wireshark/epan/dissectors/packet-synphasor.c

2381 lines
83 KiB
C
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* packet-synphasor.c
* Dissector for IEEE C37.118 synchrophasor frames.
*
* Copyright 2008, Jens Steinhauser <jens.steinhauser@omicron.at>
* Copyright 2019, Dwayne Rich <dwayne_rich@selinc.com>
* Copyright 2020, Dmitriy Eliseev <eliseev_d@ntcees.ru>
*
* Wireshark - Network traffic analyzer
* By Gerald Combs <gerald@wireshark.org>
* Copyright 1998 Gerald Combs
*
* SPDX-License-Identifier: GPL-2.0-or-later
*/
#include "config.h"
#include <math.h>
#include <epan/packet.h>
#include <epan/crc16-tvb.h>
#include <epan/expert.h>
#include <epan/proto_data.h>
#include "packet-tcp.h"
#include <wsutil/utf8_entities.h>
#define PROTOCOL_NAME "IEEE C37.118 Synchrophasor Protocol"
#define PROTOCOL_SHORT_NAME "SYNCHROPHASOR"
#define PROTOCOL_ABBREV "synphasor"
/* forward references */
void proto_register_synphasor(void);
void proto_reg_handoff_synphasor(void);
/* global variables */
static int proto_synphasor = -1;
/* user preferences */
#define SYNPHASOR_TCP_PORT 4712 /* Not IANA registered */
#define SYNPHASOR_UDP_PORT 4713 /* Not IANA registered */
/* Config 1 & 2 frames have channel names that are all 16 bytes long */
/* Config 3 frame channel names have a variable length with a max of 255 characters */
#define CHNAM_LEN 16
#define MAX_NAME_LEN 255
#define G_PMU_ID_LEN 16
/* the ett... variables hold the state (open/close) of the treeview in the GUI */
static gint ett_synphasor = -1; /* root element for this protocol */
/* used in the common header */
static gint ett_frtype = -1;
static gint ett_timequal = -1;
/* used for config frames */
static gint ett_conf = -1;
static gint ett_conf_station = -1;
static gint ett_conf_format = -1;
static gint ett_conf_phnam = -1;
static gint ett_conf_annam = -1;
static gint ett_conf_dgnam = -1;
static gint ett_conf_phconv = -1;
static gint ett_conf_phlist = -1;
static gint ett_conf_phflags = -1;
static gint ett_conf_phmod_flags = -1;
static gint ett_conf_ph_user_flags = -1;
static gint ett_conf_anconv = -1;
static gint ett_conf_anlist = -1;
static gint ett_conf_dgmask = -1;
static gint ett_conf_chnam = -1;
static gint ett_conf_wgs84 = -1;
/* used for data frames */
static gint ett_data = -1;
static gint ett_data_block = -1;
static gint ett_data_stat = -1;
static gint ett_data_phasors = -1;
static gint ett_data_analog = -1;
static gint ett_data_digital = -1;
/* used for command frames */
static gint ett_command = -1;
static gint ett_status_word_mask = -1;
/* handles to the header fields hf[] in proto_register_synphasor() */
static int hf_sync = -1;
static int hf_sync_frtype = -1;
static int hf_sync_version = -1;
static int hf_station_name_len = -1;
static int hf_station_name = -1;
static int hf_idcode_stream_source = -1;
static int hf_idcode_data_source = -1;
static int hf_g_pmu_id = -1;
static int hf_frsize = -1;
static int hf_soc = -1;
static int hf_timeqal_lsdir = -1;
static int hf_timeqal_lsocc = -1;
static int hf_timeqal_lspend = -1;
static int hf_timeqal_timequalindic = -1;
static int hf_fracsec_raw = -1;
static int hf_fracsec_ms = -1;
static int hf_cont_idx = -1;
static int hf_conf_timebase = -1;
static int hf_conf_numpmu = -1;
static int hf_conf_formatb3 = -1;
static int hf_conf_formatb2 = -1;
static int hf_conf_formatb1 = -1;
static int hf_conf_formatb0 = -1;
static int hf_conf_chnam_len = -1;
static int hf_conf_chnam = -1;
static int hf_conf_phasor_mod_b15 = -1;
static int hf_conf_phasor_mod_b10 = -1;
static int hf_conf_phasor_mod_b09 = -1;
static int hf_conf_phasor_mod_b08 = -1;
static int hf_conf_phasor_mod_b07 = -1;
static int hf_conf_phasor_mod_b06 = -1;
static int hf_conf_phasor_mod_b05 = -1;
static int hf_conf_phasor_mod_b04 = -1;
static int hf_conf_phasor_mod_b03 = -1;
static int hf_conf_phasor_mod_b02 = -1;
static int hf_conf_phasor_mod_b01 = -1;
static int hf_conf_phasor_type_b03 = -1;
static int hf_conf_phasor_type_b02to00 = -1;
static int hf_conf_phasor_user_data = -1;
static int hf_conf_phasor_scale_factor = -1;
static int hf_conf_phasor_angle_offset = -1;
static int hf_conf_analog_scale_factor = -1;
static int hf_conf_analog_offset = -1;
static int hf_conf_pmu_lat = -1;
static int hf_conf_pmu_lon = -1;
static int hf_conf_pmu_elev = -1;
static int hf_conf_pmu_lat_unknown = -1;
static int hf_conf_pmu_lon_unknown = -1;
static int hf_conf_pmu_elev_unknown = -1;
static int hf_conf_svc_class = -1;
static int hf_conf_window = -1;
static int hf_conf_grp_dly = -1;
static int hf_conf_fnom = -1;
static int hf_conf_cfgcnt = -1;
static int hf_data_statb15to14 = -1;
static int hf_data_statb13 = -1;
static int hf_data_statb12 = -1;
static int hf_data_statb11 = -1;
static int hf_data_statb10 = -1;
static int hf_data_statb09 = -1;
static int hf_data_statb08to06 = -1;
static int hf_data_statb05to04 = -1;
static int hf_data_statb03to00 = -1;
static int hf_command = -1;
static int hf_cfg_frame_num = -1;
/* Generated from convert_proto_tree_add_text.pl */
static int hf_synphasor_data = -1;
static int hf_synphasor_checksum = -1;
static int hf_synphasor_checksum_status = -1;
static int hf_synphasor_num_phasors = -1;
static int hf_synphasor_num_analog_values = -1;
static int hf_synphasor_num_digital_status_words = -1;
static int hf_synphasor_rate_of_transmission = -1;
static int hf_synphasor_phasor = -1;
static int hf_synphasor_actual_frequency_value = -1;
static int hf_synphasor_rate_change_frequency = -1;
static int hf_synphasor_frequency_deviation_from_nominal = -1;
static int hf_synphasor_analog_value = -1;
static int hf_synphasor_digital_status_word = -1;
static int hf_synphasor_conversion_factor = -1;
static int hf_synphasor_factor_for_analog_value = -1;
static int hf_synphasor_channel_name = -1;
static int hf_synphasor_extended_frame_data = -1;
static int hf_synphasor_unknown_data = -1;
static int hf_synphasor_status_word_mask_normal_state = -1;
static int hf_synphasor_status_word_mask_valid_bits = -1;
static expert_field ei_synphasor_extended_frame_data = EI_INIT;
static expert_field ei_synphasor_checksum = EI_INIT;
static expert_field ei_synphasor_data_error = EI_INIT;
static expert_field ei_synphasor_pmu_not_sync = EI_INIT;
static dissector_handle_t synphasor_udp_handle;
/* the different frame types for this protocol */
enum FrameType {
DATA = 0,
HEADER,
CFG1,
CFG2,
CMD,
CFG3
};
/* Structures to save CFG frame content. */
/* type to indicate the format for (D)FREQ/PHASORS/ANALOG in data frame */
typedef enum { integer, /* 16 bit signed integer */
floating_point /* single precision floating point */
} data_format;
typedef enum { rect, polar } phasor_notation_e;
typedef enum { V, A } unit_e;
/* holds the information required to dissect a single phasor */
typedef struct {
char name[MAX_NAME_LEN + 1];
unit_e unit;
guint32 conv; /* cfg-2 conversion factor in 10^-5 scale */
float conv_cfg3; /* cfg-3 conversion scale factor */
float angle_offset_cfg3; /* cfg-3 angle offset */
} phasor_info;
/* holds the information for an analog value */
typedef struct {
char name[MAX_NAME_LEN + 1];
guint32 conv; /* cfg-2 conversion scale factor, user defined scaling (so it's pretty useless) */
float conv_cfg3; /* cfg-3 conversion scale factor */
float offset_cfg3; /* cfg-3 conversion offset */
} analog_info;
/* holds information required to dissect a single PMU block in a data frame */
typedef struct {
guint16 id; /* (Data Source ID) identifies source of block */
char name[MAX_NAME_LEN + 1]; /* holds STN */
guint8 cfg_frame_type; /* Config Frame Type (1,2,3,...) */
data_format format_fr; /* data format of FREQ and DFREQ */
data_format format_ph; /* data format of PHASORS */
data_format format_an; /* data format of ANALOG */
phasor_notation_e phasor_notation; /* format of the phasors */
guint fnom; /* nominal line frequency */
guint num_dg; /* number of digital status words */
wmem_array_t *phasors; /* array of phasor_infos */
wmem_array_t *analogs; /* array of analog_infos */
} config_block;
/* holds the id the configuration comes from an and
* an array of config_block members */
typedef struct {
guint32 fnum; /* frame number */
guint16 id; /* (Stream Source ID) identifies source of stream */
guint32 time_base; /* Time base - resolution of FRACSEC time stamp. */
wmem_array_t *config_blocks; /* Contains a config_block struct for
* every PMU included in the config frame */
} config_frame;
/* strings for type bits in SYNC */
static const value_string typenames[] = {
{ 0, "Data Frame" },
{ 1, "Header Frame" },
{ 2, "Configuration Frame 1" },
{ 3, "Configuration Frame 2" },
{ 4, "Command Frame" },
{ 5, "Configuration Frame 3" },
{ 0, NULL }
};
/* strings for version bits in SYNC */
static const value_string versionnames[] = {
{ 1, "Defined in IEEE Std C37.118-2005" },
{ 2, "Added in IEEE Std C37.118.2-2011" },
{ 0, NULL }
};
/* strings for the time quality flags in FRACSEC */
static const true_false_string leapseconddir = {
"Add",
"Delete"
};
static const value_string timequalcodes[] = {
{ 0xF, "Clock failure, time not reliable" },
{ 0xB, "Clock unlocked, time within 10 s" },
{ 0xA, "Clock unlocked, time within 1 s" },
{ 0x9, "Clock unlocked, time within 10^-1 s" },
{ 0x8, "Clock unlocked, time within 10^-2 s" },
{ 0x7, "Clock unlocked, time within 10^-3 s" },
{ 0x6, "Clock unlocked, time within 10^-4 s" },
{ 0x5, "Clock unlocked, time within 10^-5 s" },
{ 0x4, "Clock unlocked, time within 10^-6 s" },
{ 0x3, "Clock unlocked, time within 10^-7 s" },
{ 0x2, "Clock unlocked, time within 10^-8 s" },
{ 0x1, "Clock unlocked, time within 10^-9 s" },
{ 0x0, "Normal operation, clock locked" },
{ 0 , NULL }
};
/* strings for flags in the FORMAT word of a configuration frame */
static const true_false_string conf_formatb123names = {
"32-bit IEEE floating point",
"16-bit integer"
};
static const true_false_string conf_formatb0names = {
"polar",
"rectangular"
};
/* strings to decode ANUNIT in configuration frame */
static const range_string conf_anconvnames[] = {
{ 0, 0, "single point-on-wave" },
{ 1, 1, "rms of analog input" },
{ 2, 2, "peak of input" },
{ 3, 4, "undefined" },
{ 5, 64, "reserved" },
{ 65, 255, "user defined" },
{ 0, 0, NULL }
};
/* strings for the FNOM field */
static const true_false_string conf_fnomnames = {
"50Hz",
"60Hz"
};
static const true_false_string conf_phasor_mod_b15 = {
"Modification applied, type not here defined",
"None"
};
static const true_false_string conf_phasor_mod_b10 = {
"Pseudo-phasor value (combined from other phasors)",
"None"
};
static const true_false_string conf_phasor_mod_b09 = {
"Phasor phase adjusted for rotation",
"None"
};
static const true_false_string conf_phasor_mod_b08 = {
"Phasor phase adjusted for calibration",
"None"
};
static const true_false_string conf_phasor_mod_b07 = {
"Phasor magnitude adjusted for calibration",
"None"
};
static const true_false_string conf_phasor_mod_b06 = {
"Filtered without changing sampling",
"None"
};
static const true_false_string conf_phasor_mod_b05 = {
"Down sampled with non-FIR filter",
"None"
};
static const true_false_string conf_phasor_mod_b04 = {
"Down sampled with FIR filter",
"None"
};
static const true_false_string conf_phasor_mod_b03 = {
"Down sampled by reselection",
"None"
};
static const true_false_string conf_phasor_mod_b02 = {
"Up sampled with extrapolation",
"None"
};
static const true_false_string conf_phasor_mod_b01 = {
"Up sampled with interpolation",
"None"
};
static const value_string conf_phasor_type[] = {
{ 0, "Voltage, Zero sequence" },
{ 1, "Voltage, Positive sequence" },
{ 2, "Voltage, Negative sequence" },
{ 3, "Voltage, Reserved" },
{ 4, "Voltage, Phase A" },
{ 5, "Voltage, Phase B" },
{ 6, "Voltage, Phase C" },
{ 7, "Voltage, Reserved" },
{ 8, "Current, Zero sequence" },
{ 9, "Current, Positive sequence" },
{ 10, "Current, Negative sequence" },
{ 11, "Current, Reserved" },
{ 12, "Current, Phase A" },
{ 13, "Current, Phase B" },
{ 14, "Current, Phase C" },
{ 15, "Current, Reserved" },
{ 0, NULL }
};
static const true_false_string conf_phasor_type_b03 = {
"Current",
"Voltage"
};
static const value_string conf_phasor_type_b02to00[] = {
{ 0, "Zero sequence" },
{ 1, "Positive sequence"},
{ 2, "Negative sequence"},
{ 3, "Reserved" },
{ 4, "Phase A" },
{ 5, "Phase B" },
{ 6, "Phase C" },
{ 7, "Reserved" },
{ 0, NULL }
};
static const true_false_string conf_phasor_user_defined = {
"Flags set",
"No flags set"
};
/* strings for flags in the STAT word of a data frame */
static const value_string data_statb15to14names[] = {
{ 0, "Good measurement data, no errors" },
{ 1, "PMU error, no information about data" },
{ 2, "PMU in test mode or absent data tags have been inserted (do not use values)" },
{ 3, "PMU error (do not use values)" },
{ 0, NULL }
};
static const true_false_string data_statb13names = {
"Synchronization lost",
"Clock is synchronized"
};
static const true_false_string data_statb12names = {
"By arrival",
"By timestamp"
};
static const true_false_string data_statb11names = {
"Trigger detected",
"No trigger"
};
static const true_false_string data_statb10names = {
"Within 1 minute",
"No"
};
static const true_false_string data_statb09names = {
"Data modified by a post-processing device",
"Data not modified"
};
static const value_string data_statb08to06names[] = {
{ 0, "Not used (indicates code from previous version of profile)" },
{ 1, "Estimated maximum time error < 100 ns" },
{ 2, "Estimated maximum time error < 1 " UTF8_MICRO_SIGN "s" },
{ 3, "Estimated maximum time error < 10 " UTF8_MICRO_SIGN "s" },
{ 4, "Estimated maximum time error < 100 " UTF8_MICRO_SIGN "s" },
{ 5, "Estimated maximum time error < 1 ms" },
{ 6, "Estimated maximum time error < 10 ms" },
{ 7, "Estimated maximum time error > 10 ms or time error unknown" },
{ 0, NULL }
};
static const value_string data_statb05to04names[] = {
{ 0, "Locked or unlocked less than 10 s"},
{ 1, "Unlocked for 10-100 s" },
{ 2, "Unlocked for 100-1000 s" },
{ 3, "Unlocked for over 1000 s" },
{ 0, NULL }
};
static const value_string data_statb03to00names[] = {
{ 0x0, "Manual" },
{ 0x1, "Magnitude low" },
{ 0x2, "Magnitude high" },
{ 0x3, "Phase-angel diff" },
{ 0x4, "Frequency high or low" },
{ 0x5, "df/dt high" },
{ 0x6, "Reserved" },
{ 0x7, "Digital" },
{ 0x8, "User defined" },
{ 0x9, "User defined" },
{ 0xA, "User defined" },
{ 0xB, "User defined" },
{ 0xC, "User defined" },
{ 0xD, "User defined" },
{ 0xE, "User defined" },
{ 0xF, "User defined" },
{ 0, NULL }
};
/* strings to decode the commands (CMD Field) acording Table 15, p.26
* 0000 0000 0000 0001 - Turn off transmission of data frames
* 0000 0000 0000 0010 - Turn on transmission of data frames
* 0000 0000 0000 0011 - Send HDR frame
* 0000 0000 0000 0100 - Send CFG-1 frame.
* 0000 0000 0000 0101 - Send CFG-2 frame.
* 0000 0000 0000 0110 - Send CFG-3 frame (optional command).
* 0000 0000 0000 1000 - Extended frame.
* 0000 0000 xxxx xxxx - All undesignated codes reserved.
* 0000 yyyy xxxx xxxx - All codes where yyyy ≠ 0 available for user designation.
* zzzz xxxx xxxx xxxx - All codes where zzzz ≠ 0 reserved.
*/
static const range_string command_names[] = {
{ 0x0000, 0x0000, "reserved codes" },
{ 0x0001, 0x0001, "data transmission off" },
{ 0x0002, 0x0002, "data transmission on" },
{ 0x0003, 0x0003, "send HDR frame" },
{ 0x0004, 0x0004, "send CFG-1 frame" },
{ 0x0005, 0x0005, "send CFG-2 frame" },
{ 0x0006, 0x0006, "send CFG-3 frame" },
{ 0x0007, 0x0007, "reserved codes" },
{ 0x0008, 0x0008, "extended frame" },
{ 0x0009, 0x00FF, "reserved codes" },
{ 0x0100, 0x0FFF, "user designation" },
{ 0x1000, 0xFFFF, "reserved codes" },
{ 0x0000, 0x0000, NULL }
};
/******************************************************************************
* functions
******************************************************************************/
/* read in the size length for names found in config 3 frames
0 - no name
1-255 - length of name
*/
static guint8 get_name_length(tvbuff_t *tvb, gint offset)
{
guint8 name_length;
/* read the size of the name */
name_length = tvb_get_guint8(tvb, offset);
return name_length;
}
/* Checks the CRC of a synchrophasor frame, 'tvb' has to include the whole
* frame, including CRC, the calculated CRC is returned in '*computedcrc'.
*/
static gboolean check_crc(tvbuff_t *tvb, guint16 *computedcrc)
{
guint16 crc;
guint len = tvb_get_ntohs(tvb, 2);
crc = tvb_get_ntohs(tvb, len - 2);
*computedcrc = crc16_x25_ccitt_tvb(tvb, len - 2);
if (crc == *computedcrc)
return TRUE;
return FALSE;
}
/* Dissects a configuration frame (only the most important stuff, tries
* to be fast, does no GUI stuff) and returns a pointer to a config_frame
* struct that contains all the information from the frame needed to
* dissect a DATA frame.
*
* use 'config_frame_free()' to free the config_frame again
*/
static config_frame *config_frame_fast(tvbuff_t *tvb)
{
guint16 num_pmu;
gint offset;
config_frame *frame;
/* get a new frame and initialize it */
frame = wmem_new(wmem_file_scope(), config_frame);
frame->config_blocks = wmem_array_new(wmem_file_scope(), sizeof(config_block));
// Start with Stream Source ID - identifies source of stream
offset = 4;
frame->id = tvb_get_ntohs(tvb, offset);
/* Skip to time base for FRACSEC */
offset += 11; // high 8 bits reserved for flags, so +1 byte
frame->time_base = tvb_get_guint24(tvb, offset,ENC_BIG_ENDIAN);
/* Next number of PMU blocks */
offset += 3;
num_pmu = tvb_get_ntohs(tvb, offset);
// Start of repeating blocks
offset += 2;
while (num_pmu) {
guint16 format_flags;
gint num_ph,
num_an,
num_dg;
gint i,
phunit,
anunit,
fnom;
config_block block;
/* initialize the block */
block.phasors = wmem_array_new(wmem_file_scope(), sizeof(phasor_info));
block.analogs = wmem_array_new(wmem_file_scope(), sizeof(analog_info));
/* copy the station name from the tvb to block, and add NULL byte */
tvb_memcpy(tvb, block.name, offset, CHNAM_LEN); offset += CHNAM_LEN;
block.name[CHNAM_LEN] = '\0';
block.cfg_frame_type = 2;
block.id = tvb_get_ntohs(tvb, offset); offset += 2;
format_flags = tvb_get_ntohs(tvb, offset); offset += 2;
block.format_fr = (format_flags & 0x0008) ? floating_point : integer;
block.format_an = (format_flags & 0x0004) ? floating_point : integer;
block.format_ph = (format_flags & 0x0002) ? floating_point : integer;
block.phasor_notation = (format_flags & 0x0001) ? polar : rect;
num_ph = tvb_get_ntohs(tvb, offset); offset += 2;
num_an = tvb_get_ntohs(tvb, offset); offset += 2;
num_dg = tvb_get_ntohs(tvb, offset); offset += 2;
block.num_dg = num_dg;
/* the offset of the PHUNIT, ANUNIT, and FNOM blocks */
phunit = offset + (num_ph + num_an + num_dg * CHNAM_LEN) * CHNAM_LEN;
anunit = phunit + num_ph * 4;
fnom = anunit + num_an * 4 + num_dg * 4;
/* read num_ph phasor names and conversion factors */
for (i = 0; i != num_ph; i++) {
phasor_info pi;
guint32 conv;
/* copy the phasor name from the tvb, and add NULL byte */
tvb_memcpy(tvb, pi.name, offset, CHNAM_LEN); offset += CHNAM_LEN;
pi.name[CHNAM_LEN] = '\0';
conv = tvb_get_ntohl(tvb, phunit + 4 * i);
pi.unit = conv & 0xFF000000 ? A : V;
pi.conv = conv & 0x00FFFFFF;
pi.conv_cfg3 = 1;
pi.angle_offset_cfg3 = 0;
wmem_array_append_one(block.phasors, pi);
}
/* read num_an analog value names and conversion factors */
for (i = 0; i != num_an; i++) {
analog_info ai;
guint32 conv;
/* copy the phasor name from the tvb, and add NULL byte */
tvb_memcpy(tvb, ai.name, offset, CHNAM_LEN); offset += CHNAM_LEN;
ai.name[CHNAM_LEN] = '\0';
conv = tvb_get_ntohl(tvb, anunit + 4 * i);
ai.conv = conv;
ai.conv_cfg3 = 1;
ai.offset_cfg3 = 0;
wmem_array_append_one(block.analogs, ai);
}
/* the names for the bits in the digital status words aren't saved,
there is no space to display them in the GUI anyway */
/* save FNOM */
block.fnom = tvb_get_ntohs(tvb, fnom) & 0x0001 ? 50 : 60;
offset = fnom + 2;
/* skip CFGCNT */
offset += 2;
wmem_array_append_one(frame->config_blocks, block);
num_pmu--;
}
return frame;
} /* config_frame_fast() */
/* Dissects a configuration 3 frame (only the most important stuff, tries
* to be fast, does no GUI stuff) and returns a pointer to a config_frame
* struct that contains all the information from the frame needed to
* dissect a DATA frame.
*
* use 'config_frame_free()' to free the config_frame again
*/
static config_frame * config_3_frame_fast(tvbuff_t *tvb)
{
guint16 num_pmu;
gint offset;
config_frame *frame;
phasor_info *pi = NULL;
analog_info *ai = NULL;
gboolean frame_not_fragmented;
/* get a new frame and initialize it */
frame = wmem_new(wmem_file_scope(), config_frame);
frame->config_blocks = wmem_array_new(wmem_file_scope(), sizeof(config_block));
// Start with Stream Source ID - identifies source of stream
offset = 4;
frame->id = tvb_get_ntohs(tvb, offset);
/* Skip to CONT_IDX -- Fragmented Frames not supported at this time */
offset += 10;
frame_not_fragmented = tvb_get_guint16(tvb, offset, ENC_BIG_ENDIAN) == 0;
/* Skip to time base for FRACSEC */
offset += 3; // high 8 bits reserved for flags, so +1 byte
frame->time_base = tvb_get_guint24(tvb, offset,ENC_BIG_ENDIAN);
/* Skip to number of PMU blocks */
offset += 3;
num_pmu = tvb_get_ntohs(tvb, offset);
/* start of repeating blocks */
offset += 2;
while ((num_pmu) && (frame_not_fragmented)) {
guint16 format_flags;
gint num_ph,
num_an,
num_dg;
gint i;
guint8 name_length;
config_block block;
/* initialize the block */
block.phasors = wmem_array_new(wmem_file_scope(), sizeof(phasor_info));
block.analogs = wmem_array_new(wmem_file_scope(), sizeof(analog_info));
/* copy the station name from the tvb to block, and add NULL byte */
/* first byte is name size */
name_length = get_name_length(tvb, offset);
offset += 1;
tvb_memcpy(tvb, block.name, offset, name_length);
offset += name_length;
block.name[name_length] = '\0';
block.cfg_frame_type = 3;
/* Block ID and Global PMU ID */
block.id = tvb_get_ntohs(tvb, offset);
offset += 2;
/* skip over Global PMU ID */
offset += G_PMU_ID_LEN;
format_flags = tvb_get_ntohs(tvb, offset);
offset += 2;
block.format_fr = (format_flags & 0x0008) ? floating_point : integer;
block.format_an = (format_flags & 0x0004) ? floating_point : integer;
block.format_ph = (format_flags & 0x0002) ? floating_point : integer;
block.phasor_notation = (format_flags & 0x0001) ? polar : rect;
num_ph = tvb_get_ntohs(tvb, offset);
offset += 2;
num_an = tvb_get_ntohs(tvb, offset);
offset += 2;
num_dg = tvb_get_ntohs(tvb, offset);
offset += 2;
block.num_dg = num_dg;
/* grab phasor names */
if (num_ph > 0)
{
pi = (phasor_info *)wmem_alloc(wmem_file_scope(), sizeof(phasor_info)*num_ph);
for (i = 0; i != num_ph; i++) {
/* copy the phasor name from the tvb, and add NULL byte */
name_length = get_name_length(tvb, offset);
offset += 1;
tvb_memcpy(tvb, pi[i].name, offset, name_length);
offset += name_length;
pi[i].name[name_length] = '\0';
}
}
/* grab analog names */
if (num_an > 0)
{
ai = (analog_info *)wmem_alloc(wmem_file_scope(), sizeof(analog_info)*num_an);
for (i = 0; i != num_an; i++) {
/* copy the phasor name from the tvb, and add NULL byte */
name_length = get_name_length(tvb, offset);
offset += 1;
tvb_memcpy(tvb, ai[i].name, offset, name_length);
offset += name_length;
ai[i].name[name_length] = '\0';
}
}
/* skip digital names */
if (num_dg > 0)
{
for (i = 0; i != num_dg * 16; i++) {
name_length = get_name_length(tvb, offset);
offset += name_length + 1;
}
}
/* get phasor conversion factors */
if (num_ph > 0)
{
for (i = 0; i != num_ph; i++) {
guint32 phasor_unit;
/* get unit */
phasor_unit = tvb_get_ntohl(tvb, offset);
pi[i].unit = phasor_unit & 0x00000800 ? A : V;
pi[i].conv = 1;
pi[i].conv_cfg3 = tvb_get_ntohieee_float(tvb, offset + 4);
pi[i].angle_offset_cfg3 = tvb_get_ntohieee_float(tvb, offset + 8);
wmem_array_append_one(block.phasors, pi[i]);
offset += 12;
}
}
/* get analog conversion factors */
if (num_an > 0)
{
for (i = 0; i != num_an; i++) {
ai[i].conv = 1;
ai[i].conv_cfg3 = tvb_get_ntohieee_float(tvb, offset);
ai[i].offset_cfg3 = tvb_get_ntohieee_float(tvb, offset + 4);
wmem_array_append_one(block.analogs, ai[i]);
offset += 8;
}
}
/* skip digital masks */
if (num_dg > 0)
{
for (i = 0; i != num_dg; i++) {
offset += 4;
}
}
/* Skip to FNOM */
offset += 21;
/* save FNOM */
block.fnom = tvb_get_ntohs(tvb, offset) & 0x0001 ? 50 : 60;
offset += 2;
/* skip CFGCNT - offset ready for next PMU */
offset += 2;
wmem_array_append_one(frame->config_blocks, block);
num_pmu--;
}
return frame;
} /* config_3_frame_fast() */
/* Dissects the common header of frames.
*
* Returns the framesize, in contrast to most
* other helper functions that return the offset.
*/
static gint dissect_header(tvbuff_t *tvb, proto_tree *tree, packet_info *pinfo)
{
proto_tree *temp_tree;
proto_item *temp_item;
config_frame *conf;
gint offset = 0;
guint16 framesize;
conf = (config_frame *)p_get_proto_data(wmem_file_scope(), pinfo, proto_synphasor, 0);
/* SYNC and flags */
temp_item = proto_tree_add_item(tree, hf_sync, tvb, offset, 2, ENC_BIG_ENDIAN);
temp_tree = proto_item_add_subtree(temp_item, ett_frtype);
proto_tree_add_item(temp_tree, hf_sync_frtype, tvb, offset, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(temp_tree, hf_sync_version, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
/* FRAMESIZE */
proto_tree_add_item(tree, hf_frsize, tvb, offset, 2, ENC_BIG_ENDIAN);
framesize = tvb_get_ntohs(tvb, offset); offset += 2;
/* IDCODE */
proto_tree_add_item(tree, hf_idcode_stream_source, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
/* SOC */
proto_tree_add_item(tree, hf_soc, tvb, offset, 4, ENC_TIME_SECS | ENC_BIG_ENDIAN);
offset += 4;
/* FRACSEC */
/* time quality flags */
temp_tree = proto_tree_add_subtree(tree, tvb, offset, 1, ett_timequal, NULL, "Time quality flags");
proto_tree_add_item(temp_tree, hf_timeqal_lsdir, tvb, offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(temp_tree, hf_timeqal_lsocc, tvb, offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(temp_tree, hf_timeqal_lspend, tvb, offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(temp_tree, hf_timeqal_timequalindic, tvb, offset, 1, ENC_BIG_ENDIAN);
offset += 1;
// Add RAW FRACSEC
proto_tree_add_item(tree, hf_fracsec_raw, tvb, offset, 3, ENC_BIG_ENDIAN);
// If exist configuration frame, add fracsec in milliseconds
if (conf){
guint32 fracsec_raw = tvb_get_guint24(tvb, offset, ENC_BIG_ENDIAN);
float fracsec_ms = 1000.0f*fracsec_raw/conf->time_base;
proto_tree_add_float(tree, hf_fracsec_ms, tvb, offset, 3, fracsec_ms);
} else
{
}
/*offset += 3;*/
return framesize;
}
/* Dissects a single phasor for 'dissect_PHASORS()' */
static int dissect_single_phasor(tvbuff_t *tvb, int offset,
gdouble *mag, gdouble *phase, /* returns the resulting values in polar format here */
gdouble* real, gdouble* imag, /* returns the resulting values in rectangular format here*/
gdouble* mag_real_unscaled, gdouble* phase_imag_unscaled, /* returns unscaled values*/
config_block *block, /* information needed to... */
phasor_info* pi) /* ...dissect the phasor */
{
if (floating_point == block->format_ph) {
if (polar == block->phasor_notation) {
/* float, polar */
*mag = tvb_get_ntohieee_float(tvb, offset );
*phase = tvb_get_ntohieee_float(tvb, offset + 4);
*real = (*mag) * cos(*phase);
*imag = (*mag) * sin(*phase);
}
else {
/* float, rect */
*real = tvb_get_ntohieee_float(tvb, offset );
*imag = tvb_get_ntohieee_float(tvb, offset + 4);
*mag = sqrt(pow(*real, 2) + pow(*imag, 2));
*phase = atan2(*imag, *real);
}
}
else {
if (polar == block->phasor_notation) {
/* int, polar */
*mag_real_unscaled = tvb_get_ntohs(tvb, offset );
*phase_imag_unscaled = tvb_get_ntohis(tvb, offset + 2);
/* For fixed-point data in polar format all values are permissible for the magnitude
field. However, the angle field is restricted to ±31416. A value of 0x8000 (32768) used in the angle field
will be used to signify absent data.
bullet 6.3.1 page 16 IEEE Std C37.118.2-2011
*/
if (*phase_imag_unscaled == -32768) {
*phase_imag_unscaled = NAN;
*mag_real_unscaled = NAN;
}
*phase = *phase_imag_unscaled/10000.0; /* angle is in radians*10^4 */
/* for values in integer format, consider conversation factor */
if (block->cfg_frame_type == 3){
*mag = (*mag_real_unscaled * pi->conv_cfg3);
*phase = *phase - pi->angle_offset_cfg3;
}
else{
*mag = (*mag_real_unscaled * pi->conv) * 0.00001;
}
*real = (*mag) * cos(*phase);
*imag = (*mag) * sin(*phase);
}
else {
/* int, rect */
*mag_real_unscaled = tvb_get_ntohis(tvb, offset );
*phase_imag_unscaled = tvb_get_ntohis(tvb, offset + 2);
/* For fixed-point data in rectangular format the PDC will use
0x8000 (32768) as the substitute for the absent data.
bullet 6.3.1 page 16 IEEE Std C37.118.2-2011
*/
if (*mag_real_unscaled == -32768) {
*mag_real_unscaled = NAN;
}
if (*phase_imag_unscaled == -32768) {
*phase_imag_unscaled = NAN;
}
*mag = sqrt(pow(*mag_real_unscaled, 2) + pow(*phase_imag_unscaled, 2));
*phase = atan2(*phase_imag_unscaled, *mag_real_unscaled);
/* for values in integer format, consider conversation factor */
if (block->cfg_frame_type == 3) {
*mag = (*mag * pi->conv_cfg3);
*phase = *phase - pi->angle_offset_cfg3;
}
else {
*mag = (*mag * pi->conv) * 0.00001;
}
*real = (*mag) * cos(*phase);
*imag = (*mag) * sin(*phase);
}
}
return floating_point == block->format_ph ? 8 : 4;
}
/* used by 'dissect_data_frame()' to dissect the PHASORS field */
static gint dissect_PHASORS(tvbuff_t *tvb, proto_tree *tree, config_block *block, gint offset)
{
proto_tree *phasor_tree;
guint length;
gint j;
gint cnt = wmem_array_get_count(block->phasors); /* number of phasors to dissect */
if (0 == cnt)
return offset;
length = wmem_array_get_count(block->phasors) * (floating_point == block->format_ph ? 8 : 4);
phasor_tree = proto_tree_add_subtree_format(tree, tvb, offset, length, ett_data_phasors, NULL,
"Phasors (%u), notation: %s, format: %s", cnt,
block->phasor_notation ? "polar" : "rectangular",
block->format_ph ? "floating point" : "integer");
/* dissect a phasor for every phasor_info saved in the config_block */
for (j = 0; j < cnt; j++) {
proto_item *temp_item;
gdouble mag, phase,real, imag;
gdouble mag_real_unscaled = NAN, phase_imag_unscaled = NAN;
phasor_info *pi;
pi = (phasor_info *)wmem_array_index(block->phasors, j);
temp_item = proto_tree_add_string_format(phasor_tree, hf_synphasor_phasor, tvb, offset,
floating_point == block->format_ph ? 8 : 4, pi->name,
"Phasor #%u: \"%s\"", j + 1, pi->name);
offset += dissect_single_phasor(tvb, offset,
&mag, &phase, &real, &imag,
&mag_real_unscaled, &phase_imag_unscaled,
block,pi);
#define SYNP_ANGLE "\xe2\x88\xa0" /* 8736 / 0x2220 */
char phasor_unit = V == pi->unit ? 'V' : 'A';
proto_item_append_text(temp_item, ", %10.3F%c " SYNP_ANGLE "%7.3F" UTF8_DEGREE_SIGN " alt %7.3F+j%7.3F%c",
mag, phasor_unit, phase * 180.0 / G_PI,
real, imag, phasor_unit);
if (integer == block->format_ph) {
proto_item_append_text(temp_item, "; unscaled: %5.0F, %5.0F",
mag_real_unscaled, phase_imag_unscaled);
}
#undef SYNP_ANGLE
}
return offset;
}
/* used by 'dissect_data_frame()' to dissect the FREQ and DFREQ fields */
static gint dissect_DFREQ(tvbuff_t *tvb, proto_tree *tree, config_block *block, gint offset)
{
if (floating_point == block->format_fr) {
proto_tree_add_item(tree, hf_synphasor_actual_frequency_value, tvb, offset, 4, ENC_BIG_ENDIAN);
offset += 4;
/* In new version of the standard IEEE Std C37.118.2-2011: "Can be 16-bit integer or IEEE floating point, same as FREQ above."
* --> no scaling factor is applied to DFREQ
*/
proto_tree_add_item(tree, hf_synphasor_rate_change_frequency, tvb, offset, 4, ENC_BIG_ENDIAN);
offset += 4;
}
else {
gint16 tmp;
tmp = tvb_get_ntohs(tvb, offset);
proto_tree_add_int_format_value(tree, hf_synphasor_frequency_deviation_from_nominal, tvb, offset, 2, tmp,
"%dmHz (actual frequency: %.3fHz)", tmp, block->fnom + (tmp / 1000.0));
offset += 2;
tmp = tvb_get_ntohs(tvb, offset);
proto_tree_add_float_format_value(tree, hf_synphasor_rate_change_frequency, tvb, offset, 2, (gfloat)(tmp / 100.0), "%.3fHz/s", tmp / 100.0); offset += 2;
}
return offset;
}
/* used by 'dissect_data_frame()' to dissect the ANALOG field */
static gint dissect_ANALOG(tvbuff_t *tvb, proto_tree *tree, config_block *block, gint offset)
{
proto_tree *analog_tree;
guint length;
gint j;
gint cnt = wmem_array_get_count(block->analogs); /* number of analog values to dissect */
if (0 == cnt)
return offset;
length = wmem_array_get_count(block->analogs) * (floating_point == block->format_an ? 4 : 2);
analog_tree = proto_tree_add_subtree_format(tree, tvb, offset, length, ett_data_analog, NULL,
"Analog values (%u)", cnt);
for (j = 0; j < cnt; j++) {
proto_item *temp_item;
analog_info *ai = (analog_info *)wmem_array_index(block->analogs, j);
temp_item = proto_tree_add_string_format(analog_tree, hf_synphasor_analog_value, tvb, offset,
floating_point == block->format_an ? 4 : 2, ai->name,
"Analog value #%u: \"%s\"", j + 1, ai->name);
if (block->cfg_frame_type == 3)
{
if (floating_point == block->format_an) {
gfloat tmp;
tmp = tvb_get_ntohieee_float(tvb, offset);
offset += 4;
proto_item_append_text(temp_item, ", %.3f", tmp);
}
else {
/* the "standard" doesn't say if this is signed or unsigned,
* so I just use gint16 */
gint16 tmp_i;
gfloat tmp_f;
tmp_i = tvb_get_ntohs(tvb, offset);
offset += 2;
tmp_f = (tmp_i * ai->conv_cfg3) + ai->offset_cfg3;
proto_item_append_text(temp_item, ", %.3f", tmp_f);
}
}
else
{
if (floating_point == block->format_an) {
gfloat tmp = tvb_get_ntohieee_float(tvb, offset); offset += 4;
proto_item_append_text(temp_item, ", %.3f", tmp);
}
else {
/* the "standard" doesn't say if this is signed or unsigned,
* so I just use gint16; the scaling of the conversion factor
* is also "user defined", so I just write it after the analog value */
gint16 tmp = tvb_get_ntohs(tvb, offset); offset += 2;
proto_item_append_text(temp_item, ", %" PRId16 " (conversion factor: %#06x)",
tmp, ai->conv);
}
}
}
return offset;
}
/* used by 'dissect_data_frame()' to dissect the DIGITAL field */
static gint dissect_DIGITAL(tvbuff_t *tvb, proto_tree *tree, config_block *block, gint offset)
{
gint j;
gint cnt = block->num_dg; /* number of digital status words to dissect */
if (0 == cnt)
return offset;
tree = proto_tree_add_subtree_format(tree, tvb, offset, cnt * 2, ett_data_digital, NULL,
"Digital status words (%u)", cnt);
for (j = 0; j < cnt; j++) {
guint16 tmp = tvb_get_ntohs(tvb, offset);
proto_tree_add_uint_format(tree, hf_synphasor_digital_status_word, tvb, offset, 2, tmp, "Digital status word #%u: 0x%04x", j + 1, tmp);
offset += 2;
}
return offset;
}
/* used by 'dissect_config_frame()' to dissect the PHUNIT field */
static gint dissect_PHUNIT(tvbuff_t *tvb, proto_tree *tree, gint offset, gint cnt)
{
proto_tree *temp_tree;
gint i;
if (0 == cnt)
return offset;
temp_tree = proto_tree_add_subtree_format(tree, tvb, offset, 4 * cnt, ett_conf_phconv, NULL,
"Phasor conversion factors (%u)", cnt);
/* Conversion factor for phasor channels. Four bytes for each phasor.
* MSB: 0 = voltage, 1 = current
* Lower 3 Bytes: unsigned 24-bit word in 10^-5 V or A per bit to scale the phasor value
*/
for (i = 0; i < cnt; i++) {
guint32 tmp = tvb_get_ntohl(tvb, offset);
proto_tree_add_uint_format(temp_tree, hf_synphasor_conversion_factor, tvb, offset, 4,
tmp, "#%u factor: %u * 10^-5, unit: %s",
i + 1,
tmp & 0x00FFFFFF,
tmp & 0xFF000000 ? "Ampere" : "Volt");
offset += 4;
}
return offset;
}
/* used by 'dissect_config_3_frame()' to dissect the PHSCALE field */
static gint dissect_PHSCALE(tvbuff_t *tvb, proto_tree *tree, gint offset, gint cnt)
{
proto_tree *temp_tree;
gint i;
if (0 == cnt) {
return offset;
}
temp_tree = proto_tree_add_subtree_format(tree, tvb, offset, 12 * cnt, ett_conf_phconv, NULL,
"Phasor scaling and data flags (%u)", cnt);
for (i = 0; i < cnt; i++) {
proto_tree *single_phasor_scaling_and_flags_tree;
proto_tree *phasor_flag1_tree;
proto_tree *phasor_flag2_tree;
proto_tree *data_flag_tree;
single_phasor_scaling_and_flags_tree = proto_tree_add_subtree_format(temp_tree, tvb, offset, 12,
ett_conf_phlist, NULL,
"Phasor #%u", i + 1);
data_flag_tree = proto_tree_add_subtree_format(single_phasor_scaling_and_flags_tree, tvb, offset, 4,
ett_conf_phflags, NULL, "Phasor Data flags: %s",
conf_phasor_type[tvb_get_guint8(tvb, offset + 2)].strptr);
/* first and second bytes - phasor modification flags*/
phasor_flag1_tree = proto_tree_add_subtree_format(data_flag_tree, tvb, offset, 2, ett_conf_phmod_flags,
NULL, "Modification Flags: 0x%04x",
tvb_get_ntohs(tvb, offset));
proto_tree_add_item(phasor_flag1_tree, hf_conf_phasor_mod_b15, tvb, offset, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(phasor_flag1_tree, hf_conf_phasor_mod_b10, tvb, offset, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(phasor_flag1_tree, hf_conf_phasor_mod_b09, tvb, offset, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(phasor_flag1_tree, hf_conf_phasor_mod_b08, tvb, offset, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(phasor_flag1_tree, hf_conf_phasor_mod_b07, tvb, offset, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(phasor_flag1_tree, hf_conf_phasor_mod_b06, tvb, offset, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(phasor_flag1_tree, hf_conf_phasor_mod_b05, tvb, offset, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(phasor_flag1_tree, hf_conf_phasor_mod_b04, tvb, offset, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(phasor_flag1_tree, hf_conf_phasor_mod_b03, tvb, offset, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(phasor_flag1_tree, hf_conf_phasor_mod_b02, tvb, offset, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(phasor_flag1_tree, hf_conf_phasor_mod_b01, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
/* third byte - phasor type*/
proto_tree_add_item(data_flag_tree, hf_conf_phasor_type_b03, tvb, offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(data_flag_tree, hf_conf_phasor_type_b02to00, tvb, offset, 1, ENC_BIG_ENDIAN);
offset += 1;
/* fourth byte - user designation*/
phasor_flag2_tree = proto_tree_add_subtree_format(data_flag_tree, tvb, offset, 1, ett_conf_ph_user_flags,
NULL, "User designated flags: 0x%02x",
tvb_get_guint8(tvb, offset));
proto_tree_add_item(phasor_flag2_tree, hf_conf_phasor_user_data, tvb, offset, 1, ENC_BIG_ENDIAN);
offset += 1;
/* phasor scalefactor */
proto_tree_add_item(single_phasor_scaling_and_flags_tree, hf_conf_phasor_scale_factor,
tvb, offset, 4, ENC_BIG_ENDIAN);
offset += 4;
/* angle adjustment */
proto_tree_add_item(single_phasor_scaling_and_flags_tree, hf_conf_phasor_angle_offset,
tvb, offset, 4, ENC_BIG_ENDIAN);
offset += 4;
}
return offset;
}
/* used by 'dissect_config_frame()' to dissect the ANUNIT field */
static gint dissect_ANUNIT(tvbuff_t *tvb, proto_tree *tree, gint offset, gint cnt)
{
proto_item *temp_item;
proto_tree *temp_tree;
gint i;
if (0 == cnt)
return offset;
temp_tree = proto_tree_add_subtree_format(tree, tvb, offset, 4 * cnt, ett_conf_anconv, NULL,
"Analog values conversion factors (%u)", cnt);
/* Conversion factor for analog channels. Four bytes for each analog value.
* MSB: see 'synphasor_conf_anconvnames' in 'synphasor_strings.c'
* Lower 3 Bytes: signed 24-bit word, user-defined scaling
*/
for (i = 0; i < cnt; i++) {
gint32 tmp = tvb_get_ntohl(tvb, offset);
temp_item = proto_tree_add_uint_format(temp_tree, hf_synphasor_factor_for_analog_value, tvb, offset, 4,
tmp, "Factor for analog value #%i: %s",
i + 1,
try_rval_to_str((tmp >> 24) & 0x000000FF, conf_anconvnames));
tmp &= 0x00FFFFFF;
if ( tmp & 0x00800000) /* sign bit set */
tmp |= 0xFF000000;
proto_item_append_text(temp_item, ", value: %" PRId32, tmp);
offset += 4;
}
return offset;
}
/* used by 'dissect_config_3_frame()' to dissect the ANSCALE field */
static gint dissect_ANSCALE(tvbuff_t *tvb, proto_tree *tree, gint offset, gint cnt)
{
proto_tree *temp_tree;
gint i;
if (0 == cnt) {
return offset;
}
temp_tree = proto_tree_add_subtree_format(tree, tvb, offset, 8 * cnt, ett_conf_anconv, NULL,
"Analog values conversion factors (%u)", cnt);
/* Conversion factor for analog channels. Four bytes for each analog value.
* MSB: see 'synphasor_conf_anconvnames' in 'synphasor_strings.c'
* Lower 3 Bytes: signed 24-bit word, user-defined scaling
*/
for (i = 0; i < cnt; i++) {
proto_tree *single_analog_scalefactor_tree;
single_analog_scalefactor_tree = proto_tree_add_subtree_format(temp_tree, tvb, offset, 8,
ett_conf_phlist, NULL,
"Analog #%u", i + 1);
/* analog scalefactor */
proto_tree_add_item(single_analog_scalefactor_tree, hf_conf_analog_scale_factor,
tvb, offset, 4, ENC_BIG_ENDIAN);
offset += 4;
/* angle adjustment */
proto_tree_add_item(single_analog_scalefactor_tree, hf_conf_analog_offset,
tvb, offset, 4, ENC_BIG_ENDIAN);
offset += 4;
}
return offset;
}
/* used by 'dissect_config_frame()' to dissect the DIGUNIT field */
static gint dissect_DIGUNIT(tvbuff_t *tvb, proto_tree *tree, gint offset, gint cnt)
{
proto_tree *temp_tree, *mask_tree;
gint i;
if (0 == cnt)
return offset;
temp_tree = proto_tree_add_subtree_format(tree, tvb, offset, 4 * cnt, ett_conf_dgmask, NULL,
"Masks for digital status words (%u)", cnt);
/* Mask words for digital status words. Two 16-bit words for each digital word. The first
* indicates the normal status of the inputs, the second indicated the valid bits in
* the status word
*/
for (i = 0; i < cnt; i++) {
mask_tree = proto_tree_add_subtree_format(temp_tree, tvb, offset, 4, ett_status_word_mask, NULL, "Mask for status word #%u: ", i + 1);
proto_tree_add_item(mask_tree, hf_synphasor_status_word_mask_normal_state, tvb, offset, 2, ENC_BIG_ENDIAN); offset += 2;
proto_tree_add_item(mask_tree, hf_synphasor_status_word_mask_valid_bits, tvb, offset, 2, ENC_BIG_ENDIAN); offset += 2;
}
return offset;
}
/* used by 'dissect_config_frame()' to dissect the "channel name"-fields */
static gint dissect_CHNAM(tvbuff_t *tvb, proto_tree *tree, gint offset, gint cnt, const char *prefix)
{
proto_tree *temp_tree;
gint i;
if (0 == cnt)
return offset;
temp_tree = proto_tree_add_subtree_format(tree, tvb, offset, CHNAM_LEN * cnt, ett_conf_phnam, NULL,
"%ss (%u)", prefix, cnt);
/* dissect the 'cnt' channel names */
for (i = 0; i < cnt; i++) {
char *str;
str = (char *)tvb_get_string_enc(wmem_packet_scope(), tvb, offset, CHNAM_LEN, ENC_ASCII);
proto_tree_add_string_format(temp_tree, hf_synphasor_channel_name, tvb, offset, CHNAM_LEN,
str, "%s #%i: \"%s\"", prefix, i+1, str);
offset += CHNAM_LEN;
}
return offset;
}
/* used by 'dissect_config_3_frame()' to dissect the "channel name"-fields */
static gint dissect_config_3_CHNAM(tvbuff_t *tvb, proto_tree *tree, gint offset, gint cnt, const char *prefix)
{
proto_tree *temp_tree, *chnam_tree;
gint i;
guint8 name_length;
gint temp_offset;
gint subsection_length = 0;
if (0 == cnt) {
return offset;
}
/* get the subsection length */
temp_offset = offset;
for (i = 0; i < cnt; i++) {
name_length = get_name_length(tvb, temp_offset);
/* count the length byte and the actual name */
subsection_length += name_length + 1;
temp_offset += name_length + 1;
}
temp_tree = proto_tree_add_subtree_format(tree, tvb, offset, subsection_length, ett_conf_phnam,
NULL, "%ss (%u)", prefix, cnt);
/* dissect the 'cnt' channel names */
for (i = 0; i < cnt; i++) {
char *str;
name_length = get_name_length(tvb, offset);
str = (char *)tvb_get_string_enc(wmem_packet_scope(), tvb, offset + 1, name_length, ENC_ASCII);
chnam_tree = proto_tree_add_subtree_format(temp_tree, tvb, offset, name_length + 1, ett_conf,
NULL, "%s #%i: \"%s\"", prefix, i + 1, str);
proto_tree_add_item(chnam_tree, hf_conf_chnam_len, tvb, offset, 1, ENC_BIG_ENDIAN);
offset += 1;
proto_tree_add_string(chnam_tree, hf_conf_chnam, tvb, offset, 1, str);
offset += name_length;
}
return offset;
}
/* dissects a configuration frame (type 1 and 2) and adds fields to 'config_item' */
static int dissect_config_frame(tvbuff_t *tvb, proto_item *config_item)
{
proto_tree *config_tree;
gint offset = 0;
guint16 num_pmu, j;
proto_item_set_text (config_item, "Configuration data");
config_tree = proto_item_add_subtree(config_item, ett_conf);
/* TIME_BASE and NUM_PMU */
offset += 1; /* skip the reserved byte */
proto_tree_add_item(config_tree, hf_conf_timebase, tvb, offset, 3, ENC_BIG_ENDIAN); offset += 3;
proto_tree_add_item(config_tree, hf_conf_numpmu, tvb, offset, 2, ENC_BIG_ENDIAN);
/* add number of included PMUs to the text in the list view */
num_pmu = tvb_get_ntohs(tvb, offset); offset += 2;
proto_item_append_text(config_item, ", %"PRIu16" PMU(s) included", num_pmu);
/* dissect the repeating PMU blocks */
for (j = 0; j < num_pmu; j++) {
guint16 num_ph, num_an, num_dg;
proto_item *station_item;
proto_tree *station_tree;
proto_tree *temp_tree;
char *str;
gint oldoffset = offset; /* to calculate the length of the whole PMU block later */
/* STN with new tree to add the rest of the PMU block */
str = (char *)tvb_get_string_enc(wmem_packet_scope(), tvb, offset, CHNAM_LEN, ENC_ASCII);
station_tree = proto_tree_add_subtree_format(config_tree, tvb, offset, CHNAM_LEN,
ett_conf_station, &station_item,
"Station #%i: \"%s\"", j + 1, str);
offset += CHNAM_LEN;
/* IDCODE */
proto_tree_add_item(station_tree, hf_idcode_data_source, tvb, offset, 2, ENC_BIG_ENDIAN); offset += 2;
/* FORMAT */
temp_tree = proto_tree_add_subtree(station_tree, tvb, offset, 2, ett_conf_format, NULL,
"Data format in data frame");
proto_tree_add_item(temp_tree, hf_conf_formatb3, tvb, offset, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(temp_tree, hf_conf_formatb2, tvb, offset, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(temp_tree, hf_conf_formatb1, tvb, offset, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(temp_tree, hf_conf_formatb0, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
/* PHNMR, ANNMR, DGNMR */
num_ph = tvb_get_ntohs(tvb, offset );
num_an = tvb_get_ntohs(tvb, offset + 2);
num_dg = tvb_get_ntohs(tvb, offset + 4);
proto_tree_add_uint(station_tree, hf_synphasor_num_phasors, tvb, offset, 2, num_ph);
proto_tree_add_uint(station_tree, hf_synphasor_num_analog_values, tvb, offset + 2, 2, num_an);
proto_tree_add_uint(station_tree, hf_synphasor_num_digital_status_words, tvb, offset + 4, 2, num_dg);
offset += 6;
/* CHNAM, the channel names */
offset = dissect_CHNAM(tvb, station_tree, offset, num_ph , "Phasor name" );
offset = dissect_CHNAM(tvb, station_tree, offset, num_an , "Analog value" );
offset = dissect_CHNAM(tvb, station_tree, offset, num_dg * 16, "Digital status label");
/* PHUNIT, ANUINT and DIGUNIT */
offset = dissect_PHUNIT (tvb, station_tree, offset, num_ph);
offset = dissect_ANUNIT (tvb, station_tree, offset, num_an);
offset = dissect_DIGUNIT(tvb, station_tree, offset, num_dg);
/* FNOM and CFGCNT */
proto_tree_add_item(station_tree, hf_conf_fnom, tvb, offset, 2, ENC_BIG_ENDIAN); offset += 2;
proto_tree_add_item(station_tree, hf_conf_cfgcnt, tvb, offset, 2, ENC_BIG_ENDIAN); offset += 2;
/* set the correct length for the "Station :" item */
proto_item_set_len(station_item, offset - oldoffset);
} /* for() PMU blocks */
/* DATA_RATE */
{
gint16 tmp = tvb_get_ntohis(tvb, offset);
if (tmp > 0)
proto_tree_add_int_format_value(config_tree, hf_synphasor_rate_of_transmission, tvb, offset, 2, tmp,
"%d frame(s) per second", tmp);
else
proto_tree_add_int_format_value(config_tree, hf_synphasor_rate_of_transmission, tvb, offset, 2, tmp,
"1 frame per %d second(s)", (gint16)-tmp);
offset += 2;
}
return offset;
} /* dissect_config_frame() */
/* dissects a configuration frame type 3 and adds fields to 'config_item' */
static int dissect_config_3_frame(tvbuff_t *tvb, proto_item *config_item)
{
proto_tree *config_tree, *wgs84_tree;
gint offset = 0;
guint16 num_pmu, j;
proto_item_set_text(config_item, "Configuration data");
config_tree = proto_item_add_subtree(config_item, ett_conf);
/* CONT_IDX */
proto_tree_add_item(config_tree, hf_cont_idx, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
/* TIME_BASE and NUM_PMU */
offset += 1; /* skip the reserved byte */
proto_tree_add_item(config_tree, hf_conf_timebase, tvb, offset, 3, ENC_BIG_ENDIAN);
offset += 3;
proto_tree_add_item(config_tree, hf_conf_numpmu, tvb, offset, 2, ENC_BIG_ENDIAN);
/* add number of included PMUs to the text in the list view */
num_pmu = tvb_get_ntohs(tvb, offset);
offset += 2;
proto_item_append_text(config_item, ", %"PRIu16" PMU(s) included", num_pmu);
/* dissect the repeating PMU blocks */
for (j = 0; j < num_pmu; j++) {
guint16 num_ph, num_an, num_dg, i;
guint8 name_length;
gint oldoffset;
gfloat pmu_lat, pmu_long, pmu_elev;
proto_item *station_item;
proto_tree *station_tree;
proto_tree *temp_tree;
char *str, *service_class;
char *unspecified_location = "Unspecified Location";
guint8 g_pmu_id_array[G_PMU_ID_LEN];
oldoffset = offset; /* to calculate the length of the whole PMU block later */
/* STN with new tree to add the rest of the PMU block */
name_length = get_name_length(tvb, offset);
str = (char *)tvb_get_string_enc(wmem_packet_scope(), tvb, offset + 1, name_length, ENC_ASCII);
station_tree = proto_tree_add_subtree_format(config_tree, tvb, offset, name_length + 1,
ett_conf_station, &station_item,
"Station #%i: \"%s\"", j + 1, str);
/* Station Name Length */
proto_tree_add_item(station_tree, hf_station_name_len, tvb, offset, 1, ENC_BIG_ENDIAN);
offset += 1;
/* Station Name */
proto_tree_add_string(station_tree, hf_station_name, tvb, offset, 1, str);
offset += name_length;
/* IDCODE */
proto_tree_add_item(station_tree, hf_idcode_data_source, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
/* G_PMU_ID */
/* A 128 bit display as raw bytes */
for (i = 0; i < G_PMU_ID_LEN; i++) {
g_pmu_id_array[i] = tvb_get_guint8(tvb, offset + i);
}
proto_tree_add_bytes_format(station_tree, hf_g_pmu_id, tvb, offset, G_PMU_ID_LEN, 0,
"Global PMU ID (raw bytes): %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
g_pmu_id_array[0], g_pmu_id_array[1], g_pmu_id_array[2], g_pmu_id_array[3],
g_pmu_id_array[4], g_pmu_id_array[5], g_pmu_id_array[6], g_pmu_id_array[7],
g_pmu_id_array[8], g_pmu_id_array[9], g_pmu_id_array[10], g_pmu_id_array[11],
g_pmu_id_array[12], g_pmu_id_array[13], g_pmu_id_array[14], g_pmu_id_array[15]);
offset += G_PMU_ID_LEN;
/* FORMAT */
temp_tree = proto_tree_add_subtree(station_tree, tvb, offset, 2, ett_conf_format, NULL,
"Data format in data frame");
proto_tree_add_item(temp_tree, hf_conf_formatb3, tvb, offset, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(temp_tree, hf_conf_formatb2, tvb, offset, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(temp_tree, hf_conf_formatb1, tvb, offset, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(temp_tree, hf_conf_formatb0, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
/* PHNMR, ANNMR, DGNMR */
num_ph = tvb_get_ntohs(tvb, offset );
num_an = tvb_get_ntohs(tvb, offset + 2);
num_dg = tvb_get_ntohs(tvb, offset + 4);
proto_tree_add_uint(station_tree, hf_synphasor_num_phasors, tvb, offset, 2, num_ph);
proto_tree_add_uint(station_tree, hf_synphasor_num_analog_values, tvb, offset + 2, 2, num_an);
proto_tree_add_uint(station_tree, hf_synphasor_num_digital_status_words, tvb, offset + 4, 2, num_dg);
offset += 6;
/* CHNAM, the channel names */
offset = dissect_config_3_CHNAM(tvb, station_tree, offset, num_ph, "Phasor name");
offset = dissect_config_3_CHNAM(tvb, station_tree, offset, num_an, "Analog value");
offset = dissect_config_3_CHNAM(tvb, station_tree, offset, num_dg * 16, "Digital label");
/* PHUNIT, ANUINT and DIGUNIT */
offset = dissect_PHSCALE(tvb, station_tree, offset, num_ph);
offset = dissect_ANSCALE(tvb, station_tree, offset, num_an);
offset = dissect_DIGUNIT(tvb, station_tree, offset, num_dg);
/* subtree for coordinate info*/
wgs84_tree = proto_tree_add_subtree_format(station_tree, tvb, offset, 12, ett_conf_wgs84, NULL,
"World Geodetic System 84 data");
/* preview latitude, longitude, and elevation values */
/* INFINITY is an unspecified location, otherwise use the actual float value */
pmu_lat = tvb_get_ntohieee_float(tvb, offset);
pmu_long = tvb_get_ntohieee_float(tvb, offset + 4);
pmu_elev = tvb_get_ntohieee_float(tvb, offset + 8);
/* PMU_LAT */
if (isinf(pmu_lat)) {
proto_tree_add_float_format_value(wgs84_tree, hf_conf_pmu_lat_unknown, tvb, offset,
4, INFINITY, "%s", unspecified_location);
}
else {
proto_tree_add_item(wgs84_tree, hf_conf_pmu_lat, tvb, offset, 4, ENC_BIG_ENDIAN);
}
offset += 4;
/* PMU_LON */
if (isinf(pmu_long)) {
proto_tree_add_float_format_value(wgs84_tree, hf_conf_pmu_lon_unknown, tvb, offset,
4, INFINITY, "%s", unspecified_location);
}
else {
proto_tree_add_item(wgs84_tree, hf_conf_pmu_lon, tvb, offset, 4, ENC_BIG_ENDIAN);
}
offset += 4;
/* PMU_ELEV */
if (isinf(pmu_elev)) {
proto_tree_add_float_format_value(wgs84_tree, hf_conf_pmu_elev_unknown, tvb, offset,
4, INFINITY, "%s", unspecified_location);
}
else {
proto_tree_add_item(wgs84_tree, hf_conf_pmu_elev, tvb, offset, 4, ENC_BIG_ENDIAN);
}
offset += 4;
/* SVC_CLASS */
service_class = (char *)tvb_get_string_enc(wmem_packet_scope(), tvb, offset, 1, ENC_ASCII);
if ((strcmp(service_class, "P") == 0) || (strcmp(service_class, "p") == 0)) {
proto_tree_add_string(station_tree, hf_conf_svc_class, tvb, offset, 1, "Protection");
}
else if ((strcmp(service_class, "M") == 0) || (strcmp(service_class, "m") == 0)) {
proto_tree_add_string(station_tree, hf_conf_svc_class, tvb, offset, 1, "Monitoring");
}
else {
proto_tree_add_string(station_tree, hf_conf_svc_class, tvb, offset, 1, "Unknown");
}
offset += 1;
/* WINDOW */
proto_tree_add_item(station_tree, hf_conf_window, tvb, offset, 4, ENC_BIG_ENDIAN);
offset += 4;
/*GRP_DLY */
proto_tree_add_item(station_tree, hf_conf_grp_dly, tvb, offset, 4, ENC_BIG_ENDIAN);
offset += 4;
/* FNOM and CFGCNT */
proto_tree_add_item(station_tree, hf_conf_fnom, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
proto_tree_add_item(station_tree, hf_conf_cfgcnt, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
/* set the correct length for the "Station :" item */
proto_item_set_len(station_item, offset - oldoffset);
} /* for() PMU blocks */
/* DATA_RATE */
{
gint16 tmp = tvb_get_ntohis(tvb, offset);
if (tmp > 0) {
proto_tree_add_int_format_value(config_tree, hf_synphasor_rate_of_transmission, tvb, offset, 2, tmp,
"%d frame(s) per second", tmp);
}
else {
proto_tree_add_int_format_value(config_tree, hf_synphasor_rate_of_transmission, tvb, offset, 2, tmp,
"1 frame per %d second(s)", (gint16)-tmp);
}
offset += 2;
}
return offset;
} /* dissect_config_3_frame() */
/* calculates the size (in bytes) of a data frame that the config_block describes */
#define SYNP_BLOCKSIZE(x) (2 /* STAT */ \
+ wmem_array_get_count((x).phasors) * (integer == (x).format_ph ? 4 : 8) /* PHASORS */ \
+ (integer == (x).format_fr ? 4 : 8) /* (D)FREQ */ \
+ wmem_array_get_count((x).analogs) * (integer == (x).format_an ? 2 : 4) /* ANALOG */ \
+ (x).num_dg * 2) /* DIGITAL */
/* Dissects a data frame */
static int dissect_data_frame(tvbuff_t *tvb,
proto_item *data_item, /* all items are placed beneath this item */
packet_info *pinfo) /* used to find the data from a CFG-2 or CFG-3 frame */
{
proto_tree *data_tree;
gint offset = 0;
guint i;
config_frame *conf;
proto_item_set_text(data_item, "Measurement data");
data_tree = proto_item_add_subtree(data_item, ett_data);
/* search for configuration information to dissect the frame */
{
gboolean config_found = FALSE;
conf = (config_frame *)p_get_proto_data(wmem_file_scope(), pinfo, proto_synphasor, 0);
if (conf) {
/* check if the size of the current frame is the
size of the frame the config_frame describes */
size_t reported_size = 0;
for (i = 0; i < wmem_array_get_count(conf->config_blocks); i++) {
config_block *block = (config_block*)wmem_array_index(conf->config_blocks, i);
reported_size += SYNP_BLOCKSIZE(*block);
}
if (tvb_reported_length(tvb) == reported_size) {
// Add link to CFG Frame
proto_item* item = proto_tree_add_uint(data_tree, hf_cfg_frame_num, tvb, 0,0, conf->fnum);
proto_item_set_generated(item);
config_found = TRUE;
}
}
if (!config_found) {
proto_item_append_text(data_item, ", no configuration frame found");
return 0;
}
}
/* dissect a PMU block for every config_block in the frame */
for (i = 0; i < wmem_array_get_count(conf->config_blocks); i++) {
config_block *block = (config_block*)wmem_array_index(conf->config_blocks, i);
proto_tree *block_tree = proto_tree_add_subtree_format(data_tree, tvb, offset, SYNP_BLOCKSIZE(*block),
ett_data_block, NULL,
"Station: \"%s\"", block->name);
/* STAT */
proto_tree *temp_tree = proto_tree_add_subtree(block_tree, tvb, offset, 2, ett_data_stat, NULL, "Flags");
proto_item *temp_item = proto_tree_add_item(temp_tree, hf_data_statb15to14, tvb, offset, 2, ENC_BIG_ENDIAN);
guint16 flag_bits = tvb_get_guint16(tvb, offset, ENC_BIG_ENDIAN) >> 14; // Get bits 15-14
if (flag_bits != 0) {
expert_add_info(pinfo, temp_item, &ei_synphasor_data_error);
}
temp_item = proto_tree_add_item(temp_tree, hf_data_statb13, tvb, offset, 2, ENC_BIG_ENDIAN);
flag_bits = tvb_get_guint16(tvb, offset, ENC_BIG_ENDIAN); // Get flag bits
if ((flag_bits >> 13)&1) { // Check 13 bit
expert_add_info(pinfo, temp_item, &ei_synphasor_pmu_not_sync);
}
proto_tree_add_item(temp_tree, hf_data_statb12, tvb, offset, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(temp_tree, hf_data_statb11, tvb, offset, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(temp_tree, hf_data_statb10, tvb, offset, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(temp_tree, hf_data_statb09, tvb, offset, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(temp_tree, hf_data_statb08to06, tvb, offset, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(temp_tree, hf_data_statb05to04, tvb, offset, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(temp_tree, hf_data_statb03to00, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
/* PHASORS, (D)FREQ, ANALOG, and DIGITAL */
offset = dissect_PHASORS(tvb, block_tree, block, offset);
offset = dissect_DFREQ (tvb, block_tree, block, offset);
offset = dissect_ANALOG (tvb, block_tree, block, offset);
offset = dissect_DIGITAL(tvb, block_tree, block, offset);
}
return offset;
} /* dissect_data_frame() */
/* Dissects a command frame and adds fields to config_item.
*
* 'pinfo' is used to add the type of command
* to the INFO column in the packet list.
*/
static int dissect_command_frame(tvbuff_t *tvb,
proto_item *command_item,
packet_info *pinfo)
{
proto_tree *command_tree;
guint tvbsize = tvb_reported_length(tvb);
const char *s;
proto_item_set_text(command_item, "Command data");
command_tree = proto_item_add_subtree(command_item, ett_command);
/* CMD */
proto_tree_add_item(command_tree, hf_command, tvb, 0, 2, ENC_BIG_ENDIAN);
s = rval_to_str_const(tvb_get_ntohs(tvb, 0), command_names, "invalid command");
col_append_str(pinfo->cinfo, COL_INFO, ", ");
col_append_str(pinfo->cinfo, COL_INFO, s);
if (tvbsize > 2) {
if (tvb_get_ntohs(tvb, 0) == 0x0008) {
/* Command: Extended Frame, the extra data is ok */
proto_item *ti = proto_tree_add_item(command_tree, hf_synphasor_extended_frame_data, tvb, 2, tvbsize - 2, ENC_NA);
if (tvbsize % 2)
expert_add_info(pinfo, ti, &ei_synphasor_extended_frame_data);
}
else
proto_tree_add_item(command_tree, hf_synphasor_unknown_data, tvb, 2, tvbsize - 2, ENC_NA);
}
return tvbsize;
} /* dissect_command_frame() */
/* Dissects the header (common to all types of frames) and then calls
* one of the subdissectors (declared above) for the rest of the frame.
*/
static int dissect_common(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data _U_)
{
guint8 frame_type;
guint16 crc;
guint tvbsize = tvb_reported_length(tvb);
/* some heuristics */
if (tvbsize < 17 /* 17 bytes = header frame with only a
NULL character, useless but valid */
|| tvb_get_guint8(tvb, 0) != 0xAA) /* every synchrophasor frame starts with 0xAA */
return 0;
/* write the protocol name to the info column */
col_set_str(pinfo->cinfo, COL_PROTOCOL, PROTOCOL_SHORT_NAME);
frame_type = tvb_get_guint8(tvb, 1) >> 4;
col_add_fstr(pinfo->cinfo, COL_INFO, "%s", val_to_str_const(frame_type, typenames, "invalid packet type"));
/* CFG-2, CFG3, and DATA frames need special treatment during the first run:
* For CFG-2 & CFG-3 frames, a 'config_frame' struct is created to hold the
* information necessary to decode DATA frames. A pointer to this
* struct is saved in the conversation and is copied to the
* per-packet information if a DATA frame is dissected.
*/
if (!pinfo->fd->visited) {
if (CFG2 == frame_type &&
check_crc(tvb, &crc)) {
conversation_t *conversation;
/* fill the config_frame */
config_frame *frame = config_frame_fast(tvb);
frame->fnum = pinfo->num;
/* find a conversation, create a new one if none exists */
conversation = find_or_create_conversation(pinfo);
/* remove data from a previous CFG-2 frame, only
* the most recent configuration frame is relevant */
if (conversation_get_proto_data(conversation, proto_synphasor))
conversation_delete_proto_data(conversation, proto_synphasor);
conversation_add_proto_data(conversation, proto_synphasor, frame);
}
else if ((CFG3 == frame_type) && check_crc(tvb, &crc)) {
conversation_t *conversation;
config_frame *frame;
/* fill the config_frame */
frame = config_3_frame_fast(tvb);
frame->fnum = pinfo->num;
/* find a conversation, create a new one if none exists */
conversation = find_or_create_conversation(pinfo);
/* remove data from a previous CFG-3 frame, only
* the most recent configuration frame is relevant */
if (conversation_get_proto_data(conversation, proto_synphasor)) {
conversation_delete_proto_data(conversation, proto_synphasor);
}
conversation_add_proto_data(conversation, proto_synphasor, frame);
}
// Add conf to any frame for dissection fracsec
conversation_t *conversation = find_conversation_pinfo(pinfo, 0);
if (conversation) {
config_frame *conf = (config_frame *)conversation_get_proto_data(conversation, proto_synphasor);
/* no problem if 'conf' is NULL, the frame dissector checks this again */
p_add_proto_data(wmem_file_scope(), pinfo, proto_synphasor, 0, conf);
}
} /* if (!visited) */
{
proto_tree *synphasor_tree;
proto_item *temp_item;
proto_item *sub_item;
gint offset;
guint16 framesize;
tvbuff_t *sub_tvb;
gboolean crc_good;
temp_item = proto_tree_add_item(tree, proto_synphasor, tvb, 0, -1, ENC_NA);
proto_item_append_text(temp_item, ", %s", val_to_str_const(frame_type, typenames,
", invalid packet type"));
/* synphasor_tree is where from now on all new elements for this protocol get added */
synphasor_tree = proto_item_add_subtree(temp_item, ett_synphasor);
// Add pinfo for dissection fracsec
framesize = dissect_header(tvb, synphasor_tree, pinfo);
offset = 14; /* header is 14 bytes long */
/* check CRC, call appropriate subdissector for the rest of the frame if CRC is correct*/
sub_item = proto_tree_add_item(synphasor_tree, hf_synphasor_data, tvb, offset, tvbsize - 16, ENC_NA);
crc_good = check_crc(tvb, &crc);
proto_tree_add_checksum(synphasor_tree, tvb, tvbsize - 2, hf_synphasor_checksum, hf_synphasor_checksum_status, &ei_synphasor_checksum,
pinfo, crc16_x25_ccitt_tvb(tvb, tvb_get_ntohs(tvb, 2) - 2), ENC_BIG_ENDIAN, PROTO_CHECKSUM_VERIFY);
if (!crc_good) {
proto_item_append_text(sub_item, ", not dissected because of wrong checksum");
}
else {
/* create a new tvb to pass to the subdissector
'-16': length of header + 2 CRC bytes */
sub_tvb = tvb_new_subset_length_caplen(tvb, offset, tvbsize - 16, framesize - 16);
/* call subdissector */
switch (frame_type) {
case DATA:
dissect_data_frame(sub_tvb, sub_item, pinfo);
break;
case HEADER: /* no further dissection is done/needed */
proto_item_append_text(sub_item, "Header Frame");
break;
case CFG1:
case CFG2:
dissect_config_frame(sub_tvb, sub_item);
break;
case CMD:
dissect_command_frame(sub_tvb, sub_item, pinfo);
break;
case CFG3:
/* Note: The C37.118-2.2001 stanadard is vague on how to handle fragmented frames.
Until further clarification is given, fragmented frames with the CONT_IDX
are not supported. */
if (tvb_get_guint16(tvb, offset, ENC_BIG_ENDIAN) != 0) {
proto_item_append_text(sub_item, ", CFG-3 Fragmented Frame (Not Supported)");
}
else {
dissect_config_3_frame(sub_tvb, sub_item);
}
break;
default:
proto_item_append_text(sub_item, " of unknown type");
}
proto_item_append_text(temp_item, " [correct]");
}
/* remaining 2 bytes are the CRC */
}
return tvb_reported_length(tvb);
} /* dissect_common() */
/* called for synchrophasors over UDP */
static int dissect_udp(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data)
{
return dissect_common(tvb, pinfo, tree, data);
}
/* callback for 'tcp_dissect_pdus()' to give it the length of the frame */
static guint get_pdu_length(packet_info *pinfo _U_, tvbuff_t *tvb,
int offset, void *data _U_)
{
return tvb_get_ntohs(tvb, offset + 2);
}
static int dissect_tcp(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data)
{
tcp_dissect_pdus(tvb, pinfo, tree, TRUE, 4, get_pdu_length, dissect_common, data);
return tvb_reported_length(tvb);
}
/*******************************************************************/
/* after this line: Wireshark Register Routines */
/*******************************************************************/
/* Register Synchrophasor Protocol with Wireshark*/
void proto_register_synphasor(void)
{
static hf_register_info hf[] = {
/* Sync word */
{ &hf_sync,
{ "Synchronization word", "synphasor.sync", FT_UINT16, BASE_HEX,
NULL, 0x0, NULL, HFILL }},
/* Flags in the Sync word */
{ &hf_sync_frtype,
{ "Frame Type", "synphasor.frtype", FT_UINT16, BASE_HEX,
VALS(typenames), 0x0070, NULL, HFILL }},
{ &hf_sync_version,
{ "Version", "synphasor.version", FT_UINT16, BASE_DEC,
VALS(versionnames), 0x000F, NULL, HFILL }},
{ &hf_frsize,
{ "Framesize", "synphasor.frsize", FT_UINT16, BASE_DEC | BASE_UNIT_STRING,
&units_byte_bytes, 0x0, NULL, HFILL }},
{ &hf_station_name_len,
{ "Station name length", "synphasor.station_name_len", FT_UINT8,
BASE_DEC | BASE_UNIT_STRING, &units_byte_bytes, 0x0, NULL, HFILL }},
{ &hf_station_name,
{ "Station name", "synphasor.station_name", FT_STRING, BASE_NONE,
NULL, 0x0, NULL, HFILL }},
{ &hf_idcode_stream_source,
{ "PMU/DC ID number (Stream source ID)", "synphasor.idcode_stream_source", FT_UINT16, BASE_DEC,
NULL, 0x0, NULL, HFILL }},
{ &hf_idcode_data_source,
{ "PMU/DC ID number (Data source ID)", "synphasor.idcode_data_source", FT_UINT16, BASE_DEC,
NULL, 0x0, NULL, HFILL }},
{ &hf_g_pmu_id,
{ "Global PMU ID (raw hex bytes)", "synphasor.gpmuid", FT_BYTES, BASE_NONE,
NULL, 0x0, NULL, HFILL }},
{ &hf_soc,
{ "SOC time stamp", "synphasor.soc", FT_ABSOLUTE_TIME, ABSOLUTE_TIME_UTC,
NULL, 0x0, NULL, HFILL }},
/* Time quality flags in fracsec */
{ &hf_timeqal_lsdir,
{ "Leap second direction", "synphasor.timeqal.lsdir", FT_BOOLEAN, 8,
TFS(&leapseconddir), 0x40, NULL, HFILL }},
{ &hf_timeqal_lsocc,
{ "Leap second occurred", "synphasor.timeqal.lsocc", FT_BOOLEAN, 8,
NULL, 0x20, NULL, HFILL }},
{ &hf_timeqal_lspend,
{ "Leap second pending", "synphasor.timeqal.lspend", FT_BOOLEAN, 8,
NULL, 0x10, NULL, HFILL }},
{ &hf_timeqal_timequalindic,
{ "Message Time Quality indicator code", "synphasor.timeqal.timequalindic", FT_UINT8, BASE_HEX,
VALS(timequalcodes), 0x0F, NULL, HFILL }},
/* Fraction of second */
{ &hf_fracsec_raw,
{ "Fraction of second (raw)", "synphasor.fracsec_raw", FT_UINT24, BASE_DEC,
NULL, 0x0, NULL, HFILL }},
{ &hf_fracsec_ms,
{ "Fraction of second", "synphasor.fracsec_ms", FT_FLOAT, BASE_NONE | BASE_UNIT_STRING,
&units_millisecond_milliseconds, 0x0, NULL, HFILL }},
/* Data types for configuration frames */
{ &hf_cont_idx,
{ "Continuation index", "synphasor.conf.contindx", FT_UINT16, BASE_DEC,
NULL, 0x0, NULL, HFILL }},
{ &hf_conf_timebase,
{ "Resolution of fractional second time stamp", "synphasor.conf.timebase", FT_UINT24, BASE_DEC,
NULL, 0x0, NULL, HFILL }},
{ &hf_conf_numpmu,
{ "Number of PMU blocks included in the frame", "synphasor.conf.numpmu", FT_UINT16, BASE_DEC,
NULL, 0x0, NULL, HFILL }},
/* Bits in the FORMAT word */
{ &hf_conf_formatb3,
{ "FREQ/DFREQ format", "synphasor.conf.dfreq_format", FT_BOOLEAN, 16,
TFS(&conf_formatb123names), 0x8, NULL, HFILL }},
{ &hf_conf_formatb2,
{ "Analog values format", "synphasor.conf.analog_format", FT_BOOLEAN, 16,
TFS(&conf_formatb123names), 0x4, NULL, HFILL }},
{ &hf_conf_formatb1,
{ "Phasor format", "synphasor.conf.phasor_format", FT_BOOLEAN, 16,
TFS(&conf_formatb123names), 0x2, NULL, HFILL }},
{ &hf_conf_formatb0,
{ "Phasor notation", "synphasor.conf.phasor_notation", FT_BOOLEAN, 16,
TFS(&conf_formatb0names), 0x1, NULL, HFILL }},
{ &hf_conf_chnam_len,
{ "Channel name length", "synphasor.conf.chnam_len", FT_UINT8,
BASE_DEC | BASE_UNIT_STRING, &units_byte_bytes, 0x0, NULL, HFILL }},
{ &hf_conf_chnam,
{ "Channel name", "synphasor.conf.chnam", FT_STRING, BASE_NONE,
NULL, 0x0, NULL, HFILL }},
{ &hf_conf_phasor_mod_b15,
{ "Modification", "synphasor.conf.phasor_mod.type_not_def", FT_BOOLEAN, 16,
TFS(&conf_phasor_mod_b15), 0x8000, NULL, HFILL }},
{ &hf_conf_phasor_mod_b10,
{ "Modification", "synphasor.conf.phasor_mod.pseudo_phasor", FT_BOOLEAN, 16,
TFS(&conf_phasor_mod_b10), 0x0400, NULL, HFILL }},
{ &hf_conf_phasor_mod_b09,
{ "Modification", "synphasor.conf.phasor_mod.phase_rotation", FT_BOOLEAN, 16,
TFS(&conf_phasor_mod_b09), 0x0200, NULL, HFILL }},
{ &hf_conf_phasor_mod_b08,
{ "Modification", "synphasor.conf.phasor_mod.phase_calibration", FT_BOOLEAN, 16,
TFS(&conf_phasor_mod_b08), 0x0100, NULL, HFILL }},
{ &hf_conf_phasor_mod_b07,
{ "Modification", "synphasor.conf.phasor_mod.mag_calibration", FT_BOOLEAN, 16,
TFS(&conf_phasor_mod_b07), 0x0080, NULL, HFILL }},
{ &hf_conf_phasor_mod_b06,
{ "Modification", "synphasor.conf.phasor_mod.filtered", FT_BOOLEAN, 16,
TFS(&conf_phasor_mod_b06), 0x0040, NULL, HFILL }},
{ &hf_conf_phasor_mod_b05,
{ "Modification", "synphasor.conf.phasor_mod.downsampled", FT_BOOLEAN, 16,
TFS(&conf_phasor_mod_b05), 0x0020, NULL, HFILL }},
{ &hf_conf_phasor_mod_b04,
{ "Modification", "synphasor.conf.phasor_mod.downsampled_fir", FT_BOOLEAN, 16,
TFS(&conf_phasor_mod_b04), 0x0010, NULL, HFILL }},
{ &hf_conf_phasor_mod_b03,
{ "Modification", "synphasor.conf.phasor_mod.downsampled_reselect", FT_BOOLEAN, 16,
TFS(&conf_phasor_mod_b03), 0x0008, NULL, HFILL }},
{ &hf_conf_phasor_mod_b02,
{ "Modification", "synphasor.conf.phasor_mod.upsampled_extrapolation", FT_BOOLEAN, 16,
TFS(&conf_phasor_mod_b02), 0x0004, NULL, HFILL }},
{ &hf_conf_phasor_mod_b01,
{ "Modification", "synphasor.conf.phasor_mod.upsampled_interpolation", FT_BOOLEAN, 16,
TFS(&conf_phasor_mod_b01), 0x0002, NULL, HFILL }},
{ &hf_conf_phasor_type_b03,
{ "Phasor Type", "synphasor.conf.phasor_type", FT_BOOLEAN, 8,
TFS(&conf_phasor_type_b03), 0x8, NULL, HFILL }},
{ &hf_conf_phasor_type_b02to00,
{ "Phasor Type", "synphasor.conf.phasor_component", FT_UINT8, BASE_HEX,
VALS(conf_phasor_type_b02to00), 0x7, NULL, HFILL }},
{ &hf_conf_phasor_user_data,
{ "Binary format", "synphasor.conf.phasor_user_flags", FT_BOOLEAN, 8,
TFS(&conf_phasor_user_defined), 0xff, NULL, HFILL }},
{ &hf_conf_phasor_scale_factor,
{ "Phasor scale factor", "synphasor.conf.phasor_scale_factor", FT_FLOAT,
BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_conf_phasor_angle_offset,
{ "Phasor angle offset", "synphasor.conf.phasor_angle_offset", FT_FLOAT,
BASE_NONE | BASE_UNIT_STRING, &units_degree_degrees, 0x0, NULL, HFILL }},
{ &hf_conf_analog_scale_factor,
{ "Analog scale factor", "synphasor.conf.analog_scale_factor", FT_FLOAT,
BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_conf_analog_offset,
{ "Analog offset", "synphasor.conf.analog_offset", FT_FLOAT,
BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_conf_pmu_lat,
{ "PMU Latitude", "synphasor.conf.pmu_latitude", FT_FLOAT,
BASE_NONE | BASE_UNIT_STRING, &units_degree_degrees, 0x0, NULL, HFILL }},
{ &hf_conf_pmu_lon,
{ "PMU Longitude", "synphasor.conf.pmu_longitude", FT_FLOAT,
BASE_NONE | BASE_UNIT_STRING, &units_degree_degrees, 0x0, NULL, HFILL }},
{ &hf_conf_pmu_elev,
{ "PMU Elevation", "synphasor.conf.pmu_elevation", FT_FLOAT,
BASE_NONE | BASE_UNIT_STRING, &units_meter_meters, 0x0, NULL, HFILL }},
{ &hf_conf_pmu_lat_unknown,
{ "PMU Latitude", "synphasor.conf.pmu_latitude", FT_FLOAT, BASE_NONE,
NULL, 0x0, NULL, HFILL }},
{ &hf_conf_pmu_lon_unknown,
{ "PMU Longitude", "synphasor.conf.pmu_longitude", FT_FLOAT, BASE_NONE,
NULL, 0x0, NULL, HFILL }},
{ &hf_conf_pmu_elev_unknown,
{ "PMU Elevation", "synphasor.conf.pmu_elevation", FT_FLOAT, BASE_NONE,
NULL, 0x0, NULL, HFILL }},
{ &hf_conf_svc_class,
{ "Service class", "synphasor.conf.svc_class", FT_STRING, BASE_NONE,
NULL, 0x0, NULL, HFILL }},
{ &hf_conf_window,
{ "PM window length", "synphasor.conf.window", FT_UINT32,
BASE_DEC | BASE_UNIT_STRING, &units_microsecond_microseconds, 0x0, NULL, HFILL }},
{ &hf_conf_grp_dly,
{ "PM group delay", "synphasor.conf.grp_dly", FT_UINT32,
BASE_DEC | BASE_UNIT_STRING, &units_microsecond_microseconds, 0x0, NULL, HFILL }},
{ &hf_conf_fnom,
{ "Nominal line frequency", "synphasor.conf.fnom", FT_BOOLEAN, 16,
TFS(&conf_fnomnames), 0x0001, NULL, HFILL }},
{ &hf_conf_cfgcnt,
{ "Configuration change count", "synphasor.conf.cfgcnt", FT_UINT16, BASE_DEC,
NULL, 0, NULL, HFILL }},
/* Data types for data frames */
/* Link to CFG Frame */
{ &hf_cfg_frame_num,
{ "Dissected using configuration from frame", "synphasor.data.conf_frame", FT_FRAMENUM, BASE_NONE, NULL, 0x0,"", HFILL }},
/* Flags in the STAT word */
{ &hf_data_statb15to14,
{ "Data error", "synphasor.data.status", FT_UINT16, BASE_HEX,
VALS(data_statb15to14names), 0xC000, NULL, HFILL }},
{ &hf_data_statb13,
{ "Time synchronized", "synphasor.data.sync", FT_BOOLEAN, 16,
TFS(&data_statb13names), 0x2000, NULL, HFILL }},
{ &hf_data_statb12,
{ "Data sorting", "synphasor.data.sorting", FT_BOOLEAN, 16,
TFS(&data_statb12names), 0x1000, NULL, HFILL }},
{ &hf_data_statb11,
{ "Trigger detected", "synphasor.data.trigger", FT_BOOLEAN, 16,
TFS(&data_statb11names), 0x0800, NULL, HFILL }},
{ &hf_data_statb10,
{ "Configuration changed", "synphasor.data.CFGchange", FT_BOOLEAN, 16,
TFS(&data_statb10names), 0x0400, NULL, HFILL }},
{ &hf_data_statb09,
{ "Data modified indicator", "synphasor.data.data_modified", FT_BOOLEAN, 16,
TFS(&data_statb09names), 0x0200, NULL, HFILL }},
{ &hf_data_statb08to06,
{ "PMU Time Quality", "synphasor.data.pmu_tq", FT_UINT16, BASE_HEX,
VALS(data_statb08to06names), 0x01C0, NULL, HFILL }},
{ &hf_data_statb05to04,
{ "Unlocked time", "synphasor.data.t_unlock", FT_UINT16, BASE_HEX,
VALS(data_statb05to04names), 0x0030, NULL, HFILL }},
{ &hf_data_statb03to00,
{ "Trigger reason", "synphasor.data.trigger_reason", FT_UINT16, BASE_HEX,
VALS(data_statb03to00names), 0x000F, NULL, HFILL }},
/* Data type for command frame */
{ &hf_command,
{ "Command", "synphasor.command", FT_UINT16, BASE_HEX|BASE_RANGE_STRING,
RVALS(command_names), 0xFFFF, NULL, HFILL }},
/* Generated from convert_proto_tree_add_text.pl */
{ &hf_synphasor_data, { "Data", "synphasor.data", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_synphasor_checksum, { "Checksum", "synphasor.checksum", FT_UINT16, BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_synphasor_checksum_status, { "Checksum Status", "synphasor.checksum.status", FT_UINT8, BASE_NONE, VALS(proto_checksum_vals), 0x0, NULL, HFILL }},
{ &hf_synphasor_num_phasors, { "Number of phasors", "synphasor.num_phasors", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_synphasor_num_analog_values, { "Number of analog values", "synphasor.num_analog_values", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_synphasor_num_digital_status_words, { "Number of digital status words", "synphasor.num_digital_status_words", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_synphasor_rate_of_transmission, { "Rate of transmission", "synphasor.rate_of_transmission", FT_INT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_synphasor_phasor, { "Phasor", "synphasor.phasor", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_synphasor_actual_frequency_value, { "Actual frequency value", "synphasor.actual_frequency_value", FT_FLOAT, BASE_NONE|BASE_UNIT_STRING, &units_hz, 0x0, NULL, HFILL }},
{ &hf_synphasor_rate_change_frequency, { "Rate of change of frequency", "synphasor.rate_change_frequency", FT_FLOAT, BASE_NONE|BASE_UNIT_STRING, &units_hz_s, 0x0, NULL, HFILL }},
{ &hf_synphasor_frequency_deviation_from_nominal, { "Frequency deviation from nominal", "synphasor.frequency_deviation_from_nominal", FT_INT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_synphasor_analog_value, { "Analog value", "synphasor.analog_value", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_synphasor_digital_status_word, { "Digital status word", "synphasor.digital_status_word", FT_UINT16, BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_synphasor_conversion_factor, { "conversion factor", "synphasor.conversion_factor", FT_UINT32, BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_synphasor_factor_for_analog_value, { "Factor for analog value", "synphasor.factor_for_analog_value", FT_UINT32, BASE_DEC, NULL, 0x000000FF, NULL, HFILL }},
{ &hf_synphasor_channel_name, { "Channel name", "synphasor.channel_name", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_synphasor_extended_frame_data, { "Extended frame data", "synphasor.extended_frame_data", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_synphasor_unknown_data, { "Unknown data", "synphasor.data.unknown", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_synphasor_status_word_mask_normal_state, { "Normal state", "synphasor.status_word_mask.normal_state", FT_UINT16, BASE_HEX, NULL, 0xFFFF, NULL, HFILL }},
{ &hf_synphasor_status_word_mask_valid_bits, { "Valid bits", "synphasor.status_word_mask.valid_bits", FT_UINT16, BASE_HEX, NULL, 0xFFFF, NULL, HFILL }},
};
/* protocol subtree array */
static gint *ett[] = {
&ett_synphasor,
&ett_frtype,
&ett_timequal,
&ett_conf,
&ett_conf_station,
&ett_conf_format,
&ett_conf_phnam,
&ett_conf_annam,
&ett_conf_dgnam,
&ett_conf_phconv,
&ett_conf_phlist,
&ett_conf_phflags,
&ett_conf_phmod_flags,
&ett_conf_ph_user_flags,
&ett_conf_anconv,
&ett_conf_anlist,
&ett_conf_dgmask,
&ett_conf_chnam,
&ett_conf_wgs84,
&ett_data,
&ett_data_block,
&ett_data_stat,
&ett_data_phasors,
&ett_data_analog,
&ett_data_digital,
&ett_command,
&ett_status_word_mask
};
static ei_register_info ei[] = {
{ &ei_synphasor_extended_frame_data, { "synphasor.extended_frame_data.unaligned", PI_PROTOCOL, PI_WARN, "Size not multiple of 16-bit word", EXPFILL }},
{ &ei_synphasor_checksum, { "synphasor.bad_checksum", PI_CHECKSUM, PI_ERROR, "Bad checksum", EXPFILL }},
{ &ei_synphasor_data_error, { "synphasor.data_error", PI_RESPONSE_CODE, PI_NOTE, "Data Error flag set", EXPFILL }},
{ &ei_synphasor_pmu_not_sync, { "synphasor.pmu_not_sync", PI_RESPONSE_CODE, PI_NOTE, "PMU not sync flag set", EXPFILL }},
};
expert_module_t* expert_synphasor;
/* register protocol */
proto_synphasor = proto_register_protocol(PROTOCOL_NAME,
PROTOCOL_SHORT_NAME,
PROTOCOL_ABBREV);
/* Registering protocol to be called by another dissector */
synphasor_udp_handle = register_dissector("synphasor", dissect_udp, proto_synphasor);
proto_register_field_array(proto_synphasor, hf, array_length(hf));
proto_register_subtree_array(ett, array_length(ett));
expert_synphasor = expert_register_protocol(proto_synphasor);
expert_register_field_array(expert_synphasor, ei, array_length(ei));
} /* proto_register_synphasor() */
/* called at startup and when the preferences change */
void proto_reg_handoff_synphasor(void)
{
dissector_handle_t synphasor_tcp_handle;
synphasor_tcp_handle = create_dissector_handle(dissect_tcp, proto_synphasor);
dissector_add_for_decode_as("rtacser.data", synphasor_udp_handle);
dissector_add_uint_with_preference("udp.port", SYNPHASOR_UDP_PORT, synphasor_udp_handle);
dissector_add_uint_with_preference("tcp.port", SYNPHASOR_TCP_PORT, synphasor_tcp_handle);
} /* proto_reg_handoff_synphasor() */
/*
* Editor modelines - https://www.wireshark.org/tools/modelines.html
*
* Local variables:
* c-basic-offset: 8
* tab-width: 8
* indent-tabs-mode: t
* End:
*
* vi: set shiftwidth=8 tabstop=8 noexpandtab:
* :indentSize=8:tabSize=8:noTabs=false:
*/