wireshark/epan/dissectors/packet-sna.c

3502 lines
103 KiB
C

/* packet-sna.c
* Routines for SNA
* Gilbert Ramirez <gram@alumni.rice.edu>
* Jochen Friedrich <jochen@scram.de>
*
* Wireshark - Network traffic analyzer
* By Gerald Combs <gerald@wireshark.org>
* Copyright 1998 Gerald Combs
*
* SPDX-License-Identifier: GPL-2.0-or-later
*/
#include "config.h"
#include <epan/packet.h>
#include <epan/llcsaps.h>
#include <epan/ppptypes.h>
#include <epan/address_types.h>
#include <epan/prefs.h>
#include <epan/reassemble.h>
#include <epan/to_str.h>
#include "wsutil/pint.h"
/*
* See:
*
* http://web.archive.org/web/20020206033700/http://www.wanresources.com/snacell.html
*
* http://web.archive.org/web/20150522015710/http://www.protocols.com/pbook/sna.htm
*
* Systems Network Architecture Formats, GA27-3136-20:
* https://publibz.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/D50A5007/CCONTENTS
*
* Systems Network Architecture Management Services Formats, GC31-8302-03:
* https://publibfp.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/d50x4002/CCONTENTS
*/
void proto_register_sna(void);
void proto_reg_handoff_sna(void);
static int proto_sna = -1;
static int proto_sna_xid = -1;
static int hf_sna_th = -1;
static int hf_sna_th_0 = -1;
static int hf_sna_th_fid = -1;
static int hf_sna_th_mpf = -1;
static int hf_sna_th_odai = -1;
static int hf_sna_th_efi = -1;
static int hf_sna_th_daf = -1;
static int hf_sna_th_oaf = -1;
static int hf_sna_th_snf = -1;
static int hf_sna_th_dcf = -1;
static int hf_sna_th_lsid = -1;
static int hf_sna_th_tg_sweep = -1;
static int hf_sna_th_er_vr_supp_ind = -1;
static int hf_sna_th_vr_pac_cnt_ind = -1;
static int hf_sna_th_ntwk_prty = -1;
static int hf_sna_th_tgsf = -1;
static int hf_sna_th_mft = -1;
static int hf_sna_th_piubf = -1;
static int hf_sna_th_iern = -1;
static int hf_sna_th_nlpoi = -1;
static int hf_sna_th_nlp_cp = -1;
static int hf_sna_th_ern = -1;
static int hf_sna_th_vrn = -1;
static int hf_sna_th_tpf = -1;
static int hf_sna_th_vr_cwi = -1;
static int hf_sna_th_tg_nonfifo_ind = -1;
static int hf_sna_th_vr_sqti = -1;
static int hf_sna_th_tg_snf = -1;
static int hf_sna_th_vrprq = -1;
static int hf_sna_th_vrprs = -1;
static int hf_sna_th_vr_cwri = -1;
static int hf_sna_th_vr_rwi = -1;
static int hf_sna_th_vr_snf_send = -1;
static int hf_sna_th_dsaf = -1;
static int hf_sna_th_osaf = -1;
static int hf_sna_th_snai = -1;
static int hf_sna_th_def = -1;
static int hf_sna_th_oef = -1;
static int hf_sna_th_sa = -1;
static int hf_sna_th_cmd_fmt = -1;
static int hf_sna_th_cmd_type = -1;
static int hf_sna_th_cmd_sn = -1;
static int hf_sna_th_byte1 = -1;
static int hf_sna_th_byte2 = -1;
static int hf_sna_th_byte3 = -1;
static int hf_sna_th_byte4 = -1;
static int hf_sna_th_byte6 = -1;
static int hf_sna_th_byte16 = -1;
static int hf_sna_nlp_nhdr = -1;
static int hf_sna_nlp_nhdr_0 = -1;
static int hf_sna_nlp_sm = -1;
static int hf_sna_nlp_tpf = -1;
static int hf_sna_nlp_nhdr_1 = -1;
static int hf_sna_nlp_ft = -1;
static int hf_sna_nlp_tspi = -1;
static int hf_sna_nlp_slowdn1 = -1;
static int hf_sna_nlp_slowdn2 = -1;
static int hf_sna_nlp_fra = -1;
static int hf_sna_nlp_anr = -1;
static int hf_sna_nlp_frh = -1;
static int hf_sna_nlp_thdr = -1;
static int hf_sna_nlp_tcid = -1;
static int hf_sna_nlp_thdr_8 = -1;
static int hf_sna_nlp_setupi = -1;
static int hf_sna_nlp_somi = -1;
static int hf_sna_nlp_eomi = -1;
static int hf_sna_nlp_sri = -1;
static int hf_sna_nlp_rasapi = -1;
static int hf_sna_nlp_retryi = -1;
static int hf_sna_nlp_thdr_9 = -1;
static int hf_sna_nlp_lmi = -1;
static int hf_sna_nlp_cqfi = -1;
static int hf_sna_nlp_osi = -1;
static int hf_sna_nlp_offset = -1;
static int hf_sna_nlp_dlf = -1;
static int hf_sna_nlp_bsn = -1;
static int hf_sna_nlp_opti_len = -1;
static int hf_sna_nlp_opti_type = -1;
static int hf_sna_nlp_opti_0d_version = -1;
static int hf_sna_nlp_opti_0d_4 = -1;
static int hf_sna_nlp_opti_0d_target = -1;
static int hf_sna_nlp_opti_0d_arb = -1;
static int hf_sna_nlp_opti_0d_reliable = -1;
static int hf_sna_nlp_opti_0d_dedicated = -1;
static int hf_sna_nlp_opti_0e_stat = -1;
static int hf_sna_nlp_opti_0e_gap = -1;
static int hf_sna_nlp_opti_0e_idle = -1;
static int hf_sna_nlp_opti_0e_nabsp = -1;
static int hf_sna_nlp_opti_0e_sync = -1;
static int hf_sna_nlp_opti_0e_echo = -1;
static int hf_sna_nlp_opti_0e_rseq = -1;
/* static int hf_sna_nlp_opti_0e_abspbeg = -1; */
/* static int hf_sna_nlp_opti_0e_abspend = -1; */
static int hf_sna_nlp_opti_0f_bits = -1;
static int hf_sna_nlp_opti_10_tcid = -1;
static int hf_sna_nlp_opti_12_sense = -1;
static int hf_sna_nlp_opti_14_si_len = -1;
static int hf_sna_nlp_opti_14_si_key = -1;
static int hf_sna_nlp_opti_14_si_2 = -1;
static int hf_sna_nlp_opti_14_si_refifo = -1;
static int hf_sna_nlp_opti_14_si_mobility = -1;
static int hf_sna_nlp_opti_14_si_dirsearch = -1;
static int hf_sna_nlp_opti_14_si_limitres = -1;
static int hf_sna_nlp_opti_14_si_ncescope = -1;
static int hf_sna_nlp_opti_14_si_mnpsrscv = -1;
static int hf_sna_nlp_opti_14_si_maxpsize = -1;
static int hf_sna_nlp_opti_14_si_switch = -1;
static int hf_sna_nlp_opti_14_si_alive = -1;
static int hf_sna_nlp_opti_14_rr_len = -1;
static int hf_sna_nlp_opti_14_rr_key = -1;
static int hf_sna_nlp_opti_14_rr_2 = -1;
static int hf_sna_nlp_opti_14_rr_bfe = -1;
static int hf_sna_nlp_opti_14_rr_num = -1;
static int hf_sna_nlp_opti_22_2 = -1;
static int hf_sna_nlp_opti_22_type = -1;
static int hf_sna_nlp_opti_22_raa = -1;
static int hf_sna_nlp_opti_22_parity = -1;
static int hf_sna_nlp_opti_22_arb = -1;
static int hf_sna_nlp_opti_22_3 = -1;
static int hf_sna_nlp_opti_22_ratereq = -1;
static int hf_sna_nlp_opti_22_raterep = -1;
static int hf_sna_nlp_opti_22_field1 = -1;
static int hf_sna_nlp_opti_22_field2 = -1;
static int hf_sna_nlp_opti_22_field3 = -1;
static int hf_sna_nlp_opti_22_field4 = -1;
static int hf_sna_rh = -1;
static int hf_sna_rh_0 = -1;
static int hf_sna_rh_1 = -1;
static int hf_sna_rh_2 = -1;
static int hf_sna_rh_rri = -1;
static int hf_sna_rh_ru_category = -1;
static int hf_sna_rh_fi = -1;
static int hf_sna_rh_sdi = -1;
static int hf_sna_rh_bci = -1;
static int hf_sna_rh_eci = -1;
static int hf_sna_rh_dr1 = -1;
static int hf_sna_rh_lcci = -1;
static int hf_sna_rh_dr2 = -1;
static int hf_sna_rh_eri = -1;
static int hf_sna_rh_rti = -1;
static int hf_sna_rh_rlwi = -1;
static int hf_sna_rh_qri = -1;
static int hf_sna_rh_pi = -1;
static int hf_sna_rh_bbi = -1;
static int hf_sna_rh_ebi = -1;
static int hf_sna_rh_cdi = -1;
static int hf_sna_rh_csi = -1;
static int hf_sna_rh_edi = -1;
static int hf_sna_rh_pdi = -1;
static int hf_sna_rh_cebi = -1;
/*static int hf_sna_ru = -1;*/
static int hf_sna_gds = -1;
static int hf_sna_gds_len = -1;
static int hf_sna_gds_type = -1;
static int hf_sna_gds_cont = -1;
static int hf_sna_gds_info = -1;
/* static int hf_sna_xid = -1; */
static int hf_sna_xid_0 = -1;
static int hf_sna_xid_id = -1;
static int hf_sna_xid_format = -1;
static int hf_sna_xid_type = -1;
static int hf_sna_xid_len = -1;
static int hf_sna_xid_idblock = -1;
static int hf_sna_xid_idnum = -1;
static int hf_sna_xid_3_8 = -1;
static int hf_sna_xid_3_init_self = -1;
static int hf_sna_xid_3_stand_bind = -1;
static int hf_sna_xid_3_gener_bind = -1;
static int hf_sna_xid_3_recve_bind = -1;
static int hf_sna_xid_3_actpu = -1;
static int hf_sna_xid_3_nwnode = -1;
static int hf_sna_xid_3_cp = -1;
static int hf_sna_xid_3_cpcp = -1;
static int hf_sna_xid_3_state = -1;
static int hf_sna_xid_3_nonact = -1;
static int hf_sna_xid_3_cpchange = -1;
static int hf_sna_xid_3_10 = -1;
static int hf_sna_xid_3_asend_bind = -1;
static int hf_sna_xid_3_arecv_bind = -1;
static int hf_sna_xid_3_quiesce = -1;
static int hf_sna_xid_3_pucap = -1;
static int hf_sna_xid_3_pbn = -1;
static int hf_sna_xid_3_pacing = -1;
static int hf_sna_xid_3_11 = -1;
static int hf_sna_xid_3_tgshare = -1;
static int hf_sna_xid_3_dedsvc = -1;
static int hf_sna_xid_3_12 = -1;
static int hf_sna_xid_3_negcsup = -1;
static int hf_sna_xid_3_negcomp = -1;
static int hf_sna_xid_3_15 = -1;
static int hf_sna_xid_3_partg = -1;
static int hf_sna_xid_3_dlur = -1;
static int hf_sna_xid_3_dlus = -1;
static int hf_sna_xid_3_exbn = -1;
static int hf_sna_xid_3_genodai = -1;
static int hf_sna_xid_3_branch = -1;
static int hf_sna_xid_3_brnn = -1;
static int hf_sna_xid_3_tg = -1;
static int hf_sna_xid_3_dlc = -1;
static int hf_sna_xid_3_dlen = -1;
static int hf_sna_control_len = -1;
static int hf_sna_control_key = -1;
static int hf_sna_control_hprkey = -1;
static int hf_sna_control_05_delay = -1;
static int hf_sna_control_05_type = -1;
static int hf_sna_control_05_ptp = -1;
static int hf_sna_control_0e_type = -1;
static int hf_sna_control_0e_value = -1;
static int hf_sna_padding = -1;
static int hf_sna_reserved = -1;
static int hf_sna_biu_segment_data = -1;
static gint ett_sna = -1;
static gint ett_sna_th = -1;
static gint ett_sna_th_fid = -1;
static gint ett_sna_nlp_nhdr = -1;
static gint ett_sna_nlp_nhdr_0 = -1;
static gint ett_sna_nlp_nhdr_1 = -1;
static gint ett_sna_nlp_thdr = -1;
static gint ett_sna_nlp_thdr_8 = -1;
static gint ett_sna_nlp_thdr_9 = -1;
static gint ett_sna_nlp_opti_un = -1;
static gint ett_sna_nlp_opti_0d = -1;
static gint ett_sna_nlp_opti_0d_4 = -1;
static gint ett_sna_nlp_opti_0e = -1;
static gint ett_sna_nlp_opti_0e_stat = -1;
static gint ett_sna_nlp_opti_0e_absp = -1;
static gint ett_sna_nlp_opti_0f = -1;
static gint ett_sna_nlp_opti_10 = -1;
static gint ett_sna_nlp_opti_12 = -1;
static gint ett_sna_nlp_opti_14 = -1;
static gint ett_sna_nlp_opti_14_si = -1;
static gint ett_sna_nlp_opti_14_si_2 = -1;
static gint ett_sna_nlp_opti_14_rr = -1;
static gint ett_sna_nlp_opti_14_rr_2 = -1;
static gint ett_sna_nlp_opti_22 = -1;
static gint ett_sna_nlp_opti_22_2 = -1;
static gint ett_sna_nlp_opti_22_3 = -1;
static gint ett_sna_rh = -1;
static gint ett_sna_rh_0 = -1;
static gint ett_sna_rh_1 = -1;
static gint ett_sna_rh_2 = -1;
static gint ett_sna_gds = -1;
static gint ett_sna_xid_0 = -1;
static gint ett_sna_xid_id = -1;
static gint ett_sna_xid_3_8 = -1;
static gint ett_sna_xid_3_10 = -1;
static gint ett_sna_xid_3_11 = -1;
static gint ett_sna_xid_3_12 = -1;
static gint ett_sna_xid_3_15 = -1;
static gint ett_sna_control_un = -1;
static gint ett_sna_control_05 = -1;
static gint ett_sna_control_05hpr = -1;
static gint ett_sna_control_05hpr_type = -1;
static gint ett_sna_control_0e = -1;
static dissector_handle_t sna_handle;
static dissector_handle_t sna_xid_handle;
static int sna_address_type = -1;
/* Defragment fragmented SNA BIUs*/
static gboolean sna_defragment = TRUE;
static reassembly_table sna_reassembly_table;
/* Format Identifier */
static const value_string sna_th_fid_vals[] = {
{ 0x0, "SNA device <--> Non-SNA Device" },
{ 0x1, "Subarea Nodes, without ER or VR" },
{ 0x2, "Subarea Node <--> PU2" },
{ 0x3, "Subarea Node or SNA host <--> Subarea Node" },
{ 0x4, "Subarea Nodes, supporting ER and VR" },
{ 0x5, "HPR RTP endpoint nodes" },
{ 0xa, "HPR NLP Frame Routing" },
{ 0xb, "HPR NLP Frame Routing" },
{ 0xc, "HPR NLP Automatic Network Routing" },
{ 0xd, "HPR NLP Automatic Network Routing" },
{ 0xf, "Adjacent Subarea Nodes, supporting ER and VR" },
{ 0x0, NULL }
};
/* Mapping Field */
#define MPF_MIDDLE_SEGMENT 0
#define MPF_LAST_SEGMENT 1
#define MPF_FIRST_SEGMENT 2
#define MPF_WHOLE_BIU 3
static const value_string sna_th_mpf_vals[] = {
{ MPF_MIDDLE_SEGMENT, "Middle segment of a BIU" },
{ MPF_LAST_SEGMENT, "Last segment of a BIU" },
{ MPF_FIRST_SEGMENT, "First segment of a BIU" },
{ MPF_WHOLE_BIU, "Whole BIU" },
{ 0, NULL }
};
/* Expedited Flow Indicator */
static const value_string sna_th_efi_vals[] = {
{ 0, "Normal Flow" },
{ 1, "Expedited Flow" },
{ 0x0, NULL }
};
/* Request/Response Unit Category */
static const value_string sna_rh_ru_category_vals[] = {
{ 0, "Function Management Data (FMD)" },
{ 1, "Network Control (NC)" },
{ 2, "Data Flow Control (DFC)" },
{ 3, "Session Control (SC)" },
{ 0x0, NULL }
};
/* Format Indicator */
static const true_false_string sna_rh_fi_truth =
{ "FM Header", "No FM Header" };
/* Begin Chain Indicator */
static const true_false_string sna_rh_bci_truth =
{ "First in Chain", "Not First in Chain" };
/* End Chain Indicator */
static const true_false_string sna_rh_eci_truth =
{ "Last in Chain", "Not Last in Chain" };
/* Lengith-Checked Compression Indicator */
static const true_false_string sna_rh_lcci_truth =
{ "Compressed", "Not Compressed" };
/* Response Type Indicator */
static const true_false_string sna_rh_rti_truth =
{ "Negative", "Positive" };
/* Queued Response Indicator */
static const true_false_string sna_rh_qri_truth =
{ "Enqueue response in TC queues", "Response bypasses TC queues" };
/* Code Selection Indicator */
static const value_string sna_rh_csi_vals[] = {
{ 0, "EBCDIC" },
{ 1, "ASCII" },
{ 0x0, NULL }
};
/* TG Sweep */
static const value_string sna_th_tg_sweep_vals[] = {
{ 0, "This PIU may overtake any PU ahead of it." },
{ 1, "This PIU does not overtake any PIU ahead of it." },
{ 0x0, NULL }
};
/* ER_VR_SUPP_IND */
static const value_string sna_th_er_vr_supp_ind_vals[] = {
{ 0, "Each node supports ER and VR protocols" },
{ 1, "Includes at least one node that does not support ER and VR"
" protocols" },
{ 0x0, NULL }
};
/* VR_PAC_CNT_IND */
static const value_string sna_th_vr_pac_cnt_ind_vals[] = {
{ 0, "Pacing count on the VR has not reached 0" },
{ 1, "Pacing count on the VR has reached 0" },
{ 0x0, NULL }
};
/* NTWK_PRTY */
static const value_string sna_th_ntwk_prty_vals[] = {
{ 0, "PIU flows at a lower priority" },
{ 1, "PIU flows at network priority (highest transmission priority)" },
{ 0x0, NULL }
};
/* TGSF */
static const value_string sna_th_tgsf_vals[] = {
{ 0, "Not segmented" },
{ 1, "Last segment" },
{ 2, "First segment" },
{ 3, "Middle segment" },
{ 0x0, NULL }
};
/* PIUBF */
static const value_string sna_th_piubf_vals[] = {
{ 0, "Single PIU frame" },
{ 1, "Last PIU of a multiple PIU frame" },
{ 2, "First PIU of a multiple PIU frame" },
{ 3, "Middle PIU of a multiple PIU frame" },
{ 0x0, NULL }
};
/* NLPOI */
static const value_string sna_th_nlpoi_vals[] = {
{ 0, "NLP starts within this FID4 TH" },
{ 1, "NLP byte 0 starts after RH byte 0 following NLP C/P pad" },
{ 0x0, NULL }
};
/* TPF */
static const value_string sna_th_tpf_vals[] = {
{ 0, "Low Priority" },
{ 1, "Medium Priority" },
{ 2, "High Priority" },
{ 3, "Network Priority" },
{ 0x0, NULL }
};
/* VR_CWI */
static const value_string sna_th_vr_cwi_vals[] = {
{ 0, "Increment window size" },
{ 1, "Decrement window size" },
{ 0x0, NULL }
};
/* TG_NONFIFO_IND */
static const true_false_string sna_th_tg_nonfifo_ind_truth =
{ "TG FIFO is not required", "TG FIFO is required" };
/* VR_SQTI */
static const value_string sna_th_vr_sqti_vals[] = {
{ 0, "Non-sequenced, Non-supervisory" },
{ 1, "Non-sequenced, Supervisory" },
{ 2, "Singly-sequenced" },
{ 0x0, NULL }
};
/* VRPRQ */
static const true_false_string sna_th_vrprq_truth = {
"VR pacing request is sent asking for a VR pacing response",
"No VR pacing response is requested",
};
/* VRPRS */
static const true_false_string sna_th_vrprs_truth = {
"VR pacing response is sent in response to a VRPRQ bit set",
"No pacing response sent",
};
/* VR_CWRI */
static const value_string sna_th_vr_cwri_vals[] = {
{ 0, "Increment window size by 1" },
{ 1, "Decrement window size by 1" },
{ 0x0, NULL }
};
/* VR_RWI */
static const true_false_string sna_th_vr_rwi_truth = {
"Reset window size to the minimum specified in NC_ACTVR",
"Do not reset window size",
};
/* Switching Mode */
static const value_string sna_nlp_sm_vals[] = {
{ 5, "Function routing" },
{ 6, "Automatic network routing" },
{ 0x0, NULL }
};
static const true_false_string sna_nlp_tspi_truth =
{ "Time sensitive", "Not time sensitive" };
static const true_false_string sna_nlp_slowdn1_truth =
{ "Minor congestion", "No minor congestion" };
static const true_false_string sna_nlp_slowdn2_truth =
{ "Major congestion", "No major congestion" };
/* Function Type */
static const value_string sna_nlp_ft_vals[] = {
{ 0x10, "LDLC" },
{ 0x0, NULL }
};
static const value_string sna_nlp_frh_vals[] = {
{ 0x03, "XID complete request" },
{ 0x04, "XID complete response" },
{ 0x0, NULL }
};
static const true_false_string sna_nlp_setupi_truth =
{ "Connection setup segment present", "Connection setup segment not"
" present" };
static const true_false_string sna_nlp_somi_truth =
{ "Start of message", "Not start of message" };
static const true_false_string sna_nlp_eomi_truth =
{ "End of message", "Not end of message" };
static const true_false_string sna_nlp_sri_truth =
{ "Status requested", "No status requested" };
static const true_false_string sna_nlp_rasapi_truth =
{ "Reply as soon as possible", "No need to reply as soon as possible" };
static const true_false_string sna_nlp_retryi_truth =
{ "Undefined", "Sender will retransmit" };
static const true_false_string sna_nlp_lmi_truth =
{ "Last message", "Not last message" };
static const true_false_string sna_nlp_cqfi_truth =
{ "CQFI included", "CQFI not included" };
static const true_false_string sna_nlp_osi_truth =
{ "Optional segments present", "No optional segments present" };
static const value_string sna_xid_3_state_vals[] = {
{ 0x00, "Exchange state indicators not supported" },
{ 0x01, "Negotiation-proceeding exchange" },
{ 0x02, "Prenegotiation exchange" },
{ 0x03, "Nonactivation exchange" },
{ 0x0, NULL }
};
static const value_string sna_xid_3_branch_vals[] = {
{ 0x00, "Sender does not support branch extender" },
{ 0x01, "TG is branch uplink" },
{ 0x02, "TG is branch downlink" },
{ 0x03, "TG is neither uplink nor downlink" },
{ 0x0, NULL }
};
static const value_string sna_xid_type_vals[] = {
{ 0x01, "T1 node" },
{ 0x02, "T2.0 or T2.1 node" },
{ 0x03, "Reserved" },
{ 0x04, "T4 or T5 node" },
{ 0x0, NULL }
};
static const value_string sna_nlp_opti_vals[] = {
{ 0x0d, "Connection Setup Segment" },
{ 0x0e, "Status Segment" },
{ 0x0f, "Client Out Of Band Bits Segment" },
{ 0x10, "Connection Identifier Exchange Segment" },
{ 0x12, "Connection Fault Segment" },
{ 0x14, "Switching Information Segment" },
{ 0x22, "Adaptive Rate-Based Segment" },
{ 0x0, NULL }
};
static const value_string sna_nlp_opti_0d_version_vals[] = {
{ 0x0101, "Version 1.1" },
{ 0x0, NULL }
};
static const value_string sna_nlp_opti_0f_bits_vals[] = {
{ 0x0001, "Request Deactivation" },
{ 0x8000, "Reply - OK" },
{ 0x8004, "Reply - Reject" },
{ 0x0, NULL }
};
static const value_string sna_nlp_opti_22_type_vals[] = {
{ 0x00, "Setup" },
{ 0x01, "Rate Reply" },
{ 0x02, "Rate Request" },
{ 0x03, "Rate Request/Rate Reply" },
{ 0x0, NULL }
};
static const value_string sna_nlp_opti_22_raa_vals[] = {
{ 0x00, "Normal" },
{ 0x01, "Restraint" },
{ 0x02, "Slowdown1" },
{ 0x03, "Slowdown2" },
{ 0x04, "Critical" },
{ 0x0, NULL }
};
static const value_string sna_nlp_opti_22_arb_vals[] = {
{ 0x00, "Base Mode ARB" },
{ 0x01, "Responsive Mode ARB" },
{ 0x0, NULL }
};
/* GDS Variable Type */
static const value_string sna_gds_var_vals[] = {
{ 0x1210, "Change Number Of Sessions" },
{ 0x1211, "Exchange Log Name" },
{ 0x1212, "Control Point Management Services Unit" },
{ 0x1213, "Compare States" },
{ 0x1214, "LU Names Position" },
{ 0x1215, "LU Name" },
{ 0x1217, "Do Know" },
{ 0x1218, "Partner Restart" },
{ 0x1219, "Don't Know" },
{ 0x1220, "Sign-Off" },
{ 0x1221, "Sign-On" },
{ 0x1222, "SNMP-over-SNA" },
{ 0x1223, "Node Address Service" },
{ 0x12C1, "CP Capabilities" },
{ 0x12C2, "Topology Database Update" },
{ 0x12C3, "Register Resource" },
{ 0x12C4, "Locate" },
{ 0x12C5, "Cross-Domain Initiate" },
{ 0x12C9, "Delete Resource" },
{ 0x12CA, "Find Resource" },
{ 0x12CB, "Found Resource" },
{ 0x12CC, "Notify" },
{ 0x12CD, "Initiate-Other Cross-Domain" },
{ 0x12CE, "Route Setup" },
{ 0x12E1, "Error Log" },
{ 0x12F1, "Null Data" },
{ 0x12F2, "User Control Date" },
{ 0x12F3, "Map Name" },
{ 0x12F4, "Error Data" },
{ 0x12F6, "Authentication Token Data" },
{ 0x12F8, "Service Flow Authentication Token Data" },
{ 0x12FF, "Application Data" },
{ 0x1310, "MDS Message Unit" },
{ 0x1311, "MDS Routing Information" },
{ 0x1500, "FID2 Encapsulation" },
{ 0x0, NULL }
};
/* Control Vector Type */
static const value_string sna_control_vals[] = {
{ 0x00, "SSCP-LU Session Capabilities Control Vector" },
{ 0x01, "Date-Time Control Vector" },
{ 0x02, "Subarea Routing Control Vector" },
{ 0x03, "SDLC Secondary Station Control Vector" },
{ 0x04, "LU Control Vector" },
{ 0x05, "Channel Control Vector" },
{ 0x06, "Cross-Domain Resource Manager (CDRM) Control Vector" },
{ 0x07, "PU FMD-RU-Usage Control Vector" },
{ 0x08, "Intensive Mode Control Vector" },
{ 0x09, "Activation Request / Response Sequence Identifier Control"
" Vector" },
{ 0x0a, "User Request Correlator Control Vector" },
{ 0x0b, "SSCP-PU Session Capabilities Control Vector" },
{ 0x0c, "LU-LU Session Capabilities Control Vector" },
{ 0x0d, "Mode / Class-of-Service / Virtual-Route-Identifier List"
" Control Vector" },
{ 0x0e, "Network Name Control Vector" },
{ 0x0f, "Link Capabilities and Status Control Vector" },
{ 0x10, "Product Set ID Control Vector" },
{ 0x11, "Load Module Correlation Control Vector" },
{ 0x12, "Network Identifier Control Vector" },
{ 0x13, "Gateway Support Capabilities Control Vector" },
{ 0x14, "Session Initiation Control Vector" },
{ 0x15, "Network-Qualified Address Pair Control Vector" },
{ 0x16, "Names Substitution Control Vector" },
{ 0x17, "SSCP Identifier Control Vector" },
{ 0x18, "SSCP Name Control Vector" },
{ 0x19, "Resource Identifier Control Vector" },
{ 0x1a, "NAU Address Control Vector" },
{ 0x1b, "VRID List Control Vector" },
{ 0x1c, "Network-Qualified Name Pair Control Vector" },
{ 0x1e, "VR-ER Mapping Data Control Vector" },
{ 0x1f, "ER Configuration Control Vector" },
{ 0x23, "Local-Form Session Identifier Control Vector" },
{ 0x24, "IPL Load Module Request Control Vector" },
{ 0x25, "Security ID Control Control Vector" },
{ 0x26, "Network Connection Endpoint Identifier Control Vector" },
{ 0x27, "XRF Session Activation Control Vector" },
{ 0x28, "Related Session Identifier Control Vector" },
{ 0x29, "Session State Data Control Vector" },
{ 0x2a, "Session Information Control Vector" },
{ 0x2b, "Route Selection Control Vector" },
{ 0x2c, "COS/TPF Control Vector" },
{ 0x2d, "Mode Control Vector" },
{ 0x2f, "LU Definition Control Vector" },
{ 0x30, "Assign LU Characteristics Control Vector" },
{ 0x31, "BIND Image Control Vector" },
{ 0x32, "Short-Hold Mode Control Vector" },
{ 0x33, "ENCP Search Control Control Vector" },
{ 0x34, "LU Definition Override Control Vector" },
{ 0x35, "Extended Sense Data Control Vector" },
{ 0x36, "Directory Error Control Vector" },
{ 0x37, "Directory Entry Correlator Control Vector" },
{ 0x38, "Short-Hold Mode Emulation Control Vector" },
{ 0x39, "Network Connection Endpoint (NCE) Instance Identifier"
" Control Vector" },
{ 0x3a, "Route Status Data Control Vector" },
{ 0x3b, "VR Congestion Data Control Vector" },
{ 0x3c, "Associated Resource Entry Control Vector" },
{ 0x3d, "Directory Entry Control Vector" },
{ 0x3e, "Directory Entry Characteristic Control Vector" },
{ 0x3f, "SSCP (SLU) Capabilities Control Vector" },
{ 0x40, "Real Associated Resource Control Vector" },
{ 0x41, "Station Parameters Control Vector" },
{ 0x42, "Dynamic Path Update Data Control Vector" },
{ 0x43, "Extended SDLC Station Control Vector" },
{ 0x44, "Node Descriptor Control Vector" },
{ 0x45, "Node Characteristics Control Vector" },
{ 0x46, "TG Descriptor Control Vector" },
{ 0x47, "TG Characteristics Control Vector" },
{ 0x48, "Topology Resource Descriptor Control Vector" },
{ 0x49, "Multinode Persistent Sessions (MNPS) LU Names Control"
" Vector" },
{ 0x4a, "Real Owning Control Point Control Vector" },
{ 0x4b, "RTP Transport Connection Identifier Control Vector" },
{ 0x51, "DLUR/S Capabilities Control Vector" },
{ 0x52, "Primary Send Pacing Window Size Control Vector" },
{ 0x56, "Call Security Verification Control Vector" },
{ 0x57, "DLC Connection Data Control Vector" },
{ 0x59, "Installation-Defined CDINIT Data Control Vector" },
{ 0x5a, "Session Services Extension Support Control Vector" },
{ 0x5b, "Interchange Node Support Control Vector" },
{ 0x5c, "APPN Message Transport Control Vector" },
{ 0x5d, "Subarea Message Transport Control Vector" },
{ 0x5e, "Related Request Control Vector" },
{ 0x5f, "Extended Fully Qualified PCID Control Vector" },
{ 0x60, "Fully Qualified PCID Control Vector" },
{ 0x61, "HPR Capabilities Control Vector" },
{ 0x62, "Session Address Control Vector" },
{ 0x63, "Cryptographic Key Distribution Control Vector" },
{ 0x64, "TCP/IP Information Control Vector" },
{ 0x65, "Device Characteristics Control Vector" },
{ 0x66, "Length-Checked Compression Control Vector" },
{ 0x67, "Automatic Network Routing (ANR) Path Control Vector" },
{ 0x68, "XRF/Session Cryptography Control Vector" },
{ 0x69, "Switched Parameters Control Vector" },
{ 0x6a, "ER Congestion Data Control Vector" },
{ 0x71, "Triple DES Cryptography Key Continuation Control Vector" },
{ 0xfe, "Control Vector Keys Not Recognized" },
{ 0x0, NULL }
};
static const value_string sna_control_hpr_vals[] = {
{ 0x00, "Node Identifier Control Vector" },
{ 0x03, "Network ID Control Vector" },
{ 0x05, "Network Address Control Vector" },
{ 0x0, NULL }
};
static const value_string sna_control_0e_type_vals[] = {
{ 0xF1, "PU Name" },
{ 0xF3, "LU Name" },
{ 0xF4, "CP Name" },
{ 0xF5, "SSCP Name" },
{ 0xF6, "NNCP Name" },
{ 0xF7, "Link Station Name" },
{ 0xF8, "CP Name of CP(PLU)" },
{ 0xF9, "CP Name of CP(SLU)" },
{ 0xFA, "Generic Name" },
{ 0x0, NULL }
};
/* Values to direct the top-most dissector what to dissect
* after the TH. */
enum next_dissection_enum {
stop_here,
rh_only,
everything
};
enum parse {
LT,
KL
};
/*
* Structure used to represent an FID Type 4 address; gives the layout of the
* data pointed to by an AT_SNA "address" structure if the size is
* SNA_FID_TYPE_4_ADDR_LEN.
*/
#define SNA_FID_TYPE_4_ADDR_LEN 6
struct sna_fid_type_4_addr {
guint32 saf;
guint16 ef;
};
typedef enum next_dissection_enum next_dissection_t;
static void dissect_xid (tvbuff_t*, packet_info*, proto_tree*, proto_tree*);
static void dissect_fid (tvbuff_t*, packet_info*, proto_tree*, proto_tree*);
static void dissect_nlp (tvbuff_t*, packet_info*, proto_tree*, proto_tree*);
static void dissect_gds (tvbuff_t*, packet_info*, proto_tree*, proto_tree*);
static void dissect_rh (tvbuff_t*, int, proto_tree*);
static void dissect_sna_control(tvbuff_t* parent_tvb, int offset, int control_len, proto_tree* tree, int hpr, enum parse parse);
static int sna_fid_to_str_buf(const address *addr, gchar *buf, int buf_len _U_)
{
const guint8 *addrdata;
struct sna_fid_type_4_addr sna_fid_type_4_addr;
gchar *bufp = buf;
switch (addr->len) {
case 1:
addrdata = (const guint8 *)addr->data;
word_to_hex(buf, addrdata[0]);
buf[4] = '\0';
break;
case 2:
addrdata = (const guint8 *)addr->data;
word_to_hex(buf, pntoh16(&addrdata[0]));
buf[4] = '\0';
break;
case SNA_FID_TYPE_4_ADDR_LEN:
/* FID Type 4 */
memcpy(&sna_fid_type_4_addr, addr->data, SNA_FID_TYPE_4_ADDR_LEN);
bufp = dword_to_hex(bufp, sna_fid_type_4_addr.saf);
*bufp++ = '.';
bufp = word_to_hex(bufp, sna_fid_type_4_addr.ef);
*bufp++ = '\0'; /* NULL terminate */
break;
default:
buf[0] = '\0';
return 1;
}
return (int)strlen(buf)+1;
}
static int sna_address_str_len(const address* addr _U_)
{
/* We could do this based on address length, but 14 bytes isn't THAT much space */
return 14;
}
/* --------------------------------------------------------------------
* Chapter 2 High-Performance Routing (HPR) Headers
* --------------------------------------------------------------------
*/
static void
dissect_optional_0d(tvbuff_t *tvb, proto_tree *tree)
{
int offset, len, pad;
static int * const fields[] = {
&hf_sna_nlp_opti_0d_target,
&hf_sna_nlp_opti_0d_arb,
&hf_sna_nlp_opti_0d_reliable,
&hf_sna_nlp_opti_0d_dedicated,
NULL
};
if (!tree)
return;
proto_tree_add_item(tree, hf_sna_nlp_opti_0d_version, tvb, 2, 2, ENC_BIG_ENDIAN);
proto_tree_add_bitmask(tree, tvb, 4, hf_sna_nlp_opti_0d_4,
ett_sna_nlp_opti_0d_4, fields, ENC_NA);
proto_tree_add_item(tree, hf_sna_reserved, tvb, 5, 3, ENC_NA);
offset = 8;
while (tvb_offset_exists(tvb, offset)) {
len = tvb_get_guint8(tvb, offset+0);
if (len) {
dissect_sna_control(tvb, offset, len, tree, 1, LT);
pad = (len+3) & 0xfffc;
if (pad > len)
proto_tree_add_item(tree, hf_sna_padding, tvb, offset+len, pad-len, ENC_NA);
offset += pad;
} else {
/* Avoid endless loop */
return;
}
}
}
static void
dissect_optional_0e(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)
{
int bits, offset;
static int * const fields[] = {
&hf_sna_nlp_opti_0e_gap,
&hf_sna_nlp_opti_0e_idle,
NULL
};
bits = tvb_get_guint8(tvb, 2);
offset = 20;
proto_tree_add_bitmask(tree, tvb, 2, hf_sna_nlp_opti_0e_stat,
ett_sna_nlp_opti_0e_stat, fields, ENC_NA);
proto_tree_add_item(tree, hf_sna_nlp_opti_0e_nabsp,
tvb, 3, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(tree, hf_sna_nlp_opti_0e_sync,
tvb, 4, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(tree, hf_sna_nlp_opti_0e_echo,
tvb, 6, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(tree, hf_sna_nlp_opti_0e_rseq,
tvb, 8, 4, ENC_BIG_ENDIAN);
proto_tree_add_item(tree, hf_sna_reserved, tvb, 12, 8, ENC_NA);
if (tvb_offset_exists(tvb, offset))
call_data_dissector(tvb_new_subset_remaining(tvb, 4), pinfo, tree);
if (bits & 0x40) {
col_set_str(pinfo->cinfo, COL_INFO, "HPR Idle Message");
} else {
col_set_str(pinfo->cinfo, COL_INFO, "HPR Status Message");
}
}
static void
dissect_optional_0f(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)
{
proto_tree_add_item(tree, hf_sna_nlp_opti_0f_bits, tvb, 2, 2, ENC_BIG_ENDIAN);
if (tvb_offset_exists(tvb, 4))
call_data_dissector(tvb_new_subset_remaining(tvb, 4), pinfo, tree);
}
static void
dissect_optional_10(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)
{
proto_tree_add_item(tree, hf_sna_reserved, tvb, 2, 2, ENC_NA);
proto_tree_add_item(tree, hf_sna_nlp_opti_10_tcid, tvb, 4, 8, ENC_NA);
if (tvb_offset_exists(tvb, 12))
call_data_dissector(tvb_new_subset_remaining(tvb, 12), pinfo, tree);
}
static void
dissect_optional_12(tvbuff_t *tvb, proto_tree *tree)
{
proto_tree_add_item(tree, hf_sna_reserved, tvb, 2, 2, ENC_NA);
proto_tree_add_item(tree, hf_sna_nlp_opti_12_sense, tvb, 4, -1, ENC_NA);
}
static void
dissect_optional_14(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)
{
proto_tree *sub_tree;
int len, pad, type, offset, num, sublen;
static int * const opti_14_si_fields[] = {
&hf_sna_nlp_opti_14_si_refifo,
&hf_sna_nlp_opti_14_si_mobility,
&hf_sna_nlp_opti_14_si_dirsearch,
&hf_sna_nlp_opti_14_si_limitres,
&hf_sna_nlp_opti_14_si_ncescope,
&hf_sna_nlp_opti_14_si_mnpsrscv,
NULL
};
static int * const opti_14_rr_fields[] = {
&hf_sna_nlp_opti_14_rr_bfe,
NULL
};
proto_tree_add_item(tree, hf_sna_reserved, tvb, 2, 2, ENC_NA);
offset = 4;
len = tvb_get_guint8(tvb, offset);
type = tvb_get_guint8(tvb, offset+1);
if ((type != 0x83) || (len <= 16)) {
/* Invalid */
call_data_dissector(tvb_new_subset_remaining(tvb, offset), pinfo, tree);
return;
}
sub_tree = proto_tree_add_subtree(tree, tvb, offset, len,
ett_sna_nlp_opti_14_si, NULL, "Switching Information Control Vector");
proto_tree_add_uint(sub_tree, hf_sna_nlp_opti_14_si_len,
tvb, offset, 1, len);
proto_tree_add_uint(sub_tree, hf_sna_nlp_opti_14_si_key,
tvb, offset+1, 1, type);
proto_tree_add_bitmask(tree, tvb, offset+2, hf_sna_nlp_opti_14_si_2,
ett_sna_nlp_opti_14_si_2, opti_14_si_fields, ENC_NA);
proto_tree_add_item(sub_tree, hf_sna_reserved, tvb, offset+3, 1, ENC_NA);
proto_tree_add_item(sub_tree, hf_sna_nlp_opti_14_si_maxpsize,
tvb, offset+4, 4, ENC_BIG_ENDIAN);
proto_tree_add_item(sub_tree, hf_sna_nlp_opti_14_si_switch,
tvb, offset+8, 4, ENC_BIG_ENDIAN);
proto_tree_add_item(sub_tree, hf_sna_nlp_opti_14_si_alive,
tvb, offset+12, 4, ENC_BIG_ENDIAN);
dissect_sna_control(tvb, offset+16, len-16, sub_tree, 1, LT);
pad = (len+3) & 0xfffc;
if (pad > len)
proto_tree_add_item(sub_tree, hf_sna_padding, tvb, offset+len, pad-len, ENC_NA);
offset += pad;
len = tvb_get_guint8(tvb, offset);
type = tvb_get_guint8(tvb, offset+1);
if ((type != 0x85) || ( len < 4)) {
/* Invalid */
call_data_dissector(tvb_new_subset_remaining(tvb, offset), pinfo, tree);
return;
}
sub_tree = proto_tree_add_subtree(tree, tvb, offset, len,
ett_sna_nlp_opti_14_rr, NULL, "Return Route TG Descriptor Control Vector");
proto_tree_add_uint(sub_tree, hf_sna_nlp_opti_14_rr_len,
tvb, offset, 1, len);
proto_tree_add_uint(sub_tree, hf_sna_nlp_opti_14_rr_key,
tvb, offset+1, 1, type);
proto_tree_add_bitmask(tree, tvb, offset+2, hf_sna_nlp_opti_14_rr_2,
ett_sna_nlp_opti_14_rr_2, opti_14_rr_fields, ENC_NA);
num = tvb_get_guint8(tvb, offset+3);
proto_tree_add_uint(sub_tree, hf_sna_nlp_opti_14_rr_num,
tvb, offset+3, 1, num);
offset += 4;
while (num) {
sublen = tvb_get_guint8(tvb, offset);
if (sublen) {
dissect_sna_control(tvb, offset, sublen, sub_tree, 1, LT);
} else {
/* Invalid */
call_data_dissector(tvb_new_subset_remaining(tvb, offset), pinfo, tree);
return;
}
/* No padding here */
offset += sublen;
num--;
}
}
static void
dissect_optional_22(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)
{
int bits, type;
static int * const opti_22_2_fields[] = {
&hf_sna_nlp_opti_22_type,
&hf_sna_nlp_opti_22_raa,
&hf_sna_nlp_opti_22_parity,
&hf_sna_nlp_opti_22_arb,
NULL
};
static int * const opti_22_3_fields[] = {
&hf_sna_nlp_opti_22_ratereq,
&hf_sna_nlp_opti_22_raterep,
NULL
};
bits = tvb_get_guint8(tvb, 2);
type = (bits & 0xc0) >> 6;
proto_tree_add_bitmask(tree, tvb, 2, hf_sna_nlp_opti_22_2,
ett_sna_nlp_opti_22_2, opti_22_2_fields, ENC_NA);
proto_tree_add_bitmask(tree, tvb, 3, hf_sna_nlp_opti_22_3,
ett_sna_nlp_opti_22_3, opti_22_3_fields, ENC_NA);
proto_tree_add_item(tree, hf_sna_nlp_opti_22_field1,
tvb, 4, 4, ENC_BIG_ENDIAN);
proto_tree_add_item(tree, hf_sna_nlp_opti_22_field2,
tvb, 8, 4, ENC_BIG_ENDIAN);
if (type == 0) {
proto_tree_add_item(tree, hf_sna_nlp_opti_22_field3,
tvb, 12, 4, ENC_BIG_ENDIAN);
proto_tree_add_item(tree, hf_sna_nlp_opti_22_field4,
tvb, 16, 4, ENC_BIG_ENDIAN);
if (tvb_offset_exists(tvb, 20))
call_data_dissector(tvb_new_subset_remaining(tvb, 20), pinfo, tree);
} else {
if (tvb_offset_exists(tvb, 12))
call_data_dissector(tvb_new_subset_remaining(tvb, 12), pinfo, tree);
}
}
static void
dissect_optional(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)
{
proto_tree *sub_tree;
int offset, type, len;
gint ett;
sub_tree = NULL;
offset = 0;
while (tvb_offset_exists(tvb, offset)) {
len = tvb_get_guint8(tvb, offset);
type = tvb_get_guint8(tvb, offset+1);
/* Prevent loop for invalid crap in packet */
if (len == 0) {
call_data_dissector(tvb_new_subset_remaining(tvb, offset), pinfo, tree);
return;
}
ett = ett_sna_nlp_opti_un;
if(type == 0x0d) ett = ett_sna_nlp_opti_0d;
if(type == 0x0e) ett = ett_sna_nlp_opti_0e;
if(type == 0x0f) ett = ett_sna_nlp_opti_0f;
if(type == 0x10) ett = ett_sna_nlp_opti_10;
if(type == 0x12) ett = ett_sna_nlp_opti_12;
if(type == 0x14) ett = ett_sna_nlp_opti_14;
if(type == 0x22) ett = ett_sna_nlp_opti_22;
if (tree) {
sub_tree = proto_tree_add_subtree(tree, tvb,
offset, len << 2, ett, NULL,
val_to_str(type, sna_nlp_opti_vals,
"Unknown Segment Type"));
proto_tree_add_uint(sub_tree, hf_sna_nlp_opti_len,
tvb, offset, 1, len);
proto_tree_add_uint(sub_tree, hf_sna_nlp_opti_type,
tvb, offset+1, 1, type);
}
switch(type) {
case 0x0d:
dissect_optional_0d(tvb_new_subset_length_caplen(tvb, offset,
len << 2, -1), sub_tree);
break;
case 0x0e:
dissect_optional_0e(tvb_new_subset_length_caplen(tvb, offset,
len << 2, -1), pinfo, sub_tree);
break;
case 0x0f:
dissect_optional_0f(tvb_new_subset_length_caplen(tvb, offset,
len << 2, -1), pinfo, sub_tree);
break;
case 0x10:
dissect_optional_10(tvb_new_subset_length_caplen(tvb, offset,
len << 2, -1), pinfo, sub_tree);
break;
case 0x12:
dissect_optional_12(tvb_new_subset_length_caplen(tvb, offset,
len << 2, -1), sub_tree);
break;
case 0x14:
dissect_optional_14(tvb_new_subset_length_caplen(tvb, offset,
len << 2, -1), pinfo, sub_tree);
break;
case 0x22:
dissect_optional_22(tvb_new_subset_length_caplen(tvb, offset,
len << 2, -1), pinfo, sub_tree);
break;
default:
call_data_dissector(tvb_new_subset_length_caplen(tvb, offset,
len << 2, -1), pinfo, sub_tree);
}
offset += (len << 2);
}
}
static void
dissect_nlp(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree,
proto_tree *parent_tree)
{
proto_tree *nlp_tree;
proto_item *nlp_item;
guint8 nhdr_0, nhdr_1, nhdr_x, thdr_8, thdr_9, fid;
guint32 thdr_len, thdr_dlf;
guint16 subindx;
static int * const nlp_nhdr_0_fields[] = {
&hf_sna_nlp_sm,
&hf_sna_nlp_tpf,
NULL
};
static int * const nlp_nhdr_1_fields[] = {
&hf_sna_nlp_ft,
&hf_sna_nlp_tspi,
&hf_sna_nlp_slowdn1,
&hf_sna_nlp_slowdn2,
NULL
};
static int * const nlp_nhdr_8_fields[] = {
&hf_sna_nlp_setupi,
&hf_sna_nlp_somi,
&hf_sna_nlp_eomi,
&hf_sna_nlp_sri,
&hf_sna_nlp_rasapi,
&hf_sna_nlp_retryi,
NULL
};
static int * const nlp_nhdr_9_fields[] = {
&hf_sna_nlp_lmi,
&hf_sna_nlp_cqfi,
&hf_sna_nlp_osi,
NULL
};
int indx = 0, counter = 0;
nlp_tree = NULL;
nlp_item = NULL;
nhdr_0 = tvb_get_guint8(tvb, indx);
nhdr_1 = tvb_get_guint8(tvb, indx+1);
col_set_str(pinfo->cinfo, COL_INFO, "HPR NLP Packet");
if (tree) {
/* Don't bother setting length. We'll set it later after we
* find the lengths of NHDR */
nlp_item = proto_tree_add_item(tree, hf_sna_nlp_nhdr, tvb,
indx, -1, ENC_NA);
nlp_tree = proto_item_add_subtree(nlp_item, ett_sna_nlp_nhdr);
proto_tree_add_bitmask(nlp_tree, tvb, indx, hf_sna_nlp_nhdr_0,
ett_sna_nlp_nhdr_0, nlp_nhdr_0_fields, ENC_NA);
proto_tree_add_bitmask(nlp_tree, tvb, indx+1, hf_sna_nlp_nhdr_1,
ett_sna_nlp_nhdr_1, nlp_nhdr_1_fields, ENC_NA);
}
/* ANR or FR lists */
indx += 2;
counter = 0;
if ((nhdr_0 & 0xe0) == 0xa0) {
do {
nhdr_x = tvb_get_guint8(tvb, indx + counter);
counter ++;
} while (nhdr_x != 0xff);
proto_tree_add_item(nlp_tree,
hf_sna_nlp_fra, tvb, indx, counter, ENC_NA);
indx += counter;
proto_tree_add_item(nlp_tree, hf_sna_reserved, tvb, indx, 1, ENC_NA);
indx++;
if (tree)
proto_item_set_len(nlp_item, indx);
if ((nhdr_1 & 0xf0) == 0x10) {
proto_tree_add_item(tree, hf_sna_nlp_frh,
tvb, indx, 1, ENC_BIG_ENDIAN);
indx ++;
if (tvb_offset_exists(tvb, indx))
call_data_dissector(tvb_new_subset_remaining(tvb, indx),
pinfo, parent_tree);
return;
}
}
if ((nhdr_0 & 0xe0) == 0xc0) {
do {
nhdr_x = tvb_get_guint8(tvb, indx + counter);
counter ++;
} while (nhdr_x != 0xff);
proto_tree_add_item(nlp_tree, hf_sna_nlp_anr,
tvb, indx, counter, ENC_NA);
indx += counter;
proto_tree_add_item(nlp_tree, hf_sna_reserved, tvb, indx, 1, ENC_NA);
indx++;
if (tree)
proto_item_set_len(nlp_item, indx);
}
thdr_8 = tvb_get_guint8(tvb, indx+8);
thdr_9 = tvb_get_guint8(tvb, indx+9);
thdr_len = tvb_get_ntohs(tvb, indx+10);
thdr_dlf = tvb_get_ntohl(tvb, indx+12);
if (tree) {
nlp_item = proto_tree_add_item(tree, hf_sna_nlp_thdr, tvb,
indx, thdr_len << 2, ENC_NA);
nlp_tree = proto_item_add_subtree(nlp_item, ett_sna_nlp_thdr);
proto_tree_add_item(nlp_tree, hf_sna_nlp_tcid, tvb,
indx, 8, ENC_NA);
proto_tree_add_bitmask(nlp_tree, tvb, indx+8, hf_sna_nlp_thdr_8,
ett_sna_nlp_thdr_8, nlp_nhdr_8_fields, ENC_NA);
proto_tree_add_bitmask(nlp_tree, tvb, indx+9, hf_sna_nlp_thdr_9,
ett_sna_nlp_thdr_9, nlp_nhdr_9_fields, ENC_NA);
proto_tree_add_uint(nlp_tree, hf_sna_nlp_offset, tvb, indx+10,
2, thdr_len);
proto_tree_add_uint(nlp_tree, hf_sna_nlp_dlf, tvb, indx+12,
4, thdr_dlf);
proto_tree_add_item(nlp_tree, hf_sna_nlp_bsn, tvb, indx+16,
4, ENC_BIG_ENDIAN);
}
subindx = 20;
if (((thdr_9 & 0x18) == 0x08) && ((thdr_len << 2) > subindx)) {
counter = tvb_get_guint8(tvb, indx + subindx);
if (tvb_get_guint8(tvb, indx+subindx+1) == 5)
dissect_sna_control(tvb, indx + subindx, counter+2, nlp_tree, 1, LT);
else
call_data_dissector(tvb_new_subset_length_caplen(tvb, indx + subindx, counter+2,
-1), pinfo, nlp_tree);
subindx += (counter+2);
}
if ((thdr_9 & 0x04) && ((thdr_len << 2) > subindx))
dissect_optional(
tvb_new_subset_length_caplen(tvb, indx + subindx,
(thdr_len << 2) - subindx, -1),
pinfo, nlp_tree);
indx += (thdr_len << 2);
if (((thdr_8 & 0x20) == 0) && thdr_dlf) {
col_set_str(pinfo->cinfo, COL_INFO, "HPR Fragment");
if (tvb_offset_exists(tvb, indx)) {
call_data_dissector(tvb_new_subset_remaining(tvb, indx), pinfo,
parent_tree);
}
return;
}
if (tvb_offset_exists(tvb, indx)) {
/* Transmission Header Format Identifier */
fid = hi_nibble(tvb_get_guint8(tvb, indx));
if (fid == 5) /* Only FID5 allowed for HPR */
dissect_fid(tvb_new_subset_remaining(tvb, indx), pinfo,
tree, parent_tree);
else {
if (tvb_get_ntohs(tvb, indx+2) == 0x12ce) {
/* Route Setup */
col_set_str(pinfo->cinfo, COL_INFO, "HPR Route Setup");
dissect_gds(tvb_new_subset_remaining(tvb, indx),
pinfo, tree, parent_tree);
} else
call_data_dissector(tvb_new_subset_remaining(tvb, indx),
pinfo, parent_tree);
}
}
}
/* --------------------------------------------------------------------
* Chapter 3 Exchange Identification (XID) Information Fields
* --------------------------------------------------------------------
*/
static void
dissect_xid1(tvbuff_t *tvb, proto_tree *tree)
{
proto_tree_add_item(tree, hf_sna_reserved, tvb, 0, 2, ENC_NA);
}
static void
dissect_xid2(tvbuff_t *tvb, proto_tree *tree)
{
guint dlen, offset;
if (!tree)
return;
dlen = tvb_get_guint8(tvb, 0);
offset = dlen;
while (tvb_offset_exists(tvb, offset)) {
dlen = tvb_get_guint8(tvb, offset+1);
dissect_sna_control(tvb, offset, dlen+2, tree, 0, KL);
offset += (dlen + 2);
}
}
static void
dissect_xid3(tvbuff_t *tvb, proto_tree *tree)
{
guint dlen, offset;
static int * const sna_xid_3_fields[] = {
&hf_sna_xid_3_init_self,
&hf_sna_xid_3_stand_bind,
&hf_sna_xid_3_gener_bind,
&hf_sna_xid_3_recve_bind,
&hf_sna_xid_3_actpu,
&hf_sna_xid_3_nwnode,
&hf_sna_xid_3_cp,
&hf_sna_xid_3_cpcp,
&hf_sna_xid_3_state,
&hf_sna_xid_3_nonact,
&hf_sna_xid_3_cpchange,
NULL
};
static int * const sna_xid_10_fields[] = {
&hf_sna_xid_3_asend_bind,
&hf_sna_xid_3_arecv_bind,
&hf_sna_xid_3_quiesce,
&hf_sna_xid_3_pucap,
&hf_sna_xid_3_pbn,
&hf_sna_xid_3_pacing,
NULL
};
static int * const sna_xid_11_fields[] = {
&hf_sna_xid_3_tgshare,
&hf_sna_xid_3_dedsvc,
NULL
};
static int * const sna_xid_12_fields[] = {
&hf_sna_xid_3_negcsup,
&hf_sna_xid_3_negcomp,
NULL
};
static int * const sna_xid_15_fields[] = {
&hf_sna_xid_3_partg,
&hf_sna_xid_3_dlur,
&hf_sna_xid_3_dlus,
&hf_sna_xid_3_exbn,
&hf_sna_xid_3_genodai,
&hf_sna_xid_3_branch,
&hf_sna_xid_3_brnn,
NULL
};
if (!tree)
return;
proto_tree_add_item(tree, hf_sna_reserved, tvb, 0, 2, ENC_NA);
proto_tree_add_bitmask(tree, tvb, 2, hf_sna_xid_3_8,
ett_sna_xid_3_8, sna_xid_3_fields, ENC_BIG_ENDIAN);
proto_tree_add_bitmask(tree, tvb, 4, hf_sna_xid_3_10,
ett_sna_xid_3_10, sna_xid_10_fields, ENC_BIG_ENDIAN);
proto_tree_add_bitmask(tree, tvb, 5, hf_sna_xid_3_11,
ett_sna_xid_3_11, sna_xid_11_fields, ENC_BIG_ENDIAN);
proto_tree_add_bitmask(tree, tvb, 6, hf_sna_xid_3_12,
ett_sna_xid_3_12, sna_xid_12_fields, ENC_BIG_ENDIAN);
proto_tree_add_item(tree, hf_sna_reserved, tvb, 7, 2, ENC_NA);
proto_tree_add_bitmask(tree, tvb, 9, hf_sna_xid_3_15,
ett_sna_xid_3_15, sna_xid_15_fields, ENC_BIG_ENDIAN);
proto_tree_add_item(tree, hf_sna_xid_3_tg, tvb, 10, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(tree, hf_sna_xid_3_dlc, tvb, 11, 1, ENC_BIG_ENDIAN);
dlen = tvb_get_guint8(tvb, 12);
proto_tree_add_uint(tree, hf_sna_xid_3_dlen, tvb, 12, 1, dlen);
/* FIXME: DLC Dependent Data Go Here */
offset = 12 + dlen;
while (tvb_offset_exists(tvb, offset)) {
dlen = tvb_get_guint8(tvb, offset+1);
dissect_sna_control(tvb, offset, dlen+2, tree, 0, KL);
offset += (dlen+2);
}
}
static void
dissect_xid(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree,
proto_tree *parent_tree)
{
proto_tree *sub_tree;
proto_item *sub_ti = NULL;
int format, type, len;
guint32 id;
len = tvb_get_guint8(tvb, 1);
type = tvb_get_guint8(tvb, 0);
id = tvb_get_ntohl(tvb, 2);
format = hi_nibble(type);
/* Summary information */
col_add_fstr(pinfo->cinfo, COL_INFO,
"SNA XID Format:%d Type:%s", format,
val_to_str_const(lo_nibble(type), sna_xid_type_vals,
"Unknown Type"));
if (tree) {
sub_ti = proto_tree_add_item(tree, hf_sna_xid_0, tvb,
0, 1, ENC_BIG_ENDIAN);
sub_tree = proto_item_add_subtree(sub_ti, ett_sna_xid_0);
proto_tree_add_uint(sub_tree, hf_sna_xid_format, tvb, 0, 1,
type);
proto_tree_add_uint(sub_tree, hf_sna_xid_type, tvb, 0, 1,
type);
proto_tree_add_uint(tree, hf_sna_xid_len, tvb, 1, 1, len);
sub_ti = proto_tree_add_item(tree, hf_sna_xid_id, tvb,
2, 4, ENC_BIG_ENDIAN);
sub_tree = proto_item_add_subtree(sub_ti, ett_sna_xid_id);
proto_tree_add_uint(sub_tree, hf_sna_xid_idblock, tvb, 2, 4,
id);
proto_tree_add_uint(sub_tree, hf_sna_xid_idnum, tvb, 2, 4,
id);
switch(format) {
case 0:
break;
case 1:
dissect_xid1(tvb_new_subset_length_caplen(tvb, 6, len-6, -1),
tree);
break;
case 2:
dissect_xid2(tvb_new_subset_length_caplen(tvb, 6, len-6, -1),
tree);
break;
case 3:
dissect_xid3(tvb_new_subset_length_caplen(tvb, 6, len-6, -1),
tree);
break;
default:
/* external standards organizations */
call_data_dissector(tvb_new_subset_length_caplen(tvb, 6, len-6, -1),
pinfo, tree);
}
}
if (format == 0)
len = 6;
if (tvb_offset_exists(tvb, len))
call_data_dissector(tvb_new_subset_remaining(tvb, len), pinfo, parent_tree);
}
/* --------------------------------------------------------------------
* Chapter 4 Transmission Headers (THs)
* --------------------------------------------------------------------
*/
#define RH_LEN 3
static unsigned int
mpf_value(guint8 th_byte)
{
return (th_byte & 0x0c) >> 2;
}
#define FIRST_FRAG_NUMBER 0
#define MIDDLE_FRAG_NUMBER 1
#define LAST_FRAG_NUMBER 2
/* FID2 is defragged by sequence. The weird thing is that we have neither
* absolute sequence numbers, nor byte offets. Other FIDs have byte offsets
* (the DCF field), but not FID2. The only thing we have to go with is "FIRST",
* "MIDDLE", or "LAST". If the BIU is split into 3 frames, then everything is
* fine, * "FIRST", "MIDDLE", and "LAST" map nicely onto frag-number 0, 1,
* and 2. However, if the BIU is split into 2 frames, then we only have
* "FIRST" and "LAST", and the mapping *should* be frag-number 0 and 1,
* *NOT* 0 and 2.
*
* The SNA docs say "FID2 PIUs cannot be blocked because there is no DCF in the
* TH format for deblocking" (note on Figure 4-2 in the IBM SNA documention,
* see the FTP URL in the comment near the top of this file). I *think*
* this means that the fragmented frames cannot arrive out of order.
* Well, I *want* it to mean this, because w/o this limitation, if you
* get a "FIRST" frame and a "LAST" frame, how long should you wait to
* see if a "MIDDLE" frame every arrives????? Thus, if frames *have* to
* arrive in order, then we're saved.
*
* The problem then boils down to figuring out if "LAST" means frag-number 1
* (in the case of a BIU split into 2 frames) or frag-number 2
* (in the case of a BIU split into 3 frames).
*
* Assuming fragmented FID2 BIU frames *do* arrive in order, the obvious
* way to handle the mapping of "LAST" to either frag-number 1 or
* frag-number 2 is to keep a hash which tracks the frames seen, etc.
* This consumes resources. A trickier way, but a way which works, is to
* always map the "LAST" BIU segment to frag-number 2. Here's the trickery:
* if we add frag-number 2, which we know to be the "LAST" BIU segment,
* and the reassembly code tells us that the BIU is still not reassmebled,
* then, owing to the, ahem, /fact/, that fragmented BIU segments arrive
* in order :), we know that 1) "FIRST" did come, and 2) there's no "MIDDLE",
* because this BIU was fragmented into 2 frames, not 3. So, we'll be
* tricky and add a zero-length "MIDDLE" BIU frame (i.e, frag-number 1)
* to complete the reassembly.
*/
static tvbuff_t*
defragment_by_sequence(packet_info *pinfo, tvbuff_t *tvb, int offset, int mpf,
int id)
{
fragment_head *fd_head;
int frag_number = -1;
int more_frags = TRUE;
tvbuff_t *rh_tvb = NULL;
gint frag_len;
/* Determine frag_number and more_frags */
switch(mpf) {
case MPF_WHOLE_BIU:
/* nothing */
break;
case MPF_FIRST_SEGMENT:
frag_number = FIRST_FRAG_NUMBER;
break;
case MPF_MIDDLE_SEGMENT:
frag_number = MIDDLE_FRAG_NUMBER;
break;
case MPF_LAST_SEGMENT:
frag_number = LAST_FRAG_NUMBER;
more_frags = FALSE;
break;
default:
DISSECTOR_ASSERT_NOT_REACHED();
}
/* If sna_defragment is on, and this is a fragment.. */
if (frag_number > -1) {
/* XXX - check length ??? */
frag_len = tvb_reported_length_remaining(tvb, offset);
if (tvb_bytes_exist(tvb, offset, frag_len)) {
fd_head = fragment_add_seq(&sna_reassembly_table,
tvb, offset, pinfo, id, NULL,
frag_number, frag_len, more_frags, 0);
/* We added the LAST segment and reassembly didn't
* complete. Insert a zero-length MIDDLE segment to
* turn a 2-frame BIU-fragmentation into a 3-frame
* BIU-fragmentation (empty middle frag).
* See above long comment about this trickery. */
if (mpf == MPF_LAST_SEGMENT && !fd_head) {
fd_head = fragment_add_seq(&sna_reassembly_table,
tvb, offset, pinfo, id, NULL,
MIDDLE_FRAG_NUMBER, 0, TRUE, 0);
}
if (fd_head != NULL) {
/* We have the complete reassembled payload. */
rh_tvb = tvb_new_chain(tvb, fd_head->tvb_data);
/* Add the defragmented data to the data
* source list. */
add_new_data_source(pinfo, rh_tvb,
"Reassembled SNA BIU");
}
}
}
return rh_tvb;
}
#define SNA_FID01_ADDR_LEN 2
/* FID Types 0 and 1 */
static int
dissect_fid0_1(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)
{
proto_tree *bf_tree;
proto_item *bf_item;
guint8 th_0;
const int bytes_in_header = 10;
if (tree) {
/* Byte 0 */
th_0 = tvb_get_guint8(tvb, 0);
bf_item = proto_tree_add_uint(tree, hf_sna_th_0, tvb, 0, 1,
th_0);
bf_tree = proto_item_add_subtree(bf_item, ett_sna_th_fid);
proto_tree_add_uint(bf_tree, hf_sna_th_fid, tvb, 0, 1, th_0);
proto_tree_add_uint(bf_tree, hf_sna_th_mpf, tvb, 0, 1, th_0);
proto_tree_add_uint(bf_tree, hf_sna_th_efi, tvb, 0, 1, th_0);
/* Byte 1 */
proto_tree_add_item(tree, hf_sna_reserved, tvb, 1, 1, ENC_NA);
/* Bytes 2-3 */
proto_tree_add_item(tree, hf_sna_th_daf, tvb, 2, 2, ENC_BIG_ENDIAN);
}
/* Set DST addr */
set_address_tvb(&pinfo->net_dst, sna_address_type, SNA_FID01_ADDR_LEN, tvb, 2);
copy_address_shallow(&pinfo->dst, &pinfo->net_dst);
proto_tree_add_item(tree, hf_sna_th_oaf, tvb, 4, 2, ENC_BIG_ENDIAN);
/* Set SRC addr */
set_address_tvb(&pinfo->net_src, sna_address_type, SNA_FID01_ADDR_LEN, tvb, 4);
copy_address_shallow(&pinfo->src, &pinfo->net_src);
proto_tree_add_item(tree, hf_sna_th_snf, tvb, 6, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(tree, hf_sna_th_dcf, tvb, 8, 2, ENC_BIG_ENDIAN);
return bytes_in_header;
}
#define SNA_FID2_ADDR_LEN 1
/* FID Type 2 */
static int
dissect_fid2(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree,
tvbuff_t **rh_tvb_ptr, next_dissection_t *continue_dissecting)
{
proto_tree *bf_tree;
proto_item *bf_item;
guint8 th_0;
unsigned int mpf, id;
const int bytes_in_header = 6;
th_0 = tvb_get_guint8(tvb, 0);
mpf = mpf_value(th_0);
if (tree) {
/* Byte 0 */
bf_item = proto_tree_add_item(tree, hf_sna_th_0, tvb, 0, 1, ENC_BIG_ENDIAN);
bf_tree = proto_item_add_subtree(bf_item, ett_sna_th_fid);
proto_tree_add_item(bf_tree, hf_sna_th_fid, tvb, 0, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(bf_tree, hf_sna_th_mpf, tvb, 0, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(bf_tree, hf_sna_th_odai,tvb, 0, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(bf_tree, hf_sna_th_efi, tvb, 0, 1, ENC_BIG_ENDIAN);
/* Byte 1 */
proto_tree_add_item(tree, hf_sna_reserved, tvb, 1, 1, ENC_NA);
/* Byte 2 */
proto_tree_add_item(tree, hf_sna_th_daf, tvb, 2, 1, ENC_BIG_ENDIAN);
}
/* Set DST addr */
set_address_tvb(&pinfo->net_dst, sna_address_type, SNA_FID2_ADDR_LEN, tvb, 2);
copy_address_shallow(&pinfo->dst, &pinfo->net_dst);
/* Byte 3 */
proto_tree_add_item(tree, hf_sna_th_oaf, tvb, 3, 1, ENC_BIG_ENDIAN);
/* Set SRC addr */
set_address_tvb(&pinfo->net_src, sna_address_type, SNA_FID2_ADDR_LEN, tvb, 3);
copy_address_shallow(&pinfo->src, &pinfo->net_src);
id = tvb_get_ntohs(tvb, 4);
proto_tree_add_item(tree, hf_sna_th_snf, tvb, 4, 2, ENC_BIG_ENDIAN);
if (mpf != MPF_WHOLE_BIU && !sna_defragment) {
if (mpf == MPF_FIRST_SEGMENT) {
*continue_dissecting = rh_only;
} else {
*continue_dissecting = stop_here;
}
}
else if (sna_defragment) {
*rh_tvb_ptr = defragment_by_sequence(pinfo, tvb,
bytes_in_header, mpf, id);
}
return bytes_in_header;
}
/* FID Type 3 */
static int
dissect_fid3(tvbuff_t *tvb, proto_tree *tree)
{
proto_tree *bf_tree;
proto_item *bf_item;
guint8 th_0;
const int bytes_in_header = 2;
/* If we're not filling a proto_tree, return now */
if (!tree)
return bytes_in_header;
th_0 = tvb_get_guint8(tvb, 0);
/* Create the bitfield tree */
bf_item = proto_tree_add_uint(tree, hf_sna_th_0, tvb, 0, 1, th_0);
bf_tree = proto_item_add_subtree(bf_item, ett_sna_th_fid);
proto_tree_add_uint(bf_tree, hf_sna_th_fid, tvb, 0, 1, th_0);
proto_tree_add_uint(bf_tree, hf_sna_th_mpf, tvb, 0, 1, th_0);
proto_tree_add_uint(bf_tree, hf_sna_th_efi, tvb, 0, 1, th_0);
proto_tree_add_item(tree, hf_sna_th_lsid, tvb, 1, 1, ENC_BIG_ENDIAN);
return bytes_in_header;
}
static int
dissect_fid4(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)
{
int offset = 0;
guint8 th_byte, mft;
guint16 def, oef;
guint32 dsaf, osaf;
static int * const byte0_fields[] = {
&hf_sna_th_fid,
&hf_sna_th_tg_sweep,
&hf_sna_th_er_vr_supp_ind,
&hf_sna_th_vr_pac_cnt_ind,
&hf_sna_th_ntwk_prty,
NULL
};
static int * const byte1_fields[] = {
&hf_sna_th_tgsf,
&hf_sna_th_mft,
&hf_sna_th_piubf,
NULL
};
static int * const byte2_mft_fields[] = {
&hf_sna_th_nlpoi,
&hf_sna_th_nlp_cp,
&hf_sna_th_ern,
NULL
};
static int * const byte2_fields[] = {
&hf_sna_th_iern,
&hf_sna_th_ern,
NULL
};
static int * const byte3_fields[] = {
&hf_sna_th_vrn,
&hf_sna_th_tpf,
NULL
};
static int * const byte4_fields[] = {
&hf_sna_th_vr_cwi,
&hf_sna_th_tg_nonfifo_ind,
&hf_sna_th_vr_sqti,
/* I'm not sure about byte-order on this one... */
&hf_sna_th_tg_snf,
NULL
};
static int * const byte6_fields[] = {
&hf_sna_th_vrprq,
&hf_sna_th_vrprs,
&hf_sna_th_vr_cwri,
&hf_sna_th_vr_rwi,
/* I'm not sure about byte-order on this one... */
&hf_sna_th_vr_snf_send,
NULL
};
static int * const byte16_fields[] = {
&hf_sna_th_snai,
/* We luck out here because in their infinite wisdom the SNA
* architects placed the MPF and EFI fields in the same bitfield
* locations, even though for FID4 they're not in byte 0.
* Thank you IBM! */
&hf_sna_th_mpf,
&hf_sna_th_efi,
NULL
};
struct sna_fid_type_4_addr *src, *dst;
const int bytes_in_header = 26;
/* If we're not filling a proto_tree, return now */
if (!tree)
return bytes_in_header;
/* Byte 0 */
proto_tree_add_bitmask(tree, tvb, offset, hf_sna_th_0,
ett_sna_th_fid, byte0_fields, ENC_NA);
offset += 1;
th_byte = tvb_get_guint8(tvb, offset);
/* Byte 1 */
proto_tree_add_bitmask(tree, tvb, offset, hf_sna_th_byte1,
ett_sna_th_fid, byte1_fields, ENC_NA);
mft = th_byte & 0x04;
offset += 1;
/* Byte 2 */
if (mft) {
proto_tree_add_bitmask(tree, tvb, offset, hf_sna_th_byte2,
ett_sna_th_fid, byte2_mft_fields, ENC_NA);
} else {
proto_tree_add_bitmask(tree, tvb, offset, hf_sna_th_byte2,
ett_sna_th_fid, byte2_fields, ENC_NA);
}
offset += 1;
/* Byte 3 */
proto_tree_add_bitmask(tree, tvb, offset, hf_sna_th_byte3,
ett_sna_th_fid, byte3_fields, ENC_NA);
offset += 1;
/* Bytes 4-5 */
proto_tree_add_bitmask(tree, tvb, offset, hf_sna_th_byte4,
ett_sna_th_fid, byte4_fields, ENC_BIG_ENDIAN);
offset += 2;
/* Create the bitfield tree */
proto_tree_add_bitmask(tree, tvb, offset, hf_sna_th_byte6,
ett_sna_th_fid, byte6_fields, ENC_BIG_ENDIAN);
offset += 2;
dsaf = tvb_get_ntohl(tvb, 8);
/* Bytes 8-11 */
proto_tree_add_uint(tree, hf_sna_th_dsaf, tvb, offset, 4, dsaf);
offset += 4;
osaf = tvb_get_ntohl(tvb, 12);
/* Bytes 12-15 */
proto_tree_add_uint(tree, hf_sna_th_osaf, tvb, offset, 4, osaf);
offset += 4;
/* Byte 16 */
proto_tree_add_bitmask(tree, tvb, offset, hf_sna_th_byte16,
ett_sna_th_fid, byte16_fields, ENC_NA);
/* 1 for byte 16, 1 for byte 17 which is reserved */
offset += 2;
def = tvb_get_ntohs(tvb, 18);
/* Bytes 18-25 */
proto_tree_add_uint(tree, hf_sna_th_def, tvb, offset, 2, def);
/* Addresses in FID 4 are discontiguous, sigh */
dst = wmem_new0(pinfo->pool, struct sna_fid_type_4_addr);
dst->saf = dsaf;
dst->ef = def;
set_address(&pinfo->net_dst, sna_address_type, SNA_FID_TYPE_4_ADDR_LEN, dst);
copy_address_shallow(&pinfo->dst, &pinfo->net_dst);
oef = tvb_get_ntohs(tvb, 20);
proto_tree_add_uint(tree, hf_sna_th_oef, tvb, offset+2, 2, oef);
/* Addresses in FID 4 are discontiguous, sigh */
src = wmem_new0(pinfo->pool, struct sna_fid_type_4_addr);
src->saf = osaf;
src->ef = oef;
set_address(&pinfo->net_src, sna_address_type, SNA_FID_TYPE_4_ADDR_LEN, src);
copy_address_shallow(&pinfo->src, &pinfo->net_src);
proto_tree_add_item(tree, hf_sna_th_snf, tvb, offset+4, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(tree, hf_sna_th_dcf, tvb, offset+6, 2, ENC_BIG_ENDIAN);
return bytes_in_header;
}
/* FID Type 5 */
static int
dissect_fid5(tvbuff_t *tvb, proto_tree *tree)
{
proto_tree *bf_tree;
proto_item *bf_item;
guint8 th_0;
const int bytes_in_header = 12;
/* If we're not filling a proto_tree, return now */
if (!tree)
return bytes_in_header;
th_0 = tvb_get_guint8(tvb, 0);
/* Create the bitfield tree */
bf_item = proto_tree_add_uint(tree, hf_sna_th_0, tvb, 0, 1, th_0);
bf_tree = proto_item_add_subtree(bf_item, ett_sna_th_fid);
proto_tree_add_uint(bf_tree, hf_sna_th_fid, tvb, 0, 1, th_0);
proto_tree_add_uint(bf_tree, hf_sna_th_mpf, tvb, 0, 1, th_0);
proto_tree_add_uint(bf_tree, hf_sna_th_efi, tvb, 0, 1, th_0);
proto_tree_add_item(tree, hf_sna_reserved, tvb, 1, 1, ENC_NA);
proto_tree_add_item(tree, hf_sna_th_snf, tvb, 2, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(tree, hf_sna_th_sa, tvb, 4, 8, ENC_NA);
return bytes_in_header;
}
/* FID Type f */
static int
dissect_fidf(tvbuff_t *tvb, proto_tree *tree)
{
proto_tree *bf_tree;
proto_item *bf_item;
guint8 th_0;
const int bytes_in_header = 26;
/* If we're not filling a proto_tree, return now */
if (!tree)
return bytes_in_header;
th_0 = tvb_get_guint8(tvb, 0);
/* Create the bitfield tree */
bf_item = proto_tree_add_uint(tree, hf_sna_th_0, tvb, 0, 1, th_0);
bf_tree = proto_item_add_subtree(bf_item, ett_sna_th_fid);
proto_tree_add_uint(bf_tree, hf_sna_th_fid, tvb, 0, 1, th_0);
proto_tree_add_item(tree, hf_sna_reserved, tvb, 1, 1, ENC_NA);
proto_tree_add_item(tree, hf_sna_th_cmd_fmt, tvb, 2, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(tree, hf_sna_th_cmd_type, tvb, 3, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(tree, hf_sna_th_cmd_sn, tvb, 4, 2, ENC_BIG_ENDIAN);
/* Yup, bytes 6-23 are reserved! */
proto_tree_add_item(tree, hf_sna_reserved, tvb, 6, 18, ENC_NA);
proto_tree_add_item(tree, hf_sna_th_dcf, tvb, 24, 2, ENC_BIG_ENDIAN);
return bytes_in_header;
}
static void
dissect_fid(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree,
proto_tree *parent_tree)
{
proto_tree *th_tree = NULL, *rh_tree = NULL;
proto_item *th_ti = NULL, *rh_ti = NULL;
guint8 th_fid;
int th_header_len = 0;
int offset, rh_offset;
tvbuff_t *rh_tvb = NULL;
next_dissection_t continue_dissecting = everything;
/* Transmission Header Format Identifier */
th_fid = hi_nibble(tvb_get_guint8(tvb, 0));
/* Summary information */
col_add_str(pinfo->cinfo, COL_INFO,
val_to_str(th_fid, sna_th_fid_vals, "Unknown FID: %01x"));
if (tree) {
/* --- TH --- */
/* Don't bother setting length. We'll set it later after we
* find the length of TH */
th_ti = proto_tree_add_item(tree, hf_sna_th, tvb, 0, -1,
ENC_NA);
th_tree = proto_item_add_subtree(th_ti, ett_sna_th);
}
/* Get size of TH */
switch(th_fid) {
case 0x0:
case 0x1:
th_header_len = dissect_fid0_1(tvb, pinfo, th_tree);
break;
case 0x2:
th_header_len = dissect_fid2(tvb, pinfo, th_tree,
&rh_tvb, &continue_dissecting);
break;
case 0x3:
th_header_len = dissect_fid3(tvb, th_tree);
break;
case 0x4:
th_header_len = dissect_fid4(tvb, pinfo, th_tree);
break;
case 0x5:
th_header_len = dissect_fid5(tvb, th_tree);
break;
case 0xf:
th_header_len = dissect_fidf(tvb, th_tree);
break;
default:
call_data_dissector(tvb_new_subset_remaining(tvb, 1), pinfo, parent_tree);
return;
}
offset = th_header_len;
/* Short-circuit ? */
if (continue_dissecting == stop_here) {
proto_tree_add_item(tree, hf_sna_biu_segment_data, tvb, offset, -1, ENC_NA);
return;
}
/* If the FID dissector function didn't create an rh_tvb, then we just
* use the rest of our tvbuff as the rh_tvb. */
if (!rh_tvb)
rh_tvb = tvb_new_subset_remaining(tvb, offset);
rh_offset = 0;
/* Process the rest of the SNA packet, starting with RH */
if (tree) {
proto_item_set_len(th_ti, th_header_len);
/* --- RH --- */
rh_ti = proto_tree_add_item(tree, hf_sna_rh, rh_tvb, rh_offset,
RH_LEN, ENC_NA);
rh_tree = proto_item_add_subtree(rh_ti, ett_sna_rh);
dissect_rh(rh_tvb, rh_offset, rh_tree);
}
rh_offset += RH_LEN;
if (tvb_offset_exists(rh_tvb, rh_offset)) {
/* Short-circuit ? */
if (continue_dissecting == rh_only) {
proto_tree_add_item(tree, hf_sna_biu_segment_data, rh_tvb, rh_offset, -1, ENC_NA);
return;
}
call_data_dissector(tvb_new_subset_remaining(rh_tvb, rh_offset),
pinfo, parent_tree);
}
}
/* --------------------------------------------------------------------
* Chapter 5 Request/Response Headers (RHs)
* --------------------------------------------------------------------
*/
static void
dissect_rh(tvbuff_t *tvb, int offset, proto_tree *tree)
{
gboolean is_response;
guint8 rh_0;
static int * const sna_rh_fields[] = {
&hf_sna_rh_rri,
&hf_sna_rh_ru_category,
&hf_sna_rh_fi,
&hf_sna_rh_sdi,
&hf_sna_rh_bci,
&hf_sna_rh_eci,
NULL
};
static int * const sna_rh_1_req_fields[] = {
&hf_sna_rh_dr1,
&hf_sna_rh_lcci,
&hf_sna_rh_dr2,
&hf_sna_rh_eri,
&hf_sna_rh_rlwi,
&hf_sna_rh_qri,
&hf_sna_rh_pi,
NULL
};
static int * const sna_rh_1_rsp_fields[] = {
&hf_sna_rh_dr1,
&hf_sna_rh_dr2,
&hf_sna_rh_rti,
&hf_sna_rh_qri,
&hf_sna_rh_pi,
NULL
};
static int * const sna_rh_2_req_fields[] = {
&hf_sna_rh_bbi,
&hf_sna_rh_ebi,
&hf_sna_rh_cdi,
&hf_sna_rh_csi,
&hf_sna_rh_edi,
&hf_sna_rh_pdi,
&hf_sna_rh_cebi,
NULL
};
if (!tree)
return;
/* Create the bitfield tree for byte 0*/
rh_0 = tvb_get_guint8(tvb, offset);
is_response = (rh_0 & 0x80);
proto_tree_add_bitmask(tree, tvb, offset, hf_sna_rh_0,
ett_sna_rh_0, sna_rh_fields, ENC_BIG_ENDIAN);
offset += 1;
/* Create the bitfield tree for byte 1*/
if (is_response) {
proto_tree_add_bitmask(tree, tvb, offset, hf_sna_rh_1,
ett_sna_rh_1, sna_rh_1_rsp_fields, ENC_BIG_ENDIAN);
} else {
proto_tree_add_bitmask(tree, tvb, offset, hf_sna_rh_1,
ett_sna_rh_1, sna_rh_1_req_fields, ENC_BIG_ENDIAN);
}
offset += 1;
/* Create the bitfield tree for byte 2*/
if (!is_response) {
proto_tree_add_bitmask(tree, tvb, offset, hf_sna_rh_2,
ett_sna_rh_2, sna_rh_2_req_fields, ENC_BIG_ENDIAN);
} else {
proto_tree_add_item(tree, hf_sna_rh_2, tvb, offset, 1, ENC_BIG_ENDIAN);
}
/* XXX - check for sdi. If TRUE, the next 4 bytes will be sense data */
}
/* --------------------------------------------------------------------
* Chapter 6 Request/Response Units (RUs)
* --------------------------------------------------------------------
*/
/* --------------------------------------------------------------------
* Chapter 9 Common Fields
* --------------------------------------------------------------------
*/
static void
dissect_control_05hpr(tvbuff_t *tvb, proto_tree *tree, int hpr,
enum parse parse)
{
guint16 offset, len, pad;
static int * const sna_control_05hpr_fields[] = {
&hf_sna_control_05_ptp,
NULL
};
if (!tree)
return;
proto_tree_add_bitmask(tree, tvb, 2, hf_sna_control_05_type,
ett_sna_control_05hpr_type, sna_control_05hpr_fields, ENC_BIG_ENDIAN);
proto_tree_add_item(tree, hf_sna_reserved, tvb, 3, 1, ENC_NA);
offset = 4;
while (tvb_offset_exists(tvb, offset)) {
if (parse == LT) {
len = tvb_get_guint8(tvb, offset+0);
} else {
len = tvb_get_guint8(tvb, offset+1);
}
if (len) {
dissect_sna_control(tvb, offset, len, tree, hpr, parse);
pad = (len+3) & 0xfffc;
if (pad > len) {
proto_tree_add_item(tree, hf_sna_padding, tvb, offset+len, pad-len, ENC_NA);
}
offset += pad;
} else {
return;
}
}
}
static void
dissect_control_05(tvbuff_t *tvb, proto_tree *tree)
{
if(!tree)
return;
proto_tree_add_item(tree, hf_sna_control_05_delay, tvb, 2, 2, ENC_BIG_ENDIAN);
}
static void
dissect_control_0e(tvbuff_t *tvb, proto_tree *tree)
{
gint len;
if (!tree)
return;
proto_tree_add_item(tree, hf_sna_control_0e_type, tvb, 2, 1, ENC_BIG_ENDIAN);
len = tvb_reported_length_remaining(tvb, 3);
if (len <= 0)
return;
proto_tree_add_item(tree, hf_sna_control_0e_value, tvb, 3, len, ENC_EBCDIC);
}
static void
dissect_sna_control(tvbuff_t *parent_tvb, int offset, int control_len,
proto_tree *tree, int hpr, enum parse parse)
{
tvbuff_t *tvb;
gint length, reported_length;
proto_tree *sub_tree;
int len, key;
gint ett;
length = tvb_captured_length_remaining(parent_tvb, offset);
reported_length = tvb_reported_length_remaining(parent_tvb, offset);
if (control_len < length)
length = control_len;
if (control_len < reported_length)
reported_length = control_len;
tvb = tvb_new_subset_length_caplen(parent_tvb, offset, length, reported_length);
sub_tree = NULL;
if (parse == LT) {
len = tvb_get_guint8(tvb, 0);
key = tvb_get_guint8(tvb, 1);
} else {
key = tvb_get_guint8(tvb, 0);
len = tvb_get_guint8(tvb, 1);
}
ett = ett_sna_control_un;
if (tree) {
if (key == 5) {
if (hpr) ett = ett_sna_control_05hpr;
else ett = ett_sna_control_05;
}
if (key == 0x0e) ett = ett_sna_control_0e;
if (((key == 0) || (key == 3) || (key == 5)) && hpr)
sub_tree = proto_tree_add_subtree(tree, tvb, 0, -1, ett, NULL,
val_to_str_const(key, sna_control_hpr_vals,
"Unknown Control Vector"));
else
sub_tree = proto_tree_add_subtree(tree, tvb, 0, -1, ett, NULL,
val_to_str_const(key, sna_control_vals,
"Unknown Control Vector"));
if (parse == LT) {
proto_tree_add_uint(sub_tree, hf_sna_control_len,
tvb, 0, 1, len);
if (((key == 0) || (key == 3) || (key == 5)) && hpr)
proto_tree_add_uint(sub_tree,
hf_sna_control_hprkey, tvb, 1, 1, key);
else
proto_tree_add_uint(sub_tree,
hf_sna_control_key, tvb, 1, 1, key);
} else {
if (((key == 0) || (key == 3) || (key == 5)) && hpr)
proto_tree_add_uint(sub_tree,
hf_sna_control_hprkey, tvb, 0, 1, key);
else
proto_tree_add_uint(sub_tree,
hf_sna_control_key, tvb, 0, 1, key);
proto_tree_add_uint(sub_tree, hf_sna_control_len,
tvb, 1, 1, len);
}
}
switch(key) {
case 0x05:
if (hpr)
dissect_control_05hpr(tvb, sub_tree, hpr,
parse);
else
dissect_control_05(tvb, sub_tree);
break;
case 0x0e:
dissect_control_0e(tvb, sub_tree);
break;
}
}
/* --------------------------------------------------------------------
* Chapter 11 Function Management (FM) Headers
* --------------------------------------------------------------------
*/
/* --------------------------------------------------------------------
* Chapter 12 Presentation Services (PS) Headers
* --------------------------------------------------------------------
*/
/* --------------------------------------------------------------------
* Chapter 13 GDS Variables
* --------------------------------------------------------------------
*/
static void
dissect_gds(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree,
proto_tree *parent_tree)
{
guint16 length;
int cont;
int offset = 0;
proto_item *pi;
proto_tree *subtree;
gboolean first_ll = TRUE;
do {
length = tvb_get_ntohs(tvb, offset) & 0x7fff;
cont = (tvb_get_ntohs(tvb, offset) & 0x8000) ? 1 : 0;
pi = proto_tree_add_item(tree, hf_sna_gds, tvb, offset, -1, ENC_NA);
subtree = proto_item_add_subtree(pi, ett_sna_gds);
proto_tree_add_item(subtree, hf_sna_gds_len, tvb, offset, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(subtree, hf_sna_gds_cont, tvb, offset, 2, ENC_BIG_ENDIAN);
if (length < 2 ) /* escape sequence */
return;
offset += 2;
length -= 2;
if (first_ll) {
proto_tree_add_item(subtree, hf_sna_gds_type, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
length -= 2;
first_ll = FALSE;
}
if (length > 0) {
proto_tree_add_item(subtree, hf_sna_gds_info, tvb, offset, length, ENC_NA);
offset += length;
}
} while(cont);
proto_item_set_len(pi, offset);
if (tvb_offset_exists(tvb, offset))
call_data_dissector(tvb_new_subset_remaining(tvb, offset), pinfo, parent_tree);
}
/* --------------------------------------------------------------------
* General stuff
* --------------------------------------------------------------------
*/
static int
dissect_sna(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void* data _U_)
{
guint8 fid;
proto_tree *sna_tree = NULL;
proto_item *sna_ti = NULL;
col_set_str(pinfo->cinfo, COL_PROTOCOL, "SNA");
col_clear(pinfo->cinfo, COL_INFO);
/* SNA data should be printed in EBCDIC, not ASCII */
pinfo->fd->encoding = PACKET_CHAR_ENC_CHAR_EBCDIC;
if (tree) {
/* Don't bother setting length. We'll set it later after we find
* the lengths of TH/RH/RU */
sna_ti = proto_tree_add_item(tree, proto_sna, tvb, 0, -1,
ENC_NA);
sna_tree = proto_item_add_subtree(sna_ti, ett_sna);
}
/* Transmission Header Format Identifier */
fid = hi_nibble(tvb_get_guint8(tvb, 0));
switch(fid) {
case 0xa: /* HPR Network Layer Packet */
case 0xb:
case 0xc:
case 0xd:
dissect_nlp(tvb, pinfo, sna_tree, tree);
break;
default:
dissect_fid(tvb, pinfo, sna_tree, tree);
}
return tvb_captured_length(tvb);
}
static int
dissect_sna_xid(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void* data _U_)
{
proto_tree *sna_tree = NULL;
proto_item *sna_ti = NULL;
col_set_str(pinfo->cinfo, COL_PROTOCOL, "SNA");
col_clear(pinfo->cinfo, COL_INFO);
/* SNA data should be printed in EBCDIC, not ASCII */
pinfo->fd->encoding = PACKET_CHAR_ENC_CHAR_EBCDIC;
if (tree) {
/* Don't bother setting length. We'll set it later after we find
* the lengths of XID */
sna_ti = proto_tree_add_item(tree, proto_sna_xid, tvb, 0, -1,
ENC_NA);
sna_tree = proto_item_add_subtree(sna_ti, ett_sna);
}
dissect_xid(tvb, pinfo, sna_tree, tree);
return tvb_captured_length(tvb);
}
void
proto_register_sna(void)
{
static hf_register_info hf[] = {
{ &hf_sna_th,
{ "Transmission Header", "sna.th", FT_NONE, BASE_NONE,
NULL, 0x0, NULL, HFILL }},
{ &hf_sna_th_0,
{ "Transmission Header Byte 0", "sna.th.0", FT_UINT8, BASE_HEX,
NULL, 0x0,
"TH Byte 0", HFILL }},
{ &hf_sna_th_fid,
{ "Format Identifier", "sna.th.fid", FT_UINT8, BASE_HEX,
VALS(sna_th_fid_vals), 0xf0, NULL, HFILL }},
{ &hf_sna_th_mpf,
{ "Mapping Field", "sna.th.mpf", FT_UINT8,
BASE_DEC, VALS(sna_th_mpf_vals), 0x0c, NULL, HFILL }},
{ &hf_sna_th_odai,
{ "ODAI Assignment Indicator", "sna.th.odai", FT_UINT8,
BASE_DEC, NULL, 0x02, NULL, HFILL }},
{ &hf_sna_th_efi,
{ "Expedited Flow Indicator", "sna.th.efi", FT_UINT8,
BASE_DEC, VALS(sna_th_efi_vals), 0x01, NULL, HFILL }},
{ &hf_sna_th_daf,
{ "Destination Address Field", "sna.th.daf", FT_UINT16,
BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_sna_th_oaf,
{ "Origin Address Field", "sna.th.oaf", FT_UINT16, BASE_HEX,
NULL, 0x0, NULL, HFILL }},
{ &hf_sna_th_snf,
{ "Sequence Number Field", "sna.th.snf", FT_UINT16, BASE_DEC,
NULL, 0x0, NULL, HFILL }},
{ &hf_sna_th_dcf,
{ "Data Count Field", "sna.th.dcf", FT_UINT16, BASE_DEC,
NULL, 0x0, NULL, HFILL }},
{ &hf_sna_th_lsid,
{ "Local Session Identification", "sna.th.lsid", FT_UINT8,
BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_sna_th_tg_sweep,
{ "Transmission Group Sweep", "sna.th.tg_sweep", FT_UINT8,
BASE_DEC, VALS(sna_th_tg_sweep_vals), 0x08, NULL, HFILL }},
{ &hf_sna_th_er_vr_supp_ind,
{ "ER and VR Support Indicator", "sna.th.er_vr_supp_ind",
FT_UINT8, BASE_DEC, VALS(sna_th_er_vr_supp_ind_vals),
0x04, NULL, HFILL }},
{ &hf_sna_th_vr_pac_cnt_ind,
{ "Virtual Route Pacing Count Indicator",
"sna.th.vr_pac_cnt_ind", FT_UINT8, BASE_DEC,
VALS(sna_th_vr_pac_cnt_ind_vals), 0x02, NULL, HFILL }},
{ &hf_sna_th_ntwk_prty,
{ "Network Priority", "sna.th.ntwk_prty", FT_UINT8, BASE_DEC,
VALS(sna_th_ntwk_prty_vals), 0x01, NULL, HFILL }},
{ &hf_sna_th_tgsf,
{ "Transmission Group Segmenting Field", "sna.th.tgsf",
FT_UINT8, BASE_HEX, VALS(sna_th_tgsf_vals), 0xc0,
NULL, HFILL }},
{ &hf_sna_th_mft,
{ "MPR FID4 Type", "sna.th.mft", FT_BOOLEAN, 8,
NULL, 0x04, NULL, HFILL }},
{ &hf_sna_th_piubf,
{ "PIU Blocking Field", "sna.th.piubf", FT_UINT8, BASE_HEX,
VALS(sna_th_piubf_vals), 0x03, NULL, HFILL }},
{ &hf_sna_th_iern,
{ "Initial Explicit Route Number", "sna.th.iern", FT_UINT8,
BASE_DEC, NULL, 0xf0, NULL, HFILL }},
{ &hf_sna_th_nlpoi,
{ "NLP Offset Indicator", "sna.th.nlpoi", FT_UINT8, BASE_DEC,
VALS(sna_th_nlpoi_vals), 0x80, NULL, HFILL }},
{ &hf_sna_th_nlp_cp,
{ "NLP Count or Padding", "sna.th.nlp_cp", FT_UINT8, BASE_DEC,
NULL, 0x70, NULL, HFILL }},
{ &hf_sna_th_ern,
{ "Explicit Route Number", "sna.th.ern", FT_UINT8, BASE_DEC,
NULL, 0x0f, NULL, HFILL }},
{ &hf_sna_th_vrn,
{ "Virtual Route Number", "sna.th.vrn", FT_UINT8, BASE_DEC,
NULL, 0xf0, NULL, HFILL }},
{ &hf_sna_th_tpf,
{ "Transmission Priority Field", "sna.th.tpf", FT_UINT8,
BASE_HEX, VALS(sna_th_tpf_vals), 0x03, NULL, HFILL }},
{ &hf_sna_th_vr_cwi,
{ "Virtual Route Change Window Indicator", "sna.th.vr_cwi",
FT_UINT16, BASE_DEC, VALS(sna_th_vr_cwi_vals), 0x8000,
"Change Window Indicator", HFILL }},
{ &hf_sna_th_tg_nonfifo_ind,
{ "Transmission Group Non-FIFO Indicator",
"sna.th.tg_nonfifo_ind", FT_BOOLEAN, 16,
TFS(&sna_th_tg_nonfifo_ind_truth), 0x4000, NULL, HFILL }},
{ &hf_sna_th_vr_sqti,
{ "Virtual Route Sequence and Type Indicator", "sna.th.vr_sqti",
FT_UINT16, BASE_HEX, VALS(sna_th_vr_sqti_vals), 0x3000,
"Route Sequence and Type", HFILL }},
{ &hf_sna_th_tg_snf,
{ "Transmission Group Sequence Number Field", "sna.th.tg_snf",
FT_UINT16, BASE_DEC, NULL, 0x0fff, NULL, HFILL }},
{ &hf_sna_th_vrprq,
{ "Virtual Route Pacing Request", "sna.th.vrprq", FT_BOOLEAN,
16, TFS(&sna_th_vrprq_truth), 0x8000, NULL, HFILL }},
{ &hf_sna_th_vrprs,
{ "Virtual Route Pacing Response", "sna.th.vrprs", FT_BOOLEAN,
16, TFS(&sna_th_vrprs_truth), 0x4000, NULL, HFILL }},
{ &hf_sna_th_vr_cwri,
{ "Virtual Route Change Window Reply Indicator",
"sna.th.vr_cwri", FT_UINT16, BASE_DEC,
VALS(sna_th_vr_cwri_vals), 0x2000, NULL, HFILL }},
{ &hf_sna_th_vr_rwi,
{ "Virtual Route Reset Window Indicator", "sna.th.vr_rwi",
FT_BOOLEAN, 16, TFS(&sna_th_vr_rwi_truth), 0x1000,
NULL, HFILL }},
{ &hf_sna_th_vr_snf_send,
{ "Virtual Route Send Sequence Number Field",
"sna.th.vr_snf_send", FT_UINT16, BASE_DEC, NULL, 0x0fff,
"Send Sequence Number Field", HFILL }},
{ &hf_sna_th_dsaf,
{ "Destination Subarea Address Field", "sna.th.dsaf",
FT_UINT32, BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_sna_th_osaf,
{ "Origin Subarea Address Field", "sna.th.osaf", FT_UINT32,
BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_sna_th_snai,
{ "SNA Indicator", "sna.th.snai", FT_BOOLEAN, 8, NULL, 0x10,
"Used to identify whether the PIU originated or is destined for an SNA or non-SNA device.", HFILL }},
{ &hf_sna_th_def,
{ "Destination Element Field", "sna.th.def", FT_UINT16,
BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_sna_th_oef,
{ "Origin Element Field", "sna.th.oef", FT_UINT16, BASE_HEX,
NULL, 0x0, NULL, HFILL }},
{ &hf_sna_th_sa,
{ "Session Address", "sna.th.sa", FT_BYTES, BASE_NONE,
NULL, 0x0, NULL, HFILL }},
{ &hf_sna_th_cmd_fmt,
{ "Command Format", "sna.th.cmd_fmt", FT_UINT8, BASE_HEX,
NULL, 0x0, NULL, HFILL }},
{ &hf_sna_th_cmd_type,
{ "Command Type", "sna.th.cmd_type", FT_UINT8, BASE_HEX,
NULL, 0x0, NULL, HFILL }},
{ &hf_sna_th_cmd_sn,
{ "Command Sequence Number", "sna.th.cmd_sn", FT_UINT16,
BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_sna_th_byte1,
{ "Transmission Header Bytes 1", "sna.th.byte1", FT_UINT8,
BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_sna_th_byte2,
{ "Transmission Header Bytes 2", "sna.th.byte2", FT_UINT8,
BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_sna_th_byte3,
{ "Transmission Header Bytes 3", "sna.th.byte3", FT_UINT8,
BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_sna_th_byte4,
{ "Transmission Header Bytes 4-5", "sna.th.byte4", FT_UINT16,
BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_sna_th_byte6,
{ "Transmission Header Bytes 6-7", "sna.th.byte6", FT_UINT16,
BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_sna_th_byte16,
{ "Transmission Header Bytes 16", "sna.th.byte16", FT_UINT8,
BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_sna_nlp_nhdr,
{ "Network Layer Packet Header", "sna.nlp.nhdr", FT_NONE,
BASE_NONE, NULL, 0x0, "NHDR", HFILL }},
{ &hf_sna_nlp_nhdr_0,
{ "Network Layer Packet Header Byte 0", "sna.nlp.nhdr.0",
FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_sna_nlp_nhdr_1,
{ "Network Layer Packet Header Byte 1", "sna.nlp.nhdr.1",
FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_sna_nlp_sm,
{ "Switching Mode Field", "sna.nlp.nhdr.sm", FT_UINT8,
BASE_HEX, VALS(sna_nlp_sm_vals), 0xe0, NULL, HFILL }},
{ &hf_sna_nlp_tpf,
{ "Transmission Priority Field", "sna.nlp.nhdr.tpf", FT_UINT8,
BASE_HEX, VALS(sna_th_tpf_vals), 0x06, NULL, HFILL }},
{ &hf_sna_nlp_ft,
{ "Function Type", "sna.nlp.nhdr.ft", FT_UINT8, BASE_HEX,
VALS(sna_nlp_ft_vals), 0xF0, NULL, HFILL }},
{ &hf_sna_nlp_tspi,
{ "Time Sensitive Packet Indicator", "sna.nlp.nhdr.tspi",
FT_BOOLEAN, 8, TFS(&sna_nlp_tspi_truth), 0x08, NULL, HFILL }},
{ &hf_sna_nlp_slowdn1,
{ "Slowdown 1", "sna.nlp.nhdr.slowdn1", FT_BOOLEAN, 8,
TFS(&sna_nlp_slowdn1_truth), 0x04, NULL, HFILL }},
{ &hf_sna_nlp_slowdn2,
{ "Slowdown 2", "sna.nlp.nhdr.slowdn2", FT_BOOLEAN, 8,
TFS(&sna_nlp_slowdn2_truth), 0x02, NULL, HFILL }},
{ &hf_sna_nlp_fra,
{ "Function Routing Address Entry", "sna.nlp.nhdr.fra",
FT_BYTES, BASE_NONE, NULL, 0, NULL, HFILL }},
{ &hf_sna_nlp_anr,
{ "Automatic Network Routing Entry", "sna.nlp.nhdr.anr",
FT_BYTES, BASE_NONE, NULL, 0, NULL, HFILL }},
{ &hf_sna_nlp_frh,
{ "Transmission Priority Field", "sna.nlp.frh", FT_UINT8,
BASE_HEX, VALS(sna_nlp_frh_vals), 0, NULL, HFILL }},
{ &hf_sna_nlp_thdr,
{ "RTP Transport Header", "sna.nlp.thdr", FT_NONE, BASE_NONE,
NULL, 0x0, "THDR", HFILL }},
{ &hf_sna_nlp_tcid,
{ "Transport Connection Identifier", "sna.nlp.thdr.tcid",
FT_BYTES, BASE_NONE, NULL, 0x0, "TCID", HFILL }},
{ &hf_sna_nlp_thdr_8,
{ "RTP Transport Packet Header Byte 8", "sna.nlp.thdr.8",
FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_sna_nlp_setupi,
{ "Setup Indicator", "sna.nlp.thdr.setupi", FT_BOOLEAN, 8,
TFS(&sna_nlp_setupi_truth), 0x40, NULL, HFILL }},
{ &hf_sna_nlp_somi,
{ "Start Of Message Indicator", "sna.nlp.thdr.somi",
FT_BOOLEAN, 8, TFS(&sna_nlp_somi_truth), 0x20, NULL, HFILL }},
{ &hf_sna_nlp_eomi,
{ "End Of Message Indicator", "sna.nlp.thdr.eomi", FT_BOOLEAN,
8, TFS(&sna_nlp_eomi_truth), 0x10, NULL, HFILL }},
{ &hf_sna_nlp_sri,
{ "Session Request Indicator", "sna.nlp.thdr.sri", FT_BOOLEAN,
8, TFS(&sna_nlp_sri_truth), 0x08, NULL, HFILL }},
{ &hf_sna_nlp_rasapi,
{ "Reply ASAP Indicator", "sna.nlp.thdr.rasapi", FT_BOOLEAN,
8, TFS(&sna_nlp_rasapi_truth), 0x04, NULL, HFILL }},
{ &hf_sna_nlp_retryi,
{ "Retry Indicator", "sna.nlp.thdr.retryi", FT_BOOLEAN,
8, TFS(&sna_nlp_retryi_truth), 0x02, NULL, HFILL }},
{ &hf_sna_nlp_thdr_9,
{ "RTP Transport Packet Header Byte 9", "sna.nlp.thdr.9",
FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_sna_nlp_lmi,
{ "Last Message Indicator", "sna.nlp.thdr.lmi", FT_BOOLEAN,
8, TFS(&sna_nlp_lmi_truth), 0x80, NULL, HFILL }},
{ &hf_sna_nlp_cqfi,
{ "Connection Qualifier Field Indicator", "sna.nlp.thdr.cqfi",
FT_BOOLEAN, 8, TFS(&sna_nlp_cqfi_truth), 0x08, NULL, HFILL }},
{ &hf_sna_nlp_osi,
{ "Optional Segments Present Indicator", "sna.nlp.thdr.osi",
FT_BOOLEAN, 8, TFS(&sna_nlp_osi_truth), 0x04, NULL, HFILL }},
{ &hf_sna_nlp_offset,
{ "Data Offset/4", "sna.nlp.thdr.offset", FT_UINT16, BASE_HEX,
NULL, 0x0, "Data Offset in Words", HFILL }},
{ &hf_sna_nlp_dlf,
{ "Data Length Field", "sna.nlp.thdr.dlf", FT_UINT32, BASE_HEX,
NULL, 0x0, NULL, HFILL }},
{ &hf_sna_nlp_bsn,
{ "Byte Sequence Number", "sna.nlp.thdr.bsn", FT_UINT32,
BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_sna_nlp_opti_len,
{ "Optional Segment Length/4", "sna.nlp.thdr.optional.len",
FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_sna_nlp_opti_type,
{ "Optional Segment Type", "sna.nlp.thdr.optional.type",
FT_UINT8, BASE_HEX, VALS(sna_nlp_opti_vals), 0x0, NULL,
HFILL }},
{ &hf_sna_nlp_opti_0d_version,
{ "Version", "sna.nlp.thdr.optional.0d.version",
FT_UINT16, BASE_HEX, VALS(sna_nlp_opti_0d_version_vals),
0, NULL, HFILL }},
{ &hf_sna_nlp_opti_0d_4,
{ "Connection Setup Byte 4", "sna.nlp.thdr.optional.0e.4",
FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL }},
{ &hf_sna_nlp_opti_0d_target,
{ "Target Resource ID Present",
"sna.nlp.thdr.optional.0d.target",
FT_BOOLEAN, 8, NULL, 0x80, NULL, HFILL }},
{ &hf_sna_nlp_opti_0d_arb,
{ "ARB Flow Control", "sna.nlp.thdr.optional.0d.arb",
FT_BOOLEAN, 8, NULL, 0x10, NULL, HFILL }},
{ &hf_sna_nlp_opti_0d_reliable,
{ "Reliable Connection", "sna.nlp.thdr.optional.0d.reliable",
FT_BOOLEAN, 8, NULL, 0x08, NULL, HFILL }},
{ &hf_sna_nlp_opti_0d_dedicated,
{ "Dedicated RTP Connection",
"sna.nlp.thdr.optional.0d.dedicated",
FT_BOOLEAN, 8, NULL, 0x04, NULL, HFILL }},
{ &hf_sna_nlp_opti_0e_stat,
{ "Status", "sna.nlp.thdr.optional.0e.stat",
FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL }},
{ &hf_sna_nlp_opti_0e_gap,
{ "Gap Detected", "sna.nlp.thdr.optional.0e.gap",
FT_BOOLEAN, 8, NULL, 0x80, NULL, HFILL }},
{ &hf_sna_nlp_opti_0e_idle,
{ "RTP Idle Packet", "sna.nlp.thdr.optional.0e.idle",
FT_BOOLEAN, 8, NULL, 0x40, NULL, HFILL }},
{ &hf_sna_nlp_opti_0e_nabsp,
{ "Number Of ABSP", "sna.nlp.thdr.optional.0e.nabsp",
FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_sna_nlp_opti_0e_sync,
{ "Status Report Number", "sna.nlp.thdr.optional.0e.sync",
FT_UINT16, BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_sna_nlp_opti_0e_echo,
{ "Status Acknowledge Number", "sna.nlp.thdr.optional.0e.echo",
FT_UINT16, BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_sna_nlp_opti_0e_rseq,
{ "Received Sequence Number", "sna.nlp.thdr.optional.0e.rseq",
FT_UINT32, BASE_HEX, NULL, 0x0, NULL, HFILL }},
#if 0
{ &hf_sna_nlp_opti_0e_abspbeg,
{ "ABSP Begin", "sna.nlp.thdr.optional.0e.abspbeg",
FT_UINT32, BASE_HEX, NULL, 0x0, NULL, HFILL }},
#endif
#if 0
{ &hf_sna_nlp_opti_0e_abspend,
{ "ABSP End", "sna.nlp.thdr.optional.0e.abspend",
FT_UINT32, BASE_HEX, NULL, 0x0, NULL, HFILL }},
#endif
{ &hf_sna_nlp_opti_0f_bits,
{ "Client Bits", "sna.nlp.thdr.optional.0f.bits",
FT_UINT16, BASE_HEX, VALS(sna_nlp_opti_0f_bits_vals),
0x0, NULL, HFILL }},
{ &hf_sna_nlp_opti_10_tcid,
{ "Transport Connection Identifier",
"sna.nlp.thdr.optional.10.tcid",
FT_BYTES, BASE_NONE, NULL, 0x0, "TCID", HFILL }},
{ &hf_sna_nlp_opti_12_sense,
{ "Sense Data", "sna.nlp.thdr.optional.12.sense",
FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_sna_nlp_opti_14_si_len,
{ "Length", "sna.nlp.thdr.optional.14.si.len",
FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_sna_nlp_opti_14_si_key,
{ "Key", "sna.nlp.thdr.optional.14.si.key",
FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_sna_nlp_opti_14_si_2,
{ "Switching Information Byte 2",
"sna.nlp.thdr.optional.14.si.2",
FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_sna_nlp_opti_14_si_refifo,
{ "Resequencing (REFIFO) Indicator",
"sna.nlp.thdr.optional.14.si.refifo",
FT_BOOLEAN, 8, NULL, 0x80, NULL, HFILL }},
{ &hf_sna_nlp_opti_14_si_mobility,
{ "Mobility Indicator",
"sna.nlp.thdr.optional.14.si.mobility",
FT_BOOLEAN, 8, NULL, 0x40, NULL, HFILL }},
{ &hf_sna_nlp_opti_14_si_dirsearch,
{ "Directory Search Required on Path Switch Indicator",
"sna.nlp.thdr.optional.14.si.dirsearch",
FT_BOOLEAN, 8, NULL, 0x20, NULL, HFILL }},
{ &hf_sna_nlp_opti_14_si_limitres,
{ "Limited Resource Link Indicator",
"sna.nlp.thdr.optional.14.si.limitres",
FT_BOOLEAN, 8, NULL, 0x10, NULL, HFILL }},
{ &hf_sna_nlp_opti_14_si_ncescope,
{ "NCE Scope Indicator",
"sna.nlp.thdr.optional.14.si.ncescope",
FT_BOOLEAN, 8, NULL, 0x08, NULL, HFILL }},
{ &hf_sna_nlp_opti_14_si_mnpsrscv,
{ "MNPS RSCV Retention Indicator",
"sna.nlp.thdr.optional.14.si.mnpsrscv",
FT_BOOLEAN, 8, NULL, 0x04, NULL, HFILL }},
{ &hf_sna_nlp_opti_14_si_maxpsize,
{ "Maximum Packet Size On Return Path",
"sna.nlp.thdr.optional.14.si.maxpsize",
FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_sna_nlp_opti_14_si_switch,
{ "Path Switch Time", "sna.nlp.thdr.optional.14.si.switch",
FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_sna_nlp_opti_14_si_alive,
{ "RTP Alive Timer", "sna.nlp.thdr.optional.14.si.alive",
FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_sna_nlp_opti_14_rr_len,
{ "Length", "sna.nlp.thdr.optional.14.rr.len",
FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_sna_nlp_opti_14_rr_key,
{ "Key", "sna.nlp.thdr.optional.14.rr.key",
FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_sna_nlp_opti_14_rr_2,
{ "Return Route TG Descriptor Byte 2",
"sna.nlp.thdr.optional.14.rr.2",
FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_sna_nlp_opti_14_rr_bfe,
{ "BF Entry Indicator",
"sna.nlp.thdr.optional.14.rr.bfe",
FT_BOOLEAN, 8, NULL, 0x80, NULL, HFILL }},
{ &hf_sna_nlp_opti_14_rr_num,
{ "Number Of TG Control Vectors",
"sna.nlp.thdr.optional.14.rr.num",
FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_sna_nlp_opti_22_2,
{ "Adaptive Rate Based Segment Byte 2",
"sna.nlp.thdr.optional.22.2",
FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_sna_nlp_opti_22_type,
{ "Message Type",
"sna.nlp.thdr.optional.22.type",
FT_UINT8, BASE_HEX,
VALS(sna_nlp_opti_22_type_vals), 0xc0, NULL, HFILL }},
{ &hf_sna_nlp_opti_22_raa,
{ "Rate Adjustment Action",
"sna.nlp.thdr.optional.22.raa",
FT_UINT8, BASE_HEX,
VALS(sna_nlp_opti_22_raa_vals), 0x38, NULL, HFILL }},
{ &hf_sna_nlp_opti_22_parity,
{ "Parity Indicator",
"sna.nlp.thdr.optional.22.parity",
FT_BOOLEAN, 8, NULL, 0x04, NULL, HFILL }},
{ &hf_sna_nlp_opti_22_arb,
{ "ARB Mode",
"sna.nlp.thdr.optional.22.arb",
FT_UINT8, BASE_HEX,
VALS(sna_nlp_opti_22_arb_vals), 0x03, NULL, HFILL }},
{ &hf_sna_nlp_opti_22_3,
{ "Adaptive Rate Based Segment Byte 3",
"sna.nlp.thdr.optional.22.3",
FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_sna_nlp_opti_22_ratereq,
{ "Rate Request Correlator",
"sna.nlp.thdr.optional.22.ratereq",
FT_UINT8, BASE_DEC, NULL, 0xf0, NULL, HFILL }},
{ &hf_sna_nlp_opti_22_raterep,
{ "Rate Reply Correlator",
"sna.nlp.thdr.optional.22.raterep",
FT_UINT8, BASE_DEC, NULL, 0x0f, NULL, HFILL }},
{ &hf_sna_nlp_opti_22_field1,
{ "Field 1", "sna.nlp.thdr.optional.22.field1",
FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_sna_nlp_opti_22_field2,
{ "Field 2", "sna.nlp.thdr.optional.22.field2",
FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_sna_nlp_opti_22_field3,
{ "Field 3", "sna.nlp.thdr.optional.22.field3",
FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_sna_nlp_opti_22_field4,
{ "Field 4", "sna.nlp.thdr.optional.22.field4",
FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_sna_rh,
{ "Request/Response Header", "sna.rh", FT_NONE, BASE_NONE,
NULL, 0x0, NULL, HFILL }},
{ &hf_sna_rh_0,
{ "Request/Response Header Byte 0", "sna.rh.0", FT_UINT8,
BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_sna_rh_1,
{ "Request/Response Header Byte 1", "sna.rh.1", FT_UINT8,
BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_sna_rh_2,
{ "Request/Response Header Byte 2", "sna.rh.2", FT_UINT8,
BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_sna_rh_rri,
{ "Request/Response Indicator", "sna.rh.rri", FT_BOOLEAN,
8, TFS(&tfs_response_request), 0x80, NULL, HFILL }},
{ &hf_sna_rh_ru_category,
{ "Request/Response Unit Category", "sna.rh.ru_category",
FT_UINT8, BASE_HEX, VALS(sna_rh_ru_category_vals), 0x60,
NULL, HFILL }},
{ &hf_sna_rh_fi,
{ "Format Indicator", "sna.rh.fi", FT_BOOLEAN, 8,
TFS(&sna_rh_fi_truth), 0x08, NULL, HFILL }},
{ &hf_sna_rh_sdi,
{ "Sense Data Included", "sna.rh.sdi", FT_BOOLEAN, 8,
TFS(&tfs_included_not_included), 0x04, NULL, HFILL }},
{ &hf_sna_rh_bci,
{ "Begin Chain Indicator", "sna.rh.bci", FT_BOOLEAN, 8,
TFS(&sna_rh_bci_truth), 0x02, NULL, HFILL }},
{ &hf_sna_rh_eci,
{ "End Chain Indicator", "sna.rh.eci", FT_BOOLEAN, 8,
TFS(&sna_rh_eci_truth), 0x01, NULL, HFILL }},
{ &hf_sna_rh_dr1,
{ "Definite Response 1 Indicator", "sna.rh.dr1", FT_BOOLEAN,
8, NULL, 0x80, NULL, HFILL }},
{ &hf_sna_rh_lcci,
{ "Length-Checked Compression Indicator", "sna.rh.lcci",
FT_BOOLEAN, 8, TFS(&sna_rh_lcci_truth), 0x40, NULL, HFILL }},
{ &hf_sna_rh_dr2,
{ "Definite Response 2 Indicator", "sna.rh.dr2", FT_BOOLEAN,
8, NULL, 0x20, NULL, HFILL }},
{ &hf_sna_rh_eri,
{ "Exception Response Indicator", "sna.rh.eri", FT_BOOLEAN,
8, NULL, 0x10, NULL, HFILL }},
{ &hf_sna_rh_rti,
{ "Response Type Indicator", "sna.rh.rti", FT_BOOLEAN,
8, TFS(&sna_rh_rti_truth), 0x10, NULL, HFILL }},
{ &hf_sna_rh_rlwi,
{ "Request Larger Window Indicator", "sna.rh.rlwi", FT_BOOLEAN,
8, NULL, 0x04, NULL, HFILL }},
{ &hf_sna_rh_qri,
{ "Queued Response Indicator", "sna.rh.qri", FT_BOOLEAN,
8, TFS(&sna_rh_qri_truth), 0x02, NULL, HFILL }},
{ &hf_sna_rh_pi,
{ "Pacing Indicator", "sna.rh.pi", FT_BOOLEAN,
8, NULL, 0x01, NULL, HFILL }},
{ &hf_sna_rh_bbi,
{ "Begin Bracket Indicator", "sna.rh.bbi", FT_BOOLEAN,
8, NULL, 0x80, NULL, HFILL }},
{ &hf_sna_rh_ebi,
{ "End Bracket Indicator", "sna.rh.ebi", FT_BOOLEAN,
8, NULL, 0x40, NULL, HFILL }},
{ &hf_sna_rh_cdi,
{ "Change Direction Indicator", "sna.rh.cdi", FT_BOOLEAN,
8, NULL, 0x20, NULL, HFILL }},
{ &hf_sna_rh_csi,
{ "Code Selection Indicator", "sna.rh.csi", FT_UINT8, BASE_DEC,
VALS(sna_rh_csi_vals), 0x08, NULL, HFILL }},
{ &hf_sna_rh_edi,
{ "Enciphered Data Indicator", "sna.rh.edi", FT_BOOLEAN, 8,
NULL, 0x04, NULL, HFILL }},
{ &hf_sna_rh_pdi,
{ "Padded Data Indicator", "sna.rh.pdi", FT_BOOLEAN, 8, NULL,
0x02, NULL, HFILL }},
{ &hf_sna_rh_cebi,
{ "Conditional End Bracket Indicator", "sna.rh.cebi",
FT_BOOLEAN, 8, NULL, 0x01, NULL, HFILL }},
/* { &hf_sna_ru,
{ "Request/Response Unit", "sna.ru", FT_NONE, BASE_NONE,
NULL, 0x0, NULL, HFILL }},*/
{ &hf_sna_gds,
{ "GDS Variable", "sna.gds", FT_NONE, BASE_NONE, NULL, 0x0,
NULL, HFILL }},
{ &hf_sna_gds_len,
{ "GDS Variable Length", "sna.gds.len", FT_UINT16, BASE_DEC,
NULL, 0x7fff, NULL, HFILL }},
{ &hf_sna_gds_cont,
{ "Continuation Flag", "sna.gds.cont", FT_BOOLEAN, 16, NULL,
0x8000, NULL, HFILL }},
{ &hf_sna_gds_type,
{ "Type of Variable", "sna.gds.type", FT_UINT16, BASE_HEX,
VALS(sna_gds_var_vals), 0x0, NULL, HFILL }},
{ &hf_sna_gds_info,
{ "Information", "sna.gds.info", FT_BYTES, BASE_NONE,
NULL, 0x0, NULL, HFILL }},
#if 0
{ &hf_sna_xid,
{ "XID", "sna.xid", FT_NONE, BASE_NONE, NULL, 0x0,
"XID Frame", HFILL }},
#endif
{ &hf_sna_xid_0,
{ "XID Byte 0", "sna.xid.0", FT_UINT8, BASE_HEX, NULL, 0x0,
NULL, HFILL }},
{ &hf_sna_xid_format,
{ "XID Format", "sna.xid.format", FT_UINT8, BASE_DEC, NULL,
0xf0, NULL, HFILL }},
{ &hf_sna_xid_type,
{ "XID Type", "sna.xid.type", FT_UINT8, BASE_DEC,
VALS(sna_xid_type_vals), 0x0f, NULL, HFILL }},
{ &hf_sna_xid_len,
{ "XID Length", "sna.xid.len", FT_UINT8, BASE_DEC, NULL, 0x0,
NULL, HFILL }},
{ &hf_sna_xid_id,
{ "Node Identification", "sna.xid.id", FT_UINT32, BASE_HEX,
NULL, 0x0, NULL, HFILL }},
{ &hf_sna_xid_idblock,
{ "ID Block", "sna.xid.idblock", FT_UINT32, BASE_HEX, NULL,
0xfff00000, NULL, HFILL }},
{ &hf_sna_xid_idnum,
{ "ID Number", "sna.xid.idnum", FT_UINT32, BASE_HEX, NULL,
0x0fffff, NULL, HFILL }},
{ &hf_sna_xid_3_8,
{ "Characteristics of XID sender", "sna.xid.type3.8", FT_UINT16,
BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_sna_xid_3_init_self,
{ "INIT-SELF support", "sna.xid.type3.initself",
FT_BOOLEAN, 16, NULL, 0x8000, NULL, HFILL }},
{ &hf_sna_xid_3_stand_bind,
{ "Stand-Alone BIND Support", "sna.xid.type3.stand_bind",
FT_BOOLEAN, 16, NULL, 0x4000, NULL, HFILL }},
{ &hf_sna_xid_3_gener_bind,
{ "Whole BIND PIU generated indicator",
"sna.xid.type3.gener_bind", FT_BOOLEAN, 16, NULL, 0x2000,
"Whole BIND PIU generated", HFILL }},
{ &hf_sna_xid_3_recve_bind,
{ "Whole BIND PIU required indicator",
"sna.xid.type3.recve_bind", FT_BOOLEAN, 16, NULL, 0x1000,
"Whole BIND PIU required", HFILL }},
{ &hf_sna_xid_3_actpu,
{ "ACTPU suppression indicator", "sna.xid.type3.actpu",
FT_BOOLEAN, 16, NULL, 0x0080, NULL, HFILL }},
{ &hf_sna_xid_3_nwnode,
{ "Sender is network node", "sna.xid.type3.nwnode",
FT_BOOLEAN, 16, NULL, 0x0040, NULL, HFILL }},
{ &hf_sna_xid_3_cp,
{ "Control Point Services", "sna.xid.type3.cp",
FT_BOOLEAN, 16, NULL, 0x0020, NULL, HFILL }},
{ &hf_sna_xid_3_cpcp,
{ "CP-CP session support", "sna.xid.type3.cpcp",
FT_BOOLEAN, 16, NULL, 0x0010, NULL, HFILL }},
{ &hf_sna_xid_3_state,
{ "XID exchange state indicator", "sna.xid.type3.state",
FT_UINT16, BASE_HEX, VALS(sna_xid_3_state_vals),
0x000c, NULL, HFILL }},
{ &hf_sna_xid_3_nonact,
{ "Nonactivation Exchange", "sna.xid.type3.nonact",
FT_BOOLEAN, 16, NULL, 0x0002, NULL, HFILL }},
{ &hf_sna_xid_3_cpchange,
{ "CP name change support", "sna.xid.type3.cpchange",
FT_BOOLEAN, 16, NULL, 0x0001, NULL, HFILL }},
{ &hf_sna_xid_3_10,
{ "XID Type 3 Byte 10", "sna.xid.type3.10", FT_UINT8, BASE_HEX,
NULL, 0x0, NULL, HFILL }},
{ &hf_sna_xid_3_asend_bind,
{ "Adaptive BIND pacing support as sender",
"sna.xid.type3.asend_bind", FT_BOOLEAN, 8, NULL, 0x80,
"Pacing support as sender", HFILL }},
{ &hf_sna_xid_3_arecv_bind,
{ "Adaptive BIND pacing support as receiver",
"sna.xid.type3.asend_recv", FT_BOOLEAN, 8, NULL, 0x40,
"Pacing support as receive", HFILL }},
{ &hf_sna_xid_3_quiesce,
{ "Quiesce TG Request",
"sna.xid.type3.quiesce", FT_BOOLEAN, 8, NULL, 0x20,
NULL, HFILL }},
{ &hf_sna_xid_3_pucap,
{ "PU Capabilities",
"sna.xid.type3.pucap", FT_BOOLEAN, 8, NULL, 0x10,
NULL, HFILL }},
{ &hf_sna_xid_3_pbn,
{ "Peripheral Border Node",
"sna.xid.type3.pbn", FT_BOOLEAN, 8, NULL, 0x08,
NULL, HFILL }},
{ &hf_sna_xid_3_pacing,
{ "Qualifier for adaptive BIND pacing support",
"sna.xid.type3.pacing", FT_UINT8, BASE_HEX, NULL, 0x03,
NULL, HFILL }},
{ &hf_sna_xid_3_11,
{ "XID Type 3 Byte 11", "sna.xid.type3.11", FT_UINT8, BASE_HEX,
NULL, 0x0, NULL, HFILL }},
{ &hf_sna_xid_3_tgshare,
{ "TG Sharing Prohibited Indicator",
"sna.xid.type3.tgshare", FT_BOOLEAN, 8, NULL, 0x40,
NULL, HFILL }},
{ &hf_sna_xid_3_dedsvc,
{ "Dedicated SVC Indicator",
"sna.xid.type3.dedsvc", FT_BOOLEAN, 8, NULL, 0x20,
NULL, HFILL }},
{ &hf_sna_xid_3_12,
{ "XID Type 3 Byte 12", "sna.xid.type3.12", FT_UINT8, BASE_HEX,
NULL, 0x0, NULL, HFILL }},
{ &hf_sna_xid_3_negcsup,
{ "Negotiation Complete Supported",
"sna.xid.type3.negcsup", FT_BOOLEAN, 8, NULL, 0x80,
NULL, HFILL }},
{ &hf_sna_xid_3_negcomp,
{ "Negotiation Complete",
"sna.xid.type3.negcomp", FT_BOOLEAN, 8, NULL, 0x40,
NULL, HFILL }},
{ &hf_sna_xid_3_15,
{ "XID Type 3 Byte 15", "sna.xid.type3.15", FT_UINT8, BASE_HEX,
NULL, 0x0, NULL, HFILL }},
{ &hf_sna_xid_3_partg,
{ "Parallel TG Support",
"sna.xid.type3.partg", FT_BOOLEAN, 8, NULL, 0x80,
NULL, HFILL }},
{ &hf_sna_xid_3_dlur,
{ "Dependent LU Requester Indicator",
"sna.xid.type3.dlur", FT_BOOLEAN, 8, NULL, 0x40,
NULL, HFILL }},
{ &hf_sna_xid_3_dlus,
{ "DLUS Served LU Registration Indicator",
"sna.xid.type3.dlus", FT_BOOLEAN, 8, NULL, 0x20,
NULL, HFILL }},
{ &hf_sna_xid_3_exbn,
{ "Extended HPR Border Node",
"sna.xid.type3.exbn", FT_BOOLEAN, 8, NULL, 0x10,
NULL, HFILL }},
{ &hf_sna_xid_3_genodai,
{ "Generalized ODAI Usage Option",
"sna.xid.type3.genodai", FT_BOOLEAN, 8, NULL, 0x08,
NULL, HFILL }},
{ &hf_sna_xid_3_branch,
{ "Branch Indicator", "sna.xid.type3.branch",
FT_UINT8, BASE_HEX, VALS(sna_xid_3_branch_vals),
0x06, NULL, HFILL }},
{ &hf_sna_xid_3_brnn,
{ "Option Set 1123 Indicator",
"sna.xid.type3.brnn", FT_BOOLEAN, 8, NULL, 0x01,
NULL, HFILL }},
{ &hf_sna_xid_3_tg,
{ "XID TG", "sna.xid.type3.tg", FT_UINT8, BASE_HEX, NULL, 0x0,
NULL, HFILL }},
{ &hf_sna_xid_3_dlc,
{ "XID DLC", "sna.xid.type3.dlc", FT_UINT8, BASE_HEX, NULL, 0x0,
NULL, HFILL }},
{ &hf_sna_xid_3_dlen,
{ "DLC Dependent Section Length", "sna.xid.type3.dlen",
FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_sna_control_len,
{ "Control Vector Length", "sna.control.len",
FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_sna_control_key,
{ "Control Vector Key", "sna.control.key",
FT_UINT8, BASE_HEX, VALS(sna_control_vals), 0x0, NULL,
HFILL }},
{ &hf_sna_control_hprkey,
{ "Control Vector HPR Key", "sna.control.hprkey",
FT_UINT8, BASE_HEX, VALS(sna_control_hpr_vals), 0x0, NULL,
HFILL }},
{ &hf_sna_control_05_delay,
{ "Channel Delay", "sna.control.05.delay",
FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_sna_control_05_type,
{ "Network Address Type", "sna.control.05.type",
FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_sna_control_05_ptp,
{ "Point-to-point", "sna.control.05.ptp",
FT_BOOLEAN, 8, NULL, 0x80, NULL, HFILL }},
{ &hf_sna_control_0e_type,
{ "Type", "sna.control.0e.type",
FT_UINT8, BASE_HEX, VALS(sna_control_0e_type_vals),
0, NULL, HFILL }},
{ &hf_sna_control_0e_value,
{ "Value", "sna.control.0e.value",
FT_STRING, BASE_NONE, NULL, 0, NULL, HFILL }},
{ &hf_sna_padding,
{ "Padding", "sna.padding",
FT_BYTES, BASE_NONE, NULL, 0, NULL, HFILL }},
{ &hf_sna_reserved,
{ "Reserved", "sna.reserved",
FT_BYTES, BASE_NONE, NULL, 0, NULL, HFILL }},
{ &hf_sna_biu_segment_data,
{ "BIU segment data", "sna.biu_segment_data",
FT_BYTES, BASE_NONE, NULL, 0, NULL, HFILL }},
};
static gint *ett[] = {
&ett_sna,
&ett_sna_th,
&ett_sna_th_fid,
&ett_sna_nlp_nhdr,
&ett_sna_nlp_nhdr_0,
&ett_sna_nlp_nhdr_1,
&ett_sna_nlp_thdr,
&ett_sna_nlp_thdr_8,
&ett_sna_nlp_thdr_9,
&ett_sna_nlp_opti_un,
&ett_sna_nlp_opti_0d,
&ett_sna_nlp_opti_0d_4,
&ett_sna_nlp_opti_0e,
&ett_sna_nlp_opti_0e_stat,
&ett_sna_nlp_opti_0e_absp,
&ett_sna_nlp_opti_0f,
&ett_sna_nlp_opti_10,
&ett_sna_nlp_opti_12,
&ett_sna_nlp_opti_14,
&ett_sna_nlp_opti_14_si,
&ett_sna_nlp_opti_14_si_2,
&ett_sna_nlp_opti_14_rr,
&ett_sna_nlp_opti_14_rr_2,
&ett_sna_nlp_opti_22,
&ett_sna_nlp_opti_22_2,
&ett_sna_nlp_opti_22_3,
&ett_sna_rh,
&ett_sna_rh_0,
&ett_sna_rh_1,
&ett_sna_rh_2,
&ett_sna_gds,
&ett_sna_xid_0,
&ett_sna_xid_id,
&ett_sna_xid_3_8,
&ett_sna_xid_3_10,
&ett_sna_xid_3_11,
&ett_sna_xid_3_12,
&ett_sna_xid_3_15,
&ett_sna_control_un,
&ett_sna_control_05,
&ett_sna_control_05hpr,
&ett_sna_control_05hpr_type,
&ett_sna_control_0e,
};
module_t *sna_module;
proto_sna = proto_register_protocol("Systems Network Architecture",
"SNA", "sna");
proto_register_field_array(proto_sna, hf, array_length(hf));
proto_register_subtree_array(ett, array_length(ett));
sna_handle = register_dissector("sna", dissect_sna, proto_sna);
proto_sna_xid = proto_register_protocol(
"Systems Network Architecture XID", "SNA XID", "sna_xid");
sna_xid_handle = register_dissector("sna_xid", dissect_sna_xid, proto_sna_xid);
sna_address_type = address_type_dissector_register("AT_SNA", "SNA Address", sna_fid_to_str_buf, sna_address_str_len, NULL, NULL, NULL, NULL, NULL);
/* Register configuration options */
sna_module = prefs_register_protocol(proto_sna, NULL);
prefs_register_bool_preference(sna_module, "defragment",
"Reassemble fragmented BIUs",
"Whether fragmented BIUs should be reassembled",
&sna_defragment);
reassembly_table_register(&sna_reassembly_table,
&addresses_reassembly_table_functions);
}
void
proto_reg_handoff_sna(void)
{
dissector_add_uint("llc.dsap", SAP_SNA_PATHCTRL, sna_handle);
dissector_add_uint("llc.dsap", SAP_SNA1, sna_handle);
dissector_add_uint("llc.dsap", SAP_SNA2, sna_handle);
dissector_add_uint("llc.dsap", SAP_SNA3, sna_handle);
dissector_add_uint("llc.dsap", SAP_SNA4, sna_handle);
dissector_add_uint("llc.xid_dsap", SAP_SNA_PATHCTRL, sna_xid_handle);
dissector_add_uint("llc.xid_dsap", SAP_SNA1, sna_xid_handle);
dissector_add_uint("llc.xid_dsap", SAP_SNA2, sna_xid_handle);
dissector_add_uint("llc.xid_dsap", SAP_SNA3, sna_xid_handle);
/* RFC 2043 */
dissector_add_uint("ppp.protocol", PPP_SNA, sna_handle);
}
/*
* Editor modelines - https://www.wireshark.org/tools/modelines.html
*
* Local variables:
* c-basic-offset: 8
* tab-width: 8
* indent-tabs-mode: t
* End:
*
* vi: set shiftwidth=8 tabstop=8 noexpandtab:
* :indentSize=8:tabSize=8:noTabs=false:
*/