wireshark/epan/dissectors/packet-wtp.c
Michael Mann 2eb7b05b8c Convert most UDP dissectors to use "auto" preferences.
Similar to the "tcp.port" changes in I99604f95d426ad345f4b494598d94178b886eb67,
convert dissectors that use "udp.port".

More cleanup done on dissectors that use both TCP and UDP dissector
tables, so that less preference callbacks exist.

Change-Id: If07be9b9e850c244336a7069599cd554ce312dd3
Reviewed-on: https://code.wireshark.org/review/18120
Petri-Dish: Michael Mann <mmann78@netscape.net>
Tested-by: Petri Dish Buildbot <buildbot-no-reply@wireshark.org>
Reviewed-by: Michael Mann <mmann78@netscape.net>
2016-10-13 02:51:18 +00:00

1098 lines
40 KiB
C

/* packet-wtp.c
*
* Routines to dissect WTP component of WAP traffic.
*
* Wireshark - Network traffic analyzer
* By Gerald Combs <gerald@wireshark.org>
* Copyright 1998 Gerald Combs
*
* WAP dissector based on original work by Ben Fowler
* Updated by Neil Hunter <neil.hunter@energis-squared.com>
* WTLS support by Alexandre P. Ferreira (Splice IP)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "config.h"
#ifdef DEBUG
#include <stdio.h>
#endif
#include <epan/packet.h>
#include <epan/reassemble.h>
#include "packet-wap.h"
#include "packet-wtp.h"
#include "packet-wsp.h"
void proto_register_wtp(void);
void proto_reg_handoff_wtp(void);
static const true_false_string continue_truth = {
"TPI Present" ,
"No TPI"
};
static const true_false_string RID_truth = {
"Re-Transmission",
"First transmission"
};
static const true_false_string TIDNew_truth = {
"TID is new" ,
"TID is valid"
};
static const true_false_string tid_response_truth = {
"Response" ,
"Original"
};
static const true_false_string UP_truth = {
"User Acknowledgement required" ,
"User Acknowledgement optional"
};
static const true_false_string TVETOK_truth = {
"True",
"False"
};
static const value_string vals_wtp_pdu_type[] = {
{ 0, "Not Allowed" },
{ 1, "Invoke" },
{ 2, "Result" },
{ 3, "Ack" },
{ 4, "Abort" },
{ 5, "Segmented Invoke" },
{ 6, "Segmented Result" },
{ 7, "Negative Ack" },
{ 0, NULL }
};
static const value_string vals_transaction_trailer[] = {
{ 0, "Not last packet" },
{ 1, "Last packet of message" },
{ 2, "Last packet of group" },
{ 3, "Re-assembly not supported" },
{ 0, NULL }
};
static const value_string vals_version[] = {
{ 0, "Current" },
{ 1, "Undefined" },
{ 2, "Undefined" },
{ 3, "Undefined" },
{ 0, NULL }
};
static const value_string vals_abort_type[] = {
{ 0, "Provider" },
{ 1, "User (WSP)" },
{ 0, NULL }
};
static const value_string vals_abort_reason_provider[] = {
{ 0x00, "Unknown" },
{ 0x01, "Protocol Error" },
{ 0x02, "Invalid TID" },
{ 0x03, "Not Implemented Class 2" },
{ 0x04, "Not Implemented SAR" },
{ 0x05, "Not Implemented User Acknowledgement" },
{ 0x06, "WTP Version Zero" },
{ 0x07, "Capacity Temporarily Exceeded" },
{ 0x08, "No Response" },
{ 0x09, "Message Too Large" },
{ 0x00, NULL }
};
static const value_string vals_transaction_classes[] = {
{ 0x00, "Unreliable Invoke without Result" },
{ 0x01, "Reliable Invoke without Result" },
{ 0x02, "Reliable Invoke with Reliable Result" },
{ 0x00, NULL }
};
static const value_string vals_tpi_type[] = {
{ 0x00, "Error" },
{ 0x01, "Info" },
{ 0x02, "Option" },
{ 0x03, "Packet sequence number" },
{ 0x04, "SDU boundary" },
{ 0x05, "Frame boundary" },
{ 0x00, NULL }
};
static const value_string vals_tpi_opt[] = {
{ 0x01, "Maximum receive unit" },
{ 0x02, "Total message size" },
{ 0x03, "Delay transmission timer" },
{ 0x04, "Maximum group" },
{ 0x05, "Current TID" },
{ 0x06, "No cached TID" },
{ 0x00, NULL }
};
/* File scoped variables for the protocol and registered fields */
static int proto_wtp = -1;
/* These fields used by fixed part of header */
static int hf_wtp_header_sub_pdu_size = -1;
static int hf_wtp_header_flag_continue = -1;
static int hf_wtp_header_pdu_type = -1;
static int hf_wtp_header_flag_Trailer = -1;
static int hf_wtp_header_flag_RID = -1;
static int hf_wtp_header_flag_TID = -1;
static int hf_wtp_header_flag_TID_response = -1;
/* These fields used by Invoke packets */
static int hf_wtp_header_Inv_version = -1;
static int hf_wtp_header_Inv_flag_TIDNew = -1;
static int hf_wtp_header_Inv_flag_UP = -1;
static int hf_wtp_header_Inv_Reserved = -1;
static int hf_wtp_header_Inv_TransactionClass = -1;
/* static int hf_wtp_header_variable_part = -1; */
/* static int hf_wtp_data = -1; */
static int hf_wtp_tpi_type = -1;
static int hf_wtp_tpi_psn = -1;
static int hf_wtp_tpi_opt = -1;
static int hf_wtp_tpi_optval = -1;
static int hf_wtp_tpi_info = -1;
static int hf_wtp_header_Ack_flag_TVETOK = -1;
static int hf_wtp_header_Abort_type = -1;
static int hf_wtp_header_Abort_reason_provider = -1;
static int hf_wtp_header_Abort_reason_user = -1;
static int hf_wtp_header_sequence_number = -1;
static int hf_wtp_header_missing_packets = -1;
static int hf_wtp_payload = -1;
/* These fields used when reassembling WTP fragments */
static int hf_wtp_fragments = -1;
static int hf_wtp_fragment = -1;
static int hf_wtp_fragment_overlap = -1;
static int hf_wtp_fragment_overlap_conflict = -1;
static int hf_wtp_fragment_multiple_tails = -1;
static int hf_wtp_fragment_too_long_fragment = -1;
static int hf_wtp_fragment_error = -1;
static int hf_wtp_fragment_count = -1;
static int hf_wtp_reassembled_in = -1;
static int hf_wtp_reassembled_length = -1;
/* Initialize the subtree pointers */
static gint ett_wtp = -1;
static gint ett_wtp_sub_pdu_tree = -1;
static gint ett_header = -1;
static gint ett_tpilist = -1;
static gint ett_wsp_fragments = -1;
static gint ett_wtp_fragment = -1;
static const fragment_items wtp_frag_items = {
&ett_wtp_fragment,
&ett_wsp_fragments,
&hf_wtp_fragments,
&hf_wtp_fragment,
&hf_wtp_fragment_overlap,
&hf_wtp_fragment_overlap_conflict,
&hf_wtp_fragment_multiple_tails,
&hf_wtp_fragment_too_long_fragment,
&hf_wtp_fragment_error,
&hf_wtp_fragment_count,
&hf_wtp_reassembled_in,
&hf_wtp_reassembled_length,
/* Reassembled data field */
NULL,
"fragments"
};
/* Handle for WSP dissector */
static dissector_handle_t wsp_handle;
/*
* reassembly of WSP
*/
static reassembly_table wtp_reassembly_table;
static void
wtp_defragment_init(void)
{
reassembly_table_init(&wtp_reassembly_table,
&addresses_reassembly_table_functions);
}
static void
wtp_defragment_cleanup(void)
{
reassembly_table_destroy(&wtp_reassembly_table);
}
/*
* Extract some bitfields
*/
#define pdu_type(octet) (((octet) >> 3) & 0x0F) /* Note pdu type must not be 0x00 */
#define transaction_class(octet) ((octet) & 0x03) /* ......XX */
#define transmission_trailer(octet) (((octet) >> 1) & 0x01) /* ......X. */
static char retransmission_indicator(unsigned char octet)
{
switch (pdu_type(octet)) {
case INVOKE:
case RESULT:
case ACK:
case SEGMENTED_INVOKE:
case SEGMENTED_RESULT:
case NEGATIVE_ACK:
return octet & 0x01; /* .......X */
default:
return 0;
}
}
/*
* dissect a TPI
*/
static void
wtp_handle_tpi(proto_tree *tree, tvbuff_t *tvb)
{
int offset = 0;
unsigned char tByte;
unsigned char tType;
unsigned char tLen;
proto_tree *subTree = NULL;
proto_item *pi;
tByte = tvb_get_guint8(tvb, offset++);
tType = (tByte & 0x78) >> 3;
if (tByte & 0x04) /* Long TPI */
tLen = tvb_get_guint8(tvb, offset++);
else
tLen = tByte & 0x03;
pi = proto_tree_add_uint(tree, hf_wtp_tpi_type,
tvb, 0, tvb_captured_length(tvb), tType);
subTree = proto_item_add_subtree(pi, ett_tpilist);
switch (tType) {
case 0x00: /* Error*/
/* \todo */
break;
case 0x01: /* Info */
/* Beware, untested case here */
proto_tree_add_item(subTree, hf_wtp_tpi_info,
tvb, offset, tLen, ENC_NA);
break;
case 0x02: /* Option */
proto_tree_add_item(subTree, hf_wtp_tpi_opt,
tvb, offset++, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(subTree, hf_wtp_tpi_optval,
tvb, offset, tLen - 1, ENC_NA);
break;
case 0x03: /* PSN */
proto_tree_add_item(subTree, hf_wtp_tpi_psn,
tvb, offset, 1, ENC_LITTLE_ENDIAN);
break;
case 0x04: /* SDU boundary */
/* \todo */
break;
case 0x05: /* Frame boundary */
/* \todo */
break;
default:
break;
}
}
/* Code to actually dissect the packets */
static void
dissect_wtp_common(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)
{
char *szInfo;
int offCur = 0; /* current offset from start of WTP data */
gint returned_length, str_index = 0;
unsigned char b0;
/* continuation flag */
unsigned char fCon; /* Continue flag */
unsigned char fRID; /* Re-transmission indicator*/
unsigned char fTTR = '\0'; /* Transmission trailer */
guint cbHeader = 0; /* Fixed header length */
guint vHeader = 0; /* Variable header length*/
int abortType = 0;
/* Set up structures we'll need to add the protocol subtree and manage it */
proto_item *ti = NULL;
proto_tree *wtp_tree = NULL;
char pdut;
char clsTransaction = 3;
int numMissing = 0; /* Number of missing packets in a negative ack */
int i;
tvbuff_t *wsp_tvb = NULL;
guint8 psn = 0; /* Packet sequence number*/
guint16 TID = 0; /* Transaction-Id */
int dataOffset;
gint dataLen;
#define SZINFO_SIZE 256
szInfo=(char *)wmem_alloc(wmem_packet_scope(), SZINFO_SIZE);
b0 = tvb_get_guint8 (tvb, offCur + 0);
/* Discover Concatenated PDUs */
if (b0 == 0) {
guint c_fieldlen = 0; /* Length of length-field */
guint c_pdulen = 0; /* Length of conc. PDU */
if (tree) {
ti = proto_tree_add_item(tree, proto_wtp,
tvb, offCur, 1, ENC_NA);
wtp_tree = proto_item_add_subtree(ti, ett_wtp_sub_pdu_tree);
proto_item_append_text(ti, ", PDU concatenation");
}
offCur = 1;
i = 1;
while (offCur < (int) tvb_reported_length(tvb)) {
tvbuff_t *wtp_tvb;
/* The length of an embedded WTP PDU is coded as either:
* - a 7-bit value contained in one octet with highest bit == 0.
* - a 15-bit value contained in two octets (little endian)
* if the 1st octet has its highest bit == 1.
* This means that this is NOT encoded as an uintvar-integer!!!
*/
b0 = tvb_get_guint8(tvb, offCur + 0);
if (b0 & 0x80) {
c_fieldlen = 2;
c_pdulen = ((b0 & 0x7f) << 8) | tvb_get_guint8(tvb, offCur + 1);
} else {
c_fieldlen = 1;
c_pdulen = b0;
}
if (tree) {
proto_tree_add_uint(wtp_tree, hf_wtp_header_sub_pdu_size,
tvb, offCur, c_fieldlen, c_pdulen);
}
if (i > 1) {
col_append_str(pinfo->cinfo, COL_INFO, ", ");
}
/* Skip the length field for the WTP sub-tvb */
wtp_tvb = tvb_new_subset_length(tvb, offCur + c_fieldlen, c_pdulen);
dissect_wtp_common(wtp_tvb, pinfo, wtp_tree);
offCur += c_fieldlen + c_pdulen;
i++;
}
if (tree) {
proto_item_append_text(ti, ", PDU count: %u", i);
}
return;
}
/* No concatenation */
fCon = b0 & 0x80;
fRID = retransmission_indicator(b0);
pdut = pdu_type(b0);
#ifdef DEBUG
proto_tree_add_debug_text(tree, "WTP packet %u: tree = %p, pdu = %s (%u) length: %u\n",
pinfo->num, tree,
val_to_str(pdut, vals_wtp_pdu_type, "Unknown PDU type 0x%x"),
pdut, tvb_captured_length(tvb));
#endif
/* Develop the string to put in the Info column */
returned_length = g_snprintf(szInfo, SZINFO_SIZE, "WTP %s",
val_to_str(pdut, vals_wtp_pdu_type, "Unknown PDU type 0x%x"));
str_index += MIN(returned_length, SZINFO_SIZE-str_index);
switch (pdut) {
case INVOKE:
fTTR = transmission_trailer(b0);
TID = tvb_get_ntohs(tvb, offCur + 1);
psn = 0;
clsTransaction = transaction_class(tvb_get_guint8(tvb, offCur + 3));
returned_length = g_snprintf(&szInfo[str_index], SZINFO_SIZE-str_index,
" Class %d", clsTransaction);
str_index += MIN(returned_length, SZINFO_SIZE-str_index);
cbHeader = 4;
break;
case SEGMENTED_INVOKE:
case SEGMENTED_RESULT:
fTTR = transmission_trailer(b0);
TID = tvb_get_ntohs(tvb, offCur + 1);
psn = tvb_get_guint8(tvb, offCur + 3);
if (psn != 0) {
returned_length = g_snprintf(&szInfo[str_index], SZINFO_SIZE-str_index,
" (%u)", psn);
str_index += MIN(returned_length, SZINFO_SIZE-str_index);
}
cbHeader = 4;
break;
case ABORT:
cbHeader = 4;
break;
case RESULT:
fTTR = transmission_trailer(b0);
TID = tvb_get_ntohs(tvb, offCur + 1);
psn = 0;
cbHeader = 3;
break;
case ACK:
cbHeader = 3;
break;
case NEGATIVE_ACK:
/* Variable number of missing packets */
numMissing = tvb_get_guint8(tvb, offCur + 3);
cbHeader = numMissing + 4;
break;
default:
break;
};
if (fRID) {
/*returned_length =*/ g_snprintf(&szInfo[str_index], SZINFO_SIZE-str_index, " R" );
/*str_index += MIN(returned_length, SZINFO_SIZE-str_index);*/
};
/* In the interest of speed, if "tree" is NULL, don't do any work not
necessary to generate protocol tree items. */
if (tree) {
#ifdef DEBUG
fprintf(stderr, "dissect_wtp: cbHeader = %d\n", cbHeader);
#endif
/* NOTE - Length will be set when we process the TPI */
ti = proto_tree_add_item(tree, proto_wtp, tvb, offCur, 0, ENC_NA);
#ifdef DEBUG
fprintf(stderr, "dissect_wtp: (7) Returned from proto_tree_add_item\n");
#endif
wtp_tree = proto_item_add_subtree(ti, ett_wtp);
/* Code to process the packet goes here */
#ifdef DEBUG
fprintf(stderr, "dissect_wtp: cbHeader = %d\n", cbHeader);
fprintf(stderr, "dissect_wtp: offCur = %d\n", offCur);
#endif
/* Add common items: only CON and PDU Type */
proto_tree_add_item(
wtp_tree, /* tree */
hf_wtp_header_flag_continue, /* id */
tvb,
offCur, /* start of highlight */
1, /* length of highlight*/
b0 /* value */
);
proto_tree_add_item(wtp_tree, hf_wtp_header_pdu_type, tvb, offCur, 1, ENC_LITTLE_ENDIAN);
switch(pdut) {
case INVOKE:
proto_tree_add_item(wtp_tree, hf_wtp_header_flag_Trailer, tvb, offCur, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(wtp_tree, hf_wtp_header_flag_RID, tvb, offCur, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(wtp_tree, hf_wtp_header_flag_TID_response, tvb, offCur + 1, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(wtp_tree, hf_wtp_header_flag_TID, tvb, offCur + 1, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(wtp_tree, hf_wtp_header_Inv_version , tvb, offCur + 3, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(wtp_tree, hf_wtp_header_Inv_flag_TIDNew, tvb, offCur + 3, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(wtp_tree, hf_wtp_header_Inv_flag_UP, tvb, offCur + 3, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(wtp_tree, hf_wtp_header_Inv_Reserved, tvb, offCur + 3, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(wtp_tree, hf_wtp_header_Inv_TransactionClass, tvb, offCur + 3, 1, ENC_LITTLE_ENDIAN);
proto_item_append_text(ti,
", PDU: Invoke (%u)"
", Transaction Class: %s (%u)",
INVOKE,
val_to_str_const(clsTransaction, vals_transaction_classes, "Undefined"),
clsTransaction);
break;
case RESULT:
proto_tree_add_item(wtp_tree, hf_wtp_header_flag_Trailer, tvb, offCur, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(wtp_tree, hf_wtp_header_flag_RID, tvb, offCur, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(wtp_tree, hf_wtp_header_flag_TID_response, tvb, offCur + 1, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(wtp_tree, hf_wtp_header_flag_TID, tvb, offCur + 1, 2, ENC_BIG_ENDIAN);
proto_item_append_text(ti, ", PDU: Result (%u)", RESULT);
break;
case ACK:
proto_tree_add_item(wtp_tree, hf_wtp_header_Ack_flag_TVETOK, tvb, offCur, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(wtp_tree, hf_wtp_header_flag_RID, tvb, offCur, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(wtp_tree, hf_wtp_header_flag_TID_response, tvb, offCur + 1, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(wtp_tree, hf_wtp_header_flag_TID, tvb, offCur + 1, 2, ENC_BIG_ENDIAN);
proto_item_append_text(ti, ", PDU: ACK (%u)", ACK);
break;
case ABORT:
abortType = tvb_get_guint8 (tvb, offCur) & 0x07;
proto_tree_add_item(wtp_tree, hf_wtp_header_Abort_type , tvb, offCur , 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(wtp_tree, hf_wtp_header_flag_TID_response, tvb, offCur + 1, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(wtp_tree, hf_wtp_header_flag_TID, tvb, offCur + 1, 2, ENC_BIG_ENDIAN);
if (abortType == PROVIDER) {
guint8 reason = tvb_get_guint8(tvb, offCur + 3);
proto_tree_add_item( wtp_tree, hf_wtp_header_Abort_reason_provider , tvb, offCur + 3 , 1, ENC_LITTLE_ENDIAN);
proto_item_append_text(ti,
", PDU: Abort (%u)"
", Type: Provider (%u)"
", Reason: %s (%u)",
ABORT,
PROVIDER,
val_to_str_const(reason, vals_abort_reason_provider, "Undefined"),
reason);
}
else if (abortType == USER) {
guint8 reason = tvb_get_guint8(tvb, offCur + 3);
proto_tree_add_item(wtp_tree, hf_wtp_header_Abort_reason_user , tvb, offCur + 3 , 1, ENC_LITTLE_ENDIAN);
proto_item_append_text(ti,
", PDU: Abort (%u)"
", Type: User (%u)"
", Reason: %s (%u)",
ABORT,
PROVIDER,
val_to_str_ext_const(reason, &vals_wsp_reason_codes_ext, "Undefined"),
reason);
}
break;
case SEGMENTED_INVOKE:
proto_tree_add_item(wtp_tree, hf_wtp_header_flag_Trailer, tvb, offCur, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(wtp_tree, hf_wtp_header_flag_RID, tvb, offCur, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(wtp_tree, hf_wtp_header_flag_TID_response, tvb, offCur + 1, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(wtp_tree, hf_wtp_header_flag_TID, tvb, offCur + 1, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(wtp_tree, hf_wtp_header_sequence_number , tvb, offCur + 3, 1, ENC_LITTLE_ENDIAN);
proto_item_append_text(ti,
", PDU: Segmented Invoke (%u)"
", Packet Sequence Number: %u",
SEGMENTED_INVOKE, psn);
break;
case SEGMENTED_RESULT:
proto_tree_add_item(wtp_tree, hf_wtp_header_flag_Trailer, tvb, offCur, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(wtp_tree, hf_wtp_header_flag_RID, tvb, offCur, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(wtp_tree, hf_wtp_header_flag_TID_response, tvb, offCur + 1, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(wtp_tree, hf_wtp_header_flag_TID, tvb, offCur + 1, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(wtp_tree, hf_wtp_header_sequence_number , tvb, offCur + 3, 1, ENC_LITTLE_ENDIAN);
proto_item_append_text(ti,
", PDU: Segmented Result (%u)"
", Packet Sequence Number: %u",
SEGMENTED_RESULT, psn);
break;
case NEGATIVE_ACK:
proto_tree_add_item(wtp_tree, hf_wtp_header_flag_RID, tvb, offCur, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(wtp_tree, hf_wtp_header_flag_TID_response, tvb, offCur + 1, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(wtp_tree, hf_wtp_header_flag_TID, tvb, offCur + 1, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(wtp_tree, hf_wtp_header_missing_packets , tvb, offCur + 3, 1, ENC_LITTLE_ENDIAN);
/* Iterate through missing packets */
for (i = 0; i < numMissing; i++)
{
proto_tree_add_item(wtp_tree, hf_wtp_header_sequence_number, tvb, offCur + 4 + i, 1, ENC_LITTLE_ENDIAN);
}
proto_item_append_text(ti,
", PDU: Negative Ack (%u)"
", Missing Packets: %u",
NEGATIVE_ACK, numMissing);
break;
default:
break;
};
if (fRID) {
proto_item_append_text(ti, ", Retransmission");
}
} else { /* tree is NULL */
#ifdef DEBUG
fprintf(stderr, "dissect_wtp: (4) tree was %p\n", tree);
#endif
}
/* Process the variable part */
if (fCon) { /* Now, analyze variable part */
guint8 tCon;
guint8 tByte;
guint tpiLen;
tvbuff_t *tmp_tvb;
vHeader = 0; /* Start scan all over */
do {
tByte = tvb_get_guint8(tvb, offCur + cbHeader + vHeader);
tCon = tByte & 0x80;
if (tByte & 0x04) /* Long TPI */
tpiLen = 2 + tvb_get_guint8(tvb, offCur + cbHeader + vHeader + 1);
else
tpiLen = 1 + (tByte & 0x03);
if (tree)
{
tmp_tvb = tvb_new_subset_length(tvb, offCur + cbHeader + vHeader, tpiLen);
wtp_handle_tpi(wtp_tree, tmp_tvb);
}
vHeader += tpiLen;
} while (tCon);
} else {
/* There is no variable part */
} /* End of variable part of header */
/* Set the length of the WTP protocol part now we know the length of the
* fixed and variable WTP headers */
if (tree)
proto_item_set_len(ti, cbHeader + vHeader);
#ifdef DEBUG
fprintf( stderr, "dissect_wtp: cbHeader = %d\n", cbHeader );
#endif
/*
* Any remaining data ought to be WSP data (if not WTP ACK, NACK
* or ABORT pdu), so, if we have any remaining data, and it's
* not an ACK, NACK, or ABORT PDU, hand it off (defragmented) to the
* WSP dissector.
* Note that the last packet of a fragmented WTP message needn't
* contain any data, so we allow payloadless packets to be
* reassembled. (XXX - does the reassembly code handle this
* for packets other than the last packet?)
*
* Try calling a subdissector only if:
* - The WTP payload is ressembled in this very packet,
* - The WTP payload is not fragmented across packets.
*/
dataOffset = offCur + cbHeader + vHeader;
dataLen = tvb_reported_length_remaining(tvb, dataOffset);
if ((dataLen >= 0) &&
! ((pdut==ACK) || (pdut==NEGATIVE_ACK) || (pdut==ABORT)))
{
/* Try to reassemble if needed, and hand over to WSP
* A fragmented WTP packet is either:
* - An INVOKE with fTTR (transmission trailer) not set,
* - a SEGMENTED_INVOKE,
* - A RESULT with fTTR (transmission trailer) not set,
* - a SEGMENTED_RESULT.
*/
if ( ( (pdut == SEGMENTED_INVOKE) || (pdut == SEGMENTED_RESULT)
|| ( ((pdut == INVOKE) || (pdut == RESULT)) && (!fTTR) )
) && tvb_bytes_exist(tvb, dataOffset, dataLen) )
{
/* Try reassembling fragments */
fragment_head *fd_wtp = NULL;
guint32 reassembled_in = 0;
gboolean save_fragmented = pinfo->fragmented;
pinfo->fragmented = TRUE;
fd_wtp = fragment_add_seq(&wtp_reassembly_table, tvb, dataOffset,
pinfo, TID, NULL, psn, dataLen, !fTTR, 0);
/* XXX - fragment_add_seq() yields NULL unless Wireshark knows
* that the packet is part of a reassembled whole. This means
* that fd_wtp will be NULL as long as Wireshark did not encounter
* (and process) the packet containing the last fragment.
* This implies that Wireshark needs two passes over the data for
* correct reassembly. At the first pass, a capture containing
* three fragments plus a retransmssion of the last fragment
* will progressively show:
*
* Packet 1: (Unreassembled fragment 1)
* Packet 2: (Unreassembled fragment 2)
* Packet 3: (Reassembled WTP)
* Packet 4: (WTP payload reassembled in packet 3)
*
* However at subsequent evaluation (e.g., by applying a display
* filter) the packet summary will show:
*
* Packet 1: (WTP payload reassembled in packet 3)
* Packet 2: (WTP payload reassembled in packet 3)
* Packet 3: (Reassembled WTP)
* Packet 4: (WTP payload reassembled in packet 3)
*
* This is important to know, and also affects read filters!
*/
wsp_tvb = process_reassembled_data(tvb, dataOffset, pinfo,
"Reassembled WTP", fd_wtp, &wtp_frag_items,
NULL, wtp_tree);
#ifdef DEBUG
proto_tree_add_debug_text(tree, "WTP: Packet %u %s -> %d: wsp_tvb = %p, fd_wtp = %p, frame = %u\n",
pinfo->num,
fd_wtp ? "Reassembled" : "Not reassembled",
fd_wtp ? fd_wtp->reassembled_in : -1,
wsp_tvb,
fd_wtp
);
#endif
if (fd_wtp) {
/* Reassembled */
reassembled_in = fd_wtp->reassembled_in;
if (pinfo->num == reassembled_in) {
/* Reassembled in this very packet:
* We can safely hand the tvb to the WSP dissector */
call_dissector(wsp_handle, wsp_tvb, pinfo, tree);
} else {
/* Not reassembled in this packet */
col_append_fstr(pinfo->cinfo, COL_INFO,
"%s (WTP payload reassembled in packet %u)",
szInfo, fd_wtp->reassembled_in);
proto_tree_add_item(wtp_tree, hf_wtp_payload, tvb, dataOffset, -1, ENC_NA);
}
} else {
/* Not reassembled yet, or not reassembled at all */
col_append_fstr(pinfo->cinfo, COL_INFO,
"%s (Unreassembled fragment %u)",
szInfo, psn);
proto_tree_add_item(wtp_tree, hf_wtp_payload, tvb, dataOffset, -1, ENC_NA);
}
/* Now reset fragmentation information in pinfo */
pinfo->fragmented = save_fragmented;
}
else if ( ((pdut == INVOKE) || (pdut == RESULT)) && (fTTR) )
{
/* Non-fragmented payload */
wsp_tvb = tvb_new_subset_remaining(tvb, dataOffset);
/* We can safely hand the tvb to the WSP dissector */
call_dissector(wsp_handle, wsp_tvb, pinfo, tree);
}
else
{
/* Nothing to hand to subdissector */
col_append_str(pinfo->cinfo, COL_INFO, szInfo);
}
}
else
{
/* Nothing to hand to subdissector */
col_append_str(pinfo->cinfo, COL_INFO, szInfo);
}
}
/*
* Called directly from UDP.
* Put "WTP+WSP" into the "Protocol" column.
*/
static int
dissect_wtp_fromudp(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void* data _U_)
{
col_set_str(pinfo->cinfo, COL_PROTOCOL, "WTP+WSP");
col_clear(pinfo->cinfo, COL_INFO);
dissect_wtp_common(tvb, pinfo, tree);
return tvb_captured_length(tvb);
}
/*
* Called from a higher-level WAP dissector, presumably WTLS.
* Put "WTLS+WSP+WTP" to the "Protocol" column.
*
* XXX - is this supposed to be called from WTLS? If so, we're not
* calling it....
*
* XXX - can this be called from any other dissector?
*/
static int
dissect_wtp_fromwtls(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void* data _U_)
{
col_set_str(pinfo->cinfo, COL_PROTOCOL, "WTLS+WTP+WSP");
col_clear(pinfo->cinfo, COL_INFO);
dissect_wtp_common(tvb, pinfo, tree);
return tvb_captured_length(tvb);
}
/* Register the protocol with Wireshark */
void
proto_register_wtp(void)
{
/* Setup list of header fields */
static hf_register_info hf[] = {
{ &hf_wtp_header_sub_pdu_size,
{ "Sub PDU size", "wtp.sub_pdu_size",
FT_UINT16, BASE_DEC, NULL, 0x0,
"Size of Sub-PDU (bytes)", HFILL
}
},
{ &hf_wtp_header_flag_continue,
{ "Continue Flag", "wtp.continue_flag",
FT_BOOLEAN, 8, TFS( &continue_truth ), 0x80,
NULL, HFILL
}
},
{ &hf_wtp_header_pdu_type,
{ "PDU Type", "wtp.pdu_type",
FT_UINT8, BASE_HEX, VALS( vals_wtp_pdu_type ), 0x78,
NULL, HFILL
}
},
{ &hf_wtp_header_flag_Trailer,
{ "Trailer Flags", "wtp.trailer_flags",
FT_UINT8, BASE_HEX, VALS( vals_transaction_trailer ), 0x06,
NULL, HFILL
}
},
{ &hf_wtp_header_flag_RID,
{ "Re-transmission Indicator", "wtp.RID",
FT_BOOLEAN, 8, TFS( &RID_truth ), 0x01,
NULL, HFILL
}
},
{ &hf_wtp_header_flag_TID_response,
{ "TID Response", "wtp.TID.response",
FT_BOOLEAN, 16, TFS( &tid_response_truth ), 0x8000,
NULL, HFILL
}
},
{ &hf_wtp_header_flag_TID,
{ "Transaction ID", "wtp.TID",
FT_UINT16, BASE_HEX, NULL, 0x7FFF,
NULL, HFILL
}
},
{ &hf_wtp_header_Inv_version,
{ "Version", "wtp.header.version",
FT_UINT8, BASE_HEX, VALS( vals_version ), 0xC0,
NULL, HFILL
}
},
{ &hf_wtp_header_Inv_flag_TIDNew,
{ "TIDNew", "wtp.header.TIDNew",
FT_BOOLEAN, 8, TFS( &TIDNew_truth ), 0x20,
NULL, HFILL
}
},
{ &hf_wtp_header_Inv_flag_UP,
{ "U/P flag", "wtp.header.UP",
FT_BOOLEAN, 8, TFS( &UP_truth ), 0x10,
NULL, HFILL
}
},
{ &hf_wtp_header_Inv_Reserved,
{ "Reserved", "wtp.inv.reserved",
FT_UINT8, BASE_HEX, NULL, 0x0C,
NULL, HFILL
}
},
{ &hf_wtp_header_Inv_TransactionClass,
{ "Transaction Class", "wtp.inv.transaction_class",
FT_UINT8, BASE_HEX, VALS( vals_transaction_classes ), 0x03,
NULL, HFILL
}
},
{ &hf_wtp_header_Ack_flag_TVETOK,
{ "Tve/Tok flag", "wtp.ack.tvetok",
FT_BOOLEAN, 8, TFS( &TVETOK_truth ), 0x04,
NULL, HFILL
}
},
{ &hf_wtp_header_Abort_type,
{ "Abort Type", "wtp.abort.type",
FT_UINT8, BASE_HEX, VALS ( vals_abort_type ), 0x07,
NULL, HFILL
}
},
{ &hf_wtp_header_Abort_reason_provider,
{ "Abort Reason", "wtp.abort.reason.provider",
FT_UINT8, BASE_HEX, VALS ( vals_abort_reason_provider ), 0x00,
NULL, HFILL
}
},
/* Assume WSP is the user and use its reason codes */
{ &hf_wtp_header_Abort_reason_user,
{ "Abort Reason", "wtp.abort.reason.user",
FT_UINT8, BASE_HEX|BASE_EXT_STRING, &vals_wsp_reason_codes_ext, 0x00,
NULL, HFILL
}
},
{ &hf_wtp_header_sequence_number,
{ "Packet Sequence Number", "wtp.header.sequence",
FT_UINT8, BASE_DEC, NULL, 0x00,
NULL, HFILL
}
},
{ &hf_wtp_header_missing_packets,
{ "Missing Packets", "wtp.header.missing_packets",
FT_UINT8, BASE_DEC, NULL, 0x00,
NULL, HFILL
}
},
{ &hf_wtp_payload,
{ "Payload", "wtp.payload",
FT_BYTES, BASE_NONE, NULL, 0x00,
NULL, HFILL
}
},
#if 0
{ &hf_wtp_header_variable_part,
{ "Header: Variable part", "wtp.header_variable_part",
FT_BYTES, BASE_NONE, NULL, 0x0,
"Variable part of the header", HFILL
}
},
{ &hf_wtp_data,
{ "Data", "wtp.header_data",
FT_BYTES, BASE_NONE, NULL, 0x0,
NULL, HFILL
}
},
#endif
{ &hf_wtp_tpi_type,
{ "TPI", "wtp.tpi",
FT_UINT8, BASE_HEX, VALS(vals_tpi_type), 0x00,
"Identification of the Transport Information Item", HFILL
}
},
{ &hf_wtp_tpi_psn,
{ "Packet sequence number", "wtp.tpi.psn",
FT_UINT8, BASE_DEC, NULL, 0x00,
"Sequence number of this packet", HFILL
}
},
{ &hf_wtp_tpi_opt,
{ "Option", "wtp.tpi.opt",
FT_UINT8, BASE_HEX, VALS(vals_tpi_opt), 0x00,
"The given option for this TPI", HFILL
}
},
{ &hf_wtp_tpi_optval,
{ "Option Value", "wtp.tpi.opt.val",
FT_NONE, BASE_NONE, NULL, 0x00,
"The value that is supplied with this option", HFILL
}
},
{ &hf_wtp_tpi_info,
{ "Information", "wtp.tpi.info",
FT_NONE, BASE_NONE, NULL, 0x00,
"The information being send by this TPI", HFILL
}
},
/* Fragment fields */
{ &hf_wtp_fragment_overlap,
{ "Fragment overlap", "wtp.fragment.overlap",
FT_BOOLEAN, BASE_NONE, NULL, 0x0,
"Fragment overlaps with other fragments", HFILL
}
},
{ &hf_wtp_fragment_overlap_conflict,
{ "Conflicting data in fragment overlap", "wtp.fragment.overlap.conflict",
FT_BOOLEAN, BASE_NONE, NULL, 0x0,
"Overlapping fragments contained conflicting data", HFILL
}
},
{ &hf_wtp_fragment_multiple_tails,
{ "Multiple tail fragments found", "wtp.fragment.multipletails",
FT_BOOLEAN, BASE_NONE, NULL, 0x0,
"Several tails were found when defragmenting the packet", HFILL
}
},
{ &hf_wtp_fragment_too_long_fragment,
{ "Fragment too long", "wtp.fragment.toolongfragment",
FT_BOOLEAN, BASE_NONE, NULL, 0x0,
"Fragment contained data past end of packet", HFILL
}
},
{ &hf_wtp_fragment_error,
{ "Defragmentation error", "wtp.fragment.error",
FT_FRAMENUM, BASE_NONE, NULL, 0x0,
"Defragmentation error due to illegal fragments", HFILL
}
},
{ &hf_wtp_fragment_count,
{ "Fragment count", "wtp.fragment.count",
FT_UINT32, BASE_DEC, NULL, 0x0,
NULL, HFILL
}
},
{ &hf_wtp_reassembled_in,
{ "Reassembled in", "wtp.reassembled.in",
FT_FRAMENUM, BASE_NONE, NULL, 0x0,
"WTP fragments are reassembled in the given packet", HFILL
}
},
{ &hf_wtp_reassembled_length,
{ "Reassembled WTP length", "wtp.reassembled.length",
FT_UINT32, BASE_DEC, NULL, 0x0,
"The total length of the reassembled payload", HFILL
}
},
{ &hf_wtp_fragment,
{ "WTP Fragment", "wtp.fragment",
FT_FRAMENUM, BASE_NONE, NULL, 0x0,
NULL, HFILL
}
},
{ &hf_wtp_fragments,
{ "WTP Fragments", "wtp.fragments",
FT_NONE, BASE_NONE, NULL, 0x0,
NULL, HFILL
}
},
};
/* Setup protocol subtree array */
static gint *ett[] = {
&ett_wtp,
&ett_wtp_sub_pdu_tree,
&ett_header,
&ett_tpilist,
&ett_wsp_fragments,
&ett_wtp_fragment,
};
/* Register the protocol name and description */
proto_wtp = proto_register_protocol(
"Wireless Transaction Protocol", /* protocol name for use by wireshark */
"WTP", /* short version of name */
"wtp" /* Abbreviated protocol name, should Match IANA
< URL:http://www.iana.org/assignments/port-numbers/ >
*/
);
/* Required calls to register the header fields and subtrees used */
proto_register_field_array(proto_wtp, hf, array_length(hf));
proto_register_subtree_array(ett, array_length(ett));
register_dissector("wtp-wtls", dissect_wtp_fromwtls, proto_wtp);
register_dissector("wtp-udp", dissect_wtp_fromudp, proto_wtp);
register_init_routine(wtp_defragment_init);
register_cleanup_routine(wtp_defragment_cleanup);
}
void
proto_reg_handoff_wtp(void)
{
dissector_handle_t wtp_fromudp_handle;
/*
* Get a handle for the connection-oriented WSP dissector - if WTP
* PDUs have data, it is WSP.
*/
wsp_handle = find_dissector_add_dependency("wsp-co", proto_wtp);
wtp_fromudp_handle = find_dissector("wtp-udp");
dissector_add_uint_with_preference("udp.port", UDP_PORT_WTP_WSP, wtp_fromudp_handle);
dissector_add_uint("gsm_sms_ud.udh.port", UDP_PORT_WTP_WSP, wtp_fromudp_handle);
dissector_add_uint("gsm_sms.udh.port", UDP_PORT_WTP_WSP, wtp_fromudp_handle);
}
/*
* Editor modelines - http://www.wireshark.org/tools/modelines.html
*
* Local variables:
* c-basic-offset: 4
* tab-width: 8
* indent-tabs-mode: nil
* End:
*
* vi: set shiftwidth=4 tabstop=8 expandtab:
* :indentSize=4:tabSize=8:noTabs=true:
*/