wireshark/epan/tvbuff_lz77huff.c

424 lines
9.6 KiB
C
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Decompression code for LZ77+Huffman. This encoding is used by
* Microsoft in various file formats and protocols including SMB3.
*
* See MS-XCA.
*
* Initial code from Samba re-licensed with Samuel's permission.
* Copyright (C) Samuel Cabrero 2017
*
* Glib-ification, extra error-checking and WS integration
* Copyright (C) Aurélien Aptel 2019
*
* Wireshark - Network traffic analyzer
* By Gerald Combs <gerald@wireshark.org>
* Copyright 1998 Gerald Combs
*
* SPDX-License-Identifier: GPL-2.0-or-later
*/
#include <glib.h>
#include <stdlib.h> /* qsort */
#include <epan/exceptions.h>
#include <epan/tvbuff.h>
#include <epan/wmem_scopes.h>
#define MAX_INPUT_SIZE (16*1024*1024) /* 16MB */
#define TREE_SIZE 1024
#define ENCODED_TREE_SIZE 256
#define SYMBOL_INFO_SIZE (2*ENCODED_TREE_SIZE)
struct input {
tvbuff_t *tvb;
int offset;
gsize size;
};
/**
* Represents a node in a Huffman prefix code tree
*/
struct prefix_code_node {
/* Stores the symbol encoded by this node in the prefix code tree */
guint16 symbol;
/* Indicates whether this node is a leaf in the tree */
guint8 leaf;
/*
* Points to the node's two children. Values are indexes in
* the tree node array. The value -1 is used to indicate that
* a particular child does not exist
*/
gint16 child[2];
};
/**
* Represent information about a Huffman-encoded symbol
*/
struct prefix_code_symbol {
/* Stores the symbol */
guint16 symbol;
/* Stores the symbols Huffman prefix code length */
guint16 length;
};
/**
* Represent a byte array as a bit string from which individual bits can
* be read
*/
struct bitstring {
/* The byte array */
const struct input *input;
/* The index in source from which the next set of bits will be pulled
* when the bits in mask have been consumed */
guint32 bitstring_index;
/* Stores the next bits to be consumed in the bit string */
guint32 mask;
/* Stores the number of bits in mask that remain to be consumed */
gint32 bits;
};
struct hf_tree {
struct prefix_code_node *root;
struct prefix_code_node nodes[TREE_SIZE];
};
static gboolean is_node_valid(struct hf_tree *tree, struct prefix_code_node *node)
{
return (node && node >= tree->nodes && node < tree->nodes + TREE_SIZE);
}
/**
* Links a symbol's prefix_code_node into its correct position in a Huffman
* prefix code tree
*/
static int prefix_code_tree_add_leaf(struct hf_tree *tree,
guint32 leaf_index,
guint32 mask,
guint32 bits,
guint32 *out_index)
{
struct prefix_code_node *node = &tree->nodes[0];
guint32 i = leaf_index + 1;
guint32 child_index;
if (leaf_index >= TREE_SIZE)
return -1;
while (bits > 1) {
bits = bits - 1;
child_index = (mask >> bits) & 1;
if (node->child[child_index] < 0) {
if (i >= TREE_SIZE)
return -1;
node->child[child_index] = i;
tree->nodes[i].leaf = FALSE;
i = i + 1;
}
node = tree->nodes + node->child[child_index];
if (!is_node_valid(tree, node))
return -1;
}
node->child[mask & 1] = leaf_index;
*out_index = i;
return 0;
}
/**
* Determines the sort order of one prefix_code_symbol relative to another
*/
static int compare_symbols(const void *ve1, const void *ve2)
{
const struct prefix_code_symbol *e1 = (const struct prefix_code_symbol *)ve1;
const struct prefix_code_symbol *e2 = (const struct prefix_code_symbol *)ve2;
if (e1->length < e2->length)
return -1;
else if (e1->length > e2->length)
return 1;
else if (e1->symbol < e2->symbol)
return -1;
else if (e1->symbol > e2->symbol)
return 1;
else
return 0;
}
/**
* Rebuilds the Huffman prefix code tree that will be used to decode symbols
* during decompression
*/
static int PrefixCodeTreeRebuild( struct hf_tree *tree,
const struct input *input)
{
struct prefix_code_symbol symbolInfo[SYMBOL_INFO_SIZE];
guint32 i, j, mask, bits;
int rc;
for (i = 0; i < TREE_SIZE; i++) {
tree->nodes[i].symbol = 0;
tree->nodes[i].leaf = FALSE;
tree->nodes[i].child[0] = -1;
tree->nodes[i].child[1] = -1;
}
if (input->size < ENCODED_TREE_SIZE)
return -1;
for (i = 0; i < ENCODED_TREE_SIZE; i++) {
symbolInfo[2*i].symbol = 2*i;
symbolInfo[2*i].length = tvb_get_guint8(input->tvb, input->offset+i) & 15;
symbolInfo[2*i+1].symbol = 2*i+1;
symbolInfo[2*i+1].length = tvb_get_guint8(input->tvb, input->offset+i) >> 4;
}
qsort(symbolInfo, SYMBOL_INFO_SIZE, sizeof(symbolInfo[0]), compare_symbols);
i = 0;
while (i < SYMBOL_INFO_SIZE && symbolInfo[i].length == 0) {
i = i + 1;
}
mask = 0;
bits = 1;
tree->root = &tree->nodes[0];
tree->root->leaf = FALSE;
j = 1;
for (; i < 512; i++) {
//ws_assert(j < TREE_SIZE);
if (j >= TREE_SIZE) {
return -1;
}
tree->nodes[j].symbol = symbolInfo[i].symbol;
tree->nodes[j].leaf = TRUE;
mask <<= symbolInfo[i].length - bits;
bits = symbolInfo[i].length;
rc = prefix_code_tree_add_leaf(tree, j, mask, bits, &j);
if (rc)
return rc;
mask += 1;
}
return 0;
}
/**
* Initializes a bitstream data structure
*/
static void bitstring_init(struct bitstring *bstr,
const struct input *input,
guint32 bitstring_index)
{
bstr->mask = tvb_get_letohs(input->tvb, input->offset+bitstring_index);
bstr->mask <<= sizeof(bstr->mask) * 8 - 16;
bitstring_index += 2;
bstr->mask += tvb_get_letohs(input->tvb, input->offset+bitstring_index);
bitstring_index += 2;
bstr->bits = 32;
bstr->input = input;
bstr->bitstring_index = bitstring_index;
}
/**
* Returns the next n bits from the front of a bit string.
*/
static guint32 bitstring_lookup(struct bitstring *bstr, guint32 n)
{
if (n == 0 || bstr->bits < 0 || n > (guint32)bstr->bits) {
return 0;
}
return bstr->mask >> (sizeof(bstr->mask) * 8 - n);
}
/**
* Advances the bit string's cursor by n bits.
*/
static void bitstring_skip(struct bitstring *bstr, guint32 n)
{
bstr->mask = bstr->mask << n;
bstr->bits = bstr->bits - n;
if (bstr->bits < 16) {
bstr->mask += tvb_get_letohs(bstr->input->tvb,
bstr->input->offset + bstr->bitstring_index)
<< (16 - bstr->bits);
bstr->bitstring_index = bstr->bitstring_index + 2;
bstr->bits = bstr->bits + 16;
}
}
/**
* Returns the symbol encoded by the next prefix code in a bit string.
*/
static int prefix_code_tree_decode_symbol(struct hf_tree *tree,
struct bitstring *bstr,
guint32 *out_symbol)
{
guint32 bit;
struct prefix_code_node *node = tree->root;
do {
bit = bitstring_lookup(bstr, 1);
bitstring_skip(bstr, 1);
node = tree->nodes + node->child[bit];
if (!is_node_valid(tree, node))
return -1;
} while (node->leaf == FALSE);
*out_symbol = node->symbol;
return 0;
}
static gboolean do_uncompress(struct input *input,
wmem_array_t *obuf)
{
guint32 symbol;
guint32 length;
gint32 match_offset;
int rc;
struct hf_tree tree = {0};
struct bitstring bstr = {0};
if (!input->tvb)
return FALSE;
if (!input->size || input->size > MAX_INPUT_SIZE)
return FALSE;
rc = PrefixCodeTreeRebuild(&tree, input);
if (rc)
return FALSE;
bitstring_init(&bstr, input, ENCODED_TREE_SIZE);
while (1) {
rc = prefix_code_tree_decode_symbol(&tree, &bstr, &symbol);
if (rc < 0)
return FALSE;
if (symbol < 256) {
guint8 v = symbol & 0xFF;
wmem_array_append_one(obuf, v);
} else {
if (symbol == 256) {
/* EOF symbol */
return bstr.bitstring_index == bstr.input->size;
}
symbol = symbol - 256;
length = symbol & 0xF;
symbol = symbol >> 4;
match_offset = (1U << symbol) + bitstring_lookup(&bstr, symbol);
match_offset *= -1;
if (length == 15) {
if (bstr.bitstring_index >= bstr.input->size)
return FALSE;
length = tvb_get_guint8(bstr.input->tvb,
bstr.input->offset+bstr.bitstring_index) + 15;
bstr.bitstring_index += 1;
if (length == 270) {
if (bstr.bitstring_index+1 >= bstr.input->size)
return FALSE;
length = tvb_get_letohs(bstr.input->tvb, bstr.input->offset+bstr.bitstring_index);
bstr.bitstring_index += 2;
}
}
bitstring_skip(&bstr, symbol);
length += 3;
do {
guint8 byte;
guint elem_count = wmem_array_get_count(obuf)+match_offset;
if (wmem_array_try_index(obuf, elem_count, &byte))
return FALSE;
wmem_array_append_one(obuf, byte);
length--;
} while (length != 0);
}
}
return TRUE;
}
tvbuff_t *
tvb_uncompress_lz77huff(tvbuff_t *tvb,
const int offset,
int input_size)
{
volatile gboolean ok;
wmem_allocator_t *pool;
wmem_array_t *obuf;
tvbuff_t *out;
struct input input = {
.tvb = tvb,
.offset = offset,
.size = input_size
};
pool = wmem_allocator_new(WMEM_ALLOCATOR_SIMPLE);
obuf = wmem_array_sized_new(pool, 1, input_size*2);
TRY {
ok = do_uncompress(&input, obuf);
} CATCH_ALL {
ok = FALSE;
}
ENDTRY;
if (ok) {
/*
* Cannot pass a tvb free callback that frees the wmem
* pool, so we make an extra copy that uses bare
* pointers. This could be optimized if tvb API had a
* free pool callback of some sort.
*/
guint size = wmem_array_get_count(obuf);
guint8 *p = (guint8 *)g_malloc(size);
memcpy(p, wmem_array_get_raw(obuf), size);
out = tvb_new_real_data(p, size, size);
tvb_set_free_cb(out, g_free);
} else {
out = NULL;
}
wmem_destroy_allocator(pool);
return out;
}
tvbuff_t *
tvb_child_uncompress_lz77huff(tvbuff_t *parent, tvbuff_t *tvb, const int offset, int in_size)
{
tvbuff_t *new_tvb = tvb_uncompress_lz77huff(tvb, offset, in_size);
if (new_tvb)
tvb_set_child_real_data_tvbuff(parent, new_tvb);
return new_tvb;
}
/*
* Editor modelines - https://www.wireshark.org/tools/modelines.html
*
* Local variables:
* c-basic-offset: 8
* tab-width: 8
* indent-tabs-mode: t
* End:
*
* vi: set shiftwidth=8 tabstop=8 noexpandtab:
* :indentSize=8:tabSize=8:noTabs=false:
*/