvb, 1,
hf_ccid_bmSlotICCState, ett_ccid_slot_change, bmSlotICCState_fields,
ENC_LITTLE_ENDIAN);
break;
case RDR_PC_HWERROR:
proto_tree_add_item(ccid_tree, hf_ccid_bSlot, tvb, 1, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(ccid_tree, hf_ccid_bSeq, tvb, 2, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(ccid_tree, hf_ccid_bHardwareErrorCode, tvb, 3, 1, ENC_LITTLE_ENDIAN);
break;
}
/* TODO: Try use "offset" instead of hardcoded constants */
return tvb_captured_length(tvb);
}
void
proto_register_ccid(void)
{
static hf_register_info hf[] = {
{&hf_ccid_bMessageType,
{ "Message Type", "usbccid.bMessageType", FT_UINT8, BASE_HEX,
VALS(ccid_opcode_vals), 0x0, NULL, HFILL }},
{&hf_ccid_dwLength,
{ "Packet Length", "usbccid.dwLength", FT_UINT32, BASE_DEC,
NULL, 0x0, NULL, HFILL }},
{&hf_ccid_bSlot,
{ "Slot", "usbccid.bSlot", FT_UINT8, BASE_DEC,
NULL, 0x0, NULL, HFILL }},
{&hf_ccid_bSeq,
{ "Sequence", "usbccid.bSeq", FT_UINT8, BASE_DEC,
NULL, 0x0, NULL, HFILL }},
{&hf_ccid_bStatus,
{ "Status", "usbccid.bStatus", FT_UINT8, BASE_DEC,
NULL, 0x0, NULL, HFILL }},
{&hf_ccid_bError,
{ "Error", "usbccid.bError", FT_UINT8, BASE_DEC,
NULL, 0x0, NULL, HFILL }},
{&hf_ccid_bRFU,
{ "RFU", "usbccid.bRFU", FT_UINT8, BASE_HEX,
NULL, 0x0, NULL, HFILL }},
{&hf_ccid_abRFU,
{ "RFU", "usbccid.abRFU", FT_BYTES, BASE_NONE,
NULL, 0x0, NULL, HFILL }},
{&hf_ccid_bChainParameter,
{ "Chain Parameter", "usbccid.bChainParameter", FT_UINT8, BASE_DEC,
NULL, 0x0, NULL, HFILL }},
{&hf_ccid_bPowerSelect,
{ "Voltage Level", "usbccid.bPowerSelect", FT_UINT8, BASE_HEX,
VALS(ccid_voltage_levels_vals), 0x0, NULL, HFILL }},
{&hf_ccid_bClockStatus,
{ "Clock Status", "usbccid.bClockStatus", FT_UINT8, BASE_HEX,
VALS(ccid_clock_states_vals), 0x0, NULL, HFILL }},
{&hf_ccid_bProtocolNum,
{ "Data Structure Type", "usbccid.bProtocolNum", FT_UINT8, BASE_HEX,
VALS(ccid_proto_structs_vals), 0x0, NULL, HFILL }},
{&hf_ccid_bBWI,
{ "Block Wait Time Integer", "usbccid.bBWI", FT_UINT8, BASE_HEX,
NULL, 0x0, NULL, HFILL }},
{&hf_ccid_wLevelParameter,
{ "Level Parameter", "usbccid.wLevelParameter", FT_UINT8, BASE_HEX,
NULL, 0x0, NULL, HFILL }},
{&hf_ccid_bcdCCID,
{ "bcdCCID", "usbccid.bcdCCID", FT_UINT16, BASE_HEX,
NULL, 0x0, NULL, HFILL }},
{&hf_ccid_bMaxSlotIndex,
{ "max slot index", "usbccid.bMaxSlotIndex", FT_UINT8, BASE_HEX,
NULL, 0x0, NULL, HFILL }},
{&hf_ccid_bVoltageSupport,
{ "voltage support", "usbccid.bVoltageSupport", FT_UINT8, BASE_HEX,
NULL, 0x0, NULL, HFILL }},
{&hf_ccid_bVoltageSupport18,
{ "1.8V", "usbccid.bVoltageSupport.18", FT_BOOLEAN, 8,
TFS(&tfs_supported_not_supported), 0x04, NULL, HFILL }},
{&hf_ccid_bVoltageSupport30,
{ "3.0V", "usbccid.bVoltageSupport.30", FT_BOOLEAN, 8,
TFS(&tfs_supported_not_supported), 0x02, NULL, HFILL }},
{&hf_ccid_bVoltageSupport50,
{ "5.0V", "usbccid.bVoltageSupport.50", FT_BOOLEAN, 8,
TFS(&tfs_supported_not_supported), 0x01, NULL, HFILL }},
{&hf_ccid_dwProtocols,
{ "dwProtocols", "usbccid.dwProtocols", FT_UINT32, BASE_HEX,
NULL, 0x0, NULL, HFILL }},
{&hf_ccid_dwProtocols_t0,
{ "T=0", "usbccid.dwProtocols.t0", FT_BOOLEAN, 32,
TFS(&tfs_supported_not_supported), 0x01, NULL, HFILL }},
{&hf_ccid_dwProtocols_t1,
{ "T=1", "usbccid.dwProtocols.t1", FT_BOOLEAN, 32,
TFS(&tfs_supported_not_supported), 0x02, NULL, HFILL }},
{&hf_ccid_dwDefaultClock,
{ "default clock frequency", "usbccid.dwDefaultClock",
FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{&hf_ccid_dwMaximumClock,
{ "maximum clock frequency", "usbccid.dwMaximumClock",
FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{&hf_ccid_bNumClockSupported,
{ "number of supported clock frequencies", "usbccid.bNumClockSupported",
FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{&hf_ccid_dwDataRate,
{ "default ICC I/O data rate in bps", "usbccid.dwDataRate",
FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{&hf_ccid_dwMaxDataRate,
{ "maximum ICC I/O data rate in bps", "usbccid.dwMaxDataRate",
FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{&hf_ccid_bNumDataRatesSupported,
{ "number of supported data rates", "usbccid.bNumDataRatesSupported",
FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{&hf_ccid_dwSynchProtocols,
{ "supported protocol types", "usbccid.dwSynchProtocols",
FT_UINT32, BASE_HEX, NULL, 0x0, NULL, HFILL }},
{&hf_ccid_dwMechanical,
{ "mechanical characteristics", "usbccid.dwMechanical",
FT_UINT32, BASE_HEX, NULL, 0x0, NULL, HFILL }},
{&hf_ccid_dwFeatures,
{ "intelligent features", "usbccid.dwFeatures",
FT_UINT32, BASE_HEX, NULL, 0x0, NULL, HFILL }},
{&hf_ccid_dwFeatures_autoIccActivation,
{ "Automatic activation of ICC on inserting",
"usbccid.dwFeatures.autoIccActivation", FT_BOOLEAN, 32,
TFS(&tfs_supported_not_supported), 0x04, NULL, HFILL }},
{&hf_ccid_dwFeatures_autoParam,
{ "Automatic parameter configuration based on ATR",
"usbccid.dwFeatures.autoParam", FT_BOOLEAN, 32,
TFS(&tfs_supported_not_supported), 0x02, NULL, HFILL }},
{&hf_ccid_dwFeatures_autoIccClk,
{ "Automatic ICC clock frequency change",
"usbccid.dwFeatures.autoIccClk", FT_BOOLEAN, 32,
TFS(&tfs_supported_not_supported), 0x10, NULL, HFILL }},
{&hf_ccid_dwFeatures_autoBaudRate,
{ "Automatic baud rate change",
"usbccid.dwFeatures.autoBaudRate", FT_BOOLEAN, 32,
TFS(&tfs_supported_not_supported), 0x20, NULL, HFILL }},
{&hf_ccid_dwMaxCCIDMessageLength,
{ "maximum CCID message length", "usbccid.dwMaxCCIDMessageLength",
FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{&hf_ccid_bClassGetResponse,
{ "default class for Get Response", "usbccid.hf_ccid_bClassGetResponse",
FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL }},
{&hf_ccid_bClassEnvelope,
{ "default class for Envelope", "usbccid.hf_ccid_bClassEnvelope",
FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL }},
{&hf_ccid_wLcdLayout,
{ "LCD layout", "usbccid.hf_ccid_wLcdLayout",
FT_UINT16, BASE_HEX, NULL, 0x0, NULL, HFILL }},
{&hf_ccid_wLcdLayout_lines,
{ "Lines", "usbccid.hf_ccid_wLcdLayout.lines",
FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{&hf_ccid_wLcdLayout_chars,
{ "Characters per line", "usbccid.hf_ccid_wLcdLayout.chars",
FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{&hf_ccid_bPINSupport,
{ "PIN support", "usbccid.hf_ccid_bPINSupport",
FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL }},
{&hf_ccid_bPINSupport_modify,
{ "PIN modification", "usbccid.hf_ccid_bPINSupport.modify",
FT_BOOLEAN, 8, TFS(&tfs_supported_not_supported), 0x02, NULL, HFILL }},
{&hf_ccid_bPINSupport_vrfy,
{ "PIN verification", "usbccid.hf_ccid_bPINSupport.verify",
FT_BOOLEAN, 8, TFS(&tfs_supported_not_supported), 0x01, NULL, HFILL }},
{&hf_ccid_bMaxCCIDBusySlots,
{ "maximum number of busy slots", "usbccid.hf_ccid_bMaxCCIDBusySlots",
FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL }},
{&hf_ccid_Reserved,
{ "Reserved for Future Use", "usbccid.hf_ccid_Reserved",
FT_UINT32, BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_ccid_bmSlotICCState,
{ "Slot ICC State", "usbccid.hf_ccid_bmSlotICCState",
FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL } },
{ &hf_ccid_bmSlotICCState_slot0Current,
{ "Slot 0 Current Status", "usbccid.hf_ccid_bmSlotICCState.slot0Current",
FT_BOOLEAN, 8, TFS(&tfs_present_not_present), 0x01, NULL, HFILL } },
{ &hf_ccid_bmSlotICCState_slot0Changed,
{ "Slot 0 Status changed", "usbccid.hf_ccid_bmSlotICCState.slot0Changed",
FT_BOOLEAN, 8, TFS(&tfs_yes_no), 0x02, NULL, HFILL } },
{ &hf_ccid_bmSlotICCState_slot1Current,
{ "Slot 1 Current Status", "usbccid.hf_ccid_bmSlotICCState.slot1Current",
FT_BOOLEAN, 8, TFS(&tfs_present_not_present), 0x04, NULL, HFILL } },
{ &hf_ccid_bmSlotICCState_slot1Changed,
{ "Slot 1 Status changed", "usbccid.hf_ccid_bmSlotICCState.slot1Changed",
FT_BOOLEAN, 8, TFS(&tfs_yes_no), 0x08, NULL, HFILL } },
{ &hf_ccid_bmSlotICCState_slot2Current,
{ "Slot 2 Current Status", "usbccid.hf_ccid_bmSlotICCState.slot2Current",
FT_BOOLEAN, 8, TFS(&tfs_present_not_present), 0x10, NULL, HFILL } },
{ &hf_ccid_bmSlotICCState_slot2Changed,
{ "Slot 2 Status changed", "usbccid.hf_ccid_bmSlotICCState.slot2Changed",
FT_BOOLEAN, 8, TFS(&tfs_yes_no), 0x20, NULL, HFILL } },
{ &hf_ccid_bmSlotICCState_slot3Current,
{ "Slot 3 Current Status", "usbccid.hf_ccid_bmSlotICCState.slot3Current",
FT_BOOLEAN, 8, TFS(&tfs_present_not_present), 0x40, NULL, HFILL } },
{ &hf_ccid_bmSlotICCState_slot3Changed,
{ "Slot 3 Status changed", "usbccid.hf_ccid_bmSlotICCState.slot3Changed",
FT_BOOLEAN, 8, TFS(&tfs_yes_no), 0x80, NULL, HFILL } },
{ &hf_ccid_bHardwareErrorCode,
{ "Hardware Error Code", "usbccid.hf_ccid_bHardwareErrorCode",
FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL } },
};
static gint *ett[] = {
&ett_ccid,
&ett_ccid_desc,
&ett_ccid_voltage_level,
&ett_ccid_protocols,
&ett_ccid_features,
&ett_ccid_lcd_layout,
&ett_ccid_pin_support,
&ett_ccid_slot_change
};
static const enum_val_t sub_enum_vals[] = {
{ "data", "Data", SUB_DATA },
{ "iso7816", "Generic ISO 7816", SUB_ISO7816 },
{ "gsm_sim", "GSM SIM", SUB_GSM_SIM_CMD },
{ "pn532", "NXP PN532", SUB_PN532},
{ "acr122", "ACR122 PN532", SUB_ACR122_PN532},
{ NULL, NULL, 0 }
};
module_t *pref_mod;
proto_ccid = proto_register_protocol("USB CCID", "USBCCID", "usbccid");
proto_register_field_array(proto_ccid, hf, array_length(hf));
proto_register_subtree_array(ett, array_length(ett));
pref_mod = prefs_register_protocol(proto_ccid, NULL);
prefs_register_enum_preference(pref_mod, "prtype", "PC -> Reader Payload Type", "How commands from the PC to the reader are interpreted",
&sub_selected, sub_enum_vals, FALSE);
usb_ccid_handle = register_dissector("usbccid", dissect_ccid, proto_ccid);
}
/* Handler registration */
void
proto_reg_handoff_ccid(void)
{
dissector_handle_t usb_ccid_descr_handle;
usb_ccid_descr_handle = create_dissector_handle(
dissect_usb_ccid_descriptor, proto_ccid);
dissector_add_uint("usb.descriptor", IF_CLASS_SMART_CARD, usb_ccid_descr_handle);
dissector_add_uint("usb.bulk", IF_CLASS_SMART_CARD, usb_ccid_handle);
dissector_add_for_decode_as("usb.device", usb_ccid_handle);
dissector_add_for_decode_as("usb.product", usb_ccid_handle);
dissector_add_for_decode_as("usb.protocol", usb_ccid_handle);
sub_handles[SUB_DATA] = find_dissector("data");
sub_handles[SUB_ISO7816] = find_dissector_add_dependency("iso7816", proto_ccid);
sub_handles[SUB_GSM_SIM_CMD] = find_dissector_add_dependency("gsm_sim.command", proto_ccid);
sub_handles[SUB_PN532] = find_dissector_add_dependency("pn532", proto_ccid);
sub_handles[SUB_ACR122_PN532] = find_dissector_add_dependency("acr122", proto_ccid);
sub_handles[SUB_GSM_SIM_RSP] = find_dissector_add_dependency("gsm_sim.response", proto_ccid);
}
/*
* Editor modelines - http://www.wireshark.org/tools/modelines.html
*
* Local variables:
* c-basic-offset: 4
* tab-width: 8
* indent-tabs-mode: nil
* End:
*
* ex: set shiftwidth=4 tabstop=8 expandtab:
* :indentSize=4:tabSize=8:noTabs=true:
*/