wireshark/epan/dissectors/packet-csn1.c

1628 lines
56 KiB
C

/* packet-csn1.c
* Routines for CSN1 dissection in wireshark.
* By Vincent Helfre, based on original code by Jari Sassi
* with the gracious authorization of STE
* Copyright (c) 2011 ST-Ericsson
*
* Wireshark - Network traffic analyzer
* By Gerald Combs <gerald@wireshark.org>
* Copyright 1998 Gerald Combs
*
* SPDX-License-Identifier: GPL-2.0-or-later
*/
#include "config.h"
#include <epan/packet.h>
#include <epan/to_str.h>
#include "packet-csn1.h"
void proto_register_csn1(void);
static int hf_null_data = -1;
static expert_field ei_csn1_more_bits_to_unpack = EI_INIT;
static expert_field ei_csn1_general = EI_INIT;
static expert_field ei_csn1_not_implemented = EI_INIT;
static expert_field ei_csn1_union_index = EI_INIT;
static expert_field ei_csn1_script_error = EI_INIT;
static expert_field ei_csn1_more32bits = EI_INIT;
static expert_field ei_csn1_fixed_not_matched = EI_INIT;
static expert_field ei_csn1_stream_not_supported = EI_INIT;
#define pvDATA(_pv, _offset) ((void*) ((unsigned char*)_pv + _offset))
#define pui8DATA(_pv, _offset) ((guint8*) pvDATA(_pv, _offset))
#define pui16DATA(_pv, _offset) ((guint16*) pvDATA(_pv, _offset))
#define pui32DATA(_pv, _offset) ((guint32*) pvDATA(_pv, _offset))
/* used to tag existence of next element in variable length lists */
#define STANDARD_TAG 1
#define REVERSED_TAG 0
static const unsigned char ixBitsTab[] = {0, 1, 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5};
static gint proto_csn1 = -1;
/* Returns no_of_bits (up to 8) masked with 0x2B */
static guint8
tvb_get_masked_bits8(tvbuff_t *tvb, gint bit_offset, const gint no_of_bits)
{
static const guint8 maskBits[] = {0x00, 0x01, 0x03, 0x07, 0x0F, 0x1F, 0x3F, 0x7F, 0xFF};
gint byte_offset = bit_offset >> 3; /* divide by 8 */
gint relative_bit_offset = bit_offset & 0x07; /* modulo 8 */
guint8 result;
gint bit_shift = 8 - relative_bit_offset - (gint) no_of_bits;
if (bit_shift >= 0)
{
result = (0x2B ^ tvb_get_guint8(tvb, byte_offset)) >> bit_shift;
result &= maskBits[no_of_bits];
}
else
{
guint8 hight_part = (0x2B ^ tvb_get_guint8(tvb, byte_offset)) & maskBits[8 - relative_bit_offset];
hight_part = (guint8) (hight_part << (-bit_shift));
result = (0x2B ^ tvb_get_guint8(tvb, byte_offset+1)) >> (8 + bit_shift);
result |= hight_part;
}
return result;
}
/**
* ================================================================================================
* set initial/start values in help data structure used for packing/unpacking operation
* ================================================================================================
*/
void
csnStreamInit(csnStream_t* ar, gint bit_offset, gint remaining_bits_len, packet_info* pinfo)
{
ar->remaining_bits_len = remaining_bits_len;
ar->bit_offset = bit_offset;
ar->pinfo = pinfo;
}
static gint16
ProcessError(proto_tree *tree, packet_info* pinfo, tvbuff_t *tvb, gint bit_offset, gint16 err, expert_field* err_field, const CSN_DESCR* pDescr)
{
if (err_field != NULL)
proto_tree_add_expert_format(tree, pinfo, err_field, tvb, bit_offset>>3, 1, "%s (%s)", expert_get_summary(err_field), pDescr?pDescr->sz:"-");
return err;
}
#if 0
static const char* CSN_DESCR_type[]=
{
"CSN_END",
"CSN_BIT",
"CSN_UINT",
"CSN_TYPE",
"CSN_CHOICE",
"CSN_UNION",
"CSN_UNION_LH",
"CSN_UINT_ARRAY",
"CSN_TYPE_ARRAY",
"CSN_BITMAP",
"CSN_VARIABLE_BITMAP",
"CSN_VARIABLE_BITMAP_1",
"CSN_LEFT_ALIGNED_VAR_BMP",
"CSN_LEFT_ALIGNED_VAR_BMP_1",
"CSN_VARIABLE_ARRAY",
"CSN_VARIABLE_TARRAY",
"CSN_VARIABLE_TARRAY_OFFSET",
"CSN_RECURSIVE_ARRAY",
"CSN_RECURSIVE_TARRAY",
"CSN_RECURSIVE_TARRAY_1",
"CSN_RECURSIVE_TARRAY_2",
"CSN_EXIST",
"CSN_EXIST_LH",
"CSN_NEXT_EXIST",
"CSN_NEXT_EXIST_LH",
"CSN_NULL",
"CSN_FIXED",
"CSN_CALLBACK",
"CSN_UINT_OFFSET",
"CSN_UINT_LH",
"CSN_SERIALIZE",
"CSN_TRAP_ERROR"
"CSN_???"
};
#endif
/**
* ================================================================================================
* Return TRUE if tag in bit stream indicates existence of next list element,
* otherwise return FALSE.
* Will work for tag values equal to both 0 and 1.
* ================================================================================================
*/
static gboolean
existNextElement(tvbuff_t *tvb, gint bit_offset, guint8 Tag)
{
guint8 res = tvb_get_bits8(tvb, bit_offset, 1);
if (Tag == STANDARD_TAG)
{
return (res > 0);
}
return (res == 0);
}
gint16
csnStreamDissector(proto_tree *tree, csnStream_t* ar, const CSN_DESCR* pDescr, tvbuff_t *tvb, void* data, int ett_csn1)
{
gint remaining_bits_len = ar->remaining_bits_len;
gint bit_offset = ar->bit_offset;
guint8* pui8 = NULL;
guint16* pui16;
guint32* pui32;
guint8 Tag = STANDARD_TAG;
/* Negative number definitely indicates an error */
if (remaining_bits_len < 0)
{
return ProcessError(tree, ar->pinfo, tvb, bit_offset, CSN_ERROR_NEED_MORE_BITS_TO_UNPACK, &ei_csn1_more_bits_to_unpack, pDescr);
}
do
{
switch (pDescr->type)
{
case CSN_BIT:
{
if (remaining_bits_len > 0)
{
pui8 = pui8DATA(data, pDescr->offset);
*pui8 = tvb_get_bits8(tvb, bit_offset, 1);
proto_tree_add_bits_item(tree, *(pDescr->hf_ptr), tvb, bit_offset, 1, ENC_BIG_ENDIAN);
/* end add the bit value to protocol tree */
}
else if(pDescr->may_be_null)
{
pui8 = pui8DATA(data, pDescr->offset);
*pui8 = 0;
proto_tree_add_none_format(tree, hf_null_data, tvb, 0, 0, "[NULL data]: %s Not Present", proto_registrar_get_name(*(pDescr->hf_ptr)));
}
else
{
return ProcessError(tree, ar->pinfo, tvb, bit_offset, CSN_ERROR_NEED_MORE_BITS_TO_UNPACK, &ei_csn1_more_bits_to_unpack, pDescr);
}
pDescr++;
remaining_bits_len--;
bit_offset++;
break;
}
case CSN_NULL:
{ /* Empty member! */
bit_offset += pDescr->i;
pDescr++;
break;
}
case CSN_UINT:
{
guint8 no_of_bits = (guint8) pDescr->i;
if (remaining_bits_len >= no_of_bits)
{
if (no_of_bits <= 8)
{
guint8 ui8 = tvb_get_bits8(tvb, bit_offset, no_of_bits);
pui8 = pui8DATA(data, pDescr->offset);
*pui8 = ui8;
proto_tree_add_bits_item(tree, *(pDescr->hf_ptr), tvb, bit_offset, no_of_bits, ENC_BIG_ENDIAN);
}
else if (no_of_bits <= 16)
{
guint16 ui16 = tvb_get_bits16(tvb, bit_offset, no_of_bits, ENC_BIG_ENDIAN);
pui16 = pui16DATA(data, pDescr->offset);
memcpy(pui16, &ui16, 2);
proto_tree_add_bits_item(tree, *(pDescr->hf_ptr), tvb, bit_offset, no_of_bits, ENC_BIG_ENDIAN);
}
else if (no_of_bits <= 32)
{
guint32 ui32 = tvb_get_bits32(tvb, bit_offset, no_of_bits, ENC_BIG_ENDIAN);
pui32 = pui32DATA(data, pDescr->offset);
memcpy(pui32, &ui32, 4);
proto_tree_add_bits_item(tree, *(pDescr->hf_ptr), tvb, bit_offset, no_of_bits, ENC_BIG_ENDIAN);
}
else
{
return ProcessError(tree, ar->pinfo, tvb, bit_offset, CSN_ERROR_GENERAL, &ei_csn1_general, pDescr);
}
remaining_bits_len -= no_of_bits;
bit_offset += no_of_bits;
}
else if(pDescr->may_be_null)
{
if (no_of_bits <= 8)
{
pui8 = pui8DATA(data, pDescr->offset);
*pui8 = 0;
}
else if (no_of_bits <= 16)
{
pui16 = pui16DATA(data, pDescr->offset);
memset(pui16, 0, 2);
}
else if (no_of_bits <= 32)
{
pui32 = pui32DATA(data, pDescr->offset);
memset(pui32, 0, 4);
}
proto_tree_add_none_format(tree, hf_null_data, tvb, 0, 0, "[NULL data]: %s Not Present", proto_registrar_get_name(*(pDescr->hf_ptr)));
}
else
{
return ProcessError(tree, ar->pinfo, tvb, bit_offset, CSN_ERROR_NEED_MORE_BITS_TO_UNPACK, &ei_csn1_more_bits_to_unpack, pDescr);
}
pDescr++;
break;
}
case CSN_UINT_OFFSET:
{
guint8 no_of_bits = (guint8) pDescr->i;
if (remaining_bits_len >= no_of_bits)
{
if (no_of_bits <= 8)
{
guint8 ui8 = tvb_get_bits8(tvb, bit_offset, no_of_bits);
pui8 = pui8DATA(data, pDescr->offset);
*pui8 = ui8 + (guint8)pDescr->descr.value;
proto_tree_add_uint_bits_format_value(tree, *(pDescr->hf_ptr), tvb, bit_offset, no_of_bits,
*pui8, ENC_BIG_ENDIAN, "%u (Raw %u + Offset %u)", *pui8, ui8,
(guint8) pDescr->descr.value);
}
else if (no_of_bits <= 16)
{
guint16 ui16 = tvb_get_bits16(tvb, bit_offset, no_of_bits, ENC_BIG_ENDIAN) + (guint16)pDescr->descr.value;
pui16 = pui16DATA(data, pDescr->offset);
memcpy(pui16, &ui16, 2);
proto_tree_add_uint_bits_format_value(tree, *(pDescr->hf_ptr), tvb, bit_offset, no_of_bits,
*pui16, ENC_BIG_ENDIAN, "%u (Raw %u + Offset %u)", *pui16, ui16,
(guint16) pDescr->descr.value);
}
else if (no_of_bits <= 32)
{
guint32 ui32 = tvb_get_bits32(tvb, bit_offset, no_of_bits, ENC_BIG_ENDIAN) + (guint16)pDescr->descr.value;
pui32 = pui32DATA(data, pDescr->offset);
memcpy(pui32, &ui32, 4);
proto_tree_add_uint_bits_format_value(tree, *(pDescr->hf_ptr), tvb, bit_offset, no_of_bits,
*pui32, ENC_BIG_ENDIAN, "%u (Raw %u + Offset %u)", *pui32, ui32,
(guint16) pDescr->descr.value);
}
else
{
return ProcessError(tree, ar->pinfo, tvb, bit_offset, CSN_ERROR_GENERAL, &ei_csn1_general, pDescr);
}
}
else
{
return ProcessError(tree, ar->pinfo, tvb, bit_offset, CSN_ERROR_NEED_MORE_BITS_TO_UNPACK, &ei_csn1_more_bits_to_unpack, pDescr);
}
remaining_bits_len -= no_of_bits;
bit_offset += no_of_bits;
pDescr++;
break;
}
case CSN_UINT_LH:
{
guint8 no_of_bits = (guint8) pDescr->i;
if (remaining_bits_len >= no_of_bits)
{
if (no_of_bits <= 8)
{
guint8 ui8 = tvb_get_masked_bits8(tvb, bit_offset, no_of_bits);
pui8 = pui8DATA(data, pDescr->offset);
*pui8 = ui8;
proto_tree_add_bits_item(tree, *(pDescr->hf_ptr), tvb, bit_offset, no_of_bits, ENC_BIG_ENDIAN);
}
else
{/* Maybe we should support more than 8 bits ? */
return ProcessError(tree, ar->pinfo, tvb, bit_offset, CSN_ERROR_GENERAL, &ei_csn1_general, pDescr);
}
}
else
{
return ProcessError(tree, ar->pinfo, tvb, bit_offset, CSN_ERROR_NEED_MORE_BITS_TO_UNPACK, &ei_csn1_more_bits_to_unpack, pDescr);
}
remaining_bits_len -= no_of_bits;
bit_offset += no_of_bits;
pDescr++;
break;
}
case CSN_SPLIT_BITS:
{
guint8 no_of_value_bits = (guint8) pDescr->i;
guint64 value;
proto_tree_add_split_bits_item_ret_val(tree, *pDescr->hf_ptr, tvb, bit_offset, pDescr->descr.crumb_spec, &value);
if (no_of_value_bits <= 8)
{
pui8 = pui8DATA(data, pDescr->offset);
*pui8 = (guint8)value;
}
else if (no_of_value_bits <= 16)
{
guint16 ui16 = (guint16) value;
pui16 = pui16DATA(data, pDescr->offset);
memcpy(pui16, &ui16, 2);
}
else if (no_of_value_bits <= 32)
{
guint32 ui32 = (guint32) value;
pui32 = pui32DATA(data, pDescr->offset);
memcpy(pui32, &ui32, 4);
}
else
{
return ProcessError(tree, ar->pinfo, tvb, bit_offset, CSN_ERROR_GENERAL, &ei_csn1_general, pDescr);
}
pDescr++;
break;
}
case CSN_SPLIT_BITS_CRUMB:
{
if (remaining_bits_len >= pDescr->descr.crumb_spec[pDescr->i].crumb_bit_length)
{
proto_tree_add_split_bits_crumb(tree, *pDescr->hf_ptr, tvb, bit_offset,
pDescr->descr.crumb_spec, pDescr->i);
remaining_bits_len -= pDescr->descr.crumb_spec[pDescr->i].crumb_bit_length;
bit_offset += pDescr->descr.crumb_spec[pDescr->i].crumb_bit_length;
}
else
{
return ProcessError(tree, ar->pinfo, tvb, bit_offset, CSN_ERROR_NEED_MORE_BITS_TO_UNPACK, &ei_csn1_more_bits_to_unpack, pDescr);
}
pDescr++;
break;
}
case CSN_UINT_ARRAY:
{
guint8 no_of_bits = (guint8) pDescr->i;
guint16 nCount = (guint16)pDescr->descr.value; /* nCount supplied by value i.e. M_UINT_ARRAY(...) */
int i = 0;
if (pDescr->value != 0)
{ /* nCount specified by a reference to field holding value i.e. M_VAR_UINT_ARRAY(...) */
memcpy(&nCount, pui16DATA(data, nCount), 2);
}
if (remaining_bits_len >= (no_of_bits * nCount))
{
remaining_bits_len -= (no_of_bits * nCount);
if (no_of_bits <= 8)
{
pui8 = pui8DATA(data, pDescr->offset);
do
{
*pui8++ = tvb_get_bits8(tvb, bit_offset, no_of_bits);
proto_tree_add_uint_bits_format_value(tree, *(pDescr->hf_ptr), tvb, bit_offset, no_of_bits, *pui8, ENC_BIG_ENDIAN, " (Count %d)", i++);
bit_offset += no_of_bits;
} while (--nCount > 0);
}
else if (no_of_bits <= 16)
{
return ProcessError(tree, ar->pinfo, tvb, bit_offset, 999, &ei_csn1_not_implemented, pDescr);
}
else if (no_of_bits <= 32)
{
return ProcessError(tree, ar->pinfo, tvb, bit_offset, 999, &ei_csn1_not_implemented, pDescr);
}
else
{
return ProcessError(tree, ar->pinfo, tvb, bit_offset, CSN_ERROR_GENERAL, &ei_csn1_general, pDescr);
}
}
else
{
return ProcessError(tree, ar->pinfo, tvb, bit_offset, CSN_ERROR_NEED_MORE_BITS_TO_UNPACK, &ei_csn1_more_bits_to_unpack, pDescr);
}
pDescr++;
break;
}
case CSN_VARIABLE_TARRAY_OFFSET:
case CSN_VARIABLE_TARRAY:
case CSN_TYPE_ARRAY:
{
gint16 Status;
csnStream_t arT = *ar;
gint16 nCount = pDescr->i;
guint16 nSize = (guint16)(gint32)pDescr->value;
int i =0;
pui8 = pui8DATA(data, pDescr->offset);
if (pDescr->type == CSN_VARIABLE_TARRAY)
{ /* Count specified in field */
nCount = *pui8DATA(data, pDescr->i);
}
else if (pDescr->type == CSN_VARIABLE_TARRAY_OFFSET)
{ /* Count specified in field */
nCount = *pui8DATA(data, pDescr->i);
/* nCount--; the 1 offset is already taken into account in CSN_UINT_OFFSET */
}
while (nCount > 0)
{ /* resulting array of length 0 is possible
* but no bits shall be read from bitstream
*/
proto_item *ti;
proto_tree *test_tree;
test_tree = proto_tree_add_subtree_format(tree, tvb, bit_offset>>3, 1, ett_csn1, &ti, "%s[%d]",pDescr->sz, i++);
csnStreamInit(&arT, bit_offset, remaining_bits_len, ar->pinfo);
Status = csnStreamDissector(test_tree, &arT, (const CSN_DESCR*)pDescr->descr.ptr, tvb, pui8, ett_csn1);
if (Status >= 0)
{
pui8 += nSize;
proto_item_set_len(ti,((arT.bit_offset-1)>>3) - (bit_offset>>3)+1);
remaining_bits_len = arT.remaining_bits_len;
bit_offset = arT.bit_offset;
}
else
{
return Status;
}
nCount--;
}
pDescr++;
break;
}
case CSN_BITMAP:
{ /* bitmap with given length. The result is left aligned! */
guint8 no_of_bits = (guint8) pDescr->i; /* length of bitmap */
if (no_of_bits > 0)
{
if (no_of_bits > remaining_bits_len)
{
return ProcessError(tree, ar->pinfo, tvb, bit_offset, CSN_ERROR_NEED_MORE_BITS_TO_UNPACK, &ei_csn1_more_bits_to_unpack, pDescr);
}
if (no_of_bits <= 32)
{
proto_tree_add_bits_item(tree, *(pDescr->hf_ptr), tvb, bit_offset, no_of_bits, ENC_BIG_ENDIAN);
}
else if (no_of_bits <= 64)
{
proto_tree_add_bits_item(tree, *(pDescr->hf_ptr), tvb, bit_offset, no_of_bits, ENC_BIG_ENDIAN);
}
else
{
return ProcessError(tree, ar->pinfo, tvb, bit_offset, 999, &ei_csn1_not_implemented, pDescr);
}
remaining_bits_len -= no_of_bits;
bit_offset += no_of_bits;
}
/* bitmap was successfully extracted or it was empty */
pDescr++;
break;
}
case CSN_TYPE:
{
gint16 Status;
csnStream_t arT = *ar;
proto_item *ti;
proto_tree *test_tree;
if (pDescr->may_be_null && remaining_bits_len == 0)
{
proto_tree_add_none_format(tree, hf_null_data, tvb, 0, 0, "[NULL data]: %s Not Present", pDescr->sz);
} else {
test_tree = proto_tree_add_subtree_format(tree, tvb, bit_offset>>3, 1, ett_csn1, &ti, "%s", pDescr->sz);
csnStreamInit(&arT, bit_offset, remaining_bits_len, ar->pinfo);
Status = csnStreamDissector(test_tree, &arT, (const CSN_DESCR*)pDescr->descr.ptr, tvb, pvDATA(data, pDescr->offset), ett_csn1);
if (Status >= 0)
{
proto_item_set_len(ti,((arT.bit_offset-1)>>3) - (bit_offset>>3)+1);
remaining_bits_len = arT.remaining_bits_len;
bit_offset = arT.bit_offset;
}
else
{
/* Has already been processed: ProcessError("csnStreamDissector", Status, pDescr); */
return Status;
}
}
pDescr++;
break;
}
case CSN_CHOICE:
{
gint16 count = pDescr->i;
guint8 i = 0;
const CSN_ChoiceElement_t* pChoice = (const CSN_ChoiceElement_t*) pDescr->descr.ptr;
/* Make sure that the list of choice items is not empty */
if (!count)
return ProcessError(tree, ar->pinfo, tvb, bit_offset, CSN_ERROR_IN_SCRIPT, &ei_csn1_script_error, pDescr);
while (count > 0)
{
guint8 no_of_bits = pChoice->bits;
guint8 value = tvb_get_bits8(tvb, bit_offset, no_of_bits);
if (value == pChoice->value)
{
CSN_DESCR descr[2];
gint16 Status;
csnStream_t arT = *ar;
proto_item *ti = NULL;
proto_tree *test_tree;
descr[0] = pChoice->descr;
memset(&descr[1], 0x00, sizeof(CSN_DESCR));
descr[1].type = CSN_END;
pui8 = pui8DATA(data, pDescr->offset);
*pui8 = i;
if (pDescr->sz)
{
proto_tree_add_bits_item(tree, *(pDescr->hf_ptr), tvb, bit_offset, no_of_bits, ENC_BIG_ENDIAN);
}
if (!pChoice->keep_bits)
{
bit_offset += no_of_bits;
remaining_bits_len -= no_of_bits;
}
if (pDescr->sz)
{
test_tree = proto_tree_add_subtree(tree, tvb, bit_offset>>3, 1, ett_csn1, &ti, pDescr->sz);
} else {
test_tree = tree;
}
csnStreamInit(&arT, bit_offset, remaining_bits_len, ar->pinfo);
Status = csnStreamDissector(test_tree, &arT, (const CSN_DESCR*)descr, tvb, data, ett_csn1);
if (Status >= 0)
{
if (ti)
proto_item_set_len(ti,((arT.bit_offset-1)>>3) - (bit_offset>>3)+1);
remaining_bits_len = arT.remaining_bits_len;
bit_offset = arT.bit_offset;
}
else
{
return Status;
}
break;
}
count--;
pChoice++;
i++;
}
/* Neither of the choice items matched => unknown value */
if (!count) {
return ProcessError(tree, ar->pinfo, tvb, bit_offset,
CSN_ERROR_STREAM_NOT_SUPPORTED,
&ei_csn1_stream_not_supported, pDescr);
}
pDescr++;
break;
}
case CSN_SERIALIZE:
{
StreamSerializeFcn_t serialize = (StreamSerializeFcn_t)pDescr->aux_fn;
csnStream_t arT = *ar;
guint length_len = pDescr->i;
gint16 Status = -1;
proto_item *ti;
proto_tree *test_tree;
guint8 length = 0;
if (length_len)
{
length = tvb_get_bits8(tvb, bit_offset, length_len);
proto_tree_add_bits_item(tree, *(pDescr->hf_ptr), tvb, bit_offset, length_len, ENC_BIG_ENDIAN);
bit_offset += length_len;
remaining_bits_len -= length_len;
test_tree = proto_tree_add_subtree(tree, tvb, bit_offset>>3, ((bit_offset+length-1)>>3)-(bit_offset>>3) + 1, ett_csn1, &ti, pDescr->sz);
} else {
test_tree = proto_tree_add_subtree(tree, tvb, bit_offset>>3, 1, ett_csn1, &ti, pDescr->sz);
}
csnStreamInit(&arT, bit_offset, length > 0 ? length : remaining_bits_len, ar->pinfo);
Status = serialize(test_tree, &arT, tvb, pvDATA(data, pDescr->offset), ett_csn1);
if (Status >= 0)
{
if (length > 0) {
remaining_bits_len -= length;
bit_offset += length;
} else {
proto_item_set_len(ti,((arT.bit_offset - bit_offset)>>3)+1);
remaining_bits_len = arT.remaining_bits_len;
bit_offset = arT.bit_offset;
}
pDescr++;
}
else
{
/* Has already been processed: */
return Status;
}
break;
}
case CSN_UNION_LH:
case CSN_UNION:
{
gint16 Bits;
guint8 t_index;
gint16 count = pDescr->i;
const CSN_DESCR* pDescrNext = pDescr;
pDescrNext += count + 1; /* now this is next after the union */
if ((count <= 0) || (count > 16))
{
return ProcessError(tree, ar->pinfo, tvb, bit_offset, CSN_ERROR_INVALID_UNION_INDEX, &ei_csn1_union_index, pDescr);
}
/* Now get the bits to extract the index */
Bits = ixBitsTab[count];
proto_tree_add_uint_bits_format_value(tree, *(pDescr->hf_ptr), tvb, bit_offset, Bits, tvb_get_bits8(tvb, bit_offset, Bits), ENC_BIG_ENDIAN, " (Union)");
t_index = 0;
while (Bits > 0)
{
t_index <<= 1;
if (CSN_UNION_LH == pDescr->type)
{
t_index |= tvb_get_masked_bits8(tvb, bit_offset, 1);
}
else
{
t_index |= tvb_get_bits8(tvb, bit_offset, 1);
}
remaining_bits_len--;
bit_offset++;
Bits--;
}
/* Assign UnionType */
pui8 = pui8DATA(data, pDescr->offset);
*pui8 = t_index;
/* script index to continue on, limited in case we do not have a power of 2 */
pDescr += (MIN(t_index + 1, count));
switch (pDescr->type)
{ /* get the right element of the union based on computed index */
case CSN_BIT:
{
pui8 = pui8DATA(data, pDescr->offset);
proto_tree_add_bits_item(tree, *(pDescr->hf_ptr), tvb, bit_offset, 1, ENC_BIG_ENDIAN);
*pui8 = 0x00;
if (tvb_get_bits8(tvb, bit_offset, 1) > 0)
{
*pui8 = 0x01;
}
remaining_bits_len --;
bit_offset++;
pDescr++;
break;
}
case CSN_NULL:
{ /* Empty member! */
bit_offset += pDescr->i;
pDescr++;
break;
}
case CSN_UINT:
{
guint8 no_of_bits = (guint8) pDescr->i;
if (remaining_bits_len >= no_of_bits)
{
if (no_of_bits <= 8)
{
guint8 ui8 = tvb_get_bits8(tvb, bit_offset, no_of_bits);
pui8 = pui8DATA(data, pDescr->offset);
*pui8 = ui8;
proto_tree_add_bits_item(tree, *(pDescr->hf_ptr), tvb, bit_offset, no_of_bits, ENC_BIG_ENDIAN);
}
else if (no_of_bits <= 16)
{
guint16 ui16 = tvb_get_bits16(tvb, bit_offset, no_of_bits, ENC_BIG_ENDIAN);
pui16 = pui16DATA(data, pDescr->offset);
memcpy(pui16, &ui16, 2);
proto_tree_add_bits_item(tree, *(pDescr->hf_ptr), tvb, bit_offset, no_of_bits, ENC_BIG_ENDIAN);
}
else if (no_of_bits <= 32)
{
guint32 ui32 = tvb_get_bits32(tvb, bit_offset, no_of_bits, ENC_BIG_ENDIAN);
pui32 = pui32DATA(data, pDescr->offset);
memcpy(pui32, &ui32, 4);
proto_tree_add_bits_item(tree, *(pDescr->hf_ptr), tvb, bit_offset, no_of_bits, ENC_BIG_ENDIAN);
}
else
{
return ProcessError(tree, ar->pinfo, tvb, bit_offset, CSN_ERROR_GENERAL, &ei_csn1_general, pDescr);
}
}
else
{
return ProcessError(tree, ar->pinfo, tvb, bit_offset, CSN_ERROR_GENERAL, &ei_csn1_general, pDescr);
}
remaining_bits_len -= no_of_bits;
bit_offset += no_of_bits;
pDescr++;
break;
}
case CSN_UINT_OFFSET:
{
guint8 no_of_bits = (guint8) pDescr->i;
if (remaining_bits_len >= no_of_bits)
{
if (no_of_bits <= 8)
{
guint8 ui8 = tvb_get_bits8(tvb, bit_offset, no_of_bits);
pui8 = pui8DATA(data, pDescr->offset);
*pui8 = ui8 + (guint8)pDescr->descr.value;
proto_tree_add_uint_bits_format_value(tree, *(pDescr->hf_ptr), tvb, bit_offset, no_of_bits, ui8, ENC_BIG_ENDIAN, "%d", ui8);
}
else if (no_of_bits <= 16)
{
guint16 ui16 = tvb_get_bits16(tvb, bit_offset, no_of_bits, ENC_BIG_ENDIAN) + (guint16)pDescr->descr.value;
pui16 = pui16DATA(data, pDescr->offset);
memcpy(pui16, &ui16, 2);
proto_tree_add_uint_bits_format_value(tree, *(pDescr->hf_ptr), tvb, bit_offset, no_of_bits, ui16, ENC_BIG_ENDIAN, "%d", ui16);
}
else if (no_of_bits <= 32)
{
guint32 ui32 = tvb_get_bits32(tvb, bit_offset, no_of_bits, ENC_BIG_ENDIAN) + (guint16)pDescr->descr.value;
pui32 = pui32DATA(data, pDescr->offset);
memcpy(pui32, &ui32, 4);
proto_tree_add_uint_bits_format_value(tree, *(pDescr->hf_ptr), tvb, bit_offset, no_of_bits, ui32, ENC_BIG_ENDIAN, "%d", ui32);
}
else
{
return ProcessError(tree, ar->pinfo, tvb, bit_offset, CSN_ERROR_GENERAL, &ei_csn1_general, pDescr);
}
}
else
{
return ProcessError(tree, ar->pinfo, tvb, bit_offset, CSN_ERROR_NEED_MORE_BITS_TO_UNPACK, &ei_csn1_more_bits_to_unpack, pDescr);
}
remaining_bits_len -= no_of_bits;
bit_offset += no_of_bits;
pDescr++;
break;
}
case CSN_UINT_LH:
{
guint8 no_of_bits = (guint8) pDescr->i;
if (remaining_bits_len >= no_of_bits)
{
if (no_of_bits <= 8)
{
guint8 ui8 = tvb_get_masked_bits8(tvb, bit_offset, no_of_bits);
pui8 = pui8DATA(data, pDescr->offset);
*pui8 = ui8;
proto_tree_add_bits_item(tree, *(pDescr->hf_ptr), tvb, bit_offset, no_of_bits, ENC_BIG_ENDIAN);
}
else
{ /* Maybe we should support more than 8 bits ? */
ProcessError(tree, ar->pinfo, tvb, bit_offset, CSN_ERROR_GENERAL, &ei_csn1_general, pDescr);
}
}
else
{
return ProcessError(tree, ar->pinfo, tvb, bit_offset, CSN_ERROR_NEED_MORE_BITS_TO_UNPACK, &ei_csn1_more_bits_to_unpack, pDescr);
}
remaining_bits_len -= no_of_bits;
bit_offset += no_of_bits;
pDescr++;
break;
}
case CSN_UINT_ARRAY:
{
guint8 no_of_bits = (guint8) pDescr->i;
guint16 nCount = (guint16)pDescr->descr.value; /* nCount supplied by value i.e. M_UINT_ARRAY(...) */
gint i = 0;
if (pDescr->value != 0)
{ /* nCount specified by a reference to field holding value i.e. M_VAR_UINT_ARRAY(...) */
memcpy(&nCount, pui16DATA(data, nCount), 2);
}
if (remaining_bits_len >= (no_of_bits * nCount))
{
remaining_bits_len -= (no_of_bits * nCount);
if (no_of_bits <= 8)
{
pui8 = pui8DATA(data, pDescr->offset);
while (nCount > 0)
{
*pui8 = tvb_get_bits8(tvb, bit_offset, no_of_bits);
proto_tree_add_uint_bits_format_value(tree, *(pDescr->hf_ptr), tvb, bit_offset, no_of_bits, *pui8, ENC_BIG_ENDIAN, " (Count %d)", i++);
pui8++;
bit_offset += no_of_bits;
nCount--;
}
}
else if (no_of_bits <= 16)
{
pui16 = pui16DATA(data, pDescr->offset);
while (nCount > 0)
{
guint16 ui16;
ui16 = tvb_get_bits16(tvb, bit_offset, no_of_bits, ENC_BIG_ENDIAN);
proto_tree_add_uint_bits_format_value(tree, *(pDescr->hf_ptr), tvb, bit_offset, no_of_bits, ui16, ENC_BIG_ENDIAN, " (Count %d)", i++);
memcpy(pui16++, &ui16, sizeof(ui16));
bit_offset += no_of_bits;
nCount--;
}
}
else if (no_of_bits <= 32)
{ /* not supported */
return ProcessError(tree, ar->pinfo, tvb, bit_offset, 999, &ei_csn1_not_implemented, pDescr);
}
else
{
return ProcessError(tree, ar->pinfo, tvb, bit_offset, CSN_ERROR_GENERAL, &ei_csn1_general, pDescr);
}
}
else
{
return ProcessError(tree, ar->pinfo, tvb, bit_offset, CSN_ERROR_NEED_MORE_BITS_TO_UNPACK, &ei_csn1_more_bits_to_unpack, pDescr);
}
pDescr++;
break;
}
case CSN_VARIABLE_TARRAY_OFFSET:
case CSN_VARIABLE_TARRAY:
case CSN_TYPE_ARRAY:
{
gint16 Status;
csnStream_t arT = *ar;
guint16 nCount = (guint16) pDescr->i;
guint16 nSize = (guint16)(guint32)pDescr->value;
gint i = 0;
pui8 = pui8DATA(data, pDescr->offset);
if (CSN_VARIABLE_TARRAY == pDescr->type)
{ /* Count specified in field */
nCount = *pui8DATA(data, pDescr->i);
}
else if (CSN_VARIABLE_TARRAY_OFFSET == pDescr->type)
{ /* Count specified in field */
nCount = *pui8DATA(data, pDescr->i);
nCount--; /* Offset 1 */
}
while (nCount--) /* Changed to handle length = 0. */
{
proto_item *ti;
proto_tree *test_tree;
test_tree = proto_tree_add_subtree_format(tree, tvb, bit_offset>>3, 1, ett_csn1, &ti, "%s[%d]",pDescr->sz, i++);
csnStreamInit(&arT, bit_offset, remaining_bits_len, ar->pinfo);
Status = csnStreamDissector(test_tree, &arT, (const CSN_DESCR *)pDescr->descr.ptr, tvb, pui8, ett_csn1);
if (Status >= 0)
{
pui8 += nSize;
proto_item_set_len(ti,((arT.bit_offset-1)>>3) - (bit_offset>>3)+1);
remaining_bits_len = arT.remaining_bits_len;
bit_offset = arT.bit_offset;
}
else
{
return Status;
}
}
pDescr++;
break;
}
case CSN_BITMAP:
{ /* bitmap with given length. The result is left aligned! */
guint8 no_of_bits = (guint8) pDescr->i; /* length of bitmap */
if (no_of_bits > 0)
{ /* a non empty bitmap */
proto_tree_add_bits_item(tree, *(pDescr->hf_ptr), tvb, bit_offset, no_of_bits, ENC_BIG_ENDIAN);
remaining_bits_len -= no_of_bits;
bit_offset += no_of_bits;
if (remaining_bits_len < 0)
{
return ProcessError(tree, ar->pinfo, tvb, bit_offset, CSN_ERROR_NEED_MORE_BITS_TO_UNPACK, &ei_csn1_more_bits_to_unpack, pDescr);
}
}
/* bitmap was successfully extracted or it was empty */
pDescr++;
break;
}
case CSN_TYPE:
{
gint16 Status;
csnStream_t arT = *ar;
proto_item *ti;
proto_tree *test_tree;
if (pDescr->may_be_null && remaining_bits_len == 0)
{
proto_tree_add_none_format(tree, hf_null_data, tvb, 0, 0, "[NULL data]: %s Not Present", pDescr->sz);
} else {
test_tree = proto_tree_add_subtree(tree, tvb, bit_offset>>3, 1, ett_csn1, &ti, pDescr->sz);
csnStreamInit(&arT, bit_offset, remaining_bits_len, ar->pinfo);
Status = csnStreamDissector(test_tree, &arT, (const CSN_DESCR *)pDescr->descr.ptr, tvb, pvDATA(data, pDescr->offset), ett_csn1);
if (Status >= 0)
{
proto_item_set_len(ti,((arT.bit_offset-1)>>3) - (bit_offset>>3)+1);
remaining_bits_len = arT.remaining_bits_len;
bit_offset = arT.bit_offset;
}
else
{ /* return error code Has already been processed: */
return Status;
}
}
pDescr++;
break;
}
default:
{ /* descriptions of union elements other than above are illegal */
return ProcessError(tree, ar->pinfo, tvb, bit_offset, CSN_ERROR_IN_SCRIPT, &ei_csn1_script_error, pDescr);
}
}
pDescr = pDescrNext;
break;
}
case CSN_EXIST:
case CSN_EXIST_LH:
{
guint8 fExist;
pui8 = pui8DATA(data, pDescr->offset);
if (CSN_EXIST_LH == pDescr->type)
{
fExist = tvb_get_masked_bits8(tvb, bit_offset, 1);
proto_tree_add_uint(tree, *(pDescr->hf_ptr), tvb, bit_offset>>3, 1, fExist);
}
else
{
fExist = tvb_get_bits8(tvb, bit_offset, 1);
proto_tree_add_bits_item(tree, *(pDescr->hf_ptr), tvb, bit_offset, 1, ENC_BIG_ENDIAN);
}
*pui8 = fExist;
remaining_bits_len --;
bit_offset++;
pDescr++;
if (!fExist)
{
ar->remaining_bits_len = remaining_bits_len;
ar->bit_offset = bit_offset;
return remaining_bits_len;
}
break;
}
case CSN_NEXT_EXIST:
{
guint8 isnull;
pui8 = pui8DATA(data, pDescr->offset);
/* this if-statement represents the M_NEXT_EXIST_OR_NULL description element */
if ((pDescr->may_be_null) && (remaining_bits_len == 0))
{ /* no more bits to decode is fine here - end of message detected and allowed */
/* Skip i entries + this entry */
pDescr += pDescr->i + 1;
/* Set the data member to "not exist" */
*pui8 = 0;
break;
}
/* the "regular" M_NEXT_EXIST description element */
proto_tree_add_bits_item(tree, *(pDescr->hf_ptr), tvb, bit_offset, 1, ENC_BIG_ENDIAN);
isnull = 1;
if (tvb_get_bits8(tvb, bit_offset, 1))
{
if (remaining_bits_len == 1)
{
/* If { 1 < end > } and all next items may be null, store it as { 0 } */
const CSN_DESCR* pDescrNext = pDescr + 1;
guint8 i;
for (i = 0; i < pDescr->i; i++, pDescrNext++)
{
if (!pDescrNext->may_be_null)
isnull = 0;
}
} else {
isnull = 0;
}
}
*pui8 = isnull ? 0 : 1;
remaining_bits_len --;
bit_offset++;
if (isnull)
{ /* Skip 'i' entries */
pDescr += pDescr->i;
}
pDescr++;
break;
}
case CSN_NEXT_EXIST_LH:
{
guint8 isnull;
pui8 = pui8DATA(data, pDescr->offset);
/* this if-statement represents the M_NEXT_EXIST_OR_NULL_LH description element */
if ((pDescr->descr.ptr != NULL) && (remaining_bits_len == 0))
{ /* no more bits to decode is fine here - end of message detected and allowed */
/* skip 'i' entries + this entry */
pDescr += pDescr->i + 1;
/* set the data member to "not exist" */
*pui8 = 0;
break;
}
/* the "regular" M_NEXT_EXIST_LH description element */
proto_tree_add_bits_item(tree, *(pDescr->hf_ptr), tvb, bit_offset, 1, ENC_BIG_ENDIAN);
isnull = 1;
if (tvb_get_masked_bits8(tvb, bit_offset, 1))
{
if (remaining_bits_len == 1) {
/* If { 1 < end > } and all next items may be null, store it as { 0 } */
const CSN_DESCR* pDescrNext = pDescr + 1;
guint8 i;
for (i = 0; i < pDescr->i; i++, pDescrNext++)
{
if (!pDescrNext->may_be_null)
isnull = 0;
}
} else {
isnull = 0;
}
}
*pui8++ = isnull ? 0 : 1;
remaining_bits_len --;
bit_offset++;
if (isnull)
{ /* Skip 'i' entries */
pDescr += pDescr->i;
}
pDescr++;
break;
}
case CSN_VARIABLE_BITMAP_1:
{ /* Bitmap from here and to the end of message */
*pui8DATA(data, (gint16)pDescr->descr.value) = (guint8) remaining_bits_len; /* length of bitmap == remaining bits */
/*no break -
* with a length set we have a regular variable length bitmap so we continue */
}
/* FALL THROUGH */
case CSN_VARIABLE_BITMAP:
{ /* {CSN_VARIABLE_BITMAP, 0, offsetof(_STRUCT, _ElementCountField), offsetof(_STRUCT, _MEMBER), #_MEMBER}
* <N: bit (5)> <bitmap: bit(N + offset)>
* Bit array with length (in bits) specified in parameter (pDescr->descr)
* The result is right aligned!
*/
gint16 no_of_bits = *pui8DATA(data, (gint16)pDescr->descr.value);
no_of_bits += pDescr->i; /* adjusted by offset */
while (no_of_bits > 0)
{
proto_tree_add_bits_item(tree, *(pDescr->hf_ptr), tvb, bit_offset, 1, ENC_BIG_ENDIAN);
bit_offset++;
no_of_bits--;
remaining_bits_len--;
if (remaining_bits_len < 0)
{
return ProcessError(tree, ar->pinfo, tvb, bit_offset, CSN_ERROR_NEED_MORE_BITS_TO_UNPACK, &ei_csn1_more_bits_to_unpack, pDescr);
}
}
pDescr++;
break;
}
case CSN_LEFT_ALIGNED_VAR_BMP_1:
{ /* Bitmap from here and to the end of message */
*pui8DATA(data, (gint16)pDescr->descr.value) = (guint8) remaining_bits_len; /* length of bitmap == remaining bits */
/* no break -
* with a length set we have a regular left aligned variable length bitmap so we continue
*/
}
/* FALL THROUGH */
case CSN_LEFT_ALIGNED_VAR_BMP:
{ /* {CSN_LEFT_ALIGNED_VAR_BMP, _OFFSET, (void*)offsetof(_STRUCT, _ElementCountField), offsetof(_STRUCT, _MEMBER), #_MEMBER}
* <N: bit (5)> <bitmap: bit(N + offset)>
* bit array with length (in bits) specified in parameter (pDescr->descr)
*/
gint16 no_of_bits = *pui8DATA(data, (gint16)pDescr->descr.value);/* Size of bitmap */
no_of_bits += pDescr->i;/* size adjusted by offset */
if (no_of_bits > 0)
{
if (no_of_bits <= 32)
{
proto_tree_add_bits_item(tree, *(pDescr->hf_ptr), tvb, bit_offset, no_of_bits, ENC_BIG_ENDIAN);
}
else if (no_of_bits <= 64)
{
proto_tree_add_bits_item(tree, *(pDescr->hf_ptr), tvb, bit_offset, no_of_bits, ENC_BIG_ENDIAN);
}
else
{
proto_tree_add_uint64_format_value(tree, *(pDescr->hf_ptr), tvb, bit_offset>>3, ((bit_offset+no_of_bits-1)>>3)-(bit_offset>>3)+1, no_of_bits, "%u bits",
no_of_bits);
}
bit_offset += no_of_bits;
remaining_bits_len -= no_of_bits;
if (remaining_bits_len < 0)
{
return ProcessError(tree, ar->pinfo, tvb, bit_offset, CSN_ERROR_NEED_MORE_BITS_TO_UNPACK, &ei_csn1_more_bits_to_unpack, pDescr);
}
}
/* bitmap was successfully extracted or it was empty */
pDescr++;
break;
}
case CSN_PADDING_BITS:
{ /* Padding from here and to the end of message */
if (remaining_bits_len > 0)
{
proto_tree *padding_tree = proto_tree_add_subtree(tree, tvb, bit_offset>>3, -1, ett_csn1, NULL, "Padding Bits");
while (remaining_bits_len > 0)
{
gint bits_to_handle = remaining_bits_len + (bit_offset%8);
if (bits_to_handle > 32)
{
bits_to_handle = 32 - (bit_offset%8);
}
else
{
bits_to_handle -= (bit_offset%8);
}
proto_tree_add_bits_item(padding_tree, *(pDescr->hf_ptr), tvb, bit_offset, bits_to_handle, ENC_BIG_ENDIAN);
bit_offset += bits_to_handle;
remaining_bits_len -= bits_to_handle;
}
}
if (remaining_bits_len < 0)
{
return ProcessError(tree, ar->pinfo, tvb, bit_offset, CSN_ERROR_NEED_MORE_BITS_TO_UNPACK, &ei_csn1_more_bits_to_unpack, pDescr);
}
/* Padding was successfully extracted or it was empty */
pDescr++;
break;
}
case CSN_VARIABLE_ARRAY:
{ /* {int type; int i; void* descr; int offset; const char* sz; } CSN_DESCR;
* {CSN_VARIABLE_ARRAY, _OFFSET, (void*)offsetof(_STRUCT, _ElementCountField), offsetof(_STRUCT, _MEMBER), #_MEMBER}
* Array with length specified in parameter:
* <count: bit (x)>
* <list: octet(count + offset)>
*/
gint16 count = *pui8DATA(data, (gint16)pDescr->descr.value);
count += pDescr->i; /* Adjusted by offset */
if (count > 0)
{
pui8 = pui8DATA(data, pDescr->offset);
while (count > 0)
{
proto_tree_add_bits_item(tree, *(pDescr->hf_ptr), tvb, bit_offset, 8, ENC_BIG_ENDIAN);
*pui8++ = tvb_get_bits8(tvb, bit_offset, 8);
bit_offset += 8;
count--;
remaining_bits_len -= 8;
if (remaining_bits_len < 0)
{
return ProcessError(tree, ar->pinfo, tvb, bit_offset, CSN_ERROR_NEED_MORE_BITS_TO_UNPACK, &ei_csn1_more_bits_to_unpack, pDescr);
}
}
}
pDescr++;
break;
}
case CSN_RECURSIVE_ARRAY:
{ /* Recursive way to specify an array: <list> ::= {1 <number: bit (4)> <list> | 0}
* or more generally: <list> ::= { <tag> <element> <list> | <EndTag> }
* where <element> ::= bit(value)
* <tag> ::= 0 | 1
* <EndTag> ::= reversed tag i.e. tag == 1 -> EndTag == 0 and vice versa
* {CSN_RECURSIVE_ARRAY, _BITS, (void*)offsetof(_STRUCT, _ElementCountField), offsetof(_STRUCT, _MEMBER), #_MEMBER}
* REMARK: recursive way to specify an array but an iterative implementation!
*/
gint16 no_of_bits = pDescr->i;
guint8 ElementCount = 0;
pui8 = pui8DATA(data, pDescr->offset);
while (existNextElement(tvb, bit_offset, Tag))
{ /* tag control shows existence of next list elements */
proto_tree_add_bits_item(tree, *(pDescr->hf_exist_ptr), tvb, bit_offset, 1, ENC_BIG_ENDIAN);
bit_offset++;
remaining_bits_len--;
/* extract and store no_of_bits long element from bitstream */
*pui8++ = tvb_get_bits8(tvb, bit_offset, no_of_bits);
ElementCount++;
if (remaining_bits_len < 0)
{
return ProcessError(tree, ar->pinfo, tvb, bit_offset, CSN_ERROR_NEED_MORE_BITS_TO_UNPACK, &ei_csn1_more_bits_to_unpack, pDescr);
}
proto_tree_add_bits_item(tree, *(pDescr->hf_ptr), tvb, bit_offset, no_of_bits, ENC_BIG_ENDIAN);
bit_offset += no_of_bits;
remaining_bits_len -= no_of_bits;
}
proto_tree_add_bits_item(tree, *(pDescr->hf_exist_ptr), tvb, bit_offset, 1, ENC_BIG_ENDIAN);
/* existNextElement() returned FALSE, 1 bit consumed */
bit_offset++;
remaining_bits_len--;
/* Store the counted number of elements of the array */
*pui8DATA(data, (gint16)pDescr->descr.value) = ElementCount;
pDescr++;
break;
}
case CSN_RECURSIVE_TARRAY:
{ /* Recursive way to specify an array of type: <lists> ::= { 1 <type> } ** 0 ;
* M_REC_TARRAY(_STRUCT, _MEMBER, _MEMBER_TYPE, _ElementCountField)
* {t, offsetof(_STRUCT, _ElementCountField), (void*)CSNDESCR_##_MEMBER_TYPE, offsetof(_STRUCT, _MEMBER), #_MEMBER, (StreamSerializeFcn_t)sizeof(_MEMBER_TYPE), NULL, NULL, (void_fn_t)ElementsOf(((_STRUCT*)0)->_MEMBER)}
*/
gint16 nSizeElement = (gint16)(gint32)pDescr->value;
guint32 nSizeArray = (guint32)((guintptr)pDescr->aux_fn);
guint8 ElementCount = 0;
while (existNextElement(tvb, bit_offset, Tag))
{ /* tag control shows existence of next list elements */
proto_tree_add_bits_item(tree, *(pDescr->hf_ptr), tvb, bit_offset, 1, ENC_BIG_ENDIAN);
/* existNextElement() returned TRUE, 1 bit consumed */
bit_offset++;
remaining_bits_len--;
ElementCount++;
if (ElementCount > nSizeArray)
{
/* error: too many elements in recursive array. Increase its size! */
return ProcessError(tree , ar->pinfo, tvb, bit_offset, CSN_ERROR_STREAM_NOT_SUPPORTED, &ei_csn1_stream_not_supported, pDescr);
}
{ /* unpack the following data structure */
csnStream_t arT = *ar;
gint16 Status;
proto_item *ti;
proto_tree *test_tree;
test_tree = proto_tree_add_subtree(tree, tvb, bit_offset>>3, 1, ett_csn1, &ti, pDescr->sz);
csnStreamInit(&arT, bit_offset, remaining_bits_len, ar->pinfo);
Status = csnStreamDissector(test_tree, &arT, (const CSN_DESCR *)pDescr->descr.ptr, tvb, pvDATA(data, pDescr->offset), ett_csn1);
if (Status >= 0)
{ /* successful completion */
pui8 += nSizeElement; /* -> to next data element */
proto_item_set_len(ti,((arT.bit_offset-1)>>3) - (bit_offset>>3)+1);
remaining_bits_len = arT.remaining_bits_len;
bit_offset = arT.bit_offset;
}
else
{ /* something went awry */
return Status;
}
}
if (remaining_bits_len < 0)
{
return ProcessError(tree, ar->pinfo, tvb, bit_offset, CSN_ERROR_NEED_MORE_BITS_TO_UNPACK, &ei_csn1_more_bits_to_unpack, pDescr);
}
}
/* existNextElement() returned FALSE, 1 bit consumed */
bit_offset++;
remaining_bits_len --;
/* Store the counted number of elements of the array */
*pui8DATA(data, (gint16)(gint32)pDescr->i) = ElementCount;
pDescr++;
break;
}
case CSN_RECURSIVE_TARRAY_2:
{ /* Recursive way to specify an array of type: <list> ::= <type> { 0 <type> } ** 1 ; */
Tag = REVERSED_TAG;
/* NO break -
* handling is exactly the same as for CSN_RECURSIVE_TARRAY_1 so we continue
*/
}
/* FALL THROUGH */
case CSN_RECURSIVE_TARRAY_1:
{ /* Recursive way to specify an array of type: <lists> ::= <type> { 1 <type> } ** 0 ;
* M_REC_TARRAY(_STRUCT, _MEMBER, _MEMBER_TYPE, _ElementCountField)
* {t, offsetof(_STRUCT, _ElementCountField), (void*)CSNDESCR_##_MEMBER_TYPE, offsetof(_STRUCT, _MEMBER), #_MEMBER, (StreamSerializeFcn_t)sizeof(_MEMBER_TYPE), NULL, NULL, (void_fn_t)ElementsOf(((_STRUCT*)0)->_MEMBER)}
*/
gint16 nSizeElement = (gint16)(gint32)pDescr->value;
guint32 nSizeArray = (guint32)((guintptr)pDescr->aux_fn);
guint8 ElementCount = 0;
csnStream_t arT = *ar;
gboolean EndOfList = FALSE;
gint16 Status;
proto_item *ti;
proto_tree *test_tree;
do
{ /* get data element */
ElementCount++;
if (ElementCount >= nSizeArray)
{
/* error: too many elements in recursive array. Increase its size! */
return ProcessError(tree , ar->pinfo, tvb, bit_offset, CSN_ERROR_STREAM_NOT_SUPPORTED, &ei_csn1_stream_not_supported, pDescr);
}
test_tree = proto_tree_add_subtree_format(tree, tvb, bit_offset>>3, 1, ett_csn1, &ti, "%s[%d]", pDescr->sz, ElementCount-1);
csnStreamInit(&arT, bit_offset, remaining_bits_len, ar->pinfo);
Status = csnStreamDissector(test_tree, &arT, (const CSN_DESCR *)pDescr->descr.ptr, tvb, pvDATA(data, pDescr->offset), ett_csn1);
if (Status >= 0)
{ /* successful completion */
pui8 += nSizeElement; /* -> to next */
proto_item_set_len(ti,((arT.bit_offset-1)>>3) - (bit_offset>>3)+1);
remaining_bits_len = arT.remaining_bits_len;
bit_offset = arT.bit_offset;
}
else
{ /* something went awry */
return Status;
}
if (remaining_bits_len < 0)
{
return ProcessError(tree, ar->pinfo, tvb, bit_offset, CSN_ERROR_NEED_MORE_BITS_TO_UNPACK, &ei_csn1_more_bits_to_unpack, pDescr);
}
/* control of next element's tag */
proto_tree_add_uint_bits_format_value(tree, *(pDescr->hf_ptr), tvb, bit_offset, 1, tvb_get_bits8(tvb, bit_offset, 1), ENC_BIG_ENDIAN, "%s[%d]",
proto_registrar_get_name(*(pDescr->hf_ptr)), ElementCount);
EndOfList = !(existNextElement(tvb, bit_offset, Tag));
bit_offset++;
remaining_bits_len--; /* 1 bit consumed (tag) */
} while (!EndOfList);
/* Store the count of the array */
*pui8DATA(data, pDescr->i) = ElementCount;
Tag = STANDARD_TAG; /* in case it was set to "reversed" */
pDescr++;
break;
}
case CSN_FIXED:
{ /* Verify the fixed bits */
guint8 no_of_bits = (guint8) pDescr->i;
guint32 ui32;
if (no_of_bits <= 8)
{
ui32 = tvb_get_bits8(tvb, bit_offset, no_of_bits);
}
else if (no_of_bits <= 16)
{
ui32 = tvb_get_bits16(tvb, bit_offset, no_of_bits, ENC_BIG_ENDIAN);
}
else if (no_of_bits <= 32)
{
ui32 = tvb_get_bits32(tvb, bit_offset, no_of_bits, ENC_BIG_ENDIAN);
}
else
{
return ProcessError(tree, ar->pinfo, tvb, bit_offset, -1, &ei_csn1_more32bits, pDescr);
}
if (ui32 != (unsigned)(gint32)pDescr->offset)
{
return ProcessError(tree, ar->pinfo, tvb, bit_offset, -1, &ei_csn1_fixed_not_matched, pDescr);
}
proto_tree_add_bits_item(tree, *(pDescr->hf_ptr), tvb, bit_offset, no_of_bits, ENC_BIG_ENDIAN);
remaining_bits_len -= no_of_bits;
bit_offset += no_of_bits;
pDescr++;
break;
}
case CSN_CALLBACK:
{
guint16 no_of_bits;
DissectorCallbackFcn_t callback = (DissectorCallbackFcn_t)pDescr->aux_fn;
no_of_bits = callback(tree, tvb, pvDATA(data, pDescr->i), pvDATA(data, pDescr->offset), bit_offset, ett_csn1, ar->pinfo);
bit_offset += no_of_bits;
remaining_bits_len -= no_of_bits;
pDescr++;
break;
}
case CSN_TRAP_ERROR:
{
return ProcessError(tree, ar->pinfo, tvb, bit_offset, -1, pDescr->error, pDescr);
}
case CSN_END:
{
ar->remaining_bits_len = remaining_bits_len;
ar->bit_offset = bit_offset;
return remaining_bits_len;
}
default:
{
DISSECTOR_ASSERT(0);
}
}
} while (remaining_bits_len >= 0);
return ProcessError(tree, ar->pinfo, tvb, bit_offset, CSN_ERROR_NEED_MORE_BITS_TO_UNPACK, &ei_csn1_more_bits_to_unpack, pDescr);
}
void
proto_register_csn1(void)
{
static hf_register_info hf[] = {
{ &hf_null_data,
{ "NULL data", "csn1.null_data",
FT_NONE, BASE_NONE, NULL, 0x00,
NULL, HFILL }
},
};
static ei_register_info ei[] = {
{ &ei_csn1_more_bits_to_unpack, { "csn1.more_bits_to_unpack", PI_MALFORMED, PI_ERROR, "NEED_MORE BITS TO UNPACK", EXPFILL }},
{ &ei_csn1_general, { "csn1.general_error", PI_PROTOCOL, PI_WARN, "General -1", EXPFILL }},
{ &ei_csn1_not_implemented, { "csn1.not_implemented", PI_UNDECODED, PI_WARN, "NOT IMPLEMENTED", EXPFILL }},
{ &ei_csn1_union_index, { "csn1.union_index_invalid", PI_PROTOCOL, PI_WARN, "INVALID UNION INDEX", EXPFILL }},
{ &ei_csn1_script_error, { "csn1.script_error", PI_MALFORMED, PI_ERROR, "ERROR IN SCRIPT", EXPFILL }},
{ &ei_csn1_more32bits, { "csn1.more32bits", PI_PROTOCOL, PI_WARN, "no_of_bits > 32", EXPFILL }},
{ &ei_csn1_fixed_not_matched, { "csn1.fixed_not_matched", PI_PROTOCOL, PI_WARN, "FIXED value does not match", EXPFILL }},
{ &ei_csn1_stream_not_supported, { "csn1.stream_not_supported", PI_PROTOCOL, PI_WARN, "STREAM NOT SUPPORTED", EXPFILL }},
};
expert_module_t* expert_csn1;
proto_csn1 = proto_register_protocol("CSN.1", "CSN1", "csn1");
proto_register_field_array(proto_csn1, hf, array_length(hf));
expert_csn1 = expert_register_protocol(proto_csn1);
expert_register_field_array(expert_csn1, ei, array_length(ei));
proto_set_cant_toggle(proto_csn1);
}
/*
* Editor modelines - https://www.wireshark.org/tools/modelines.html
*
* Local Variables:
* c-basic-offset: 2
* tab-width: 8
* indent-tabs-mode: nil
* End:
*
* ex: set shiftwidth=2 tabstop=8 expandtab:
* :indentSize=2:tabSize=8:noTabs=true:
*/