wireshark/epan/tvbtest.c

834 lines
25 KiB
C

/* tvbtest.c
* Standalone program to test functionality of tvbuffs.
*
* tvbtest : tvbtest.o tvbuff.o except.o
*
* Copyright (c) 2000 by Gilbert Ramirez <gram@alumni.rice.edu>
*
* SPDX-License-Identifier: GPL-2.0-or-later
*
*/
#include "config.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "tvbuff.h"
#include "proto.h"
#include "exceptions.h"
#include "wsutil/pint.h"
#include <ws_diag_control.h>
gboolean failed = FALSE;
typedef struct {
struct {
guint8 needle;
gint offset;
} g8;
struct {
gboolean test;
guint16 needle;
gint offset;
} g16;
struct {
gboolean test;
ws_mempbrk_pattern pattern;
gint offset;
guchar found_needle;
} mempbrk;
} search_test_params;
static gboolean
test_searches(tvbuff_t *tvb, gint offset, search_test_params *sp)
{
volatile gboolean ex_thrown = FALSE;
TRY {
sp->g8.offset = tvb_find_guint8(tvb, offset, -1, sp->g8.needle);
if (sp->g16.test) {
sp->g16.offset = tvb_find_guint16(tvb, offset, -1, sp->g16.needle);
}
if (sp->mempbrk.test) {
sp->mempbrk.offset =
tvb_ws_mempbrk_pattern_guint8(tvb, offset, -1,
&sp->mempbrk.pattern, &sp->mempbrk.found_needle);
}
}
CATCH_ALL {
ex_thrown = TRUE;
}
ENDTRY;
return ex_thrown;
}
/* Tests a tvbuff against the expected pattern/length.
* Returns TRUE if all tests succeeed, FALSE if any test fails */
static gboolean
test(tvbuff_t *tvb, const gchar* name,
guint8* expected_data, guint expected_length, guint expected_reported_length)
{
guint length;
guint reported_length;
guint8 *ptr;
volatile gboolean ex_thrown;
volatile guint32 val32;
guint32 expected32;
guint incr, i;
length = tvb_captured_length(tvb);
if (length != expected_length) {
printf("01: Failed TVB=%s Length of tvb=%u while expected length=%u\n",
name, length, expected_length);
failed = TRUE;
return FALSE;
}
reported_length = tvb_reported_length(tvb);
if (reported_length != expected_reported_length) {
printf("01: Failed TVB=%s Reported length of tvb=%u while expected reported length=%u\n",
name, reported_length, expected_reported_length);
failed = TRUE;
return FALSE;
}
/* Test boundary case. A BoundsError exception should be thrown. */
ex_thrown = FALSE;
TRY {
tvb_get_ptr(tvb, 0, length + 1);
}
CATCH(BoundsError) {
ex_thrown = TRUE;
}
CATCH(FragmentBoundsError) {
printf("02: Caught wrong exception: FragmentBoundsError\n");
}
CATCH(ReportedBoundsError) {
printf("02: Caught wrong exception: ReportedBoundsError\n");
}
CATCH_ALL {
printf("02: Caught wrong exception: %lu\n", exc->except_id.except_code);
}
ENDTRY;
if (!ex_thrown) {
printf("02: Failed TVB=%s No BoundsError when retrieving %u bytes\n",
name, length + 1);
failed = TRUE;
return FALSE;
}
/* Test boundary case with reported_length+1. A ReportedBoundsError
exception should be thrown. */
ex_thrown = FALSE;
TRY {
tvb_get_ptr(tvb, 0, reported_length + 1);
}
CATCH(BoundsError) {
printf("03: Caught wrong exception: BoundsError\n");
}
CATCH(FragmentBoundsError) {
printf("03: Caught wrong exception: FragmentBoundsError\n");
}
CATCH(ReportedBoundsError) {
ex_thrown = TRUE;
}
CATCH_ALL {
printf("03: Caught wrong exception: %lu\n", exc->except_id.except_code);
}
ENDTRY;
if (!ex_thrown) {
printf("03: Failed TVB=%s No ReportedBoundsError when retrieving %u bytes\n",
name, reported_length + 1);
failed = TRUE;
return FALSE;
}
/* Test boundary case. A BoundsError exception should be thrown. */
ex_thrown = FALSE;
TRY {
tvb_get_ptr(tvb, -1, 2);
}
CATCH(BoundsError) {
ex_thrown = TRUE;
}
CATCH(FragmentBoundsError) {
printf("04: Caught wrong exception: FragmentBoundsError\n");
}
CATCH(ReportedBoundsError) {
printf("04: Caught wrong exception: ReportedBoundsError\n");
}
CATCH_ALL {
printf("04: Caught wrong exception: %lu\n", exc->except_id.except_code);
}
ENDTRY;
if (!ex_thrown) {
printf("04: Failed TVB=%s No BoundsError when retrieving 2 bytes from"
" offset -1\n", name);
failed = TRUE;
return FALSE;
}
/* Test boundary case. A BoundsError exception should not be thrown. */
ex_thrown = FALSE;
TRY {
tvb_get_ptr(tvb, 0, length ? 1 : 0);
}
CATCH(BoundsError) {
ex_thrown = TRUE;
}
CATCH(FragmentBoundsError) {
printf("05: Caught wrong exception: FragmentBoundsError\n");
}
CATCH(ReportedBoundsError) {
printf("05: Caught wrong exception: ReportedBoundsError\n");
}
CATCH_ALL {
printf("05: Caught wrong exception: %lu\n", exc->except_id.except_code);
}
ENDTRY;
if (ex_thrown) {
printf("05: Failed TVB=%s BoundsError when retrieving 1 bytes from"
" offset 0\n", name);
failed = TRUE;
return FALSE;
}
/* Test boundary case. A BoundsError exception should not be thrown. */
ex_thrown = FALSE;
TRY {
tvb_get_ptr(tvb, -1, length ? 1 : 0);
}
CATCH(BoundsError) {
ex_thrown = TRUE;
}
CATCH(FragmentBoundsError) {
printf("06: Caught wrong exception: FragmentBoundsError\n");
}
CATCH(ReportedBoundsError) {
printf("06: Caught wrong exception: ReportedBoundsError\n");
}
CATCH_ALL {
printf("06: Caught wrong exception: %lu\n", exc->except_id.except_code);
}
ENDTRY;
if (ex_thrown) {
printf("06: Failed TVB=%s BoundsError when retrieving 1 bytes from"
" offset -1\n", name);
failed = TRUE;
return FALSE;
}
/* Check data at boundary. An exception should not be thrown. */
if (length >= 4) {
ex_thrown = FALSE;
TRY {
val32 = tvb_get_ntohl(tvb, 0);
}
CATCH_ALL {
ex_thrown = TRUE;
}
ENDTRY;
if (ex_thrown) {
printf("07: Failed TVB=%s Exception when retrieving "
"guint32 from offset 0\n", name);
failed = TRUE;
return FALSE;
}
expected32 = pntoh32(expected_data);
if (val32 != expected32) {
printf("08: Failed TVB=%s guint32 @ 0 %u != expected %u\n",
name, val32, expected32);
failed = TRUE;
return FALSE;
}
}
/* Check data at boundary. An exception should not be thrown. */
if (length >= 4) {
ex_thrown = FALSE;
TRY {
val32 = tvb_get_ntohl(tvb, -4);
}
CATCH_ALL {
ex_thrown = TRUE;
}
ENDTRY;
if (ex_thrown) {
printf("09: Failed TVB=%s Exception when retrieving "
"guint32 from offset 0\n", name);
failed = TRUE;
return FALSE;
}
expected32 = pntoh32(&expected_data[length-4]);
if (val32 != expected32) {
printf("10: Failed TVB=%s guint32 @ -4 %u != expected %u\n",
name, val32, expected32);
failed = TRUE;
return FALSE;
}
}
/* Sweep across data in various sized increments checking
* tvb_memdup() */
for (incr = 1; incr < length; incr++) {
for (i = 0; i < length - incr; i += incr) {
ptr = (guint8*)tvb_memdup(NULL, tvb, i, incr);
if (memcmp(ptr, &expected_data[i], incr) != 0) {
printf("11: Failed TVB=%s Offset=%u Length=%u "
"Bad memdup\n",
name, i, incr);
failed = TRUE;
wmem_free(NULL, ptr);
return FALSE;
}
wmem_free(NULL, ptr);
}
}
/* One big memdup */
ptr = (guint8*)tvb_memdup(NULL, tvb, 0, -1);
if ((length != 0 && memcmp(ptr, expected_data, length) != 0) ||
(length == 0 && ptr != NULL)) {
printf("12: Failed TVB=%s Offset=0 Length=-1 "
"Bad memdup\n", name);
failed = TRUE;
wmem_free(NULL, ptr);
return FALSE;
}
wmem_free(NULL, ptr);
/* Test some searches.
* For now, just do a few trivial searches with easily verifiable
* results... each of the searches is expected to find their target at
* the offset from which the search commences. Walk through the tvb
* and run these tests at each byte position. */
for (i = 0; i < length; i++) {
search_test_params sp;
memset(&sp, 0, sizeof sp);
/* Search for the guint8 at this offset. */
sp.g8.needle = expected_data[i];
/* If at least two bytes left, search for the guint16 at this offset. */
sp.g16.test = length - i > 1;
if (sp.g16.test) {
sp.g16.needle = (expected_data[i] << 8) | expected_data[i + 1];
}
/* If the guint8 at this offset is nonzero, try
* tvb_ws_mempbrk_pattern_guint8 as well.
* ws_mempbrk_compile("\0") is not effective... */
sp.mempbrk.test = expected_data[i] != 0;
if (sp.mempbrk.test) {
gchar pattern_string[2] = {expected_data[i], '\0'};
ws_mempbrk_compile(&sp.mempbrk.pattern, pattern_string);
}
ex_thrown = test_searches(tvb, i, &sp);
if (ex_thrown) {
printf("13: Failed TVB=%s Exception when searching, offset %d\n",
name, i);
failed = TRUE;
return FALSE;
}
if ((guint)sp.g8.offset != i) {
printf("13: Failed TVB=%s Wrong offset for guint8:%02x,"
" got %d, expected %d\n",
name, sp.g8.needle, sp.g8.offset, i);
failed = TRUE;
return FALSE;
}
if (sp.g16.test && (guint)sp.g16.offset != i) {
printf("13: Failed TVB=%s Wrong offset for guint16:%04x,"
" got %d, expected %d\n",
name, sp.g16.needle, sp.g16.offset, i);
failed = TRUE;
return FALSE;
}
if (sp.mempbrk.test && (guint)sp.mempbrk.offset != i) {
printf("13: Failed TVB=%s Wrong offset for mempbrk:%02x,"
" got %d, expected %d\n",
name, expected_data[i], sp.mempbrk.offset, i);
failed = TRUE;
return FALSE;
}
if (sp.mempbrk.test && sp.mempbrk.found_needle != expected_data[i]) {
printf("13: Failed TVB=%s Wrong needle found for mempbrk:%02x,"
" got %02x, expected %02x\n",
name, expected_data[i], sp.mempbrk.found_needle, expected_data[i]);
failed = TRUE;
return FALSE;
}
}
printf("Passed TVB=%s\n", name);
return TRUE;
}
static void
run_tests(void)
{
int i, j;
tvbuff_t *tvb_parent;
tvbuff_t *tvb_empty;
tvbuff_t *tvb_small[3];
tvbuff_t *tvb_large[3];
tvbuff_t *tvb_subset[6];
tvbuff_t *tvb_empty_subset;
guint8 *small[3];
guint small_length[3];
guint small_reported_length[3];
guint8 *large[3];
guint large_length[3];
guint large_reported_length[3];
guint8 *subset[6];
guint subset_length[6];
guint subset_reported_length[6];
guint8 temp;
guint8 *comp[6];
tvbuff_t *tvb_comp[6];
guint comp_length[6];
guint comp_reported_length[6];
tvbuff_t *tvb_comp_subset;
guint comp_subset_length;
guint comp_subset_reported_length;
guint8 *comp_subset;
int len;
tvb_parent = tvb_new_real_data((const guint8*)"", 0, 0);
for (i = 0; i < 3; i++) {
small[i] = g_new(guint8, 16);
temp = 16 * i;
for (j = 0; j < 16; j++) {
small[i][j] = temp + j;
}
small_length[i] = 16;
small_reported_length[i] = 17;
tvb_small[i] = tvb_new_child_real_data(tvb_parent, small[i], 16, 17);
tvb_set_free_cb(tvb_small[i], g_free);
}
for (i = 0; i < 3; i++) {
large[i] = g_new(guint8, 19);
temp = 19 * i;
for (j = 0; j < 19; j++) {
large[i][j] = temp + j;
}
large_length[i] = 19;
large_reported_length[i] = 20;
tvb_large[i] = tvb_new_child_real_data(tvb_parent, large[i], 19, 20);
tvb_set_free_cb(tvb_large[i], g_free);
}
/* Test empty tvb */
tvb_empty = tvb_new_child_real_data(tvb_parent, NULL, 0, 1);
test(tvb_empty, "Empty", NULL, 0, 1);
/* Test the "real" tvbuff objects. */
test(tvb_small[0], "Small 0", small[0], small_length[0], small_reported_length[0]);
test(tvb_small[1], "Small 1", small[1], small_length[1], small_reported_length[1]);
test(tvb_small[2], "Small 2", small[2], small_length[2], small_reported_length[2]);
test(tvb_large[0], "Large 0", large[0], large_length[0], large_reported_length[0]);
test(tvb_large[1], "Large 1", large[1], large_length[1], large_reported_length[1]);
test(tvb_large[2], "Large 2", large[2], large_length[2], large_reported_length[2]);
subset_length[0] = 8;
subset_reported_length[0] = 9;
tvb_subset[0] = tvb_new_subset_length_caplen(tvb_small[0], 0, 8, 9);
subset[0] = &small[0][0];
subset_length[1] = 10;
subset_reported_length[1] = 11;
tvb_subset[1] = tvb_new_subset_length_caplen(tvb_large[0], -10, 10, 11);
subset[1] = &large[0][9];
subset_length[2] = 16;
subset_reported_length[2] = 17;
tvb_subset[2] = tvb_new_subset_length_caplen(tvb_small[1], -16, -1, 17);
subset[2] = &small[1][0];
subset_length[3] = 3;
subset_reported_length[3] = 4;
tvb_subset[3] = tvb_new_subset_length_caplen(tvb_subset[0], 0, 3, 4);
subset[3] = &small[0][0];
subset_length[4] = 5;
subset_reported_length[4] = 6;
tvb_subset[4] = tvb_new_subset_length_caplen(tvb_subset[1], -5, 5, 6);
subset[4] = &large[0][14];
subset_length[5] = 8;
subset_reported_length[5] = 9;
tvb_subset[5] = tvb_new_subset_length_caplen(tvb_subset[2], 4, 8, 9);
subset[5] = &small[1][4];
/* Test the "subset" tvbuff objects. */
test(tvb_subset[0], "Subset 0", subset[0], subset_length[0], subset_reported_length[0]);
test(tvb_subset[1], "Subset 1", subset[1], subset_length[1], subset_reported_length[1]);
test(tvb_subset[2], "Subset 2", subset[2], subset_length[2], subset_reported_length[2]);
test(tvb_subset[3], "Subset 3", subset[3], subset_length[3], subset_reported_length[3]);
test(tvb_subset[4], "Subset 4", subset[4], subset_length[4], subset_reported_length[4]);
test(tvb_subset[5], "Subset 5", subset[5], subset_length[5], subset_reported_length[5]);
/* Subset of an empty tvb. */
tvb_empty_subset = tvb_new_subset_length_caplen(tvb_empty, 0, 0, 1);
test(tvb_empty_subset, "Empty Subset", NULL, 0, 1);
/* One Real */
printf("Making Composite 0\n");
tvb_comp[0] = tvb_new_composite();
comp_length[0] = small_length[0];
comp_reported_length[0] = small_reported_length[0];
comp[0] = small[0];
tvb_composite_append(tvb_comp[0], tvb_small[0]);
tvb_composite_finalize(tvb_comp[0]);
/* Two Reals */
printf("Making Composite 1\n");
tvb_comp[1] = tvb_new_composite();
comp_length[1] = small_length[0] + small_length[1];
comp_reported_length[1] = small_reported_length[0] + small_reported_length[1];
comp[1] = (guint8*)g_malloc(comp_length[1]);
memcpy(comp[1], small[0], small_length[0]);
memcpy(&comp[1][small_length[0]], small[1], small_length[1]);
tvb_composite_append(tvb_comp[1], tvb_small[0]);
tvb_composite_append(tvb_comp[1], tvb_small[1]);
tvb_composite_finalize(tvb_comp[1]);
/* One subset */
printf("Making Composite 2\n");
tvb_comp[2] = tvb_new_composite();
comp_length[2] = subset_length[1];
comp_reported_length[2] = subset_reported_length[1];
comp[2] = subset[1];
tvb_composite_append(tvb_comp[2], tvb_subset[1]);
tvb_composite_finalize(tvb_comp[2]);
/* Two subsets */
printf("Making Composite 3\n");
tvb_comp[3] = tvb_new_composite();
comp_length[3] = subset_length[4] + subset_length[5];
comp_reported_length[3] = subset_reported_length[4] + subset_reported_length[5];
comp[3] = (guint8*)g_malloc(comp_length[3]);
memcpy(comp[3], subset[4], subset_length[4]);
memcpy(&comp[3][subset_length[4]], subset[5], subset_length[5]);
tvb_composite_append(tvb_comp[3], tvb_subset[4]);
tvb_composite_append(tvb_comp[3], tvb_subset[5]);
tvb_composite_finalize(tvb_comp[3]);
/* One real, one subset */
printf("Making Composite 4\n");
tvb_comp[4] = tvb_new_composite();
comp_length[4] = small_length[0] + subset_length[1];
comp_reported_length[4] = small_reported_length[0] + subset_reported_length[1];
comp[4] = (guint8*)g_malloc(comp_length[4]);
memcpy(&comp[4][0], small[0], small_length[0]);
memcpy(&comp[4][small_length[0]], subset[1], subset_length[1]);
tvb_composite_append(tvb_comp[4], tvb_small[0]);
tvb_composite_append(tvb_comp[4], tvb_subset[1]);
tvb_composite_finalize(tvb_comp[4]);
/* 4 composites */
printf("Making Composite 5\n");
tvb_comp[5] = tvb_new_composite();
comp_length[5] = comp_length[0] +
comp_length[1] +
comp_length[2] +
comp_length[3];
comp_reported_length[5] = comp_reported_length[0] +
comp_reported_length[1] +
comp_reported_length[2] +
comp_reported_length[3];
comp[5] = (guint8*)g_malloc(comp_length[5]);
len = 0;
memcpy(&comp[5][len], comp[0], comp_length[0]);
len += comp_length[0];
memcpy(&comp[5][len], comp[1], comp_length[1]);
len += comp_length[1];
memcpy(&comp[5][len], comp[2], comp_length[2]);
len += comp_length[2];
memcpy(&comp[5][len], comp[3], comp_length[3]);
tvb_composite_append(tvb_comp[5], tvb_comp[0]);
tvb_composite_append(tvb_comp[5], tvb_comp[1]);
tvb_composite_append(tvb_comp[5], tvb_comp[2]);
tvb_composite_append(tvb_comp[5], tvb_comp[3]);
tvb_composite_finalize(tvb_comp[5]);
/* A subset of one of the composites. */
tvb_comp_subset = tvb_new_subset_remaining(tvb_comp[1], 1);
comp_subset = &comp[1][1];
comp_subset_length = comp_length[1] - 1;
comp_subset_reported_length = comp_reported_length[1] - 1;
/* Test the "composite" tvbuff objects. */
test(tvb_comp[0], "Composite 0", comp[0], comp_length[0], comp_reported_length[0]);
test(tvb_comp[1], "Composite 1", comp[1], comp_length[1], comp_reported_length[1]);
test(tvb_comp[2], "Composite 2", comp[2], comp_length[2], comp_reported_length[2]);
test(tvb_comp[3], "Composite 3", comp[3], comp_length[3], comp_reported_length[3]);
test(tvb_comp[4], "Composite 4", comp[4], comp_length[4], comp_reported_length[4]);
test(tvb_comp[5], "Composite 5", comp[5], comp_length[5], comp_reported_length[5]);
/* Test the subset of the composite. */
test(tvb_comp_subset, "Subset of Composite", comp_subset, comp_subset_length, comp_subset_reported_length);
/* free memory. */
/* Don't free: comp[0] */
g_free(comp[1]);
/* Don't free: comp[2] */
g_free(comp[3]);
g_free(comp[4]);
g_free(comp[5]);
tvb_free_chain(tvb_parent); /* should free all tvb's and associated data */
}
typedef struct
{
// Raw bytes
gint enc_len;
const guint8 *enc;
// Varint parameters
int encoding;
int maxlen;
// Results
unsigned long expect_except;
guint64 expect_val;
guint expect_len;
} varint_test_s;
DIAG_OFF_PEDANTIC
varint_test_s varint[] = {
{0, (const guint8 *)"", 0, FT_VARINT_MAX_LEN, DissectorError, 0, 0}, // no encoding specified
// ENC_VARINT_PROTOBUF
{0, (const guint8 *)"", ENC_VARINT_PROTOBUF, FT_VARINT_MAX_LEN, ReportedBoundsError, 0, 0},
{1, (const guint8 *)"\x00", ENC_VARINT_PROTOBUF, FT_VARINT_MAX_LEN, 0, 0, 1},
{1, (const guint8 *)"\x01", ENC_VARINT_PROTOBUF, FT_VARINT_MAX_LEN, 0, 1, 1},
{1, (const guint8 *)"\x7f", ENC_VARINT_PROTOBUF, FT_VARINT_MAX_LEN, 0, 0x7f, 1},
{2, (const guint8 *)"\x80\x01", ENC_VARINT_PROTOBUF, FT_VARINT_MAX_LEN, 0, G_GUINT64_CONSTANT(1)<<7, 2},
{1, (const guint8 *)"\x80", ENC_VARINT_PROTOBUF, FT_VARINT_MAX_LEN, ReportedBoundsError, 0, 0}, // truncated data
{2, (const guint8 *)"\x80\x01", ENC_VARINT_PROTOBUF, 1, 0, 0, 0}, // truncated read
{5, (const guint8 *)"\x80\x80\x80\x80\x01", ENC_VARINT_PROTOBUF, FT_VARINT_MAX_LEN, 0, G_GUINT64_CONSTANT(1)<<28, 5},
{10, (const guint8 *)"\x80\x80\x80\x80\x80\x80\x80\x80\x80\x01", ENC_VARINT_PROTOBUF, FT_VARINT_MAX_LEN, 0, G_GUINT64_CONSTANT(1)<<63, 10},
{10, (const guint8 *)"\xff\xff\xff\xff\xff\xff\xff\xff\xff\x01", ENC_VARINT_PROTOBUF, FT_VARINT_MAX_LEN, 0, 0xffffffffffffffff, 10},
{10, (const guint8 *)"\x80\x80\x80\x80\x80\x80\x80\x80\x80\x02", ENC_VARINT_PROTOBUF, FT_VARINT_MAX_LEN, 0, 0, 10}, // overflow
// ENC_VARINT_SDNV
{0, (const guint8 *)"", ENC_VARINT_SDNV, FT_VARINT_MAX_LEN, ReportedBoundsError, 0, 0},
{1, (const guint8 *)"\x00", ENC_VARINT_SDNV, FT_VARINT_MAX_LEN, 0, 0, 1},
{1, (const guint8 *)"\x01", ENC_VARINT_SDNV, FT_VARINT_MAX_LEN, 0, 1, 1},
{1, (const guint8 *)"\x7f", ENC_VARINT_SDNV, FT_VARINT_MAX_LEN, 0, 0x7f, 1},
{2, (const guint8 *)"\x81\x00", ENC_VARINT_SDNV, FT_VARINT_MAX_LEN, 0, G_GUINT64_CONSTANT(1)<<7, 2},
{1, (const guint8 *)"\x81", ENC_VARINT_SDNV, FT_VARINT_MAX_LEN, ReportedBoundsError, 1, 0}, // truncated data
{2, (const guint8 *)"\x81\x00", ENC_VARINT_SDNV, 1, 0, 1, 0}, // truncated read
{5, (const guint8 *)"\x81\x80\x80\x80\x00", ENC_VARINT_SDNV, FT_VARINT_MAX_LEN, 0, G_GUINT64_CONSTANT(1)<<28, 5},
{10, (const guint8 *)"\x81\x80\x80\x80\x80\x80\x80\x80\x80\x00", ENC_VARINT_SDNV, FT_VARINT_MAX_LEN, 0, G_GUINT64_CONSTANT(1)<<63, 10},
{10, (const guint8 *)"\x81\xff\xff\xff\xff\xff\xff\xff\xff\x7f", ENC_VARINT_SDNV, FT_VARINT_MAX_LEN, 0, 0xffffffffffffffff, 10},
{10, (const guint8 *)"\x82\x80\x80\x80\x80\x80\x80\x80\x80\x00", ENC_VARINT_SDNV, FT_VARINT_MAX_LEN, 0, G_GUINT64_CONSTANT(1)<<57, 0}, // overflow
};
DIAG_ON_PEDANTIC
static void
varint_tests(void)
{
tvbuff_t *tvb_parent, *tvb;
volatile unsigned long got_ex;
guint64 got_val;
volatile guint got_len;
tvb_parent = tvb_new_real_data((const guint8*)"", 0, 0);
for (size_t ix = 0; ix < (sizeof(varint) / sizeof(varint_test_s)); ++ix) {
const varint_test_s *vit = &varint[ix];
tvb = tvb_new_child_real_data(tvb_parent, vit->enc, vit->enc_len, vit->enc_len);
got_ex = 0;
got_val = 0;
got_len = 0;
TRY {
got_len = tvb_get_varint(tvb, 0, vit->maxlen, &got_val, vit->encoding);
}
CATCH_ALL {
got_ex = exc->except_id.except_code;
}
ENDTRY;
if (got_ex != vit->expect_except) {
printf("Failed varint #%zu with exception=%lu while expected exception=%lu\n",
ix, got_ex, vit->expect_except);
failed = TRUE;
continue;
}
if (got_val != vit->expect_val) {
printf("Failed varint #%zu value=%" PRIu64 " while expected value=%" PRIu64 "\n",
ix, got_val, vit->expect_val);
failed = TRUE;
continue;
}
if (got_len != vit->expect_len) {
printf("Failed varint #%zu length=%u while expected length=%u\n",
ix, got_len, vit->expect_len);
failed = TRUE;
continue;
}
printf("Passed varint #%zu\n", ix);
}
tvb_free_chain(tvb_parent); /* should free all tvb's and associated data */
}
#define DATA_AND_LEN(X) .data = X, .len = sizeof(X) - 1
static void
zstd_tests (void) {
#ifdef HAVE_ZSTD
typedef struct {
const char* desc;
const uint8_t* data;
size_t len;
const char* expect;
} zstd_testcase;
zstd_testcase tests[] = {
{
.desc = "Uncompressing 'foobar'",
DATA_AND_LEN ("\x28\xb5\x2f\xfd\x20\x07\x39\x00\x00\x66\x6f\x6f\x62\x61\x72\x00"),
.expect = "foobar"
},
{
.desc = "Uncompressing invalid data",
DATA_AND_LEN ("\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0A\x0B\x0C\x0D\x0E\x0F"),
.expect = NULL
},
{
.desc = "Uncompressing too short length",
.data = "\x28\xb5\x2f\xfd\x20\x07\x39\x00\x00\x66\x6f\x6f\x62\x61\x72\x00",
.len = 1,
.expect = NULL
},
{
.desc = "Uncompressing two frames of data",
// data is two frames of compressed data with compression level 1.
// the first frame is the string "foo" with no null terminator.
// the second frame is the string "bar" with a null terminator.
DATA_AND_LEN ("\x28\xb5\x2f\xfd\x20\x03\x19\x00\x00\x66\x6f\x6f"
"\x28\xb5\x2f\xfd\x20\x04\x21\x00\x00\x62\x61\x72\x00"),
.expect = "foobar"
},
{
.desc = "Uncompressing two frames of data. 2nd frame has too short length.",
// data is two frames of compressed data with compression level 1.
// the first frame is the string "foo" with no null terminator.
// the second frame is the string "bar" with a null terminator.
.data ="\x28\xb5\x2f\xfd\x20\x03\x19\x00\x00\x66\x6f\x6f"
"\x28\xb5\x2f\xfd\x20\x04\x21\x00\x00\x62\x61\x72\x00",
.len = 13,
.expect = NULL
},
{
.desc = "Uncompressing two frames of data. 2nd frame is malformed.",
// data is two frames of compressed data with compression level 1.
// the first frame is the string "foo" with no null terminator.
// the second frame is malformed.
DATA_AND_LEN ("\x28\xb5\x2f\xfd\x20\x03\x19\x00\x00\x66\x6f\x6f"
"\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0A\x0B\x0C\x0D\x0E\x0F"),
.expect = NULL
},
{
.desc = "Uncompressing no data",
.data = "\0",
.len = 0,
.expect = ""
},
};
for (size_t i = 0; i < sizeof tests / sizeof tests[0]; i++) {
zstd_testcase *t = tests + i;
printf ("ZSTD test: %s ... begin\n", t->desc);
tvbuff_t *tvb = tvb_new_real_data (t->data, (const guint) t->len, (const guint) t->len);
tvbuff_t *got = tvb_uncompress_zstd (tvb, 0, (int) t->len);
if (!t->expect) {
if (got) {
fprintf (stderr, "ZSTD test: %s ... FAIL: Expected error, but got non-NULL from uncompress\n", t->desc);
failed = TRUE;
return;
}
} else {
if (!got) {
printf ("ZSTD test: %s ... FAIL: Expected success, but got NULL from uncompress.\n", t->desc);
failed = TRUE;
return;
}
char * got_str = tvb_get_string_enc (NULL, got, 0, tvb_reported_length (got), ENC_ASCII);
if (0 != strcmp (got_str, t->expect)) {
printf ("ZSTD test: %s ... FAIL: Expected \"%s\", got \"%s\".\n", t->desc, t->expect, got_str);
failed = TRUE;
return;
}
wmem_free (NULL, got_str);
tvb_free (got);
}
tvb_free (tvb);
printf ("ZSTD test: %s ... OK\n", t->desc);
}
#else
printf ("Skipping ZSTD test. ZSTD is not available.\n");
#endif
}
/* Note: valgrind can be used to check for tvbuff memory leaks */
int
main(void)
{
/* For valgrind: See GLib documentation: "Running GLib Applications" */
g_setenv("G_DEBUG", "gc-friendly", 1);
g_setenv("G_SLICE", "always-malloc", 1);
except_init();
run_tests();
varint_tests();
zstd_tests ();
except_deinit();
exit(failed?1:0);
}
/*
* Editor modelines - https://www.wireshark.org/tools/modelines.html
*
* Local variables:
* c-basic-offset: 8
* tab-width: 8
* indent-tabs-mode: t
* End:
*
* vi: set shiftwidth=8 tabstop=8 noexpandtab:
* :indentSize=8:tabSize=8:noTabs=false:
*/