wireshark/epan/dissectors/packet-udp-nm.c
Stig Bjørlykke 5767118ec9 Free dynamic header fields on exit
Put routine to free all dynamically registered header fields in the
UAT reset callback to avoid ASAN report for memory leaks on exit.

Handle duplicated entries without leaking memory.

Call proto_free_deregistered_fields() in proto_cleanup() and move
this after prefs_cleanup() to free the memory used in UATs.

Change-Id: I96545177b5b23b9c20ad8e7751a0d5621c9ca10f
Reviewed-on: https://code.wireshark.org/review/27907
Petri-Dish: Stig Bjørlykke <stig@bjorlykke.org>
Tested-by: Petri Dish Buildbot
Reviewed-by: Peter Wu <peter@lekensteyn.nl>
2018-06-03 20:18:05 +00:00

519 lines
17 KiB
C

/* packet-udp-nm.c
* UDP-NM Dissector
* By Dr. Lars Voelker <lars.voelker@bmw.de>
* Copyright 2014-2017 Dr. Lars Voelker, BMW
*
* Wireshark - Network traffic analyzer
* By Gerald Combs <gerald@wireshark.org>
* Copyright 1998 Gerald Combs
*
* SPDX-License-Identifier: GPL-2.0-or-later
*/
/*
* UDP-NM is an automotive communication protocol as standardized by
* AUTOSAR (www.autosar.org) and is specified in AUTOSAR_SWS_UDPNetworkManagement.pdf,
* which can be accessed on:
* autosar.org -> Classic Platform -> Software Arch -> Comm Stack.
*/
#include <config.h>
#include <epan/packet.h>
#include <epan/prefs.h>
#include <epan/uat.h>
void proto_reg_handoff_udp_nm(void);
void proto_register_udp_nm(void);
typedef struct _user_data_field_t {
gchar* udf_name;
gchar* udf_desc;
guint32 udf_offset;
guint32 udf_length;
guint32 udf_mask;
gchar* udf_value_desc;
} user_data_field_t;
static int proto_udp_nm = -1;
/*** header fields ***/
static int hf_udp_nm_source_node_identifier = -1;
static int hf_udp_nm_control_bit_vector = -1;
static int hf_udp_nm_control_bit_vector_repeat_msg_req = -1;
static int hf_udp_nm_control_bit_vector_nm_coord_sleep = -1;
static int hf_udp_nm_control_bit_vector_active_wakeup = -1;
static int hf_udp_nm_control_bit_vector_pni = -1;
static int hf_udp_nm_user_data = -1;
/*** protocol tree items ***/
static gint ett_udp_nm = -1;
static gint ett_udp_nm_cbv = -1;
static gint ett_udp_nm_user_data = -1;
/*** Bit meanings ***/
static const true_false_string tfs_udp_nm_control_rep_msg_req = {
"Repeat Message State requested", "Repeat Message State not requested" };
static const true_false_string tfs_udp_nm_control_sleep_bit = {
"Start of synchronized shutdown requested", "Start of synchronized shutdown not requested" };
static const true_false_string tfs_udp_nm_control_active_wakeup = {
"Node has woken up the network", "Node has not woken up the network" };
static const true_false_string tfs_udp_nm_control_pni = {
"NM message contains no Partial Network request information", "NM message contains Partial Network request information" };
/*** Configuration items ***/
/* Set the order of the first two fields (Source Node Identifier and Control Bit Vector */
static gboolean g_udp_nm_swap_first_fields = TRUE;
/*******************************
****** User data fields ******
*******************************/
/*** stolen from the HTTP disector ;-) ***/
static user_data_field_t* user_data_fields;
static guint num_user_data_fields;
static GHashTable* user_data_fields_hash_hf;
static hf_register_info* dynamic_hf;
static guint dynamic_hf_size;
static wmem_map_t* user_data_fields_hash_ett;
static gboolean
user_data_fields_update_cb(void *r, char **err)
{
user_data_field_t *rec = (user_data_field_t *)r;
char c;
*err = NULL;
if (rec->udf_length == 0) {
*err = g_strdup_printf("length of user data field can't be 0 Bytes (name: %s offset: %i length: %i)", rec->udf_name, rec->udf_offset, rec->udf_length);
return (*err == NULL);
}
if (rec->udf_length > 4) {
*err = g_strdup_printf("length of user data field can't be greater 4 Bytes (name: %s offset: %i length: %i)", rec->udf_name, rec->udf_offset, rec->udf_length);
return (*err == NULL);
}
if (rec->udf_offset < 2) {
*err = g_strdup_printf("offset of user data field can't be short than 2 (name: %s offset: %i length: %i)", rec->udf_name, rec->udf_offset, rec->udf_length);
return (*err == NULL);
}
if (rec->udf_mask >= G_MAXUINT32) {
*err = g_strdup_printf("mask can only be up to 32bits (name: %s)", rec->udf_name);
return (*err == NULL);
}
if (rec->udf_name == NULL) {
*err = g_strdup_printf("Name of user data field can't be empty");
return (*err == NULL);
}
g_strstrip(rec->udf_name);
if (rec->udf_name[0] == 0) {
*err = g_strdup_printf("Name of user data field can't be empty");
return (*err == NULL);
}
/* Check for invalid characters (to avoid asserting out when
* registering the field).
*/
c = proto_check_field_name(rec->udf_name);
if (c) {
*err = g_strdup_printf("Name of user data field can't contain '%c'", c);
return (*err == NULL);
}
return (*err == NULL);
}
static void *
user_data_fields_copy_cb(void* n, const void* o, size_t siz _U_)
{
user_data_field_t* new_rec = (user_data_field_t*)n;
const user_data_field_t* old_rec = (const user_data_field_t*)o;
new_rec->udf_name = g_strdup(old_rec->udf_name);
new_rec->udf_desc = g_strdup(old_rec->udf_desc);
new_rec->udf_offset = old_rec->udf_offset;
new_rec->udf_length = old_rec->udf_length;
new_rec->udf_mask = old_rec->udf_mask;
new_rec->udf_value_desc = g_strdup(old_rec->udf_value_desc);
return new_rec;
}
static void
user_data_fields_free_cb(void*r)
{
user_data_field_t* rec = (user_data_field_t*)r;
g_free(rec->udf_name);
g_free(rec->udf_desc);
g_free(rec->udf_value_desc);
}
UAT_CSTRING_CB_DEF(user_data_fields, udf_name, user_data_field_t)
UAT_CSTRING_CB_DEF(user_data_fields, udf_desc, user_data_field_t)
UAT_DEC_CB_DEF(user_data_fields, udf_offset, user_data_field_t)
UAT_DEC_CB_DEF(user_data_fields, udf_length, user_data_field_t)
UAT_HEX_CB_DEF(user_data_fields, udf_mask, user_data_field_t)
UAT_CSTRING_CB_DEF(user_data_fields, udf_value_desc, user_data_field_t)
static guint64
calc_ett_key(guint32 offset, guint32 length)
{
guint64 ret = offset;
return (ret * 0x100000000) ^ length;
}
/*
* This creates a string for you that can be used as key for the hash table.
* YOU must g_free that string!
*/
static gchar*
calc_hf_key(user_data_field_t udf)
{
gchar* ret = NULL;
ret = g_strdup_printf("%i-%i-%i-%s", udf.udf_offset, udf.udf_length, udf.udf_mask, udf.udf_name);
return ret;
}
/*
*
*/
static gint*
get_hf_for_user_data(gchar* key)
{
gint* hf_id = NULL;
if (user_data_fields_hash_hf) {
hf_id = (gint*)g_hash_table_lookup(user_data_fields_hash_hf, key);
}
else {
hf_id = NULL;
}
return hf_id;
}
/*
*
*/
static gint*
get_ett_for_user_data(guint32 offset, guint32 length)
{
gint* ett_id = NULL;
guint64 key = calc_ett_key(offset, length);
if (user_data_fields_hash_ett) {
ett_id = (gint*)wmem_map_lookup(user_data_fields_hash_ett, &key);
}
else {
ett_id = NULL;
}
return ett_id;
}
/*
*
*/
static void
deregister_user_data(void)
{
if (dynamic_hf) {
/* Unregister all fields */
for (guint i = 0; i < dynamic_hf_size; i++) {
proto_deregister_field(proto_udp_nm, *(dynamic_hf[i].p_id));
g_free(dynamic_hf[i].p_id);
}
proto_add_deregistered_data(dynamic_hf);
dynamic_hf = NULL;
dynamic_hf_size = 0;
}
if (user_data_fields_hash_hf) {
g_hash_table_destroy(user_data_fields_hash_hf);
user_data_fields_hash_hf = NULL;
}
}
static void
user_data_post_update_cb(void)
{
gint* hf_id;
gint *ett_id;
gchar* tmp = NULL;
guint64* key = NULL;
static gint ett_dummy = -1;
static gint *ett[] = {
&ett_dummy,
};
deregister_user_data();
// we cannot unregister ETTs, so we should try to limit the damage of an update
if (num_user_data_fields) {
user_data_fields_hash_hf = g_hash_table_new_full(g_str_hash, g_str_equal, g_free, NULL);
dynamic_hf = g_new0(hf_register_info, num_user_data_fields);
dynamic_hf_size = num_user_data_fields;
if (user_data_fields_hash_ett == NULL) {
user_data_fields_hash_ett = wmem_map_new(wmem_epan_scope(), g_int64_hash, g_int64_equal);
}
for (guint i = 0; i < dynamic_hf_size; i++) {
hf_id = g_new(gint, 1);
*hf_id = -1;
dynamic_hf[i].p_id = hf_id;
dynamic_hf[i].hfinfo.strings = NULL;
dynamic_hf[i].hfinfo.bitmask = user_data_fields[i].udf_mask;
dynamic_hf[i].hfinfo.same_name_next = NULL;
dynamic_hf[i].hfinfo.same_name_prev_id = -1;
if (user_data_fields[i].udf_mask == 0 || user_data_fields[i].udf_length <= 0 || user_data_fields[i].udf_length>4) {
dynamic_hf[i].hfinfo.name = g_strdup(user_data_fields[i].udf_name);
dynamic_hf[i].hfinfo.abbrev = g_strdup_printf("nm.user_data.%s", user_data_fields[i].udf_name);
dynamic_hf[i].hfinfo.type = FT_BYTES;
dynamic_hf[i].hfinfo.display = BASE_NONE;
dynamic_hf[i].hfinfo.bitmask = 0;
dynamic_hf[i].hfinfo.blurb = g_strdup(user_data_fields[i].udf_desc);
}
else {
dynamic_hf[i].hfinfo.name = g_strdup(user_data_fields[i].udf_value_desc);
dynamic_hf[i].hfinfo.abbrev = g_strdup_printf("nm.user_data.%s.%s", user_data_fields[i].udf_name, user_data_fields[i].udf_value_desc);
dynamic_hf[i].hfinfo.type = FT_BOOLEAN;
dynamic_hf[i].hfinfo.display = 8 * (user_data_fields[i].udf_length);
// dynamic_hf[i].hfinfo.bitmask = 0;
dynamic_hf[i].hfinfo.blurb = g_strdup(user_data_fields[i].udf_value_desc);
}
tmp = calc_hf_key(user_data_fields[i]);
g_hash_table_insert(user_data_fields_hash_hf, tmp, hf_id);
// generate etts for new fields only
if (get_ett_for_user_data(user_data_fields[i].udf_offset, user_data_fields[i].udf_length) == NULL) {
ett_dummy = -1;
proto_register_subtree_array(ett, array_length(ett));
ett_id = wmem_new(wmem_epan_scope(), gint);
*ett_id = ett_dummy;
key = wmem_new(wmem_epan_scope(), guint64);
*key = calc_ett_key(user_data_fields[i].udf_offset, user_data_fields[i].udf_length);
wmem_map_insert(user_data_fields_hash_ett, key, ett_id);
}
}
proto_register_field_array(proto_udp_nm, dynamic_hf, dynamic_hf_size);
}
}
static void
user_data_reset_cb(void)
{
deregister_user_data();
}
/**********************************
****** The dissector itself ******
**********************************/
static int
dissect_udp_nm(tvbuff_t *tvb, packet_info *pinfo _U_, proto_tree *tree, void *data _U_)
{
proto_item *ti;
proto_tree *udp_nm_tree;
proto_tree *udp_nm_subtree = NULL;
gchar* tmp = NULL;
guint32 offset = 0;
guint32 length = 0;
guint32 msg_length = 0;
guint32 ctrl_bit_vector;
guint32 src_node_id = 0;
guint i = 0;
int* hf_id;
int ett_id;
// AUTOSAR says default is Source Node ID first and Ctrl Bit Vector second but this can be also swapped
guint32 offset_ctrl_bit_vector = 1;
guint32 offset_src_node_id = 0;
static const int * control_bits[] = {
&hf_udp_nm_control_bit_vector_repeat_msg_req,
&hf_udp_nm_control_bit_vector_nm_coord_sleep,
&hf_udp_nm_control_bit_vector_active_wakeup,
&hf_udp_nm_control_bit_vector_pni,
NULL
};
if (g_udp_nm_swap_first_fields == TRUE) {
offset_ctrl_bit_vector = 0;
offset_src_node_id = 1;
}
col_set_str(pinfo->cinfo, COL_PROTOCOL, "NM");
col_clear(pinfo->cinfo, COL_INFO);
msg_length = tvb_reported_length(tvb);
ti = proto_tree_add_item(tree, proto_udp_nm, tvb, 0, -1, ENC_NA);
udp_nm_tree = proto_item_add_subtree(ti, ett_udp_nm);
if (g_udp_nm_swap_first_fields == FALSE) {
proto_tree_add_item_ret_uint(udp_nm_tree, hf_udp_nm_source_node_identifier, tvb, offset_src_node_id, 1, ENC_BIG_ENDIAN, &src_node_id);
}
proto_tree_add_bitmask(udp_nm_tree, tvb, offset_ctrl_bit_vector, hf_udp_nm_control_bit_vector, ett_udp_nm_cbv, control_bits, ENC_BIG_ENDIAN);
ctrl_bit_vector = tvb_get_guint8(tvb, offset_ctrl_bit_vector);
if (g_udp_nm_swap_first_fields == TRUE) {
proto_tree_add_item_ret_uint(udp_nm_tree, hf_udp_nm_source_node_identifier, tvb, offset_src_node_id, 1, ENC_BIG_ENDIAN, &src_node_id);
}
col_add_fstr(pinfo->cinfo, COL_INFO, "Control Bit Vector: 0x%02x, Source Node: 0x%02x", ctrl_bit_vector, src_node_id);
proto_item_append_text(ti, ", Control Bit Vector: 0x%02x, Source Node: %i", ctrl_bit_vector, src_node_id);
offset = 2;
/* now we need to process the user defined fields ... */
ti = proto_tree_add_item(udp_nm_tree, hf_udp_nm_user_data, tvb, offset, msg_length - offset, ENC_NA);
udp_nm_tree = proto_item_add_subtree(ti, ett_udp_nm_user_data);
for (i = 0; i < num_user_data_fields; i++) {
tmp = calc_hf_key(user_data_fields[i]);
hf_id = get_hf_for_user_data(tmp);
offset = user_data_fields[i].udf_offset;
length = user_data_fields[i].udf_length;
ett_id = *(get_ett_for_user_data(offset, length));
if (hf_id && msg_length >= length + offset) {
if (user_data_fields[i].udf_mask == 0) {
ti = proto_tree_add_item(udp_nm_tree, *hf_id, tvb, offset, length, ENC_BIG_ENDIAN);
udp_nm_subtree = proto_item_add_subtree(ti, ett_id);
}
else {
if (udp_nm_subtree != NULL) {
proto_tree_add_item(udp_nm_subtree, *hf_id, tvb, offset, length, ENC_BIG_ENDIAN);
}
}
}
else {
/* should we warn? */
}
g_free(tmp);
}
return 8;
}
void proto_register_udp_nm(void)
{
module_t *udp_nm_module;
uat_t* user_data_fields_uat;
static hf_register_info hf_udp_nm[] = {
{ &hf_udp_nm_control_bit_vector,
{ "Control Bit Vector", "nm.ctrl", FT_UINT8, BASE_HEX, NULL, 0x0, "The Control Bit Vector", HFILL } },
{ &hf_udp_nm_control_bit_vector_repeat_msg_req,
{ "Repeat Message Request", "nm.ctrl.repeat_msg_req", FT_BOOLEAN, 8, TFS(&tfs_udp_nm_control_rep_msg_req), 0x01, "The Repeat Message Request Bit", HFILL } },
{ &hf_udp_nm_control_bit_vector_nm_coord_sleep,
{ "NM Coordinator Sleep", "nm.ctrl.nm_coord_sleep", FT_BOOLEAN, 8, TFS(&tfs_udp_nm_control_sleep_bit), 0x08, "NM Coordinator Sleep Bit", HFILL } },
{ &hf_udp_nm_control_bit_vector_active_wakeup,
{ "Active Wakeup", "nm.ctrl.active_wakeup", FT_BOOLEAN, 8, TFS(&tfs_udp_nm_control_active_wakeup), 0x10, "Active Wakeup Bit", HFILL } },
{ &hf_udp_nm_control_bit_vector_pni,
{ "Partial Network Information", "nm.ctrl.pni", FT_BOOLEAN, 8, TFS(&tfs_udp_nm_control_pni), 0x40, "Partial Network Information Bit", HFILL } },
{ &hf_udp_nm_source_node_identifier,
{ "Source Node Identifier", "nm.src", FT_UINT8, BASE_DEC, NULL, 0x0, "The identification of the sending node", HFILL } },
{ &hf_udp_nm_user_data,
{ "User Data", "nm.user_data", FT_BYTES, BASE_NONE, NULL, 0x0, "The User Data", HFILL } },
};
static gint *ett[] = {
&ett_udp_nm,
&ett_udp_nm_cbv,
&ett_udp_nm_user_data,
};
/* UAT for user_data fields */
static uat_field_t user_data_uat_fields[] = {
UAT_FLD_CSTRING(user_data_fields, udf_name, "User data name", "Name of user data field"),
UAT_FLD_CSTRING(user_data_fields, udf_desc, "User data desc", "Description of user data field"),
UAT_FLD_DEC(user_data_fields, udf_offset, "User data offset", "Offset of the user data field in the UDP-NM message (uint32)"),
UAT_FLD_DEC(user_data_fields, udf_length, "User data length", "Length of the user data field in the UDP-NM message (uint32)"),
UAT_FLD_DEC(user_data_fields, udf_mask, "User data mask", "Relevant bits of the user data field in the UDP-NM message (uint32)"),
UAT_FLD_CSTRING(user_data_fields, udf_value_desc, "User data value", "Description what the masked bits mean"),
UAT_END_FIELDS
};
/* Register the protocol name and description */
proto_udp_nm = proto_register_protocol("Network Management", "NM", "nm");
proto_register_field_array(proto_udp_nm, hf_udp_nm, array_length(hf_udp_nm));
proto_register_subtree_array(ett, array_length(ett));
/* Register configuration options */
udp_nm_module = prefs_register_protocol(proto_udp_nm, NULL);
prefs_register_bool_preference(udp_nm_module, "swap_ctrl_and_src",
"Swap Source Node Identifier and Control Bit Vector",
"In the standard the Source Node Identifier is the first byte "
"and the Control Bit Vector is the second byte. "
"Using this parameter they can be swapped",
&g_udp_nm_swap_first_fields);
/* UAT */
user_data_fields_uat = uat_new("NM User Data Fields Table",
sizeof(user_data_field_t), /* record size */
"NM_user_data_fields", /* filename */
TRUE, /* from_profile */
&user_data_fields, /* data_ptr */
&num_user_data_fields, /* numitems_ptr */
UAT_AFFECTS_DISSECTION | UAT_AFFECTS_FIELDS, /* specifies named fields, so affects dissection and the set of named fields */
NULL, /* help */
user_data_fields_copy_cb, /* copy callback */
user_data_fields_update_cb, /* update callback */
user_data_fields_free_cb, /* free callback */
user_data_post_update_cb, /* post update callback */
user_data_reset_cb, /* reset callback */
user_data_uat_fields); /* UAT field definitions */
prefs_register_uat_preference(udp_nm_module, "udp_nm_user_data_fields", "User Data Field Configuration",
"A table to define user defined fields in the NM payload",
user_data_fields_uat);
}
void proto_reg_handoff_udp_nm(void)
{
dissector_handle_t nm_handle = create_dissector_handle(dissect_udp_nm, proto_udp_nm);
dissector_add_for_decode_as_with_preference("udp.port", nm_handle);
dissector_add_for_decode_as("can.subdissector", nm_handle);
}
/*
* Editor modelines
*
* Local Variables:
* c-basic-offset: 2
* tab-width: 8
* indent-tabs-mode: nil
* End:
*
* ex: set shiftwidth=2 tabstop=8 expandtab:
* :indentSize=2:tabSize=8:noTabs=true:
*/