Add new dissector for uRTP protocol (internal, not to be submitted)

This commit is contained in:
Harald Welte 2011-09-07 20:25:45 +02:00
parent 5134a08c9b
commit fd9e1bb11a
2 changed files with 582 additions and 0 deletions

View File

@ -73,6 +73,7 @@ DIRTY_PIDL_DISSECTOR_SRC = \
packet-gsm_abis_om2000.c \
packet-gsm_sim.c \
packet-card_app_toolkit.c \
packet-urtp.c \
packet-dcerpc-winreg.c
#

View File

@ -0,0 +1,581 @@
/* packet-rtp.c
*
* Routines for uRTP dissection
* uRTP = micro Real time Transport Protocol
*
* Copyright 2011, Harald Welte <laforge@gnumonks.org>
*
* $Id: packet-urtp.c 35883 2011-02-09 02:27:41Z morriss $
*
* Wireshark - Network traffic analyzer
* By Gerald Combs <gerald@wireshark.org>
* Copyright 1998 Gerald Combs
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#include <glib.h>
#include <epan/packet.h>
#include <stdio.h>
#include "packet-rtp.h"
#include <epan/rtp_pt.h>
#include <epan/conversation.h>
#include <epan/reassemble.h>
#include <epan/tap.h>
#include <epan/prefs.h>
#include <epan/emem.h>
#include <epan/strutil.h>
static dissector_handle_t urtp_handle;
static int urtp_tap = -1;
/* uRTP header fields */
static int proto_urtp = -1;
static int hf_urtp_marker = -1;
static int hf_urtp_payload_type = -1;
static int hf_urtp_timestamp = -1;
static int hf_urtp_num_frames = -1;
static int hf_urtp_ssrc = -1;
static int hf_urtp_data = -1;
/* uRTP fields defining a sub tree */
static gint ett_urtp = -1;
/* Forward declaration we need below */
void proto_reg_handoff_urtp(void);
static dissector_handle_t data_handle;
static dissector_handle_t amr_handle;
static const value_string urtp_payload_type_vals[] =
{
{ 0, NULL },
};
value_string_ext urtp_payload_type_vals_ext = VALUE_STRING_EXT_INIT(urtp_payload_type_vals);
#if 0
/*
* Process the payload of the RTP packet, hand it to the subdissector
*/
static void
process_rtp_payload(tvbuff_t *newtvb, packet_info *pinfo, proto_tree *tree,
proto_tree *rtp_tree,
unsigned int payload_type)
{
struct _rtp_conversation_info *p_conv_data = NULL;
gboolean found_match = FALSE;
int payload_len;
struct srtp_info *srtp_info;
int offset=0;
payload_len = tvb_length_remaining(newtvb, offset);
/* first check if this is added as an SRTP stream - if so, don't try to dissector the payload data for now */
p_conv_data = p_get_proto_data(pinfo->fd, proto_rtp);
if (p_conv_data && p_conv_data->srtp_info) {
srtp_info = p_conv_data->srtp_info;
payload_len -= srtp_info->mki_len + srtp_info->auth_tag_len;
#if 0
#error Currently the srtp_info structure contains no cypher data, see packet-sdp.c adding dummy_srtp_info structure
if (p_conv_data->srtp_info->encryption_algorithm==SRTP_ENC_ALG_NULL) {
if (rtp_tree)
proto_tree_add_text(rtp_tree, newtvb, offset, payload_len, "SRTP Payload with NULL encryption");
}
else
#endif
{
if (rtp_tree)
proto_tree_add_item(rtp_tree, hf_srtp_encrypted_payload, newtvb, offset, payload_len, FALSE);
found_match = TRUE; /* use this flag to prevent dissection below */
}
offset += payload_len;
if (srtp_info->mki_len) {
proto_tree_add_item(rtp_tree, hf_srtp_mki, newtvb, offset, srtp_info->mki_len, FALSE);
offset += srtp_info->mki_len;
}
if (srtp_info->auth_tag_len) {
proto_tree_add_item(rtp_tree, hf_srtp_auth_tag, newtvb, offset, srtp_info->auth_tag_len, FALSE);
offset += srtp_info->auth_tag_len;
}
}
/* if the payload type is dynamic, we check if the conv is set and we look for the pt definition */
else if ( (payload_type >= PT_UNDF_96 && payload_type <= PT_UNDF_127) ) {
if (p_conv_data && p_conv_data->rtp_dyn_payload) {
gchar *payload_type_str = NULL;
encoding_name_and_rate_t *encoding_name_and_rate_pt = NULL;
encoding_name_and_rate_pt = g_hash_table_lookup(p_conv_data->rtp_dyn_payload, &payload_type);
if (encoding_name_and_rate_pt) {
payload_type_str = encoding_name_and_rate_pt->encoding_name;
}
if (payload_type_str){
found_match = dissector_try_string(rtp_dyn_pt_dissector_table,
payload_type_str, newtvb, pinfo, tree);
/* If payload type string set from conversation and
* no matching dissector found it's probably because no subdissector
* exists. Don't call the dissectors based on payload number
* as that'd probably be the wrong dissector in this case.
* Just add it as data.
*/
if(found_match==FALSE)
proto_tree_add_item( rtp_tree, hf_rtp_data, newtvb, 0, -1, FALSE );
return;
}
}
}
/* if we don't found, it is static OR could be set static from the preferences */
if (!found_match && !dissector_try_uint(rtp_pt_dissector_table, payload_type, newtvb, pinfo, tree))
proto_tree_add_item( rtp_tree, hf_rtp_data, newtvb, 0, -1, FALSE );
}
/* Rtp payload reassembly
*
* This handles the reassembly of PDUs for higher-level protocols.
*
* We're a bit limited on how we can cope with out-of-order packets, because
* we don't have any idea of where the datagram boundaries are. So if we see
* packets A, C, B (all of which comprise a single datagram), we cannot know
* that C should be added to the same datagram as A, until we come to B (which
* may or may not actually be present...).
*
* What we end up doing in this case is passing A+B to the subdissector as one
* datagram, and make out that a new one starts on C.
*/
static void
dissect_rtp_data( tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree,
proto_tree *rtp_tree, int offset, unsigned int data_len,
unsigned int data_reported_len,
unsigned int payload_type )
{
tvbuff_t *newtvb;
struct _rtp_conversation_info *p_conv_data= NULL;
gboolean must_desegment = FALSE;
rtp_private_conv_info *finfo = NULL;
rtp_multisegment_pdu *msp = NULL;
guint32 seqno;
/* Retrieve RTPs idea of a converation */
p_conv_data = p_get_proto_data(pinfo->fd, proto_rtp);
if(p_conv_data != NULL)
finfo = p_conv_data->rtp_conv_info;
if(finfo == NULL || !desegment_rtp) {
/* Hand the whole lot off to the subdissector */
newtvb=tvb_new_subset(tvb,offset,data_len,data_reported_len);
process_rtp_payload(newtvb, pinfo, tree, rtp_tree, payload_type);
return;
}
seqno = p_conv_data->extended_seqno;
pinfo->can_desegment = 2;
pinfo->desegment_offset = 0;
pinfo->desegment_len = 0;
#ifdef DEBUG_FRAGMENTS
g_debug("%d: RTP Part of convo %d(%p); seqno %d",
pinfo->fd->num,
p_conv_data->frame_number, p_conv_data,
seqno
);
#endif
/* look for a pdu which we might be extending */
msp = (rtp_multisegment_pdu *)se_tree_lookup32_le(finfo->multisegment_pdus,seqno-1);
if(msp && msp->startseq < seqno && msp->endseq >= seqno) {
guint32 fid = msp->startseq;
fragment_data *fd_head;
#ifdef DEBUG_FRAGMENTS
g_debug("\tContinues fragment %d", fid);
#endif
/* we always assume the datagram is complete; if this is the
* first pass, that's our best guess, and if it's not, what we
* say gets ignored anyway.
*/
fd_head = fragment_add_seq(tvb, offset, pinfo, fid, fragment_table,
seqno-msp->startseq, data_len, FALSE);
newtvb = process_reassembled_data(tvb,offset, pinfo, "Reassembled RTP", fd_head,
&rtp_fragment_items, NULL, tree);
#ifdef DEBUG_FRAGMENTS
g_debug("\tFragment Coalesced; fd_head=%p, newtvb=%p (len %d)",fd_head, newtvb,
newtvb?tvb_reported_length(newtvb):0);
#endif
if(newtvb != NULL) {
/* Hand off to the subdissector */
process_rtp_payload(newtvb, pinfo, tree, rtp_tree, payload_type);
/*
* Check to see if there were any complete fragments within the chunk
*/
if( pinfo->desegment_len && pinfo->desegment_offset == 0 )
{
#ifdef DEBUG_FRAGMENTS
g_debug("\tNo complete pdus in payload" );
#endif
/* Mark the fragments and not complete yet */
fragment_set_partial_reassembly(pinfo, fid, fragment_table);
/* we must need another segment */
msp->endseq = MIN(msp->endseq,seqno) + 1;
}
else
{
/*
* Data was dissected so add the protocol tree to the display
*/
proto_item *rtp_tree_item, *frag_tree_item;
/* this nargery is to insert the fragment tree into the main tree
* between the RTP protocol entry and the subdissector entry */
show_fragment_tree(fd_head, &rtp_fragment_items, tree, pinfo, newtvb, &frag_tree_item);
rtp_tree_item = proto_item_get_parent( proto_tree_get_parent( rtp_tree ));
if( frag_tree_item && rtp_tree_item )
proto_tree_move_item( tree, rtp_tree_item, frag_tree_item );
if(pinfo->desegment_len)
{
/* the higher-level dissector has asked for some more data - ie,
the end of this segment does not coincide with the end of a
higher-level PDU. */
must_desegment = TRUE;
}
}
}
}
else
{
/*
* The segment is not the continuation of a fragmented segment
* so process it as normal
*/
#ifdef DEBUG_FRAGMENTS
g_debug("\tRTP non-fragment payload");
#endif
newtvb = tvb_new_subset( tvb, offset, data_len, data_reported_len );
/* Hand off to the subdissector */
process_rtp_payload(newtvb, pinfo, tree, rtp_tree, payload_type);
if(pinfo->desegment_len) {
/* the higher-level dissector has asked for some more data - ie,
the end of this segment does not coincide with the end of a
higher-level PDU. */
must_desegment = TRUE;
}
}
/*
* There were bytes left over that the higher protocol couldn't dissect so save them
*/
if(must_desegment)
{
guint32 deseg_offset = pinfo->desegment_offset;
guint32 frag_len = tvb_reported_length_remaining(newtvb, deseg_offset);
fragment_data *fd_head = NULL;
#ifdef DEBUG_FRAGMENTS
g_debug("\tRTP Must Desegment: tvb_len=%d ds_len=%d %d frag_len=%d ds_off=%d",
tvb_reported_length(newtvb),
pinfo->desegment_len,
pinfo->fd->flags.visited,
frag_len,
deseg_offset);
#endif
/* allocate a new msp for this pdu */
msp = se_alloc(sizeof(rtp_multisegment_pdu));
msp->startseq = seqno;
msp->endseq = seqno+1;
se_tree_insert32(finfo->multisegment_pdus,seqno,msp);
/*
* Add the fragment to the fragment table
*/
fd_head = fragment_add_seq(newtvb,deseg_offset, pinfo, seqno, fragment_table, 0, frag_len,
TRUE );
if(fd_head != NULL)
{
if( fd_head->reassembled_in != 0 && !(fd_head->flags & FD_PARTIAL_REASSEMBLY) )
{
proto_item *rtp_tree_item;
rtp_tree_item = proto_tree_add_uint( tree, hf_rtp_reassembled_in,
newtvb, deseg_offset, tvb_reported_length_remaining(newtvb,deseg_offset),
fd_head->reassembled_in);
PROTO_ITEM_SET_GENERATED(rtp_tree_item);
#ifdef DEBUG_FRAGMENTS
g_debug("\tReassembled in %d", fd_head->reassembled_in);
#endif
}
else
{
#ifdef DEBUG_FRAGMENTS
g_debug("\tUnfinished fragment");
#endif
/* this fragment is never reassembled */
proto_tree_add_text( tree, tvb, deseg_offset, -1,"RTP fragment, unfinished");
}
}
else
{
/*
* This fragment was the first fragment in a new entry in the
* frag_table; we don't yet know where it is reassembled
*/
#ifdef DEBUG_FRAGMENTS
g_debug("\tnew pdu");
#endif
}
if( pinfo->desegment_offset == 0 )
{
col_set_str(pinfo->cinfo, COL_PROTOCOL, "RTP");
col_set_str(pinfo->cinfo, COL_INFO, "[RTP segment of a reassembled PDU]");
}
}
pinfo->can_desegment = 0;
pinfo->desegment_offset = 0;
pinfo->desegment_len = 0;
}
#endif
static const unsigned int amr_ft_len_bits[] = {
[0] = 95,
[1] = 103,
[2] = 118,
[3] = 134,
[4] = 148,
[5] = 159,
[6] = 204,
[7] = 244,
[8] = 39,
};
static int amr_bytelen_padded(guint8 ft)
{
unsigned int bits;
int bytes;
if (ft > 8)
return -1;
bits = amr_ft_len_bits[ft];
bytes = bits / 8;
if (bits % 8)
bytes++;
return bytes;
}
static void
dissect_urtp( tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree )
{
proto_item *ti = NULL;
proto_tree *urtp_tree = NULL;
gboolean marker_set = 0;
unsigned int payload_type;
gchar *payload_type_str = NULL;
unsigned int offset = 0;
guint8 timestamp, sync_src, num_frames;
col_set_str(pinfo->cinfo, COL_PROTOCOL, "uRTP");
timestamp = tvb_get_guint8(tvb, offset);
sync_src = tvb_get_guint8(tvb, offset+1);
payload_type = tvb_get_guint8(tvb, offset+2) & 0xF;
num_frames = tvb_get_guint8(tvb, offset+2) >> 4;
col_add_fstr( pinfo->cinfo, COL_INFO,
"PT=%s, SSRC=0x%X, Time=%u%s",
payload_type_str ? payload_type_str : val_to_str_ext( payload_type, &urtp_payload_type_vals_ext,"Unknown (%u)" ),
sync_src,
timestamp,
marker_set ? ", Mark " : " ");
if ( tree ) {
unsigned int i;
/* Create RTP protocol tree */
ti = proto_tree_add_item(tree, proto_urtp, tvb, offset, -1, FALSE );
urtp_tree = proto_item_add_subtree(ti, ett_urtp );
proto_tree_add_item( urtp_tree, hf_urtp_timestamp, tvb,
offset, 1, FALSE );
proto_tree_add_item( urtp_tree, hf_urtp_ssrc, tvb,
offset+1, 1, FALSE );
proto_tree_add_item( urtp_tree, hf_urtp_payload_type, tvb,
offset+2, 1, FALSE );
proto_tree_add_item( urtp_tree, hf_urtp_num_frames, tvb,
offset+2, 1, FALSE );
offset += 3;
for (i = 0; i < num_frames; i++) {
guint8 oct1, ft;
tvbuff_t *subtvb;
int frame_len;
oct1 = tvb_get_guint8(tvb, offset+1);
ft = (oct1 >> 3) & 0xF;
frame_len = amr_bytelen_padded(ft);
if (frame_len < 0)
return;
subtvb = tvb_new_subset(tvb, offset, frame_len+2, frame_len+2);
call_dissector(amr_handle, subtvb, pinfo, urtp_tree);
offset += frame_len+2;
}
}
if (!pinfo->flags.in_error_pkt)
tap_queue_packet(urtp_tap, pinfo, NULL);
}
/* Register uRTP */
void
proto_register_urtp(void)
{
static hf_register_info hf[] =
{
{
&hf_urtp_timestamp,
{
"Timestamp",
"urtp.timestamp",
FT_UINT8,
BASE_DEC,
NULL,
0xFF,
NULL, HFILL
}
},
{
&hf_urtp_ssrc,
{
"SSRC",
"urtp.ssrc",
FT_UINT8,
BASE_HEX,
NULL,
0xFF,
NULL, HFILL
}
},
{
&hf_urtp_payload_type,
{
"Payload Type",
"urtp.payload_type",
FT_UINT8,
BASE_DEC,
NULL,
0x0F,
NULL, HFILL
}
},
{
&hf_urtp_num_frames,
{
"Number of frames to follow",
"urtp.number_samples",
FT_UINT8,
BASE_DEC,
NULL,
0xF0,
NULL, HFILL
}
},
{
&hf_urtp_data,
{
"Payload",
"urtp.payload",
FT_BYTES,
BASE_NONE,
NULL,
0x0,
NULL, HFILL
}
},
};
static gint *ett[] =
{
&ett_urtp,
};
proto_urtp = proto_register_protocol("Micro Real-Time Transport Protocol",
"uRTP", "urtp");
proto_register_field_array(proto_urtp, hf, array_length(hf));
proto_register_subtree_array(ett, array_length(ett));
register_dissector("urtp", dissect_urtp, proto_urtp);
urtp_tap = register_tap("urtp");
}
void
proto_reg_handoff_urtp(void)
{
static gboolean urtp_prefs_initialized = FALSE;
if (!urtp_prefs_initialized) {
urtp_handle = find_dissector("urtp");
dissector_add_handle("udp.port", urtp_handle); /* for 'decode-as' */
//heur_dissector_add( "udp", dissect_urtp_heur, proto_urtp);
data_handle = find_dissector("data");
amr_handle = find_dissector("amr");
urtp_prefs_initialized = TRUE;
}
}
/*
* Local Variables:
* c-basic-offset: 8
* indent-tabs-mode: t
* tab-width: 8
* End:
*/