wireshark/epan/dissectors/packet-netanalyzer.c

587 lines
21 KiB
C

/* packet-netanalyzer.c
* Dissector for Hilscher netANALYZER frames.
* Copyright 2008-2016, Hilscher GmbH, Holger Pfrommer hpfrommer[AT]hilscher.com
*
* Packet structure:
* +---------------------------+
* | Header |
* | (4 Octets) |
* +---------------------------+
* | Payload |
* . .
* . .
* . .
*
* Description:
* The header field contains a 32-bit value in little-endian byte order.
* The low-order 8 bits are a set of error flags for the packet:
* 0x00000001 - MII RX_ER
* 0x00000002 - alignment error
* 0x00000004 - FCS error
* 0x00000008 - frame too long
* 0x00000010 - SFD error
* 0x00000020 - frame shorter than 64 bytes
* 0x00000040 - preamble shorter than 7 bytes
* 0x00000080 - preamble longer than 7 bytes/li>
* The next bit, 0x00000100, is set if the packet arrived on the GPIO port rather tha the Ethernet port.
* The next bit, 0x00000200, is set if the packet was received in transparent capture mode.
* That should never be set for LINKTYPE_NETANALYZER and should always be set for LINKTYPE_NETANALYZER_TRANSPARENT.
* The next 4 bits, 0x00003C00, are a bitfield giving the version of the header field; version can be 1 or 2.
* The next 2 bits, 0x0000C000, are the capture port/GPIO number, from 0 to 3.
* The next 12 bits, 0x0FFF0000, are the frame length, in bytes.
* The topmost 4 bits, 0xF0000000, for version 2 header, these bits are the type of the following packet
* (0: Ethernet, 1: PROFIBUS, 2: buffer state entry, 3: timetick, 4..15: reserved).
* The payload is an Ethernet frame, beginning with the MAC header and ending with the FCS, for LINKTYPE_NETANALYZER,
* and an Ethernet frame, beginning with the preamble and ending with the FCS, for LINKTYPE_NETANALYZER_TRANSPARENT.
*
*
* Wireshark - Network traffic analyzer
* By Gerald Combs <gerald[AT]wireshark.org>
* Copyright 1999 Gerald Combs
*
* SPDX-License-Identifier: GPL-2.0-or-later
*/
#include "config.h"
#include <epan/packet.h>
#include <epan/expert.h>
#include <wiretap/wtap.h>
void proto_register_netanalyzer(void);
void proto_reg_handoff_netanalyzer(void);
#define HEADER_SIZE 4
#define INFO_TYPE_OFFSET 18
#define MSK_RX_ERR 0x01
#define MSK_ALIGN_ERR 0x02
#define MSK_FCS_ERROR 0x04
#define MSK_TOO_LONG 0x08
#define MSK_SFD_ERROR 0x10
#define MSK_SHORT_FRAME 0x20
#define MSK_SHORT_PREAMBLE 0x40
#define MSK_LONG_PREAMBLE 0x80
static const char *msk_strings[] = {
"MII RX_ER error", /* 0x01 */
"Alignment error", /* 0x02 */
"FCS error", /* 0x04 */
"Frame too long", /* 0x08 */
"No valid SFD found", /* 0x10 */
"Frame smaller 64 bytes", /* 0x20 */
"Preamble shorter than 7 bytes", /* 0x40 */
"Preamble longer than 7 bytes" /* 0x80 */
};
#define SRT_TYPE 28
#define SRT_PORT_NUM 6
#define SRT_VERSION 2
#define SRT_GPIO_FLAG 0
#define MSK_PACKET_STATUS 0xff
#define MSK_LENGTH 0x0fff
#define MSK_TRANSPARENT_MODE 0x02
#define MSK_BUF_STATE 0x1
#define SRT_BUF_ID 4
#define MSK_BUF_ID 0xf0
#define VAL_TYPE_ETH 0
#define VAL_TYPE_PB 1
#define VAL_TYPE_BUF 2
#define VAL_TYPE_TICK 3
static const value_string gpio_number[] = {
{ 0x0, "GPIO 0" },
{ 0x1, "GPIO 1" },
{ 0x2, "GPIO 2" },
{ 0x3, "GPIO 3" },
{ 0, NULL }
};
static const value_string gpio_edge_vals[] = {
{ 0x0, "Rising edge" },
{ 0x1, "Falling edge" },
{ 0, NULL }
};
static const value_string buf_state_vals[] = {
{ 0x0, "Buffer overflow, frames will be dropped until next buffer recovery" },
{ 0x1, "Buffer recovery, frame reception has recovered" },
{ 0, NULL }
};
static const value_string buf_source_vals[] = {
{ 0x0, "Backend RX FIFO" },
{ 0x1, "netX URX FIFO" },
{ 0x2, "netX INTRAM buffer" },
{ 0x3, "Host buffer" },
{ 0x4, "Capture driver (WinPcap)" },
{ 0, NULL }
};
static dissector_handle_t eth_dissector_handle;
static gint proto_netanalyzer = -1;
static gint hf_netanalyzer_gpio = -1;
static gint hf_netanalyzer_gpio_number = -1;
static gint hf_netanalyzer_gpio_edge = -1;
static gint hf_netanalyzer_eth = -1;
static gint hf_netanalyzer_port = -1;
static gint hf_netanalyzer_length = -1;
static gint hf_netanalyzer_status = -1;
static gint hf_netanalyzer_status_rx_err = -1;
static gint hf_netanalyzer_status_align_err = -1;
static gint hf_netanalyzer_status_fcs = -1;
static gint hf_netanalyzer_status_too_long = -1;
static gint hf_netanalyzer_status_sfd_error = -1;
static gint hf_netanalyzer_status_short_frame = -1;
static gint hf_netanalyzer_status_short_preamble = -1;
static gint hf_netanalyzer_status_long_preamble = -1;
static gint hf_netanalyzer_buf = -1;
static gint hf_netanalyzer_buf_state = -1;
static gint hf_netanalyzer_buf_source = -1;
static gint hf_netanalyzer_timetick = -1;
static int * const hfx_netanalyzer_status[] = {
&hf_netanalyzer_status_rx_err,
&hf_netanalyzer_status_align_err,
&hf_netanalyzer_status_fcs,
&hf_netanalyzer_status_too_long,
&hf_netanalyzer_status_sfd_error,
&hf_netanalyzer_status_short_frame,
&hf_netanalyzer_status_short_preamble,
&hf_netanalyzer_status_long_preamble,
NULL
};
static gint ett_netanalyzer = -1;
static gint ett_netanalyzer_gpio = -1;
static gint ett_netanalyzer_status = -1;
static gint ett_netanalyzer_transparent = -1;
static gint ett_netanalyzer_buf = -1;
static expert_field ei_netanalyzer_header_wrong = EI_INIT;
static expert_field ei_netanalyzer_gpio_def_none = EI_INIT;
static expert_field ei_netanalyzer_header_none = EI_INIT;
static expert_field ei_netanalyzer_transparent_frame = EI_INIT;
static expert_field ei_netanalyzer_alignment_error = EI_INIT;
static expert_field ei_netanalyzer_not_implemented = EI_INIT;
/* common routine for Ethernet and transparent mode */
static int
dissect_netanalyzer_common(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)
{
proto_item *ti = NULL;
proto_tree *netanalyzer_header_tree = NULL;
guint32 packet_status;
guint32 port_num;
guint32 frame_length;
guint is_gpio;
guint32 offset;
guint gpio_num;
guint gpio_edge;
guint version;
guint type;
guint idx;
guint buf_state;
guint buf_source;
if (tree)
{
/* generate netANALYZER tree */
ti = proto_tree_add_item(tree, proto_netanalyzer, tvb, 0, HEADER_SIZE, ENC_NA);
netanalyzer_header_tree = proto_item_add_subtree(ti, ett_netanalyzer);
is_gpio = (tvb_get_guint8(tvb, 1) >> SRT_GPIO_FLAG) & 0x1;
if (!is_gpio)
{
/* normal packet, no GPIO */
/* decode version */
version = (tvb_get_guint8(tvb, 1) >> SRT_VERSION) & 0xf;
type = (tvb_get_guint32(tvb, 0, ENC_LITTLE_ENDIAN) >> SRT_TYPE) & 0xf;
if ((version == 1) || ((version == 2) && (type == VAL_TYPE_ETH)))
{
proto_tree_add_none_format(netanalyzer_header_tree, hf_netanalyzer_eth, tvb, 0, 0, "Ethernet frame");
/* decode port */
port_num = (tvb_get_guint8(tvb, 1) >> SRT_PORT_NUM) & 0x3;
proto_tree_add_uint(netanalyzer_header_tree, hf_netanalyzer_port, tvb, 0, 4, port_num);
proto_item_append_text(ti, " (Port: %u, ", port_num);
/* decode length */
frame_length = tvb_get_letohs(tvb, 2) & MSK_LENGTH;
proto_tree_add_uint(netanalyzer_header_tree, hf_netanalyzer_length, tvb, 0, 4, frame_length);
proto_item_append_text(ti, "Length: %u byte%s, ", frame_length, (frame_length == 1) ? "" : "s");
/* decode status */
proto_item_append_text(ti, "Status: ");
packet_status = tvb_get_guint8(tvb, 0);
if (packet_status == 0)
{
proto_tree_add_uint_format_value(netanalyzer_header_tree, hf_netanalyzer_status, tvb, 0, 1,
packet_status, "No Error");
proto_item_append_text(ti, "No Error)");
}
else
{
wmem_strbuf_t *strbuf;
gboolean first = TRUE;
proto_tree_add_bitmask(netanalyzer_header_tree, tvb, 0, hf_netanalyzer_status, ett_netanalyzer_status, hfx_netanalyzer_status, ENC_LITTLE_ENDIAN);
strbuf = wmem_strbuf_create(pinfo->pool);
for (idx = 0; idx < 8; idx++)
{
if (packet_status & (1 << idx))
{
if (first)
{
first = FALSE;
}
else
{
wmem_strbuf_append(strbuf, ", ");
}
wmem_strbuf_append(strbuf, msk_strings[idx]);
}
}
proto_item_append_text(ti, "%s)", wmem_strbuf_get_str(strbuf));
}
/* decode transparent mode */
if (tvb_get_guint8(tvb, 1) & MSK_TRANSPARENT_MODE)
{
proto_tree_add_expert(netanalyzer_header_tree, pinfo, &ei_netanalyzer_transparent_frame, tvb, 0, 4);
proto_item_append_text(ti, ", Transparent Mode");
if (packet_status & MSK_ALIGN_ERR)
{
proto_tree_add_expert(netanalyzer_header_tree, pinfo, &ei_netanalyzer_alignment_error, tvb, tvb_captured_length(tvb) - 1, 1);
}
}
}
else if ((version == 2) && (type == VAL_TYPE_PB))
{
/* currently not implemented */
expert_add_info(pinfo, ti, &ei_netanalyzer_not_implemented);
return FALSE;
}
else if ((version == 2) && (type == VAL_TYPE_BUF))
{
proto_tree_add_none_format(netanalyzer_header_tree, hf_netanalyzer_buf, tvb, 0, 0, "Buffer state entry");
col_set_str(pinfo->cinfo, COL_PROTOCOL, "netANALYZER");
buf_state = tvb_get_guint8(tvb, 0) & MSK_BUF_STATE;
if (buf_state == 0)
{
col_set_str(pinfo->cinfo, COL_INFO, "Buffer overflow");
}
else
{
col_set_str(pinfo->cinfo, COL_INFO, "Buffer recovery");
}
proto_item_append_text(ti, " (%s)", buf_state_vals[buf_state].strptr);
/* decode buffer state */
proto_tree_add_uint(ti, hf_netanalyzer_buf_state, tvb, 0, 1, buf_state);
port_num = (tvb_get_guint8(tvb, 1) >> SRT_PORT_NUM) & 0x3;
proto_tree_add_uint(ti, hf_netanalyzer_port, tvb, 0, 4, port_num);
buf_source = (tvb_get_guint8(tvb, 0) & MSK_BUF_ID) >> SRT_BUF_ID;
proto_tree_add_uint(ti, hf_netanalyzer_buf_source, tvb, 0, 1, buf_source);
return FALSE;
}
else if ((version == 2) && (type == VAL_TYPE_TICK))
{
col_set_str(pinfo->cinfo, COL_PROTOCOL, "netANALYZER");
col_set_str(pinfo->cinfo, COL_INFO, "Time tick");
proto_item_append_text(ti, " (Time tick)");
proto_tree_add_none_format(netanalyzer_header_tree, hf_netanalyzer_timetick, tvb, 0, 0, "Time tick");
return FALSE;
}
else
{
/* something is wrong */
expert_add_info(pinfo, ti, &ei_netanalyzer_header_wrong);
return FALSE;
}
}
else
{
guchar *szTemp;
/* check consistency */
if ( (tvb_get_guint8(tvb, 10) == 0x00) &&
(tvb_get_guint8(tvb, 11) == 0x02) &&
(tvb_get_guint8(tvb, 12) == 0xa2) &&
(tvb_get_guint8(tvb, 13) == 0xff) &&
(tvb_get_guint8(tvb, 14) == 0xff) &&
(tvb_get_guint8(tvb, 15) == 0xff) &&
(tvb_get_guint8(tvb, 16) == 0x88) &&
(tvb_get_guint8(tvb, 17) == 0xff) &&
(tvb_get_guint8(tvb, INFO_TYPE_OFFSET) == 0x00) )
{
#define MAX_BUFFER 255
szTemp=(guchar *)wmem_alloc(wmem_epan_scope(), MAX_BUFFER);
/* everything ok */
col_set_str(pinfo->cinfo, COL_PROTOCOL, "netANALYZER");
offset = INFO_TYPE_OFFSET;
proto_tree_add_none_format(netanalyzer_header_tree, hf_netanalyzer_gpio, tvb, 0, 0, "GPIO event");
proto_item_append_text(ti, " (GPIO event)");
/* GPIO number */
offset++;
proto_tree_add_item (netanalyzer_header_tree, hf_netanalyzer_gpio_number, tvb, offset, 1, ENC_LITTLE_ENDIAN);
gpio_num = (tvb_get_guint8(tvb, offset) & 0x03);
/* GPIO edge */
offset++;
ti = proto_tree_add_item (netanalyzer_header_tree, hf_netanalyzer_gpio_edge, tvb, offset, 1, ENC_LITTLE_ENDIAN);
gpio_edge = (tvb_get_guint8(tvb, offset) & 0x01);
snprintf(szTemp, MAX_BUFFER,
"GPIO event on GPIO %d (%sing edge)", gpio_num, (gpio_edge == 0x00) ? "ris" : "fall");
col_add_fstr(pinfo->cinfo, COL_INFO, "%s", szTemp);
proto_item_append_text(ti, " %s", szTemp);
}
else
{
/* something is wrong */
expert_add_info(pinfo, ti, &ei_netanalyzer_gpio_def_none);
}
return FALSE;
}
}
return TRUE;
}
/* Ethernet capture mode */
static int
dissect_netanalyzer(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void* data _U_)
{
tvbuff_t *next_tvb;
if (tvb_reported_length(tvb) >= 4)
{
/* generate tvb subset for Ethernet frame */
if (dissect_netanalyzer_common(tvb, pinfo, tree))
{
/* hand off to eth dissector with the new tvb subset */
next_tvb = tvb_new_subset_remaining(tvb, 4);
call_dissector(eth_dissector_handle, next_tvb, pinfo, tree);
}
}
else
{
/* something is wrong */
proto_tree_add_expert_format(tree, pinfo, &ei_netanalyzer_header_none, tvb, 4, -1,
"netANALYZER - No netANALYZER header found");
}
return tvb_captured_length(tvb);
}
/* Transparent capture mode */
static int
dissect_netanalyzer_transparent(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void* data _U_)
{
proto_tree *transparent_payload_tree = NULL;
tvbuff_t *next_tvb;
if (tvb_reported_length(tvb) >= 4)
{
/* generate tvb subset for Ethernet frame */
if (dissect_netanalyzer_common(tvb, pinfo, tree))
{
/* do not hand off transparent packet for further Ethernet dissectors
* as normally the transparent mode is used for low level analysis
* where dissecting the frame's content wouldn't make much sense
* use data dissector instead */
transparent_payload_tree = proto_tree_add_subtree(tree, tvb, 4, tvb_captured_length(tvb)-4,
ett_netanalyzer_transparent, NULL, "Raw packet data");
next_tvb = tvb_new_subset_remaining(tvb, 4);
call_data_dissector(next_tvb, pinfo, transparent_payload_tree);
col_set_str(pinfo->cinfo, COL_PROTOCOL, "netANALYZER");
col_set_str(pinfo->cinfo, COL_INFO, "Frame captured in transparent mode");
}
}
else
{
/* something is wrong */
proto_tree_add_expert_format(tree, pinfo, &ei_netanalyzer_header_none, tvb, 4, -1,
"netANALYZER transparent mode - No netANALYZER header found");
}
return tvb_captured_length(tvb);
}
void proto_register_netanalyzer(void)
{
static hf_register_info hf[] = {
{ &hf_netanalyzer_gpio,
{ "GPIO event", "netanalyzer.gpio_event",
FT_NONE, BASE_NONE, NULL, 0x0,
"Shows the occurrence of an digital switching event", HFILL }
},
{ &hf_netanalyzer_gpio_number,
{ "GPIO event on", "netanalyzer.gpio_event.gpio_number",
FT_UINT8, BASE_HEX, VALS(gpio_number), 0x0,
"GPIO event on GPIO number", HFILL }
},
{ &hf_netanalyzer_gpio_edge,
{ "GPIO event type", "netanalyzer.gpio_event.gpio_edge",
FT_UINT8, BASE_HEX, VALS(gpio_edge_vals), 0x0,
"GPIO edge of GPIO event", HFILL }
},
{ &hf_netanalyzer_eth,
{ "Ethernet frame", "netanalyzer.eth",
FT_NONE, BASE_NONE, NULL, 0x0,
"This is an Ethernet frame", HFILL }
},
{ &hf_netanalyzer_port,
{ "Reception Port", "netanalyzer.port",
FT_UINT8, BASE_DEC, NULL, 0x0,
"netANALYZER reception port", HFILL }
},
{ &hf_netanalyzer_length,
{ "Ethernet frame length", "netanalyzer.framelen",
FT_UINT16, BASE_DEC, NULL, 0x0,
"Actual Ethernet frame length", HFILL }
},
{ &hf_netanalyzer_status,
{ "Status", "netanalyzer.packetstatus",
FT_UINT8, BASE_HEX, NULL, MSK_PACKET_STATUS,
"Status of Ethernet frame", HFILL }
},
{ &hf_netanalyzer_status_rx_err,
{ "MII RX_ER error", "netanalyzer.packetstatus.rx_er",
FT_BOOLEAN, 8, NULL, MSK_RX_ERR,
"RX_ER detected in frame", HFILL }
},
{ &hf_netanalyzer_status_align_err,
{ "Alignment error", "netanalyzer.packetstatus.alignment_error",
FT_BOOLEAN, 8, NULL, MSK_ALIGN_ERR,
NULL, HFILL }
},
{ &hf_netanalyzer_status_fcs,
{ "FCS error", "netanalyzer.packetstatus.fcs_error",
FT_BOOLEAN, 8, NULL, MSK_FCS_ERROR,
NULL, HFILL }
},
{ &hf_netanalyzer_status_too_long,
{ "Frame too long", "netanalyzer.packetstatus.too_long",
FT_BOOLEAN, 8, NULL, MSK_TOO_LONG,
"Frame too long (capture truncated)", HFILL }
},
{ &hf_netanalyzer_status_sfd_error,
{ "No valid SFD found", "netanalyzer.packetstatus.sfd_error",
FT_BOOLEAN, 8, NULL, MSK_SFD_ERROR,
"SDF error detected in frame", HFILL }
},
{ &hf_netanalyzer_status_short_frame,
{ "Frame smaller 64 bytes", "netanalyzer.packetstatus.short_frame",
FT_BOOLEAN, 8, NULL, MSK_SHORT_FRAME,
NULL, HFILL }
},
{ &hf_netanalyzer_status_short_preamble,
{ "Preamble shorter than 7 bytes", "netanalyzer.packetstatus.short_preamble",
FT_BOOLEAN, 8, NULL, MSK_SHORT_PREAMBLE,
NULL, HFILL }
},
{ &hf_netanalyzer_status_long_preamble,
{ "Preamble longer than 7 bytes", "netanalyzer.packetstatus.long_preamble",
FT_BOOLEAN, 8, NULL, MSK_LONG_PREAMBLE,
NULL, HFILL }
},
{ &hf_netanalyzer_buf,
{ "Buffer state entry", "netanalyzer.buffer",
FT_NONE, BASE_NONE, NULL, 0x0,
"Info about reception buffer conditions", HFILL }
},
{ &hf_netanalyzer_buf_state,
{ "Buffer state", "netanalyzer.buffer.state",
FT_UINT8, BASE_DEC, VALS(buf_state_vals), 0x0,
"State of receive buffers", HFILL }
},
{ &hf_netanalyzer_buf_source,
{ "Buffer source", "netanalyzer.buffer.source",
FT_UINT8, BASE_DEC, VALS(buf_source_vals), 0x0,
"Source of buffer error", HFILL }
},
{ &hf_netanalyzer_timetick,
{ "Time tick", "netanalyzer.timetick",
FT_NONE, BASE_NONE, NULL, 0x0,
"Cyclic time tick of netANALYZER device", HFILL }
},
};
static gint *ett[] = {
&ett_netanalyzer,
&ett_netanalyzer_gpio,
&ett_netanalyzer_status,
&ett_netanalyzer_transparent,
&ett_netanalyzer_buf,
};
static ei_register_info ei[] = {
{ &ei_netanalyzer_header_wrong, { "netanalyzer.header.wrong", PI_PROTOCOL, PI_ERROR, "Wrong netANALYZER header", EXPFILL }},
{ &ei_netanalyzer_gpio_def_none, { "netanalyzer.gpio_def_none", PI_MALFORMED, PI_ERROR, "No valid netANALYZER GPIO definition found", EXPFILL }},
{ &ei_netanalyzer_header_none, { "netanalyzer.header.none", PI_MALFORMED, PI_ERROR, "No netANALYZER header found", EXPFILL }},
{ &ei_netanalyzer_transparent_frame, { "netanalyzer.transparent_frame", PI_PROTOCOL, PI_NOTE, "This frame was captured in transparent mode", EXPFILL }},
{ &ei_netanalyzer_alignment_error, { "netanalyzer.alignment_error", PI_PROTOCOL, PI_WARN, "Displayed frame data contains additional nibble due to alignment error (upper nibble is not valid)", EXPFILL }},
{ &ei_netanalyzer_not_implemented,{ "netanalyzer.not_implemented", PI_PROTOCOL, PI_ERROR, "This feature is currently not implemented in Wireshark", EXPFILL } },
};
expert_module_t* expert_netanalyzer;
proto_netanalyzer = proto_register_protocol (
"netANALYZER", /* name */
"netANALYZER", /* short name */
"netanalyzer" ); /* abbrev */
proto_register_field_array(proto_netanalyzer, hf, array_length(hf));
proto_register_subtree_array(ett, array_length(ett));
expert_netanalyzer = expert_register_protocol(proto_netanalyzer);
expert_register_field_array(expert_netanalyzer, ei, array_length(ei));
}
void proto_reg_handoff_netanalyzer(void)
{
dissector_handle_t netana_handle;
dissector_handle_t netana_handle_transparent;
eth_dissector_handle = find_dissector_add_dependency("eth_withfcs", proto_netanalyzer);
netana_handle = create_dissector_handle(dissect_netanalyzer, proto_netanalyzer);
netana_handle_transparent = create_dissector_handle(dissect_netanalyzer_transparent, proto_netanalyzer);
dissector_add_uint("wtap_encap", WTAP_ENCAP_NETANALYZER, netana_handle);
dissector_add_uint("wtap_encap", WTAP_ENCAP_NETANALYZER_TRANSPARENT, netana_handle_transparent);
}
/*
* Editor modelines - https://www.wireshark.org/tools/modelines.html
*
* Local Variables:
* c-basic-offset: 2
* tab-width: 8
* indent-tabs-mode: nil
* End:
*
* ex: set shiftwidth=2 tabstop=8 expandtab:
* :indentSize=2:tabSize=8:noTabs=true:
*/