wireshark/epan/print.c

2713 lines
89 KiB
C

/* print.c
* Routines for printing packet analysis trees.
*
* Gilbert Ramirez <gram@alumni.rice.edu>
*
* Wireshark - Network traffic analyzer
* By Gerald Combs <gerald@wireshark.org>
* Copyright 1998 Gerald Combs
*
* SPDX-License-Identifier: GPL-2.0-or-later
*/
#include "config.h"
#include <stdio.h>
#include <string.h>
#include <epan/packet.h>
#include <epan/epan.h>
#include <epan/epan_dissect.h>
#include <epan/to_str.h>
#include <epan/to_str.h>
#include <epan/expert.h>
#include <epan/column.h>
#include <epan/column-info.h>
#include <epan/color_filters.h>
#include <epan/prefs.h>
#include <epan/print.h>
#include <epan/charsets.h>
#include <wsutil/json_dumper.h>
#include <wsutil/filesystem.h>
#include <wsutil/utf8_entities.h>
#include <wsutil/str_util.h>
#include <wsutil/ws_assert.h>
#include <ftypes/ftypes.h>
#define PDML_VERSION "0"
#define PSML_VERSION "0"
typedef struct {
int level;
print_stream_t *stream;
gboolean success;
GSList *src_list;
print_dissections_e print_dissections;
gboolean print_hex_for_data;
packet_char_enc encoding;
GHashTable *output_only_tables; /* output only these protocols */
} print_data;
typedef struct {
int level;
FILE *fh;
GSList *src_list;
wmem_map_t *filter;
} write_pdml_data;
typedef struct {
GSList *src_list;
wmem_map_t *filter;
gboolean print_hex;
gboolean print_text;
proto_node_children_grouper_func node_children_grouper;
json_dumper *dumper;
} write_json_data;
typedef struct {
output_fields_t *fields;
epan_dissect_t *edt;
} write_field_data_t;
struct _output_fields {
gboolean print_bom;
gboolean print_header;
gchar separator;
gchar occurrence;
gchar aggregator;
GPtrArray *fields;
GHashTable *field_indicies;
GPtrArray **field_values;
gchar quote;
gboolean includes_col_fields;
};
static gchar *get_field_hex_value(GSList *src_list, field_info *fi);
static void proto_tree_print_node(proto_node *node, gpointer data);
static void proto_tree_write_node_pdml(proto_node *node, gpointer data);
static void proto_tree_write_node_ek(proto_node *node, write_json_data *data);
static const guint8 *get_field_data(GSList *src_list, field_info *fi);
static void pdml_write_field_hex_value(write_pdml_data *pdata, field_info *fi);
static void json_write_field_hex_value(write_json_data *pdata, field_info *fi);
static gboolean print_hex_data_buffer(print_stream_t *stream, const guchar *cp,
guint length, packet_char_enc encoding,
guint hexdump_options);
static void write_specified_fields(fields_format format,
output_fields_t *fields,
epan_dissect_t *edt, column_info *cinfo,
FILE *fh,
json_dumper *dumper);
static void print_escaped_xml(FILE *fh, const char *unescaped_string);
static void print_escaped_csv(FILE *fh, const char *unescaped_string);
typedef void (*proto_node_value_writer)(proto_node *, write_json_data *);
static void write_json_index(json_dumper *dumper, epan_dissect_t *edt);
static void write_json_proto_node_list(GSList *proto_node_list_head, write_json_data *data);
static void write_json_proto_node(GSList *node_values_head,
const char *suffix,
proto_node_value_writer value_writer,
write_json_data *data);
static void write_json_proto_node_value_list(GSList *node_values_head,
proto_node_value_writer value_writer,
write_json_data *data);
static void write_json_proto_node_filtered(proto_node *node, write_json_data *data);
static void write_json_proto_node_hex_dump(proto_node *node, write_json_data *data);
static void write_json_proto_node_dynamic(proto_node *node, write_json_data *data);
static void write_json_proto_node_children(proto_node *node, write_json_data *data);
static void write_json_proto_node_value(proto_node *node, write_json_data *data);
static void write_json_proto_node_no_value(proto_node *node, write_json_data *data);
static const char *proto_node_to_json_key(proto_node *node);
static void print_pdml_geninfo(epan_dissect_t *edt, FILE *fh);
static void write_ek_summary(column_info *cinfo, write_json_data *pdata);
static void proto_tree_get_node_field_values(proto_node *node, gpointer data);
/* Cache the protocols and field handles that the print functionality needs
This helps break explicit dependency on the dissectors. */
static int proto_data = -1;
static int proto_frame = -1;
void print_cache_field_handles(void)
{
proto_data = proto_get_id_by_short_name("Data");
proto_frame = proto_get_id_by_short_name("Frame");
}
gboolean
proto_tree_print(print_dissections_e print_dissections, gboolean print_hex,
epan_dissect_t *edt, GHashTable *output_only_tables,
print_stream_t *stream)
{
print_data data;
/* Create the output */
data.level = 0;
data.stream = stream;
data.success = TRUE;
data.src_list = edt->pi.data_src;
data.encoding = (packet_char_enc)edt->pi.fd->encoding;
data.print_dissections = print_dissections;
/* If we're printing the entire packet in hex, don't
print uninterpreted data fields in hex as well. */
data.print_hex_for_data = !print_hex;
data.output_only_tables = output_only_tables;
proto_tree_children_foreach(edt->tree, proto_tree_print_node, &data);
return data.success;
}
/* Print a tree's data, and any child nodes. */
static void
proto_tree_print_node(proto_node *node, gpointer data)
{
field_info *fi = PNODE_FINFO(node);
print_data *pdata = (print_data*) data;
const guint8 *pd;
gchar label_str[ITEM_LABEL_LENGTH];
gchar *label_ptr;
/* dissection with an invisible proto tree? */
ws_assert(fi);
/* Don't print invisible entries. */
if (proto_item_is_hidden(node) && (prefs.display_hidden_proto_items == FALSE))
return;
/* Give up if we've already gotten an error. */
if (!pdata->success)
return;
/* was a free format label produced? */
if (fi->rep) {
label_ptr = fi->rep->representation;
}
else { /* no, make a generic label */
label_ptr = label_str;
proto_item_fill_label(fi, label_str);
}
if (proto_item_is_generated(node))
label_ptr = g_strconcat("[", label_ptr, "]", NULL);
pdata->success = print_line(pdata->stream, pdata->level, label_ptr);
if (proto_item_is_generated(node))
g_free(label_ptr);
if (!pdata->success)
return;
/*
* If -O is specified, only display the protocols which are in the
* lookup table. Only check on the first level: once we start printing
* a tree, print the rest of the subtree. Otherwise we won't print
* subitems whose abbreviation doesn't match the protocol--for example
* text items (whose abbreviation is simply "text").
*/
if ((pdata->output_only_tables != NULL) && (pdata->level == 0)
&& (g_hash_table_lookup(pdata->output_only_tables, fi->hfinfo->abbrev) == NULL)) {
return;
}
/* If it's uninterpreted data, dump it (unless our caller will
be printing the entire packet in hex). */
if ((fi->hfinfo->id == proto_data) && (pdata->print_hex_for_data)) {
/*
* Find the data for this field.
*/
pd = get_field_data(pdata->src_list, fi);
if (pd) {
if (!print_line(pdata->stream, 0, "")) {
pdata->success = FALSE;
return;
}
if (!print_hex_data_buffer(pdata->stream, pd,
fi->length, pdata->encoding, HEXDUMP_ASCII_INCLUDE)) {
pdata->success = FALSE;
return;
}
}
}
/* If we're printing all levels, or if this node is one with a
subtree and its subtree is expanded, recurse into the subtree,
if it exists. */
ws_assert((fi->tree_type >= -1) && (fi->tree_type < num_tree_types));
if ((pdata->print_dissections == print_dissections_expanded) ||
((pdata->print_dissections == print_dissections_as_displayed) &&
(fi->tree_type >= 0) && tree_expanded(fi->tree_type))) {
if (node->first_child != NULL) {
pdata->level++;
proto_tree_children_foreach(node,
proto_tree_print_node, pdata);
pdata->level--;
if (!pdata->success)
return;
}
}
}
#define PDML2HTML_XSL "pdml2html.xsl"
#define PDML2HTML_URL "https://gitlab.com/wireshark/wireshark/-/tree/master/resources/share/doc/wireshark/"
void
write_pdml_preamble(FILE *fh, const gchar *filename)
{
time_t t = time(NULL);
struct tm * timeinfo;
char *fmt_ts;
const char *ts;
/* Create the output */
timeinfo = localtime(&t);
if (timeinfo != NULL) {
fmt_ts = asctime(timeinfo);
fmt_ts[strlen(fmt_ts)-1] = 0; /* overwrite \n */
ts = fmt_ts;
} else
ts = "Not representable";
fprintf(fh, "<?xml version=\"1.0\" encoding=\"utf-8\"?>\n");
fprintf(fh, "<?xml-stylesheet type=\"text/xsl\" href=\"" PDML2HTML_XSL "\"?>\n");
fprintf(fh, "<!-- You can find " PDML2HTML_XSL " in %s or at "PDML2HTML_URL PDML2HTML_XSL ". -->\n", get_doc_dir());
fprintf(fh, "<pdml version=\"" PDML_VERSION "\" creator=\"%s/%s\" time=\"%s\" capture_file=\"", PACKAGE, VERSION, ts);
if (filename) {
/* \todo filename should be converted to UTF-8. */
print_escaped_xml(fh, filename);
}
fprintf(fh, "\">\n");
}
/* Check if the str matches the protocolfilter.
*
* @param[in] protocolfilter a map of field abbreviations that pass the filter
* to the flags for that field, or NULL if no filter (so all fields pass)
* @param[in] str the field abbreviation to lookup in the map.
* @param[out] flags if not NULL, gets set to the value in the map for
* the given key if found (undefined if return is FALSE.)
* @return TRUE if the filter passes the string, FALSE if the filter
* filters out the string.
*/
static gboolean check_protocolfilter(wmem_map_t *protocolfilter, const char *str, pf_flags *flags)
{
gboolean res = FALSE;
void *value;
if (protocolfilter == NULL) {
if (flags) {
*flags = PF_NONE;
}
return TRUE;
}
if (str == NULL) {
return FALSE;
}
res = wmem_map_lookup_extended(protocolfilter, str, NULL, &value);
if (res && flags) {
*flags = GPOINTER_TO_UINT(value);
}
return res;
}
void
write_pdml_proto_tree(output_fields_t* fields, wmem_map_t *protocolfilter, epan_dissect_t *edt, column_info *cinfo, FILE *fh, gboolean use_color)
{
write_pdml_data data;
const color_filter_t *cfp;
ws_assert(edt);
ws_assert(fh);
cfp = edt->pi.fd->color_filter;
/* Create the output */
if (use_color && (cfp != NULL)) {
fprintf(fh, "<packet foreground='#%06x' background='#%06x'>\n",
color_t_to_rgb(&cfp->fg_color),
color_t_to_rgb(&cfp->bg_color));
} else {
fprintf(fh, "<packet>\n");
}
/* Print a "geninfo" protocol as required by PDML */
print_pdml_geninfo(edt, fh);
if (fields == NULL || fields->fields == NULL) {
/* Write out all fields */
data.level = 0;
data.fh = fh;
data.src_list = edt->pi.data_src;
data.filter = protocolfilter;
proto_tree_children_foreach(edt->tree, proto_tree_write_node_pdml,
&data);
} else {
/* Write out specified fields */
write_specified_fields(FORMAT_XML, fields, edt, cinfo, fh, NULL);
}
fprintf(fh, "</packet>\n\n");
}
void
write_ek_proto_tree(output_fields_t* fields,
gboolean print_summary, gboolean print_hex,
wmem_map_t *protocolfilter,
epan_dissect_t *edt,
column_info *cinfo,
FILE *fh)
{
ws_assert(edt);
ws_assert(fh);
write_json_data data;
json_dumper dumper = {
.output_file = fh,
.flags = JSON_DUMPER_DOT_TO_UNDERSCORE
};
data.dumper = &dumper;
json_dumper_begin_object(&dumper);
json_dumper_set_member_name(&dumper, "index");
json_dumper_begin_object(&dumper);
write_json_index(&dumper, edt);
json_dumper_set_member_name(&dumper, "_type");
json_dumper_value_string(&dumper, "doc");
json_dumper_end_object(&dumper);
json_dumper_end_object(&dumper);
json_dumper_finish(&dumper);
json_dumper_begin_object(&dumper);
/* Timestamp added for time indexing in Elasticsearch */
json_dumper_set_member_name(&dumper, "timestamp");
json_dumper_value_anyf(&dumper, "\"%" PRIu64 "%03d\"", (guint64)edt->pi.abs_ts.secs, edt->pi.abs_ts.nsecs/1000000);
if (print_summary)
write_ek_summary(edt->pi.cinfo, &data);
if (edt->tree) {
json_dumper_set_member_name(&dumper, "layers");
json_dumper_begin_object(&dumper);
if (fields == NULL || fields->fields == NULL) {
/* Write out all fields */
data.src_list = edt->pi.data_src;
data.filter = protocolfilter;
data.print_hex = print_hex;
proto_tree_write_node_ek(edt->tree, &data);
} else {
/* Write out specified fields */
write_specified_fields(FORMAT_EK, fields, edt, cinfo, NULL, data.dumper);
}
json_dumper_end_object(&dumper);
}
json_dumper_end_object(&dumper);
json_dumper_finish(&dumper);
}
void
write_fields_proto_tree(output_fields_t* fields, epan_dissect_t *edt, column_info *cinfo, FILE *fh)
{
ws_assert(edt);
ws_assert(fh);
/* Create the output */
write_specified_fields(FORMAT_CSV, fields, edt, cinfo, fh, NULL);
}
/* Indent to the correct level */
static void print_indent(int level, FILE *fh)
{
/* Use a buffer pre-filed with spaces */
#define MAX_INDENT 2048
static char spaces[MAX_INDENT];
static gboolean inited = FALSE;
if (!inited) {
for (int n=0; n < MAX_INDENT; n++) {
spaces[n] = ' ';
}
inited = TRUE;
}
if (fh == NULL) {
return;
}
/* Temp terminate at right length and write to fh. */
spaces[MIN(level*2, MAX_INDENT-1)] ='\0';
fputs(spaces, fh);
spaces[MIN(level*2, MAX_INDENT-1)] =' ';
}
/* Write out a tree's data, and any child nodes, as PDML */
static void
proto_tree_write_node_pdml(proto_node *node, gpointer data)
{
field_info *fi = PNODE_FINFO(node);
write_pdml_data *pdata = (write_pdml_data*) data;
const gchar *label_ptr;
gchar label_str[ITEM_LABEL_LENGTH];
char *dfilter_string;
gboolean wrap_in_fake_protocol;
/* dissection with an invisible proto tree? */
ws_assert(fi);
/* Will wrap up top-level field items inside a fake protocol wrapper to
preserve the PDML schema */
wrap_in_fake_protocol =
(((fi->hfinfo->type != FT_PROTOCOL) ||
(fi->hfinfo->id == proto_data)) &&
(pdata->level == 0));
print_indent(pdata->level + 1, pdata->fh);
if (wrap_in_fake_protocol) {
/* Open fake protocol wrapper */
fputs("<proto name=\"fake-field-wrapper\">\n", pdata->fh);
pdata->level++;
print_indent(pdata->level + 1, pdata->fh);
}
/* Text label. It's printed as a field with no name. */
if (fi->hfinfo->id == hf_text_only) {
/* Get the text */
if (fi->rep) {
label_ptr = fi->rep->representation;
} else {
label_ptr = "";
}
/* Show empty name since it is a required field */
fputs("<field name=\"", pdata->fh);
fputs("\" show=\"", pdata->fh);
print_escaped_xml(pdata->fh, label_ptr);
fprintf(pdata->fh, "\" size=\"%d", fi->length);
if (node->parent && node->parent->finfo && (fi->start < node->parent->finfo->start)) {
fprintf(pdata->fh, "\" pos=\"%d", node->parent->finfo->start + fi->start);
} else {
fprintf(pdata->fh, "\" pos=\"%d", fi->start);
}
if (fi->length > 0) {
fputs("\" value=\"", pdata->fh);
pdml_write_field_hex_value(pdata, fi);
}
if (node->first_child != NULL) {
fputs("\">\n", pdata->fh);
} else {
fputs("\"/>\n", pdata->fh);
}
}
/* Uninterpreted data, i.e., the "Data" protocol, is
* printed as a field instead of a protocol. */
else if (fi->hfinfo->id == proto_data) {
/* Write out field with data */
fputs("<field name=\"data\" value=\"", pdata->fh);
pdml_write_field_hex_value(pdata, fi);
fputs("\">\n", pdata->fh);
} else {
/* Normal protocols and fields */
if ((fi->hfinfo->type == FT_PROTOCOL) && (fi->hfinfo->id != proto_expert)) {
fputs("<proto name=\"", pdata->fh);
} else {
fputs("<field name=\"", pdata->fh);
}
print_escaped_xml(pdata->fh, fi->hfinfo->abbrev);
#if 0
/* PDML spec, see:
* https://wayback.archive.org/web/20150330045501/http://www.nbee.org/doku.php?id=netpdl:pdml_specification
*
* the show fields contains things in 'human readable' format
* showname: contains only the name of the field
* show: contains only the data of the field
* showdtl: contains additional details of the field data
* showmap: contains mappings of the field data (e.g. the hostname to an IP address)
*
* XXX - the showname shouldn't contain the field data itself
* (like it's contained in the fi->rep->representation).
* Unfortunately, we don't have the field data representation for
* all fields, so this isn't currently possible */
fputs("\" showname=\"", pdata->fh);
print_escaped_xml(pdata->fh, fi->hfinfo->name);
#endif
if (fi->rep) {
fputs("\" showname=\"", pdata->fh);
print_escaped_xml(pdata->fh, fi->rep->representation);
} else {
label_ptr = label_str;
proto_item_fill_label(fi, label_str);
fputs("\" showname=\"", pdata->fh);
print_escaped_xml(pdata->fh, label_ptr);
}
if (proto_item_is_hidden(node) && (prefs.display_hidden_proto_items == FALSE))
fprintf(pdata->fh, "\" hide=\"yes");
fprintf(pdata->fh, "\" size=\"%d", fi->length);
if (node->parent && node->parent->finfo && (fi->start < node->parent->finfo->start)) {
fprintf(pdata->fh, "\" pos=\"%d", node->parent->finfo->start + fi->start);
} else {
fprintf(pdata->fh, "\" pos=\"%d", fi->start);
}
/* fprintf(pdata->fh, "\" id=\"%d", fi->hfinfo->id);*/
/* show, value, and unmaskedvalue attributes */
switch (fi->hfinfo->type)
{
case FT_PROTOCOL:
break;
case FT_NONE:
fputs("\" show=\"\" value=\"", pdata->fh);
break;
default:
dfilter_string = fvalue_to_string_repr(NULL, &fi->value, FTREPR_DISPLAY, fi->hfinfo->display);
if (dfilter_string != NULL) {
fputs("\" show=\"", pdata->fh);
print_escaped_xml(pdata->fh, dfilter_string);
}
wmem_free(NULL, dfilter_string);
/*
* XXX - should we omit "value" for any fields?
* What should we do for fields whose length is 0?
* They might come from a pseudo-header or from
* the capture header (e.g., time stamps), or
* they might be generated fields.
*/
if (fi->length > 0) {
fputs("\" value=\"", pdata->fh);
if (fi->hfinfo->bitmask!=0) {
switch (fvalue_type_ftenum(&fi->value)) {
case FT_INT8:
case FT_INT16:
case FT_INT24:
case FT_INT32:
fprintf(pdata->fh, "%X", (guint) fvalue_get_sinteger(&fi->value));
break;
case FT_CHAR:
case FT_UINT8:
case FT_UINT16:
case FT_UINT24:
case FT_UINT32:
fprintf(pdata->fh, "%X", fvalue_get_uinteger(&fi->value));
break;
case FT_INT40:
case FT_INT48:
case FT_INT56:
case FT_INT64:
fprintf(pdata->fh, "%" PRIX64, fvalue_get_sinteger64(&fi->value));
break;
case FT_UINT40:
case FT_UINT48:
case FT_UINT56:
case FT_UINT64:
case FT_BOOLEAN:
fprintf(pdata->fh, "%" PRIX64, fvalue_get_uinteger64(&fi->value));
break;
default:
ws_assert_not_reached();
}
fputs("\" unmaskedvalue=\"", pdata->fh);
pdml_write_field_hex_value(pdata, fi);
} else {
pdml_write_field_hex_value(pdata, fi);
}
}
}
if (node->first_child != NULL) {
fputs("\">\n", pdata->fh);
} else if (fi->hfinfo->id == proto_data) {
fputs("\">\n", pdata->fh);
} else {
fputs("\"/>\n", pdata->fh);
}
}
/* We print some levels for PDML. Recurse here. */
if (node->first_child != NULL) {
pf_flags filter_flags = PF_NONE;
if (pdata->filter == NULL || check_protocolfilter(pdata->filter, fi->hfinfo->abbrev, &filter_flags)) {
wmem_map_t *_filter = NULL;
/* Remove protocol filter for children, if children should be included */
if ((filter_flags&PF_INCLUDE_CHILDREN) == PF_INCLUDE_CHILDREN) {
_filter = pdata->filter;
pdata->filter = NULL;
}
pdata->level++;
proto_tree_children_foreach(node,
proto_tree_write_node_pdml, pdata);
pdata->level--;
/* Put protocol filter back */
if ((filter_flags&PF_INCLUDE_CHILDREN) == PF_INCLUDE_CHILDREN) {
pdata->filter = _filter;
}
} else {
print_indent(pdata->level + 2, pdata->fh);
/* print dummy field */
fputs("<field name=\"filtered\" value=\"", pdata->fh);
print_escaped_xml(pdata->fh, fi->hfinfo->abbrev);
fputs("\" />\n", pdata->fh);
}
}
/* Take back the extra level we added for fake wrapper protocol */
if (wrap_in_fake_protocol) {
pdata->level--;
}
if (node->first_child != NULL) {
print_indent(pdata->level + 1, pdata->fh);
/* Close off current element */
/* Data and expert "protocols" use simple tags */
if ((fi->hfinfo->id != proto_data) && (fi->hfinfo->id != proto_expert)) {
if (fi->hfinfo->type == FT_PROTOCOL) {
fputs("</proto>\n", pdata->fh);
} else {
fputs("</field>\n", pdata->fh);
}
} else {
fputs("</field>\n", pdata->fh);
}
}
/* Close off fake wrapper protocol */
if (wrap_in_fake_protocol) {
print_indent(pdata->level + 1, pdata->fh);
fputs("</proto>\n", pdata->fh);
}
}
json_dumper
write_json_preamble(FILE *fh)
{
json_dumper dumper = {
.output_file = fh,
.flags = JSON_DUMPER_FLAGS_PRETTY_PRINT
};
json_dumper_begin_array(&dumper);
return dumper;
}
void
write_json_finale(json_dumper *dumper)
{
json_dumper_end_array(dumper);
json_dumper_finish(dumper);
}
static void
write_json_index(json_dumper *dumper, epan_dissect_t *edt)
{
char ts[30];
struct tm * timeinfo;
gchar* str;
timeinfo = localtime(&edt->pi.abs_ts.secs);
if (timeinfo != NULL) {
strftime(ts, sizeof(ts), "%Y-%m-%d", timeinfo);
} else {
(void) g_strlcpy(ts, "XXXX-XX-XX", sizeof(ts)); /* XXX - better way of saying "Not representable"? */
}
json_dumper_set_member_name(dumper, "_index");
str = ws_strdup_printf("packets-%s", ts);
json_dumper_value_string(dumper, str);
g_free(str);
}
void
write_json_proto_tree(output_fields_t* fields,
print_dissections_e print_dissections,
gboolean print_hex, wmem_map_t *protocolfilter,
epan_dissect_t *edt, column_info *cinfo,
proto_node_children_grouper_func node_children_grouper,
json_dumper *dumper)
{
write_json_data data;
data.dumper = dumper;
json_dumper_begin_object(dumper);
write_json_index(dumper, edt);
json_dumper_set_member_name(dumper, "_type");
json_dumper_value_string(dumper, "doc");
json_dumper_set_member_name(dumper, "_score");
json_dumper_value_string(dumper, NULL);
json_dumper_set_member_name(dumper, "_source");
json_dumper_begin_object(dumper);
json_dumper_set_member_name(dumper, "layers");
if (fields == NULL || fields->fields == NULL) {
/* Write out all fields */
data.src_list = edt->pi.data_src;
data.filter = protocolfilter;
data.print_hex = print_hex;
data.print_text = TRUE;
if (print_dissections == print_dissections_none) {
data.print_text = FALSE;
}
data.node_children_grouper = node_children_grouper;
write_json_proto_node_children(edt->tree, &data);
} else {
write_specified_fields(FORMAT_JSON, fields, edt, cinfo, NULL, dumper);
}
json_dumper_end_object(dumper);
json_dumper_end_object(dumper);
}
/**
* Returns a boolean telling us whether that node list contains any node which has children
*/
static gboolean
any_has_children(GSList *node_values_list)
{
GSList *current_node = node_values_list;
while (current_node != NULL) {
proto_node *current_value = (proto_node *) current_node->data;
if (current_value->first_child != NULL) {
return TRUE;
}
current_node = current_node->next;
}
return FALSE;
}
/**
* Write a json object containing a list of key:value pairs where each key:value pair corresponds to a different json
* key and its associated nodes in the proto_tree.
* @param proto_node_list_head A 2-dimensional list containing a list of values for each different node json key. The
* elements themselves are a linked list of values associated with the same json key.
* @param pdata json writing metadata
*/
static void
write_json_proto_node_list(GSList *proto_node_list_head, write_json_data *pdata)
{
GSList *current_node = proto_node_list_head;
json_dumper_begin_object(pdata->dumper);
// Loop over each list of nodes (differentiated by json key) and write the associated json key:value pair in the
// output.
while (current_node != NULL) {
// Get the list of values for the current json key.
GSList *node_values_list = (GSList *) current_node->data;
// Retrieve the json key from the first value.
proto_node *first_value = (proto_node *) node_values_list->data;
const char *json_key = proto_node_to_json_key(first_value);
// Check if the current json key is filtered from the output with the "-j" cli option.
pf_flags filter_flags = PF_NONE;
gboolean is_filtered = pdata->filter != NULL && !check_protocolfilter(pdata->filter, json_key, &filter_flags);
field_info *fi = first_value->finfo;
char *value_string_repr = fvalue_to_string_repr(NULL, &fi->value, FTREPR_DISPLAY, fi->hfinfo->display);
gboolean has_children = any_has_children(node_values_list);
// We assume all values of a json key have roughly the same layout. Thus we can use the first value to derive
// attributes of all the values.
gboolean has_value = value_string_repr != NULL;
gboolean is_pseudo_text_field = fi->hfinfo->id == 0;
wmem_free(NULL, value_string_repr); // fvalue_to_string_repr returns allocated buffer
// "-x" command line option. A "_raw" suffix is added to the json key so the textual value can be printed
// with the original json key. If both hex and text writing are enabled the raw information of fields whose
// length is equal to 0 is not written to the output. If the field is a special text pseudo field no raw
// information is written either.
if (pdata->print_hex && (!pdata->print_text || fi->length > 0) && !is_pseudo_text_field) {
write_json_proto_node(node_values_list, "_raw", write_json_proto_node_hex_dump, pdata);
}
if (pdata->print_text && has_value) {
write_json_proto_node(node_values_list, "", write_json_proto_node_value, pdata);
}
if (has_children) {
// If a node has both a value and a set of children we print the value and the children in separate
// key:value pairs. These can't have the same key so whenever a value is already printed with the node
// json key we print the children with the same key with a "_tree" suffix added.
char *suffix = has_value ? "_tree": "";
if (is_filtered) {
write_json_proto_node(node_values_list, suffix, write_json_proto_node_filtered, pdata);
} else {
// Remove protocol filter for children, if children should be included. This functionality is enabled
// with the "-J" command line option. We save the filter so it can be reenabled when we are done with
// the current key:value pair.
wmem_map_t *_filter = NULL;
if ((filter_flags&PF_INCLUDE_CHILDREN) == PF_INCLUDE_CHILDREN) {
_filter = pdata->filter;
pdata->filter = NULL;
}
// has_children is TRUE if any of the nodes have children. So we're not 100% sure whether this
// particular node has children or not => use the 'dynamic' version of 'write_json_proto_node'
write_json_proto_node(node_values_list, suffix, write_json_proto_node_dynamic, pdata);
// Put protocol filter back
if ((filter_flags&PF_INCLUDE_CHILDREN) == PF_INCLUDE_CHILDREN) {
pdata->filter = _filter;
}
}
}
if (!has_value && !has_children && (pdata->print_text || (pdata->print_hex && is_pseudo_text_field))) {
write_json_proto_node(node_values_list, "", write_json_proto_node_no_value, pdata);
}
current_node = current_node->next;
}
json_dumper_end_object(pdata->dumper);
}
/**
* Writes a single node as a key:value pair. The value_writer param can be used to specify how the node's value should
* be written.
* @param node_values_head Linked list containing all nodes associated with the same json key in this object.
* @param suffix Suffix that should be added to the json key.
* @param value_writer A function which writes the actual values of the node json key.
* @param pdata json writing metadata
*/
static void
write_json_proto_node(GSList *node_values_head,
const char *suffix,
proto_node_value_writer value_writer,
write_json_data *pdata)
{
// Retrieve json key from first value.
proto_node *first_value = (proto_node *) node_values_head->data;
const char *json_key = proto_node_to_json_key(first_value);
gchar* json_key_suffix = ws_strdup_printf("%s%s", json_key, suffix);
json_dumper_set_member_name(pdata->dumper, json_key_suffix);
g_free(json_key_suffix);
write_json_proto_node_value_list(node_values_head, value_writer, pdata);
}
/**
* Writes a list of values of a single json key. If multiple values are passed they are wrapped in a json array.
* @param node_values_head Linked list containing all values that should be written.
* @param value_writer Function which writes the separate values.
* @param pdata json writing metadata
*/
static void
write_json_proto_node_value_list(GSList *node_values_head, proto_node_value_writer value_writer, write_json_data *pdata)
{
GSList *current_value = node_values_head;
// Write directly if only a single value is passed. Wrap in json array otherwise.
if (current_value->next == NULL) {
value_writer((proto_node *) current_value->data, pdata);
} else {
json_dumper_begin_array(pdata->dumper);
while (current_value != NULL) {
value_writer((proto_node *) current_value->data, pdata);
current_value = current_value->next;
}
json_dumper_end_array(pdata->dumper);
}
}
/**
* Writes the value for a node that's filtered from the output.
*/
static void
write_json_proto_node_filtered(proto_node *node, write_json_data *pdata)
{
const char *json_key = proto_node_to_json_key(node);
json_dumper_begin_object(pdata->dumper);
json_dumper_set_member_name(pdata->dumper, "filtered");
json_dumper_value_string(pdata->dumper, json_key);
json_dumper_end_object(pdata->dumper);
}
/**
* Writes the hex dump of a node. A json array is written containing the hex dump, position, length, bitmask and type of
* the node.
*/
static void
write_json_proto_node_hex_dump(proto_node *node, write_json_data *pdata)
{
field_info *fi = node->finfo;
json_dumper_begin_array(pdata->dumper);
if (fi->hfinfo->bitmask!=0) {
switch (fvalue_type_ftenum(&fi->value)) {
case FT_INT8:
case FT_INT16:
case FT_INT24:
case FT_INT32:
json_dumper_value_anyf(pdata->dumper, "\"%X\"", (guint) fvalue_get_sinteger(&fi->value));
break;
case FT_CHAR:
case FT_UINT8:
case FT_UINT16:
case FT_UINT24:
case FT_UINT32:
json_dumper_value_anyf(pdata->dumper, "\"%X\"", fvalue_get_uinteger(&fi->value));
break;
case FT_INT40:
case FT_INT48:
case FT_INT56:
case FT_INT64:
json_dumper_value_anyf(pdata->dumper, "\"%" PRIX64 "\"", fvalue_get_sinteger64(&fi->value));
break;
case FT_UINT40:
case FT_UINT48:
case FT_UINT56:
case FT_UINT64:
case FT_BOOLEAN:
json_dumper_value_anyf(pdata->dumper, "\"%" PRIX64 "\"", fvalue_get_uinteger64(&fi->value));
break;
default:
ws_assert_not_reached();
}
} else {
json_write_field_hex_value(pdata, fi);
}
/* Dump raw hex-encoded dissected information including position, length, bitmask, type */
json_dumper_value_anyf(pdata->dumper, "%" PRId32, fi->start);
json_dumper_value_anyf(pdata->dumper, "%" PRId32, fi->length);
json_dumper_value_anyf(pdata->dumper, "%" PRIu64, fi->hfinfo->bitmask);
json_dumper_value_anyf(pdata->dumper, "%" PRId32, (gint32)fvalue_type_ftenum(&fi->value));
json_dumper_end_array(pdata->dumper);
}
/**
* Writes the value of a node, which may be a simple node with no value and no children,
* or a node with children -- this will be determined dynamically
*/
static void
write_json_proto_node_dynamic(proto_node *node, write_json_data *data)
{
if (node->first_child == NULL) {
write_json_proto_node_no_value(node, data);
} else {
write_json_proto_node_children(node, data);
}
}
/**
* Writes the children of a node. Calls write_json_proto_node_list internally which recursively writes children of nodes
* to the output.
*/
static void
write_json_proto_node_children(proto_node *node, write_json_data *data)
{
GSList *grouped_children_list = data->node_children_grouper(node);
write_json_proto_node_list(grouped_children_list, data);
g_slist_free_full(grouped_children_list, (GDestroyNotify) g_slist_free);
}
/**
* Writes the value of a node to the output.
*/
static void
write_json_proto_node_value(proto_node *node, write_json_data *pdata)
{
field_info *fi = node->finfo;
// Get the actual value of the node as a string.
char *value_string_repr = fvalue_to_string_repr(NULL, &fi->value, FTREPR_DISPLAY, fi->hfinfo->display);
json_dumper_value_string(pdata->dumper, value_string_repr);
wmem_free(NULL, value_string_repr);
}
/**
* Write the value for a node that has no value and no children. This is the empty string for all nodes except those of
* type FT_PROTOCOL for which the full name is written instead.
*/
static void
write_json_proto_node_no_value(proto_node *node, write_json_data *pdata)
{
field_info *fi = node->finfo;
if (fi->hfinfo->type == FT_PROTOCOL) {
if (fi->rep) {
json_dumper_value_string(pdata->dumper, fi->rep->representation);
} else {
gchar label_str[ITEM_LABEL_LENGTH];
proto_item_fill_label(fi, label_str);
json_dumper_value_string(pdata->dumper, label_str);
}
} else {
json_dumper_value_string(pdata->dumper, "");
}
}
/**
* Groups each child of the node separately.
* @return Linked list where each element is another linked list containing a single node.
*/
GSList *
proto_node_group_children_by_unique(proto_node *node) {
GSList *unique_nodes_list = NULL;
proto_node *current_child = node->first_child;
while (current_child != NULL) {
GSList *unique_node = g_slist_prepend(NULL, current_child);
unique_nodes_list = g_slist_prepend(unique_nodes_list, unique_node);
current_child = current_child->next;
}
return g_slist_reverse(unique_nodes_list);
}
/**
* Groups the children of a node by their json key. Children are put in the same group if they have the same json key.
* @return Linked list where each element is another linked list of nodes associated with the same json key.
*/
GSList *
proto_node_group_children_by_json_key(proto_node *node)
{
/**
* For each different json key we store a linked list of values corresponding to that json key. These lists are kept
* in both a linked list and a hashmap. The hashmap is used to quickly retrieve the values of a json key. The linked
* list is used to preserve the ordering of keys as they are encountered which is not guaranteed when only using a
* hashmap.
*/
GSList *same_key_nodes_list = NULL;
GHashTable *lookup_by_json_key = g_hash_table_new(g_str_hash, g_str_equal);
proto_node *current_child = node->first_child;
/**
* For each child of the node get the key and get the list of values already associated with that key from the
* hashmap. If no list exist yet for that key create a new one and add it to both the linked list and hashmap. If a
* list already exists add the node to that list.
*/
while (current_child != NULL) {
char *json_key = (char *) proto_node_to_json_key(current_child);
GSList *json_key_nodes = (GSList *) g_hash_table_lookup(lookup_by_json_key, json_key);
if (json_key_nodes == NULL) {
json_key_nodes = g_slist_append(json_key_nodes, current_child);
// Prepending in single linked list is O(1), appending is O(n). Better to prepend here and reverse at the
// end than potentially looping to the end of the linked list for each child.
same_key_nodes_list = g_slist_prepend(same_key_nodes_list, json_key_nodes);
g_hash_table_insert(lookup_by_json_key, json_key, json_key_nodes);
} else {
// Store and insert value again to circumvent unused_variable warning.
// Append in this case since most value lists will only have a single value.
json_key_nodes = g_slist_append(json_key_nodes, current_child);
g_hash_table_insert(lookup_by_json_key, json_key, json_key_nodes);
}
current_child = current_child->next;
}
// Hash table is not needed anymore since the linked list with the correct ordering is returned.
g_hash_table_destroy(lookup_by_json_key);
return g_slist_reverse(same_key_nodes_list);
}
/**
* Returns the json key of a node. Tries to use the node's abbreviated name.
* If the abbreviated name is not available the representation is used instead.
*
* XXX: The representation can have spaces or differ depending on the content,
* which makes it difficult to match text-only fields with a -j/-J filter in tshark.
* (Issue #17125).
*/
static const char *
proto_node_to_json_key(proto_node *node)
{
const char *json_key;
// Check if node has abbreviated name.
if (node->finfo->hfinfo->id != hf_text_only) {
json_key = node->finfo->hfinfo->abbrev;
} else if (node->finfo->rep != NULL) {
json_key = node->finfo->rep->representation;
} else {
json_key = "";
}
return json_key;
}
static gboolean
ek_check_protocolfilter(wmem_map_t *protocolfilter, const char *str, pf_flags *filter_flags)
{
gchar *str_escaped = NULL;
gboolean check;
int i;
if (check_protocolfilter(protocolfilter, str, filter_flags))
return TRUE;
/* to to thread the '.' and '_' equally. The '.' is replace by print_escaped_ek for '_' */
if (str != NULL && strlen(str) > 0) {
str_escaped = g_strdup(str);
i = 0;
while (str_escaped[i] != '\0') {
if (str_escaped[i] == '.') {
str_escaped[i] = '_';
}
i++;
}
}
check = check_protocolfilter(protocolfilter, str_escaped, filter_flags);
g_free(str_escaped);
return check;
}
/**
* Finds a node's descendants to be printed as EK/JSON attributes.
*/
static void
write_ek_summary(column_info *cinfo, write_json_data* pdata)
{
gint i;
for (i = 0; i < cinfo->num_cols; i++) {
if (!get_column_visible(i))
continue;
json_dumper_set_member_name(pdata->dumper, g_ascii_strdown(cinfo->columns[i].col_title, -1));
json_dumper_value_string(pdata->dumper, get_column_text(cinfo, i));
}
}
/* Write out a tree's data, and any child nodes, as JSON for EK */
static void
ek_fill_attr(proto_node *node, GHashTable *attr_table, write_json_data *pdata)
{
field_info *fi = NULL;
GSList *attr_instances = NULL;
proto_node *current_node = node->first_child;
while (current_node != NULL) {
fi = PNODE_FINFO(current_node);
/* dissection with an invisible proto tree? */
ws_assert(fi);
attr_instances = (GSList *) g_hash_table_lookup(attr_table, fi->hfinfo->abbrev);
attr_instances = g_slist_append(attr_instances, current_node);
// Update instance list for this attr in hash table
g_hash_table_insert(attr_table, g_strdup(fi->hfinfo->abbrev), attr_instances);
/* Field, recurse through children*/
if (fi->hfinfo->type != FT_PROTOCOL && current_node->first_child != NULL) {
if (pdata->filter != NULL) {
pf_flags filter_flags = PF_NONE;
if (ek_check_protocolfilter(pdata->filter, fi->hfinfo->abbrev, &filter_flags)) {
wmem_map_t *_filter = NULL;
/* Remove protocol filter for children, if children should be included */
if ((filter_flags&PF_INCLUDE_CHILDREN) == PF_INCLUDE_CHILDREN) {
_filter = pdata->filter;
pdata->filter = NULL;
}
ek_fill_attr(current_node, attr_table, pdata);
/* Put protocol filter back */
if ((filter_flags&PF_INCLUDE_CHILDREN) == PF_INCLUDE_CHILDREN) {
pdata->filter = _filter;
}
} else {
// Don't traverse children if filtered out
}
} else {
ek_fill_attr(current_node, attr_table, pdata);
}
} else {
// Will descend into object at another point
}
current_node = current_node->next;
}
}
static void
ek_write_name(proto_node *pnode, gchar* suffix, write_json_data* pdata)
{
field_info *fi = PNODE_FINFO(pnode);
gchar *str;
if (fi->hfinfo->parent != -1) {
header_field_info* parent = proto_registrar_get_nth(fi->hfinfo->parent);
str = ws_strdup_printf("%s_%s%s", parent->abbrev, fi->hfinfo->abbrev, suffix ? suffix : "");
json_dumper_set_member_name(pdata->dumper, str);
} else {
str = ws_strdup_printf("%s%s", fi->hfinfo->abbrev, suffix ? suffix : "");
json_dumper_set_member_name(pdata->dumper, str);
}
g_free(str);
}
static void
ek_write_hex(field_info *fi, write_json_data *pdata)
{
if (fi->hfinfo->bitmask != 0) {
switch (fvalue_type_ftenum(&fi->value)) {
case FT_INT8:
case FT_INT16:
case FT_INT24:
case FT_INT32:
json_dumper_value_anyf(pdata->dumper, "\"%X\"", (guint) fvalue_get_sinteger(&fi->value));
break;
case FT_CHAR:
case FT_UINT8:
case FT_UINT16:
case FT_UINT24:
case FT_UINT32:
json_dumper_value_anyf(pdata->dumper, "\"%X\"", fvalue_get_uinteger(&fi->value));
break;
case FT_INT40:
case FT_INT48:
case FT_INT56:
case FT_INT64:
json_dumper_value_anyf(pdata->dumper, "\"%" PRIX64 "\"", fvalue_get_sinteger64(&fi->value));
break;
case FT_UINT40:
case FT_UINT48:
case FT_UINT56:
case FT_UINT64:
case FT_BOOLEAN:
json_dumper_value_anyf(pdata->dumper, "\"%" PRIX64 "\"", fvalue_get_uinteger64(&fi->value));
break;
default:
ws_assert_not_reached();
}
} else {
json_write_field_hex_value(pdata, fi);
}
}
static void
ek_write_field_value(field_info *fi, write_json_data* pdata)
{
gchar label_str[ITEM_LABEL_LENGTH];
char *dfilter_string;
const nstime_t *t;
struct tm *tm;
#ifndef _WIN32
struct tm tm_time;
#endif
char time_string[sizeof("YYYY-MM-DDTHH:MM:SS")];
/* Text label */
if (fi->hfinfo->id == hf_text_only && fi->rep) {
json_dumper_value_string(pdata->dumper, fi->rep->representation);
} else {
/* show, value, and unmaskedvalue attributes */
switch(fi->hfinfo->type) {
case FT_PROTOCOL:
if (fi->rep) {
json_dumper_value_string(pdata->dumper, fi->rep->representation);
}
else {
proto_item_fill_label(fi, label_str);
json_dumper_value_string(pdata->dumper, label_str);
}
break;
case FT_NONE:
json_dumper_value_string(pdata->dumper, NULL);
break;
case FT_BOOLEAN:
if (fi->value.value.uinteger64)
json_dumper_value_anyf(pdata->dumper, "true");
else
json_dumper_value_anyf(pdata->dumper, "false");
break;
case FT_ABSOLUTE_TIME:
t = fvalue_get_time(&fi->value);
#ifdef _WIN32
/*
* Do not use gmtime_s(), as it will call and
* exception handler if the time we're providing
* is < 0, and that will, by default, exit.
* ("Programmers not bothering to check return
* values? Try new Microsoft Visual Studio,
* with Parameter Validation(R)! Kill insufficiently
* careful programs - *and* the processes running them -
* fast!")
*
* We just want to report this as an unrepresentable
* time. It fills in a per-thread structure, which
* is sufficiently thread-safe for our purposes.
*/
tm = gmtime(&t->secs);
#else
/*
* Use gmtime_r(), because the Single UNIX Specification
* does *not* guarantee that gmtime() is thread-safe.
* Perhaps it is on all platforms on which we run, but
* this way we don't have to check.
*/
tm = gmtime_r(&t->secs, &tm_time);
#endif
if (tm != NULL) {
/* Some platforms (MinGW-w64) do not support %F or %T. */
strftime(time_string, sizeof(time_string), "%Y-%m-%dT%H:%M:%S", tm);
json_dumper_value_anyf(pdata->dumper, "\"%s.%09uZ\"", time_string, t->nsecs);
} else {
json_dumper_value_anyf(pdata->dumper, "\"Not representable\"");
}
break;
default:
dfilter_string = fvalue_to_string_repr(NULL, &fi->value, FTREPR_DISPLAY, fi->hfinfo->display);
if (dfilter_string != NULL) {
json_dumper_value_string(pdata->dumper, dfilter_string);
}
wmem_free(NULL, dfilter_string);
break;
}
}
}
static void
ek_write_attr_hex(GSList *attr_instances, write_json_data *pdata)
{
GSList *current_node = attr_instances;
proto_node *pnode = (proto_node *) current_node->data;
field_info *fi = NULL;
// Raw name
ek_write_name(pnode, "_raw", pdata);
if (g_slist_length(attr_instances) > 1) {
json_dumper_begin_array(pdata->dumper);
}
// Raw value(s)
while (current_node != NULL) {
pnode = (proto_node *) current_node->data;
fi = PNODE_FINFO(pnode);
ek_write_hex(fi, pdata);
current_node = current_node->next;
}
if (g_slist_length(attr_instances) > 1) {
json_dumper_end_array(pdata->dumper);
}
}
static void
ek_write_attr(GSList *attr_instances, write_json_data *pdata)
{
GSList *current_node = attr_instances;
proto_node *pnode = (proto_node *) current_node->data;
field_info *fi = PNODE_FINFO(pnode);
pf_flags filter_flags = PF_NONE;
// Hex dump -x
if (pdata->print_hex && fi && fi->length > 0 && fi->hfinfo->id != hf_text_only) {
ek_write_attr_hex(attr_instances, pdata);
}
// Print attr name
ek_write_name(pnode, NULL, pdata);
if (g_slist_length(attr_instances) > 1) {
json_dumper_begin_array(pdata->dumper);
}
while (current_node != NULL) {
pnode = (proto_node *) current_node->data;
fi = PNODE_FINFO(pnode);
/* Field */
if (fi->hfinfo->type != FT_PROTOCOL) {
if (pdata->filter != NULL
&& !ek_check_protocolfilter(pdata->filter, fi->hfinfo->abbrev, &filter_flags)) {
/* print dummy field */
json_dumper_begin_object(pdata->dumper);
json_dumper_set_member_name(pdata->dumper, "filtered");
json_dumper_value_string(pdata->dumper, fi->hfinfo->abbrev);
json_dumper_end_object(pdata->dumper);
} else {
ek_write_field_value(fi, pdata);
}
} else {
/* Object */
json_dumper_begin_object(pdata->dumper);
if (pdata->filter != NULL) {
if (ek_check_protocolfilter(pdata->filter, fi->hfinfo->abbrev, &filter_flags)) {
wmem_map_t *_filter = NULL;
/* Remove protocol filter for children, if children should be included */
if ((filter_flags&PF_INCLUDE_CHILDREN) == PF_INCLUDE_CHILDREN) {
_filter = pdata->filter;
pdata->filter = NULL;
}
proto_tree_write_node_ek(pnode, pdata);
/* Put protocol filter back */
if ((filter_flags&PF_INCLUDE_CHILDREN) == PF_INCLUDE_CHILDREN) {
pdata->filter = _filter;
}
} else {
/* print dummy field */
json_dumper_set_member_name(pdata->dumper, "filtered");
json_dumper_value_string(pdata->dumper, fi->hfinfo->abbrev);
}
} else {
proto_tree_write_node_ek(pnode, pdata);
}
json_dumper_end_object(pdata->dumper);
}
current_node = current_node->next;
}
if (g_slist_length(attr_instances) > 1) {
json_dumper_end_array(pdata->dumper);
}
}
void process_ek_attrs(gpointer key _U_, gpointer value, gpointer pdata)
{
GSList *attr_instances = (GSList *) value;
ek_write_attr(attr_instances, pdata);
}
/* Write out a tree's data, and any child nodes, as JSON for EK */
static void
proto_tree_write_node_ek(proto_node *node, write_json_data *pdata)
{
GHashTable *attr_table = g_hash_table_new_full(g_str_hash, g_str_equal, g_free, NULL);
ek_fill_attr(node, attr_table, pdata);
// Print attributes
g_hash_table_foreach(attr_table, process_ek_attrs, pdata);
g_hash_table_destroy(attr_table);
}
/* Print info for a 'geninfo' pseudo-protocol. This is required by
* the PDML spec. The information is contained in Wireshark's 'frame' protocol,
* but we produce a 'geninfo' protocol in the PDML to conform to spec.
* The 'frame' protocol follows the 'geninfo' protocol in the PDML. */
static void
print_pdml_geninfo(epan_dissect_t *edt, FILE *fh)
{
guint32 num, len, caplen;
GPtrArray *finfo_array;
field_info *frame_finfo;
gchar *tmp;
/* Get frame protocol's finfo. */
finfo_array = proto_find_first_finfo(edt->tree, proto_frame);
if (g_ptr_array_len(finfo_array) < 1) {
return;
}
frame_finfo = (field_info *)finfo_array->pdata[0];
g_ptr_array_free(finfo_array, TRUE);
/* frame.number, packet_info.num */
num = edt->pi.num;
/* frame.frame_len, packet_info.frame_data->pkt_len */
len = edt->pi.fd->pkt_len;
/* frame.cap_len --> packet_info.frame_data->cap_len */
caplen = edt->pi.fd->cap_len;
/* Print geninfo start */
fprintf(fh,
" <proto name=\"geninfo\" pos=\"0\" showname=\"General information\" size=\"%d\">\n",
frame_finfo->length);
/* Print geninfo.num */
fprintf(fh,
" <field name=\"num\" pos=\"0\" show=\"%u\" showname=\"Number\" value=\"%x\" size=\"%d\"/>\n",
num, num, frame_finfo->length);
/* Print geninfo.len */
fprintf(fh,
" <field name=\"len\" pos=\"0\" show=\"%u\" showname=\"Frame Length\" value=\"%x\" size=\"%d\"/>\n",
len, len, frame_finfo->length);
/* Print geninfo.caplen */
fprintf(fh,
" <field name=\"caplen\" pos=\"0\" show=\"%u\" showname=\"Captured Length\" value=\"%x\" size=\"%d\"/>\n",
caplen, caplen, frame_finfo->length);
tmp = abs_time_to_str(NULL, &edt->pi.abs_ts, ABSOLUTE_TIME_LOCAL, TRUE);
/* Print geninfo.timestamp */
fprintf(fh,
" <field name=\"timestamp\" pos=\"0\" show=\"%s\" showname=\"Captured Time\" value=\"%d.%09d\" size=\"%d\"/>\n",
tmp, (int)edt->pi.abs_ts.secs, edt->pi.abs_ts.nsecs, frame_finfo->length);
wmem_free(NULL, tmp);
/* Print geninfo end */
fprintf(fh,
" </proto>\n");
}
void
write_pdml_finale(FILE *fh)
{
fputs("</pdml>\n", fh);
}
void
write_psml_preamble(column_info *cinfo, FILE *fh)
{
gint i;
fprintf(fh, "<?xml version=\"1.0\" encoding=\"utf-8\"?>\n");
fprintf(fh, "<psml version=\"" PSML_VERSION "\" creator=\"%s/%s\">\n", PACKAGE, VERSION);
fprintf(fh, "<structure>\n");
for (i = 0; i < cinfo->num_cols; i++) {
if (!get_column_visible(i))
continue;
fprintf(fh, "<section>");
print_escaped_xml(fh, cinfo->columns[i].col_title);
fprintf(fh, "</section>\n");
}
fprintf(fh, "</structure>\n\n");
}
void
write_psml_columns(epan_dissect_t *edt, FILE *fh, gboolean use_color)
{
gint i;
const color_filter_t *cfp = edt->pi.fd->color_filter;
if (use_color && (cfp != NULL)) {
fprintf(fh, "<packet foreground='#%06x' background='#%06x'>\n",
color_t_to_rgb(&cfp->fg_color),
color_t_to_rgb(&cfp->bg_color));
} else {
fprintf(fh, "<packet>\n");
}
for (i = 0; i < edt->pi.cinfo->num_cols; i++) {
if (!get_column_visible(i))
continue;
fprintf(fh, "<section>");
print_escaped_xml(fh, get_column_text(edt->pi.cinfo, i));
fprintf(fh, "</section>\n");
}
fprintf(fh, "</packet>\n\n");
}
void
write_psml_finale(FILE *fh)
{
fputs("</psml>\n", fh);
}
static gchar *csv_massage_str(const gchar *source, const gchar *exceptions)
{
gchar *csv_str;
gchar *tmp_str;
/* In general, our output for any field can contain Unicode characters,
so g_strescape (which escapes any non-ASCII) is the wrong thing to do.
Unfortunately glib doesn't appear to provide g_unicode_strescape()... */
csv_str = g_strescape(source, exceptions);
tmp_str = csv_str;
/* Locate the UTF-8 right arrow character and replace it by an ASCII equivalent */
while ( (tmp_str = strstr(tmp_str, UTF8_RIGHTWARDS_ARROW)) != NULL ) {
tmp_str[0] = ' ';
tmp_str[1] = '>';
tmp_str[2] = ' ';
}
tmp_str = csv_str;
while ( (tmp_str = strstr(tmp_str, "\\\"")) != NULL )
*tmp_str = '\"';
return csv_str;
}
static void csv_write_str(const char *str, char sep, FILE *fh)
{
gchar *csv_str;
/* Do not escape the UTF-8 right arrow character */
csv_str = csv_massage_str(str, UTF8_RIGHTWARDS_ARROW);
fprintf(fh, "\"%s\"%c", csv_str, sep);
g_free(csv_str);
}
void
write_csv_column_titles(column_info *cinfo, FILE *fh)
{
gint i;
for (i = 0; i < cinfo->num_cols - 1; i++) {
if (!get_column_visible(i))
continue;
csv_write_str(cinfo->columns[i].col_title, ',', fh);
}
csv_write_str(cinfo->columns[i].col_title, '\n', fh);
}
void
write_csv_columns(epan_dissect_t *edt, FILE *fh)
{
gint i;
for (i = 0; i < edt->pi.cinfo->num_cols - 1; i++) {
if (!get_column_visible(i))
continue;
csv_write_str(get_column_text(edt->pi.cinfo, i), ',', fh);
}
csv_write_str(get_column_text(edt->pi.cinfo,i), '\n', fh);
}
void
write_carrays_hex_data(guint32 num, FILE *fh, epan_dissect_t *edt)
{
guint32 i = 0, src_num = 0;
GSList *src_le;
tvbuff_t *tvb;
char *name;
const guchar *cp;
guint length;
char ascii[9];
struct data_source *src;
for (src_le = edt->pi.data_src; src_le != NULL; src_le = src_le->next) {
memset(ascii, 0, sizeof(ascii));
src = (struct data_source *)src_le->data;
tvb = get_data_source_tvb(src);
length = tvb_captured_length(tvb);
if (length == 0)
continue;
cp = tvb_get_ptr(tvb, 0, length);
name = get_data_source_name(src);
if (name) {
fprintf(fh, "/* %s */\n", name);
wmem_free(NULL, name);
}
if (src_num) {
fprintf(fh, "static const unsigned char pkt%u_%u[%u] = {\n",
num, src_num, length);
} else {
fprintf(fh, "static const unsigned char pkt%u[%u] = {\n",
num, length);
}
src_num++;
for (i = 0; i < length; i++) {
fprintf(fh, "0x%02x", *(cp + i));
ascii[i % 8] = g_ascii_isprint(*(cp + i)) ? *(cp + i) : '.';
if (i == (length - 1)) {
guint rem;
rem = length % 8;
if (rem) {
guint j;
for ( j = 0; j < 8 - rem; j++ )
fprintf(fh, " ");
}
fprintf(fh, " /* %s */\n};\n\n", ascii);
break;
}
if (!((i + 1) % 8)) {
fprintf(fh, ", /* %s */\n", ascii);
memset(ascii, 0, sizeof(ascii));
} else {
fprintf(fh, ", ");
}
}
}
}
/*
* Find the data source for a specified field, and return a pointer
* to the data in it. Returns NULL if the data is out of bounds.
*/
/* XXX: What am I missing ?
* Why bother searching for fi->ds_tvb for the matching tvb
* in the data_source list ?
* IOW: Why not just use fi->ds_tvb for the arg to tvb_get_ptr() ?
*/
static const guint8 *
get_field_data(GSList *src_list, field_info *fi)
{
GSList *src_le;
tvbuff_t *src_tvb;
gint length, tvbuff_length;
struct data_source *src;
for (src_le = src_list; src_le != NULL; src_le = src_le->next) {
src = (struct data_source *)src_le->data;
src_tvb = get_data_source_tvb(src);
if (fi->ds_tvb == src_tvb) {
/*
* Found it.
*
* XXX - a field can have a length that runs past
* the end of the tvbuff. Ideally, that should
* be fixed when adding an item to the protocol
* tree, but checking the length when doing
* that could be expensive. Until we fix that,
* we'll do the check here.
*/
tvbuff_length = tvb_captured_length_remaining(src_tvb,
fi->start);
if (tvbuff_length < 0) {
return NULL;
}
length = fi->length;
if (length > tvbuff_length)
length = tvbuff_length;
return tvb_get_ptr(src_tvb, fi->start, length);
}
}
return NULL; /* not found */
}
/* Print a string, escaping out certain characters that need to
* escaped out for XML. */
static void
print_escaped_xml(FILE *fh, const char *unescaped_string)
{
const char *p;
#define ESCAPED_BUFFER_SIZE 256
#define ESCAPED_BUFFER_LIMIT (ESCAPED_BUFFER_SIZE - (int)sizeof("&quot;"))
static char temp_buffer[ESCAPED_BUFFER_SIZE];
gint offset = 0;
if (fh == NULL || unescaped_string == NULL) {
return;
}
/* XXX: Why not use xml_escape() from epan/strutil.h ? */
for (p = unescaped_string; *p != '\0' && (offset <= ESCAPED_BUFFER_LIMIT); p++) {
switch (*p) {
case '&':
(void) g_strlcpy(&temp_buffer[offset], "&amp;", ESCAPED_BUFFER_SIZE-offset);
offset += 5;
break;
case '<':
(void) g_strlcpy(&temp_buffer[offset], "&lt;", ESCAPED_BUFFER_SIZE-offset);
offset += 4;
break;
case '>':
(void) g_strlcpy(&temp_buffer[offset], "&gt;", ESCAPED_BUFFER_SIZE-offset);
offset += 4;
break;
case '"':
(void) g_strlcpy(&temp_buffer[offset], "&quot;", ESCAPED_BUFFER_SIZE-offset);
offset += 6;
break;
case '\'':
(void) g_strlcpy(&temp_buffer[offset], "&#x27;", ESCAPED_BUFFER_SIZE-offset);
offset += 6;
break;
case '\t':
case '\n':
case '\r':
temp_buffer[offset++] = *p;
break;
default:
/* XML 1.0 doesn't allow ASCII control characters, except
* for the three whitespace ones above (which do *not*
* include '\v' and '\f', so not the same group as isspace),
* even as character references.
* There's no official way to escape them, so we'll do this. */
if (g_ascii_iscntrl(*p)) {
offset += snprintf(&temp_buffer[offset], ESCAPED_BUFFER_SIZE-offset, "\\x%x", (guint8)*p);
} else {
temp_buffer[offset++] = *p;
}
}
if (offset > ESCAPED_BUFFER_LIMIT) {
/* Getting close to end of buffer so flush to fh */
temp_buffer[offset] = '\0';
fputs(temp_buffer, fh);
offset = 0;
}
}
if (offset) {
/* Flush any outstanding data */
temp_buffer[offset] = '\0';
fputs(temp_buffer, fh);
}
}
static void
print_escaped_csv(FILE *fh, const char *unescaped_string)
{
const char *p;
if (fh == NULL || unescaped_string == NULL) {
return;
}
for (p = unescaped_string; *p != '\0'; p++) {
switch (*p) {
case '\b':
fputs("\\b", fh);
break;
case '\f':
fputs("\\f", fh);
break;
case '\n':
fputs("\\n", fh);
break;
case '\r':
fputs("\\r", fh);
break;
case '\t':
fputs("\\t", fh);
break;
default:
fputc(*p, fh);
}
}
}
static void
pdml_write_field_hex_value(write_pdml_data *pdata, field_info *fi)
{
int i;
const guint8 *pd;
if (!fi->ds_tvb)
return;
if (fi->length > tvb_captured_length_remaining(fi->ds_tvb, fi->start)) {
fprintf(pdata->fh, "field length invalid!");
return;
}
/* Find the data for this field. */
pd = get_field_data(pdata->src_list, fi);
if (pd) {
/* Used fixed buffer where can, otherwise temp malloc */
static gchar str_static[129];
gchar *str = str_static;
gchar* str_heap = NULL;
if (fi->length > 64) {
str_heap = (gchar*)g_malloc0(fi->length*2+1);
str = str_heap;
}
static const char hex[] = "0123456789abcdef";
/* Print a simple hex dump */
for (i = 0 ; i < fi->length; i++) {
str[2*i] = hex[pd[i] >> 4];
str[2*i+1] = hex[pd[i] & 0xf];
}
str[2 * fi->length] = '\0';
fputs(str, pdata->fh);
g_free(str_heap);
}
}
static void
json_write_field_hex_value(write_json_data *pdata, field_info *fi)
{
const guint8 *pd;
if (!fi->ds_tvb)
return;
if (fi->length > tvb_captured_length_remaining(fi->ds_tvb, fi->start)) {
json_dumper_value_string(pdata->dumper, "field length invalid!");
return;
}
/* Find the data for this field. */
pd = get_field_data(pdata->src_list, fi);
if (pd) {
gint i;
guint len = fi->length * 2 + 1;
gchar* str = (gchar*)g_malloc0(len);
static const char hex[] = "0123456789abcdef";
/* Print a simple hex dump */
for (i = 0; i < fi->length; i++) {
guint8 c = pd[i];
str[2 * i] = hex[c >> 4];
str[2 * i + 1] = hex[c & 0xf];
}
str[2 * fi->length] = '\0';
json_dumper_value_string(pdata->dumper, str);
g_free(str);
} else {
json_dumper_value_string(pdata->dumper, "");
}
}
gboolean
print_hex_data(print_stream_t *stream, epan_dissect_t *edt, guint hexdump_options)
{
gboolean multiple_sources;
GSList *src_le;
tvbuff_t *tvb;
char *line, *name;
const guchar *cp;
guint length;
struct data_source *src;
/*
* Set "multiple_sources" iff this frame has more than one
* data source; if it does, we need to print the name of
* the data source before printing the data from the
* data source.
*/
multiple_sources = (edt->pi.data_src->next != NULL);
for (src_le = edt->pi.data_src; src_le != NULL;
src_le = src_le->next) {
src = (struct data_source *)src_le->data;
tvb = get_data_source_tvb(src);
if (multiple_sources && (HEXDUMP_SOURCE_OPTION(hexdump_options) == HEXDUMP_SOURCE_MULTI)) {
name = get_data_source_name(src);
line = ws_strdup_printf("%s:", name);
wmem_free(NULL, name);
print_line(stream, 0, line);
g_free(line);
}
length = tvb_captured_length(tvb);
if (length == 0)
return TRUE;
cp = tvb_get_ptr(tvb, 0, length);
if (!print_hex_data_buffer(stream, cp, length,
(packet_char_enc)edt->pi.fd->encoding,
HEXDUMP_ASCII_OPTION(hexdump_options)))
return FALSE;
if (HEXDUMP_SOURCE_OPTION(hexdump_options) == HEXDUMP_SOURCE_PRIMARY) {
return TRUE;
}
}
return TRUE;
}
static gboolean print_hex_data_line(void *stream, const char *line)
{
return print_line(stream, 0, line);
}
static gboolean print_hex_data_buffer(print_stream_t *stream, const guchar *cp,
guint length, packet_char_enc encoding,
guint hexdump_options)
{
return hex_dump_buffer(print_hex_data_line, stream, cp, length,
encoding == PACKET_CHAR_ENC_CHAR_EBCDIC ? HEXDUMP_ENC_EBCDIC : HEXDUMP_ENC_ASCII,
hexdump_options);
}
gsize output_fields_num_fields(output_fields_t* fields)
{
ws_assert(fields);
if (NULL == fields->fields) {
return 0;
} else {
return fields->fields->len;
}
}
void output_fields_free(output_fields_t* fields)
{
ws_assert(fields);
if (NULL != fields->fields) {
gsize i;
if (NULL != fields->field_indicies) {
/* Keys are stored in fields->fields, values are
* integers.
*/
g_hash_table_destroy(fields->field_indicies);
}
if (NULL != fields->field_values) {
g_free(fields->field_values);
}
for (i = 0; i < fields->fields->len; ++i) {
gchar* field = (gchar *)g_ptr_array_index(fields->fields,i);
g_free(field);
}
g_ptr_array_free(fields->fields, TRUE);
}
g_free(fields);
}
#define COLUMN_FIELD_FILTER "_ws.col."
void output_fields_add(output_fields_t *fields, const gchar *field)
{
gchar *field_copy;
ws_assert(fields);
ws_assert(field);
if (NULL == fields->fields) {
fields->fields = g_ptr_array_new();
}
field_copy = g_strdup(field);
g_ptr_array_add(fields->fields, field_copy);
/* See if we have a column as a field entry */
if (!strncmp(field, COLUMN_FIELD_FILTER, strlen(COLUMN_FIELD_FILTER)))
fields->includes_col_fields = TRUE;
}
static void
output_field_check(void *data, void *user_data)
{
gchar *field = (gchar *)data;
GSList **invalid_fields = (GSList **)user_data;
if (!strncmp(field, COLUMN_FIELD_FILTER, strlen(COLUMN_FIELD_FILTER)))
return;
if (!proto_registrar_get_byname(field)) {
*invalid_fields = g_slist_prepend(*invalid_fields, field);
}
}
GSList *
output_fields_valid(output_fields_t *fields)
{
GSList *invalid_fields = NULL;
if (fields->fields == NULL) {
return NULL;
}
g_ptr_array_foreach(fields->fields, output_field_check, &invalid_fields);
return invalid_fields;
}
gboolean output_fields_set_option(output_fields_t *info, gchar *option)
{
const gchar *option_name;
const gchar *option_value;
ws_assert(info);
ws_assert(option);
if ('\0' == *option) {
return FALSE; /* this happens if we're called from tshark -E '' */
}
option_name = strtok(option, "=");
if (!option_name) {
return FALSE;
}
option_value = option + strlen(option_name) + 1;
if (*option_value == '\0') {
return FALSE;
}
if (0 == strcmp(option_name, "header")) {
switch (*option_value) {
case 'n':
info->print_header = FALSE;
break;
case 'y':
info->print_header = TRUE;
break;
default:
return FALSE;
}
return TRUE;
}
else if (0 == strcmp(option_name, "separator")) {
switch (*option_value) {
case '/':
switch (*++option_value) {
case 't':
info->separator = '\t';
break;
case 's':
info->separator = ' ';
break;
default:
info->separator = '\\';
}
break;
default:
info->separator = *option_value;
break;
}
return TRUE;
}
else if (0 == strcmp(option_name, "occurrence")) {
switch (*option_value) {
case 'f':
case 'l':
case 'a':
info->occurrence = *option_value;
break;
default:
return FALSE;
}
return TRUE;
}
else if (0 == strcmp(option_name, "aggregator")) {
switch (*option_value) {
case '/':
switch (*++option_value) {
case 's':
info->aggregator = ' ';
break;
default:
info->aggregator = '\\';
}
break;
default:
info->aggregator = *option_value;
break;
}
return TRUE;
}
else if (0 == strcmp(option_name, "quote")) {
switch (*option_value) {
case 'd':
info->quote = '"';
break;
case 's':
info->quote = '\'';
break;
case 'n':
info->quote = '\0';
break;
default:
info->quote = '\0';
return FALSE;
}
return TRUE;
}
else if (0 == strcmp(option_name, "bom")) {
switch (*option_value) {
case 'n':
info->print_bom = FALSE;
break;
case 'y':
info->print_bom = TRUE;
break;
default:
return FALSE;
}
return TRUE;
}
return FALSE;
}
void output_fields_list_options(FILE *fh)
{
fprintf(fh, "TShark: The available options for field output \"E\" are:\n");
fputs("bom=y|n Prepend output with the UTF-8 BOM (def: N: no)\n", fh);
fputs("header=y|n Print field abbreviations as first line of output (def: N: no)\n", fh);
fputs("separator=/t|/s|<character> Set the separator to use;\n \"/t\" = tab, \"/s\" = space (def: /t: tab)\n", fh);
fputs("occurrence=f|l|a Select the occurrence of a field to use;\n \"f\" = first, \"l\" = last, \"a\" = all (def: a: all)\n", fh);
fputs("aggregator=,|/s|<character> Set the aggregator to use;\n \",\" = comma, \"/s\" = space (def: ,: comma)\n", fh);
fputs("quote=d|s|n Print either d: double-quotes, s: single quotes or \n n: no quotes around field values (def: n: none)\n", fh);
}
gboolean output_fields_has_cols(output_fields_t* fields)
{
ws_assert(fields);
return fields->includes_col_fields;
}
void write_fields_preamble(output_fields_t* fields, FILE *fh)
{
gsize i;
ws_assert(fields);
ws_assert(fh);
ws_assert(fields->fields);
if (fields->print_bom) {
fputs(UTF8_BOM, fh);
}
if (!fields->print_header) {
return;
}
for(i = 0; i < fields->fields->len; ++i) {
const gchar* field = (const gchar *)g_ptr_array_index(fields->fields,i);
if (i != 0 ) {
fputc(fields->separator, fh);
}
fputs(field, fh);
}
fputc('\n', fh);
}
static void format_field_values(output_fields_t* fields, gpointer field_index, gchar* value)
{
guint indx;
GPtrArray* fv_p;
if (NULL == value)
return;
/* Unwrap change made to disambiguiate zero / null */
indx = GPOINTER_TO_UINT(field_index) - 1;
if (fields->field_values[indx] == NULL) {
fields->field_values[indx] = g_ptr_array_new();
}
/* Essentially: fieldvalues[indx] is a 'GPtrArray *' with each array entry */
/* pointing to a string which is (part of) the final output string. */
fv_p = fields->field_values[indx];
switch (fields->occurrence) {
case 'f':
/* print the value of only the first occurrence of the field */
if (g_ptr_array_len(fv_p) != 0) {
/*
* This isn't the first occurrence, so the value won't be used;
* free it.
*/
g_free(value);
return;
}
break;
case 'l':
/* print the value of only the last occurrence of the field */
if (g_ptr_array_len(fv_p) != 0) {
/*
* This isn't the first occurrence, so there's already a
* value in the array, which won't be used; free the
* first (only) element in the array, and then remove
* it - this value will replace it.
*/
g_free(g_ptr_array_index(fv_p, 0));
g_ptr_array_set_size(fv_p, 0);
}
break;
case 'a':
/* print the value of all accurrences of the field */
if (g_ptr_array_len(fv_p) != 0) {
/*
* This isn't the first occurrence. so add the "aggregator"
* character as a separator between the previous element
* and this element.
*/
g_ptr_array_add(fv_p, (gpointer)ws_strdup_printf("%c", fields->aggregator));
}
break;
default:
ws_assert_not_reached();
break;
}
g_ptr_array_add(fv_p, (gpointer)value);
}
static void proto_tree_get_node_field_values(proto_node *node, gpointer data)
{
write_field_data_t *call_data;
field_info *fi;
gpointer field_index;
call_data = (write_field_data_t *)data;
fi = PNODE_FINFO(node);
/* dissection with an invisible proto tree? */
ws_assert(fi);
field_index = g_hash_table_lookup(call_data->fields->field_indicies, fi->hfinfo->abbrev);
if (NULL != field_index) {
format_field_values(call_data->fields, field_index,
get_node_field_value(fi, call_data->edt) /* g_ alloc'd string */
);
}
/* Recurse here. */
if (node->first_child != NULL) {
proto_tree_children_foreach(node, proto_tree_get_node_field_values,
call_data);
}
}
static void write_specified_fields(fields_format format, output_fields_t *fields, epan_dissect_t *edt, column_info *cinfo, FILE *fh, json_dumper *dumper)
{
gsize i;
gint col;
gchar *col_name;
gpointer field_index;
write_field_data_t data;
ws_assert(fields);
ws_assert(fields->fields);
ws_assert(edt);
/* JSON formats must go through json_dumper */
if (format == FORMAT_JSON || format == FORMAT_EK) {
ws_assert(!fh && dumper);
} else {
ws_assert(fh && !dumper);
}
data.fields = fields;
data.edt = edt;
if (NULL == fields->field_indicies) {
/* Prepare a lookup table from string abbreviation for field to its index. */
fields->field_indicies = g_hash_table_new(g_str_hash, g_str_equal);
i = 0;
while (i < fields->fields->len) {
gchar *field = (gchar *)g_ptr_array_index(fields->fields, i);
/* Store field indicies +1 so that zero is not a valid value,
* and can be distinguished from NULL as a pointer.
*/
++i;
g_hash_table_insert(fields->field_indicies, field, GUINT_TO_POINTER(i));
}
}
/* Array buffer to store values for this packet */
/* Allocate an array for the 'GPtrarray *' the first time */
/* ths function is invoked for a file; */
/* Any and all 'GPtrArray *' are freed (after use) each */
/* time (each packet) this function is invoked for a flle. */
/* XXX: ToDo: use packet-scope'd memory & (if/when implemented) wmem ptr_array */
if (NULL == fields->field_values)
fields->field_values = g_new0(GPtrArray*, fields->fields->len); /* free'd in output_fields_free() */
proto_tree_children_foreach(edt->tree, proto_tree_get_node_field_values,
&data);
/* Add columns to fields */
if (fields->includes_col_fields) {
for (col = 0; col < cinfo->num_cols; col++) {
if (!get_column_visible(col))
continue;
/* Prepend COLUMN_FIELD_FILTER as the field name */
col_name = ws_strdup_printf("%s%s", COLUMN_FIELD_FILTER, cinfo->columns[col].col_title);
field_index = g_hash_table_lookup(fields->field_indicies, col_name);
g_free(col_name);
if (NULL != field_index) {
format_field_values(fields, field_index, g_strdup(get_column_text(cinfo, col)));
}
}
}
switch (format) {
case FORMAT_CSV:
for(i = 0; i < fields->fields->len; ++i) {
if (0 != i) {
fputc(fields->separator, fh);
}
if (NULL != fields->field_values[i]) {
GPtrArray *fv_p;
gchar * str;
gsize j;
fv_p = fields->field_values[i];
if (fields->quote != '\0') {
fputc(fields->quote, fh);
}
/* Output the array of (partial) field values */
for (j = 0; j < g_ptr_array_len(fv_p); j++ ) {
str = (gchar *)g_ptr_array_index(fv_p, j);
print_escaped_csv(fh, str);
g_free(str);
}
if (fields->quote != '\0') {
fputc(fields->quote, fh);
}
g_ptr_array_free(fv_p, TRUE); /* get ready for the next packet */
fields->field_values[i] = NULL;
}
}
break;
case FORMAT_XML:
for(i = 0; i < fields->fields->len; ++i) {
gchar *field = (gchar *)g_ptr_array_index(fields->fields, i);
if (NULL != fields->field_values[i]) {
GPtrArray *fv_p;
gchar * str;
gsize j;
fv_p = fields->field_values[i];
/* Output the array of (partial) field values */
for (j = 0; j < (g_ptr_array_len(fv_p)); j+=2 ) {
str = (gchar *)g_ptr_array_index(fv_p, j);
fprintf(fh, " <field name=\"%s\" value=", field);
fputs("\"", fh);
print_escaped_xml(fh, str);
fputs("\"/>\n", fh);
g_free(str);
}
g_ptr_array_free(fv_p, TRUE); /* get ready for the next packet */
fields->field_values[i] = NULL;
}
}
break;
case FORMAT_JSON:
json_dumper_begin_object(dumper);
for(i = 0; i < fields->fields->len; ++i) {
gchar *field = (gchar *)g_ptr_array_index(fields->fields, i);
if (NULL != fields->field_values[i]) {
GPtrArray *fv_p;
gchar * str;
gsize j;
fv_p = fields->field_values[i];
json_dumper_set_member_name(dumper, field);
json_dumper_begin_array(dumper);
/* Output the array of (partial) field values */
for (j = 0; j < (g_ptr_array_len(fv_p)); j += 2) {
str = (gchar *) g_ptr_array_index(fv_p, j);
json_dumper_value_string(dumper, str);
g_free(str);
}
json_dumper_end_array(dumper);
g_ptr_array_free(fv_p, TRUE); /* get ready for the next packet */
fields->field_values[i] = NULL;
}
}
json_dumper_end_object(dumper);
break;
case FORMAT_EK:
for(i = 0; i < fields->fields->len; ++i) {
gchar *field = (gchar *)g_ptr_array_index(fields->fields, i);
if (NULL != fields->field_values[i]) {
GPtrArray *fv_p;
gchar * str;
gsize j;
fv_p = fields->field_values[i];
json_dumper_set_member_name(dumper, field);
json_dumper_begin_array(dumper);
/* Output the array of (partial) field values */
for (j = 0; j < (g_ptr_array_len(fv_p)); j += 2) {
str = (gchar *)g_ptr_array_index(fv_p, j);
json_dumper_value_string(dumper, str);
g_free(str);
}
json_dumper_end_array(dumper);
g_ptr_array_free(fv_p, TRUE); /* get ready for the next packet */
fields->field_values[i] = NULL;
}
}
break;
default:
fprintf(stderr, "Unknown fields format %d\n", format);
ws_assert_not_reached();
break;
}
}
void write_fields_finale(output_fields_t* fields _U_ , FILE *fh _U_)
{
/* Nothing to do */
}
/* Returns an g_malloced string */
gchar* get_node_field_value(field_info* fi, epan_dissect_t* edt)
{
if (fi->hfinfo->id == hf_text_only) {
/* Text label.
* Get the text */
if (fi->rep) {
return g_strdup(fi->rep->representation);
}
else {
return get_field_hex_value(edt->pi.data_src, fi);
}
}
else if (fi->hfinfo->id == proto_data) {
/* Uninterpreted data, i.e., the "Data" protocol, is
* printed as a field instead of a protocol. */
return get_field_hex_value(edt->pi.data_src, fi);
}
else {
/* Normal protocols and fields */
gchar *dfilter_string;
switch (fi->hfinfo->type)
{
case FT_PROTOCOL:
/* Print out the full details for the protocol. */
if (fi->rep) {
return g_strdup(fi->rep->representation);
} else {
/* Just print out the protocol abbreviation */
return g_strdup(fi->hfinfo->abbrev);
}
case FT_NONE:
/* Return "1" so that the presence of a field of type
* FT_NONE can be checked when using -T fields */
return g_strdup("1");
case FT_UINT_BYTES:
case FT_BYTES:
{
gchar *ret;
const guint8 *bytes = fvalue_get_bytes(&fi->value);
if (bytes) {
dfilter_string = (gchar *)wmem_alloc(NULL, 3*fvalue_length(&fi->value));
switch (fi->hfinfo->display) {
case SEP_DOT:
ret = bytes_to_hexstr_punct(dfilter_string, bytes, fvalue_length(&fi->value), '.');
break;
case SEP_DASH:
ret = bytes_to_hexstr_punct(dfilter_string, bytes, fvalue_length(&fi->value), '-');
break;
case SEP_COLON:
ret = bytes_to_hexstr_punct(dfilter_string, bytes, fvalue_length(&fi->value), ':');
break;
case SEP_SPACE:
ret = bytes_to_hexstr_punct(dfilter_string, bytes, fvalue_length(&fi->value), ' ');
break;
case BASE_NONE:
default:
ret = bytes_to_hexstr(dfilter_string, bytes, fvalue_length(&fi->value));
break;
}
*ret = '\0';
ret = g_strdup(dfilter_string);
wmem_free(NULL, dfilter_string);
} else {
if (fi->hfinfo->display & BASE_ALLOW_ZERO) {
ret = g_strdup("<none>");
} else {
ret = g_strdup("<MISSING>");
}
}
return ret;
}
break;
default:
dfilter_string = fvalue_to_string_repr(NULL, &fi->value, FTREPR_DISPLAY, fi->hfinfo->display);
if (dfilter_string != NULL) {
gchar* ret = g_strdup(dfilter_string);
wmem_free(NULL, dfilter_string);
return ret;
} else {
return get_field_hex_value(edt->pi.data_src, fi);
}
}
}
}
static gchar*
get_field_hex_value(GSList *src_list, field_info *fi)
{
const guint8 *pd;
if (!fi->ds_tvb)
return NULL;
if (fi->length > tvb_captured_length_remaining(fi->ds_tvb, fi->start)) {
return g_strdup("field length invalid!");
}
/* Find the data for this field. */
pd = get_field_data(src_list, fi);
if (pd) {
int i;
gchar *buffer;
gchar *p;
int len;
const int chars_per_byte = 2;
len = chars_per_byte * fi->length;
buffer = (gchar *)g_malloc(sizeof(gchar)*(len + 1));
buffer[len] = '\0'; /* Ensure NULL termination in bad cases */
p = buffer;
/* Print a simple hex dump */
for (i = 0 ; i < fi->length; i++) {
snprintf(p, chars_per_byte+1, "%02x", pd[i]);
p += chars_per_byte;
}
return buffer;
} else {
return NULL;
}
}
output_fields_t* output_fields_new(void)
{
output_fields_t* fields = g_new(output_fields_t, 1);
fields->print_bom = FALSE;
fields->print_header = FALSE;
fields->separator = '\t';
fields->occurrence = 'a';
fields->aggregator = ',';
fields->fields = NULL; /*Do lazy initialisation */
fields->field_indicies = NULL;
fields->field_values = NULL;
fields->quote ='\0';
fields->includes_col_fields = FALSE;
return fields;
}
/*
* Editor modelines - https://www.wireshark.org/tools/modelines.html
*
* Local variables:
* c-basic-offset: 4
* tab-width: 8
* indent-tabs-mode: nil
* End:
*
* vi: set shiftwidth=4 tabstop=8 expandtab:
* :indentSize=4:tabSize=8:noTabs=true:
*/