Add duplicate frame detection (and removal) to editcap. (Some switches

generate duplicate packets when a mirror/SPAN port is misconfigured).

svn path=/trunk/; revision=18800
This commit is contained in:
Gerald Combs 2006-07-27 17:53:29 +00:00
parent 52e9a9c012
commit 9045703e2c
4 changed files with 403 additions and 294 deletions

View File

@ -201,7 +201,8 @@ mergecap_SOURCES = \
# editcap specifics
editcap_SOURCES = \
editcap.c
editcap.c \
epan/crypt-md5.c
# dftest specifics
dftest_SOURCES = \

View File

@ -8,6 +8,7 @@ editcap - Edit and/or translate the format of capture files
B<editcap>
S<[ B<-c> E<lt>packets per fileE<gt> ]>
S<[ B<-C> E<lt>choplenE<gt> ]>
S<[ B<-d> ]>
S<[ B<-E> E<lt>error probabilityE<gt> ]>
S<[ B<-F> E<lt>file formatE<gt> ]>
S<[ B<-A> E<lt>start timeE<gt> ]>
@ -71,6 +72,12 @@ Each packet is chopped at the packet end by a few <choplen> bytes of data.
This is useful in the rare case that the conversion between two file
formats leaves some random bytes at the end of each packet.
=item -d
Attempts to remove duplicate packets. The length and MD5 sum of the
current packet are compared to the previous four packets. If a match
is found, the packet is skipped.
=item -E E<lt>error probabilityE<gt>
Sets the probabilty that bytes in the output file are randomly changed.

View File

@ -4,42 +4,42 @@
<appendix id="AppTools">
<title>Related command line tools</title>
<section id="AppToolsIntroduction">
<title>Introduction</title>
<para>
Beside the Wireshark GUI application, there are some command line tools,
which can be helpful for doing some more specialized things. These tools
Beside the Wireshark GUI application, there are some command line tools,
which can be helpful for doing some more specialized things. These tools
will be described in this chapter.
</para>
</section>
<section id="AppToolstshark">
<title><command>tshark</command>: Terminal-based Wireshark</title>
<para>
<application>TShark</application> is a terminal oriented version
of Wireshark designed for capturing and displaying packets when an
interactive user interface isn't necessary or available. It supports
the same options as <command>wireshark</command>. For more
information on <command>tshark</command>, see the manual pages
<application>TShark</application> is a terminal oriented version
of Wireshark designed for capturing and displaying packets when an
interactive user interface isn't necessary or available. It supports
the same options as <command>wireshark</command>. For more
information on <command>tshark</command>, see the manual pages
(<command>man tshark</command>).
</para>
</section>
<section id="AppToolstcpdump">
<title><command>tcpdump</command>: Capturing with tcpdump for viewing
<title><command>tcpdump</command>: Capturing with tcpdump for viewing
with Wireshark</title>
<para>
There are occasions when you want to capture packets using
<command>tcpdump</command> rather than <command>wireshark</command>,
especially when you want to do a remote capture and do not want the
network load associated with running Wireshark remotely (not to
There are occasions when you want to capture packets using
<command>tcpdump</command> rather than <command>wireshark</command>,
especially when you want to do a remote capture and do not want the
network load associated with running Wireshark remotely (not to
mention all the X traffic polluting your capture).
</para>
<para>
However, the default <command>tcpdump</command> parameters result in a
capture file where each packet is truncated, because
<command>tcpdump</command>, by default, does only capture the first 68
However, the default <command>tcpdump</command> parameters result in a
capture file where each packet is truncated, because
<command>tcpdump</command>, by default, does only capture the first 68
bytes of each packet.
</para>
<para>
@ -47,43 +47,43 @@
<programlisting>
tcpdump -i &lt;interface> -s 1500 -w &lt;some-file>
</programlisting>
You will have to specify the correct <command>interface</command> and
the name of a <command>file</command> to save into. In addition,
you will have to terminate the capture with ^C when you believe you
You will have to specify the correct <command>interface</command> and
the name of a <command>file</command> to save into. In addition,
you will have to terminate the capture with ^C when you believe you
have captured enough packets.
</para>
<note><title>Note!</title>
<para>
tcpdump is not part of the Wireshark distribution. You can get it from:
<ulink url="&TcpdumpWebsite;">&TcpdumpWebsite;</ulink> for various
<ulink url="&TcpdumpWebsite;">&TcpdumpWebsite;</ulink> for various
platforms.
</para>
</note>
</section>
<section id="AppToolsdumpcap">
<title><command>dumpcap</command>: Capturing with dumpcap for viewing
<title><command>dumpcap</command>: Capturing with dumpcap for viewing
with Wireshark</title>
<para>
<application>Dumpcap</application> is a network traffic dump tool.
It lets you capture packet data from a live network and write the
packets to a file.
Dumpcap's native capture file format is libpcap format, which is also
<application>Dumpcap</application> is a network traffic dump tool.
It lets you capture packet data from a live network and write the
packets to a file.
Dumpcap's native capture file format is libpcap format, which is also
the format used by Wireshark, tcpdump and various other tools.
</para>
<para>
Without any options set it will use the pcap library to capture traffic
from the first available network interface and writes the received raw
Without any options set it will use the pcap library to capture traffic
from the first available network interface and writes the received raw
packet data, along with the packets' time stamps into a libpcap file.
</para>
<para>
Packet capturing is performed with the pcap library.
Packet capturing is performed with the pcap library.
The capture filter syntax follows the rules of the pcap library.
</para>
<para>
<example id="AppToolsdumpcapEx">
<title>Help information available from dumpcap</title>
<programlisting>
<programlisting>
Dumpcap 0.99.0
Capture network packets and dump them into a libpcap file.
See http://www.wireshark.org for more information.
@ -117,7 +117,7 @@ Miscellaneous:
Example: dumpcap -i eth0 -a duration:60 -w output.pcap
"Capture network packets from interface eth0 until 60s passed into output.pcap"
Use Ctrl-C to stop capturing at any time.
Use Ctrl-C to stop capturing at any time.
</programlisting>
</example>
</para>
@ -127,14 +127,14 @@ Use Ctrl-C to stop capturing at any time.
<title><command>capinfos</command>: Print information about capture files
</title>
<para>
Included with Wireshark is a small utility called
Included with Wireshark is a small utility called
<command>capinfos</command>, which is a command-line utility to
print information about binary capture files.
</para>
<para>
<example id="AppToolscapinfosEx">
<title>Help information available from capinfos</title>
<programlisting>
<programlisting>
$ capinfos -h
Usage: capinfos [-t] [-c] [-s] [-d] [-u] [-a] [-e] [-y]
[-i] [-z] [-h] &lt;capfile&gt;
@ -151,7 +151,7 @@ Usage: capinfos [-t] [-c] [-s] [-d] [-u] [-a] [-e] [-y]
-z display average packet size (in bytes)
-h produces this help listing.
If no data flags are given, default is to display all statistics
If no data flags are given, default is to display all statistics
</programlisting>
</example>
</para>
@ -160,143 +160,179 @@ Usage: capinfos [-t] [-c] [-s] [-d] [-u] [-a] [-e] [-y]
<section id="AppToolseditcap">
<title><command>editcap</command>: Edit capture files</title>
<para>
Included with Wireshark is a small utility called
<command>editcap</command>, which is a command-line utility for
working with capture files. Its main function is to remove
packets from capture files, but it can also be used to convert
capture files from one format to another, as well as print
Included with Wireshark is a small utility called
<command>editcap</command>, which is a command-line utility for
working with capture files. Its main function is to remove
packets from capture files, but it can also be used to convert
capture files from one format to another, as well as print
information about capture files.
</para>
<para>
<example id="AppToolseditcapEx">
<title>Help information available from editcap</title>
<programlisting>
<programlisting>
$ editcap.exe -h
Usage: editcap [-r] [-h] [-v] [-T &lt;encap type>] [-E &lt;probability>]
[-F &lt;capture type>]> [-s &lt;snaplen>] [-t &lt;time adjustment>]
&lt;infile> &lt;outfile> [ &lt;record#>[-&lt;record#>] ... ]
where
-E &lt;probability> specifies the probability (between 0 and 1)
that a particular byte will will have an error.
-F &lt;capture type> specifies the capture file type to write:
libpcap - libpcap (tcpdump, Wireshark, etc.)
rh6_1libpcap - RedHat Linux 6.1 libpcap (tcpdump)
suse6_3libpcap - SuSE Linux 6.3 libpcap (tcpdump)
modlibpcap - modified libpcap (tcpdump)
nokialibpcap - Nokia libpcap (tcpdump)
lanalyzer - Novell LANalyzer
ngsniffer - Network Associates Sniffer (DOS-based)
snoop - Sun snoop
netmon1 - Microsoft Network Monitor 1.x
netmon2 - Microsoft Network Monitor 2.x
ngwsniffer_1_1 - Network Associates Sniffer (Windows-based) 1.1
ngwsniffer_2_0 - Network Associates Sniffer (Windows-based) 2.00x
nettl - HP-UX nettl trace
visual - Visual Networks traffic capture
5views - Accellent 5Views capture
niobserverv9 - Network Instruments Observer version 9
default is libpcap
-h produces this help listing.
-r specifies that the records specified should be kept, not deleted,
default is to delete
-s &lt;snaplen> specifies that packets should be truncated to
&lt;snaplen> bytes of data
-t &lt;time adjustment> specifies the time adjustment
to be applied to selected packets
-T &lt;encap type> specifies the encapsulation type to use:
ether - Ethernet
tr - Token Ring
slip - SLIP
ppp - PPP
fddi - FDDI
fddi-swapped - FDDI with bit-swapped MAC addresses
rawip - Raw IP
arcnet - ARCNET
arcnet_linux - Linux ARCNET
atm-rfc1483 - RFC 1483 ATM
linux-atm-clip - Linux ATM CLIP
lapb - LAPB
atm-pdus - ATM PDUs
atm-pdus-untruncated - ATM PDUs - untruncated
null - NULL
ascend - Lucent/Ascend access equipment
isdn - ISDN
ip-over-fc - RFC 2625 IP-over-Fibre Channel
ppp-with-direction - PPP with Directional Info
ieee-802-11 - IEEE 802.11 Wireless LAN
prism - IEEE 802.11 plus Prism II monitor mode header
ieee-802-11-radio - IEEE 802.11 Wireless LAN with radio information
ieee-802-11-radiotap - IEEE 802.11 plus radiotap WLAN header
ieee-802-11-avs - IEEE 802.11 plus AVS WLAN header
linux-sll - Linux cooked-mode capture
frelay - Frame Relay
frelay-with-direction - Frame Relay with Directional Info
chdlc - Cisco HDLC
ios - Cisco IOS internal
ltalk - Localtalk
pflog-old - OpenBSD PF Firewall logs, pre-3.4
hhdlc - HiPath HDLC
docsis - Data Over Cable Service Interface Specification
cosine - CoSine L2 debug log
whdlc - Wellfleet HDLC
sdlc - SDLC
tzsp - Tazmen sniffer protocol
enc - OpenBSD enc(4) encapsulating interface
pflog - OpenBSD PF Firewall logs
chdlc-with-direction - Cisco HDLC with Directional Info
bluetooth-h4 - Bluetooth H4
mtp2 - SS7 MTP2
mtp3 - SS7 MTP3
irda - IrDA
user0 - USER 0
user1 - USER 1
user2 - USER 2
user3 - USER 3
user4 - USER 4
user5 - USER 5
user6 - USER 6
user7 - USER 7
user8 - USER 8
user9 - USER 9
user10 - USER 10
user11 - USER 11
user12 - USER 12
user13 - USER 13
user14 - USER 14
user15 - USER 15
symantec - Symantec Enterprise Firewall
ap1394 - Apple IP-over-IEEE 1394
bacnet-ms-tp - BACnet MS/TP
raw-icmp-nettl - Raw ICMP with nettl headers
raw-icmpv6-nettl - Raw ICMPv6 with nettl headers
gprs-llc - GPRS LLC
juniper-atm1 - Juniper ATM1
juniper-atm2 - Juniper ATM2
redback - Redback SmartEdge
rawip-nettl - Raw IP with nettl headers
ether-nettl - Ethernet with nettl headers
tr-nettl - Token Ring with nettl headers
fddi-nettl - FDDI with nettl headers
unknown-nettl - Unknown link-layer type with nettl headers
mtp2-with-phdr - MTP2 with pseudoheader
juniper-pppoe - Juniper PPPoE
gcom-tie1 - GCOM TIE1
gcom-serial - GCOM Serial
x25-nettl - X25 with nettl headers
default is the same as the input file
-v specifies verbose operation, default is silent
Editcap 0.99.3
Edit and/or translate the format of capture files.
See http://www.wireshark.org for more information.
A range of records can be specified as well
</programlisting>
Usage: editcap [options] ... &lt;infile&gt; &lt;outfile&gt; [ &lt;packet#&gt;[-&lt;packet#&gt;] ... ]
A single packet or a range of packets can be selected.
Packets:
-C &lt;choplen&gt; chop each packet at the end by &lt;choplen&gt; bytes
-d remove duplicate packets
-E &lt;error probability&gt; set the probability (between 0.0 and 1.0 incl.)
that a particular packet byte will be randomly changed
-r keep the selected packets, default is to delete them
-s &lt;snaplen&gt; truncate packets to max. &lt;snaplen&gt; bytes of data
-t &lt;time adjustment&gt; adjust the timestamp of selected packets,
&lt;time adjustment&gt; is in relative seconds (e.g. -0.5)
-A &lt;start time&gt; don't output packets whose timestamp is before the
given time (format as YYYY-MM-DD hh:mm:ss)
-B &lt;stop time&gt; don't output packets whose timestamp is after the
given time (format as YYYY-MM-DD hh:mm:ss)
Output File(s):
-c &lt;packets per file&gt; split the packet output to different files,
with a maximum of &lt;packets per file&gt; each
-F &lt;capture type&gt; set the output file type, default is libpcap
an empty "-F" option will list the file types
-T &lt;encap type&gt; set the output file encapsulation type,
default is the same as the input file
an empty "-T" option will list the encapsulation types
Miscellaneous:
-h display this help and exit
-v verbose output
$ editcap.exe -F
editcap.exe: option requires an argument -- F
editcap.exe: The available capture file types for "F":
libpcap - Wireshark/tcpdump/... - libpcap
nseclibpcap - Wireshark - nanosecond libpcap
modlibpcap - Modified tcpdump - libpcap
nokialibpcap - Nokia tcpdump - libpcap
rh6_1libpcap - RedHat 6.1 tcpdump - libpcap
suse6_3libpcap - SuSE 6.3 tcpdump - libpcap
5views - Accellent 5Views capture
dct2000 - Catapult DCT2000 trace (.out format)
nettl - HP-UX nettl trace
netmon1 - Microsoft NetMon 1.x
netmon2 - Microsoft NetMon 2.x
ngsniffer - NA Sniffer (DOS)
ngwsniffer_1_1 - NA Sniffer (Windows) 1.1
ngwsniffer_2_0 - NA Sniffer (Windows) 2.00x
niobserverv9 - Network Instruments Observer (V9)
lanalyzer - Novell LANalyzer
snoop - Sun snoop
rf5 - Tektronix K12xx 32-bit .rf5 format
visual - Visual Networks traffic capture
$ editcap.exe -F
editcap.exe: option requires an argument -- T
editcap.exe: The available encapsulation types for "T":
ether - Ethernet
tr - Token Ring
slip - SLIP
ppp - PPP
fddi - FDDI
fddi-swapped - FDDI with bit-swapped MAC addresses
rawip - Raw IP
arcnet - ARCNET
arcnet_linux - Linux ARCNET
atm-rfc1483 - RFC 1483 ATM
linux-atm-clip - Linux ATM CLIP
lapb - LAPB
atm-pdus - ATM PDUs
atm-pdus-untruncated - ATM PDUs - untruncated
null - NULL
ascend - Lucent/Ascend access equipment
isdn - ISDN
ip-over-fc - RFC 2625 IP-over-Fibre Channel
ppp-with-direction - PPP with Directional Info
ieee-802-11 - IEEE 802.11 Wireless LAN
prism - IEEE 802.11 plus Prism II monitor mode header
ieee-802-11-radio - IEEE 802.11 Wireless LAN with radio information
ieee-802-11-radiotap - IEEE 802.11 plus radiotap WLAN header
ieee-802-11-avs - IEEE 802.11 plus AVS WLAN header
linux-sll - Linux cooked-mode capture
frelay - Frame Relay
frelay-with-direction - Frame Relay with Directional Info
chdlc - Cisco HDLC
ios - Cisco IOS internal
ltalk - Localtalk
pflog-old - OpenBSD PF Firewall logs, pre-3.4
hhdlc - HiPath HDLC
docsis - Data Over Cable Service Interface Specification
cosine - CoSine L2 debug log
whdlc - Wellfleet HDLC
sdlc - SDLC
tzsp - Tazmen sniffer protocol
enc - OpenBSD enc(4) encapsulating interface
pflog - OpenBSD PF Firewall logs
chdlc-with-direction - Cisco HDLC with Directional Info
bluetooth-h4 - Bluetooth H4
mtp2 - SS7 MTP2
mtp3 - SS7 MTP3
irda - IrDA
user0 - USER 0
user1 - USER 1
user2 - USER 2
user3 - USER 3
user4 - USER 4
user5 - USER 5
user6 - USER 6
user7 - USER 7
user8 - USER 8
user9 - USER 9
user10 - USER 10
user11 - USER 11
user12 - USER 12
user13 - USER 13
user14 - USER 14
user15 - USER 15
symantec - Symantec Enterprise Firewall
ap1394 - Apple IP-over-IEEE 1394
bacnet-ms-tp - BACnet MS/TP
raw-icmp-nettl - Raw ICMP with nettl headers
raw-icmpv6-nettl - Raw ICMPv6 with nettl headers
gprs-llc - GPRS LLC
juniper-atm1 - Juniper ATM1
juniper-atm2 - Juniper ATM2
redback - Redback SmartEdge
rawip-nettl - Raw IP with nettl headers
ether-nettl - Ethernet with nettl headers
tr-nettl - Token Ring with nettl headers
fddi-nettl - FDDI with nettl headers
unknown-nettl - Unknown link-layer type with nettl headers
mtp2-with-phdr - MTP2 with pseudoheader
juniper-pppoe - Juniper PPPoE
gcom-tie1 - GCOM TIE1
gcom-serial - GCOM Serial
x25-nettl - X25 with nettl headers
k12 - K12 protocol analyzer
juniper-mlppp - Juniper MLPPP
juniper-mlfr - Juniper MLFR
juniper-ether - Juniper Ethernet
juniper-ppp - Juniper PPP
juniper-frelay - Juniper Frame-Relay
juniper-chdlc - Juniper C-HDLC
juniper-ggsn - Juniper GGSN
lapd - LAPD
dct2000 - Catapult DCT2000
ber - ASN.1 Basic Encoding Rules
</programlisting>
</example>
Where each option has the following meaning:
<variablelist>
<varlistentry><term><command>-r</command></term>
<listitem>
<para>
This option specifies that the frames listed should be kept,
This option specifies that the frames listed should be kept,
not deleted. The default is to delete the listed frames.
</para>
</listitem>
@ -307,7 +343,7 @@ Usage: editcap [-r] [-h] [-v] [-T &lt;encap type>] [-E &lt;probability>]
<varlistentry><term><command>-v</command></term>
<listitem>
<para>
This option specifies verbose operation. The default is
This option specifies verbose operation. The default is
silent operation.
</para>
</listitem>
@ -315,15 +351,15 @@ Usage: editcap [-r] [-h] [-v] [-T &lt;encap type>] [-E &lt;probability>]
<varlistentry><term><command>-T {encap type}</command></term>
<listitem>
<para>
This option specifies the frame encapsulation type to use.
This option specifies the frame encapsulation type to use.
</para>
<para>
It is mainly for converting funny captures to something
It is mainly for converting funny captures to something
that Wireshark can deal with.
</para>
<para>
The default frame
encapsulation type is the same as the input encapsulation.
The default frame
encapsulation type is the same as the input encapsulation.
</para>
</listitem>
</varlistentry>
@ -331,7 +367,7 @@ Usage: editcap [-r] [-h] [-v] [-T &lt;encap type>] [-E &lt;probability>]
<varlistentry><term><command>-F {capture type}</command></term>
<listitem>
<para>
This option specifies the capture file format to write
This option specifies the capture file format to write
the output file in.
</para>
<para>
@ -356,7 +392,7 @@ Usage: editcap [-r] [-h] [-v] [-T &lt;encap type>] [-E &lt;probability>]
<varlistentry><term><command>{infile}</command></term>
<listitem>
<para>
This parameter specifies the input file to use. It must be
This parameter specifies the input file to use. It must be
present.
</para>
</listitem>
@ -364,7 +400,7 @@ Usage: editcap [-r] [-h] [-v] [-T &lt;encap type>] [-E &lt;probability>]
<varlistentry><term><command>{outfile}</command></term>
<listitem>
<para>
This parameter specifies the output file to use. It must
This parameter specifies the output file to use. It must
be present.
</para>
</listitem>
@ -373,8 +409,8 @@ Usage: editcap [-r] [-h] [-v] [-T &lt;encap type>] [-E &lt;probability>]
<term><command>[record#[-][record# ...]]</command></term>
<listitem>
<para>
This optional parameter specifies the records to include
or exclude (depending on the <command>-r</command> option.
This optional parameter specifies the records to include
or exclude (depending on the <command>-r</command> option.
You can specify individual records or a range of records.
</para>
</listitem>
@ -382,35 +418,35 @@ Usage: editcap [-r] [-h] [-v] [-T &lt;encap type>] [-E &lt;probability>]
</variablelist>
</para>
</section>
<section id="AppToolsmergecap">
<title><command>mergecap</command>:
<title><command>mergecap</command>:
Merging multiple capture files into one
</title>
<para>
Mergecap is a program that combines multiple saved capture files
into a single output file specified by the -w argument. Mergecap
knows how to read libpcap capture files, including those of tcpdump.
In addition, Mergecap can read capture files from snoop (including
Shomiti) and atmsnoop, LanAlyzer, Sniffer (compressed or
uncompressed), Microsoft Network Monitor, AIX's iptrace, NetXray,
Sniffer Pro, RADCOM's WAN/LAN analyzer, Lucent/Ascend router debug
output, HP-UX's nettl, and the dump output from Toshiba's ISDN
routers. There is no need to tell Mergecap what type of file you are
reading; it will determine the file type by itself. Mergecap is also
capable of reading any of these file formats if they are compressed
using gzip. Mergecap recognizes this directly from the file; the '.gz'
Mergecap is a program that combines multiple saved capture files
into a single output file specified by the -w argument. Mergecap
knows how to read libpcap capture files, including those of tcpdump.
In addition, Mergecap can read capture files from snoop (including
Shomiti) and atmsnoop, LanAlyzer, Sniffer (compressed or
uncompressed), Microsoft Network Monitor, AIX's iptrace, NetXray,
Sniffer Pro, RADCOM's WAN/LAN analyzer, Lucent/Ascend router debug
output, HP-UX's nettl, and the dump output from Toshiba's ISDN
routers. There is no need to tell Mergecap what type of file you are
reading; it will determine the file type by itself. Mergecap is also
capable of reading any of these file formats if they are compressed
using gzip. Mergecap recognizes this directly from the file; the '.gz'
extension is not required for this purpose.
</para>
<para>
By default, it writes the capture file in libpcap format, and writes
all of the packets in both input capture files to the output file.
The -F flag can be used to specify the format in which to write the
capture file; it can write the file in libpcap format (standard
libpcap format, a modified format used by some patched versions of
libpcap, the format used by Red Hat Linux 6.1, or the format used
by SuSE Linux 6.3), snoop format, uncompressed Sniffer format,
Microsoft Network Monitor 1.x format, and the format used by
<para>
By default, it writes the capture file in libpcap format, and writes
all of the packets in both input capture files to the output file.
The -F flag can be used to specify the format in which to write the
capture file; it can write the file in libpcap format (standard
libpcap format, a modified format used by some patched versions of
libpcap, the format used by Red Hat Linux 6.1, or the format used
by SuSE Linux 6.3), snoop format, uncompressed Sniffer format,
Microsoft Network Monitor 1.x format, and the format used by
Windows-based versions of the Sniffer software.
</para>
<para>
@ -426,23 +462,23 @@ Usage: editcap [-r] [-h] [-v] [-T &lt;encap type>] [-E &lt;probability>]
input file with more captured data than the specified snapshot length
will have only the amount of data specified by the snapshot length
written to the output file. This may be useful if the program that
is to read the output file cannot handle packets larger than a
is to read the output file cannot handle packets larger than a
certain size (for example, the versions of snoop in Solaris 2.5.1 and
Solaris 2.6 appear to reject Ethernet frames larger than the standard
Ethernet MTU, making them incapable of handling gigabit Ethernet
Ethernet MTU, making them incapable of handling gigabit Ethernet
captures if jumbo frames were used).
</para>
<para>
If the -T flag is used to specify an encapsulation type, the
encapsulation type of the output capture file will be forced to
the specified type, rather than being the type appropriate to the
encapsulation type of the input capture file. Note that this merely
forces the encapsulation type of the output file to be the specified
If the -T flag is used to specify an encapsulation type, the
encapsulation type of the output capture file will be forced to
the specified type, rather than being the type appropriate to the
encapsulation type of the input capture file. Note that this merely
forces the encapsulation type of the output file to be the specified
type; the packet headers of the packets will not be translated from the
encapsulation type of the input capture file to the specified
encapsulation type (for example, it will not translate an Ethernet
capture to an FDDI capture if an Ethernet capture is read
encapsulation type of the input capture file to the specified
encapsulation type (for example, it will not translate an Ethernet
capture to an FDDI capture if an Ethernet capture is read
and '-T fddi' is specified).
</para>
<example id="AppToolsmergecapEx">
@ -551,8 +587,8 @@ Usage: mergecap [-hva] [-s &lt;snaplen&gt;] [-T &lt;encap type&gt;]
</varlistentry>
<varlistentry><term><command>-v</command></term>
<listitem>
<para>
Causes <command>mergecap</command> to print a number of messages
<para>
Causes <command>mergecap</command> to print a number of messages
while it's working.
</para>
</listitem>
@ -562,7 +598,7 @@ Usage: mergecap [-hva] [-s &lt;snaplen&gt;] [-T &lt;encap type&gt;]
<para>
Causes the frame timestamps to be ignored, writing all packets
from the first input file followed by all packets from the second
input file. By default, when <command>-a</command> is not
input file. By default, when <command>-a</command> is not
specified, the contents
of the input files are merged in chronological order based on
each frame's timestamp. Note: when merging, mergecap assumes
@ -595,38 +631,38 @@ Usage: mergecap [-hva] [-s &lt;snaplen&gt;] [-T &lt;encap type&gt;]
</varlistentry>
</variablelist>
<para>
A simple example merging <filename>dhcp-capture.libpcap</filename>
and <filename>imap-1.libpcap</filename> into
A simple example merging <filename>dhcp-capture.libpcap</filename>
and <filename>imap-1.libpcap</filename> into
<filename>outfile.libpcap</filename> is shown below.
</para>
<example id="AppToolsmergecapExSimple">
<title>Simple example of using mergecap</title>
<programlisting>$ mergecap -w outfile.libpcap dhcp-capture.libpcap imap-1.libpcap
<programlisting>$ mergecap -w outfile.libpcap dhcp-capture.libpcap imap-1.libpcap
</programlisting>
</example>
</example>
</section>
<section id="AppToolstext2pcap" >
<title><command>text2pcap</command>: Converting ASCII hexdumps to network
<title><command>text2pcap</command>: Converting ASCII hexdumps to network
captures
</title>
<para>
There may be some occasions when you wish to convert a hex dump of some
network traffic into a libpcap file.</para>
<para>
<command>Text2pcap</command> is a program that reads in an ASCII hex
dump and writes the data described into a libpcap-style capture file.
text2pcap can read hexdumps with multiple packets in them, and build a
capture file of multiple packets. text2pcap is also capable of
generating dummy Ethernet, IP and UDP headers, in order to build fully
<command>Text2pcap</command> is a program that reads in an ASCII hex
dump and writes the data described into a libpcap-style capture file.
text2pcap can read hexdumps with multiple packets in them, and build a
capture file of multiple packets. text2pcap is also capable of
generating dummy Ethernet, IP and UDP headers, in order to build fully
processable packet dumps from hexdumps of application-level data only.
</para>
<para>
Text2pcap understands a hexdump of the form generated by od -A x -t x1. In
other words, each byte is individually displayed and surrounded with a
space. Each line begins with an offset describing the position in the
file. The offset is a hex number (can also be octal - see -o), of
more than two hex digits. Here is a sample dump that text2pcap can
Text2pcap understands a hexdump of the form generated by od -A x -t x1. In
other words, each byte is individually displayed and surrounded with a
space. Each line begins with an offset describing the position in the
file. The offset is a hex number (can also be octal - see -o), of
more than two hex digits. Here is a sample dump that text2pcap can
recognize:
</para>
<programlisting>
@ -639,31 +675,31 @@ Usage: mergecap [-hva] [-s &lt;snaplen&gt;] [-T &lt;encap type&gt;]
000030 01 01 0f 19 03 80 11 01 ........
</programlisting>
<para>
There is no limit on the width or number of bytes per line. Also the
text dump at the end of the line is ignored. Bytes/hex numbers can be
uppercase or lowercase. Any text before the offset is ignored,
including email forwarding characters '&gt;'. Any lines of text
between the bytestring lines is ignored. The offsets are used to
track the bytes, so offsets must be correct. Any line which has only
bytes without a leading offset is ignored. An offset is recognized
as being a hex number longer than two characters. Any text after the
bytes is ignored (e.g. the character dump). Any hex numbers in this
text are also ignored. An offset of zero is indicative of starting a
new packet, so a single text file with a series of hexdumps can be
converted into a packet capture with multiple packets. Multiple
packets are read in with timestamps differing by one second each.
In general, short of these restrictions, text2pcap is pretty liberal
about reading in hexdumps and has been tested with a variety of mangled
outputs (including being forwarded through email multiple times,
There is no limit on the width or number of bytes per line. Also the
text dump at the end of the line is ignored. Bytes/hex numbers can be
uppercase or lowercase. Any text before the offset is ignored,
including email forwarding characters '&gt;'. Any lines of text
between the bytestring lines is ignored. The offsets are used to
track the bytes, so offsets must be correct. Any line which has only
bytes without a leading offset is ignored. An offset is recognized
as being a hex number longer than two characters. Any text after the
bytes is ignored (e.g. the character dump). Any hex numbers in this
text are also ignored. An offset of zero is indicative of starting a
new packet, so a single text file with a series of hexdumps can be
converted into a packet capture with multiple packets. Multiple
packets are read in with timestamps differing by one second each.
In general, short of these restrictions, text2pcap is pretty liberal
about reading in hexdumps and has been tested with a variety of mangled
outputs (including being forwarded through email multiple times,
with limited line wrap etc.)
</para>
<para>
There are a couple of other special features to note. Any line where
the first non-whitespace character is '#' will be ignored as a
comment. Any line beginning with #TEXT2PCAP is a directive and options
can be inserted after this command to be processed by text2pcap.
Currently there are no directives implemented; in the future, these
may be used to give more fine grained control on the dump and the
<para>
There are a couple of other special features to note. Any line where
the first non-whitespace character is '#' will be ignored as a
comment. Any line beginning with #TEXT2PCAP is a directive and options
can be inserted after this command to be processed by text2pcap.
Currently there are no directives implemented; in the future, these
may be used to give more fine grained control on the dump and the
way it should be processed e.g. timestamps, encapsulation type etc.
</para>
<para>
@ -731,8 +767,8 @@ where &lt;input-filename&gt; specifies input filename (use - for standard input)
<varlistentry><term><command>-w &lt;filename&gt;</command></term>
<listitem>
<para>
Write the capture file generated by <command>text2pcap</command>
to &lt;filename&gt;. The default is to write to standard
Write the capture file generated by <command>text2pcap</command>
to &lt;filename&gt;. The default is to write to standard
output.
</para>
</listitem>
@ -745,7 +781,7 @@ where &lt;input-filename&gt; specifies input filename (use - for standard input)
<varlistentry><term><command>-d</command></term>
<listitem>
<para>
Displays debugging information during the process. Can be
Displays debugging information during the process. Can be
used multiple times to generate more debugging information.
</para>
</listitem>
@ -764,19 +800,19 @@ where &lt;input-filename&gt; specifies input filename (use - for standard input)
</varlistentry>
<varlistentry><term><command>-l</command></term>
<listitem>
<para>
Specify the link-layer type of this packet. Default is
Ethernet(1). See net/bpf.h for the complete list of possible
encapsulations. Note that this option should be used if your
dump is a complete hex dump of an encapsulated packet and you
wish to specify the exact type of encapsulation. Example: -l 7
<para>
Specify the link-layer type of this packet. Default is
Ethernet(1). See net/bpf.h for the complete list of possible
encapsulations. Note that this option should be used if your
dump is a complete hex dump of an encapsulated packet and you
wish to specify the exact type of encapsulation. Example: -l 7
for ARCNet packets.
</para>
</listitem>
</varlistentry>
<varlistentry><term><command>-e l3pid</command></term>
<listitem>
<para>
<para>
Include a dummy Ethernet header before each packet. Specify the
L3PID for the Ethernet header in hex. Use this option if your
dump has Layer 3 header and payload (e.g. IP header), but no
@ -795,42 +831,42 @@ where &lt;input-filename&gt; specifies input filename (use - for standard input)
<varlistentry><term><command>-u srcport destport</command></term>
<listitem>
<para>
Include dummy UDP headers before each packet. Specify the
source and destination UDP ports for the packet in decimal.
Use this option if your dump is the UDP payload of a packet but
does not include any UDP, IP or Ethernet headers. Note that this
automatically includes appropriate Ethernet and IP headers with
each packet. Example: -u 1000 69 to make the packets look like
Include dummy UDP headers before each packet. Specify the
source and destination UDP ports for the packet in decimal.
Use this option if your dump is the UDP payload of a packet but
does not include any UDP, IP or Ethernet headers. Note that this
automatically includes appropriate Ethernet and IP headers with
each packet. Example: -u 1000 69 to make the packets look like
TFTP/UDP packets.
</para>
</listitem>
</varlistentry>
</variablelist>
</section>
<section id="AppToolsidl2wrs" >
<title><command>idl2wrs</command>:
<title><command>idl2wrs</command>:
Creating dissectors from CORBA IDL files
</title>
<para>
In an ideal world idl2wrs would be mentioned in the users guide
in passing and documented in the developers guide. As the
developers guide
In an ideal world idl2wrs would be mentioned in the users guide
in passing and documented in the developers guide. As the
developers guide
has not yet been completed it will be documented here.
</para>
<section>
<title>What is it?</title>
<para>
As you have probably guessed from the name,
As you have probably guessed from the name,
<command>idl2wrs</command> takes a
user specified IDL file and attempts to build a dissector that
can decode the IDL traffic over GIOP. The resulting file is
"C" code, that should compile okay as a Wireshark dissector.
</para>
<para>
<command>idl2wrs</command> basically parses the data struct given to
it by the omniidl compiler, and using the GIOP API available in
packet-giop.[ch], generates get_CDR_xxx calls to decode the
<command>idl2wrs</command> basically parses the data struct given to
it by the omniidl compiler, and using the GIOP API available in
packet-giop.[ch], generates get_CDR_xxx calls to decode the
CORBA traffic on the wire.
</para>
<para>It consists of 4 main files.</para>
@ -888,12 +924,12 @@ where &lt;input-filename&gt; specifies input filename (use - for standard input)
<title>Prerequisites to using idl2wrs</title>
<listitem>
<para>
Python must be installed. See
Python must be installed. See
<ulink url="http://python.org/"/>
</para>
</listitem>
<listitem>
<para>
<para>
omniidl from the the omniORB package must be available. See
<ulink url="http://omniorb.sourceforge.net/"/>
</para>
@ -901,18 +937,18 @@ where &lt;input-filename&gt; specifies input filename (use - for standard input)
<listitem>
<para>
Of course you need Wireshark installed to compile the
code and tweak it if required. idl2wrs is part of the
code and tweak it if required. idl2wrs is part of the
standard Wireshark distribution
</para>
</listitem>
</orderedlist>
<para>
To use idl2wrs to generate an Wireshark dissector from an idl file
To use idl2wrs to generate an Wireshark dissector from an idl file
use the following procedure:
</para>
<orderedlist>
<title>
Procedure for converting a CORBA idl file into a Wireshark
Procedure for converting a CORBA idl file into a Wireshark
dissector
</title>
<listitem>
@ -926,7 +962,7 @@ where &lt;input-filename&gt; specifies input filename (use - for standard input)
<para>
To write to a file, just redirect the output.
<programlisting>idl2wrs echo.idl > packet-test-idl.c</programlisting>
You may wish to comment out the register_giop_user_module() code
You may wish to comment out the register_giop_user_module() code
and that will leave you with heuristic dissection.
</para>
</listitem>
@ -952,7 +988,7 @@ where &lt;input-filename&gt; specifies input filename (use - for standard input)
</listitem>
<listitem>
<para>
Copy the resulting C code to your Wireshark src directory,
Copy the resulting C code to your Wireshark src directory,
edit the two make files to include the packet-test-idl.c
<programlisting>
cp packet-test-idl.c /dir/where/wireshark/lives/
@ -984,8 +1020,8 @@ edit Makefile.nmake
</para>
</listitem>
<listitem>
<para>
Enums not converted to symbolic values (yet), but can be added
<para>
Enums not converted to symbolic values (yet), but can be added
manually.
</para>
</listitem>
@ -1006,18 +1042,18 @@ edit Makefile.nmake
<orderedlist>
<listitem>
<para>
The "-p ./" option passed to omniidl indicates that the
wireshark_be.py and wireshark_gen.py are residing in the
The "-p ./" option passed to omniidl indicates that the
wireshark_be.py and wireshark_gen.py are residing in the
current directory. This may need
tweaking if you place these files somewhere else.
</para>
</listitem>
<listitem>
<para>
If it complains about being unable to find some modules
(eg tempfile.py),
If it complains about being unable to find some modules
(eg tempfile.py),
you may want to check if PYTHONPATH is set correctly.
On my Linux box, it is PYTHONPATH=/usr/lib/python1.5/
On my Linux box, it is PYTHONPATH=/usr/lib/python1.5/
</para>
</listitem>
</orderedlist>

View File

@ -48,6 +48,8 @@
# include "strptime.h"
#endif
#include "epan/crypt-md5.h"
#include "svnversion.h"
/*
@ -61,6 +63,19 @@ struct select_item {
};
/*
* Duplicate frame detection
*/
typedef struct _fd_hash_t {
md5_byte_t digest[16];
guint32 len;
} fd_hash_t;
#define DUP_DEPTH 5
fd_hash_t fd_hash[DUP_DEPTH];
int cur_dup = 0;
#define ONE_MILLION 1000000
/* Weights of different errors we can introduce */
@ -93,6 +108,7 @@ static double err_prob = 0.0;
static time_t starttime = 0;
static time_t stoptime = 0;
static gboolean check_startstop = FALSE;
static gboolean dup_detect = FALSE;
/* Add a selection item, a simple parser for now */
@ -228,6 +244,36 @@ set_time_adjustment(char *optarg)
time_adj.tv.tv_usec = val;
}
static gboolean
is_duplicate(guint8* fd, guint32 len) {
int i;
md5_state_t ms;
cur_dup++;
if (cur_dup >= DUP_DEPTH)
cur_dup = 0;
/* Calculate our digest */
md5_init(&ms);
md5_append(&ms, fd, len);
md5_finish(&ms, fd_hash[cur_dup].digest);
fd_hash[cur_dup].len = len;
/* Look for duplicates */
for (i = 0; i < DUP_DEPTH; i++) {
if (i == cur_dup)
continue;
if (fd_hash[i].len == fd_hash[cur_dup].len &&
memcmp(fd_hash[i].digest, fd_hash[cur_dup].digest, 16) == 0) {
return TRUE;
}
}
return FALSE;
}
static void usage(void)
{
fprintf(stderr, "Editcap %s"
@ -244,6 +290,7 @@ static void usage(void)
fprintf(stderr, "\n");
fprintf(stderr, "Packets:\n");
fprintf(stderr, " -C <choplen> chop each packet at the end by <choplen> bytes\n");
fprintf(stderr, " -d remove duplicate packets\n");
fprintf(stderr, " -E <error probability> set the probability (between 0.0 and 1.0 incl.)\n");
fprintf(stderr, " that a particular packet byte will be randomly changed\n");
fprintf(stderr, " -r keep the selected packets, default is to delete them\n");
@ -319,7 +366,7 @@ int main(int argc, char *argv[])
/* Process the options first */
while ((opt = getopt(argc, argv, "A:B:c:C:E:F:hrs:t:T:v")) !=-1) {
while ((opt = getopt(argc, argv, "A:B:c:C:dE:F:hrs:t:T:v")) !=-1) {
switch (opt) {
@ -366,6 +413,14 @@ int main(int argc, char *argv[])
}
break;
case 'd':
dup_detect = TRUE;
for (i = 0; i < DUP_DEPTH; i++) {
memset(&fd_hash[i].digest, 0, 16);
fd_hash[i].len = 0;
}
break;
case '?': /* Bad options if GNU getopt */
switch(optopt) {
case'F':
@ -427,11 +482,11 @@ int main(int argc, char *argv[])
optarg);
exit(1);
}
check_startstop = TRUE;
starttime = mktime(&starttm);
break;
}
}
case 'B':
{
struct tm stoptm;
@ -450,7 +505,7 @@ int main(int argc, char *argv[])
}
}
#ifdef DEBUG
printf("Optind = %i, argc = %i\n", optind, argc);
#endif
@ -469,15 +524,15 @@ int main(int argc, char *argv[])
stoptm.tm_year = 135;
stoptm.tm_mday = 31;
stoptm.tm_mon = 11;
stoptime = mktime(&stoptm);
}
if (starttime > stoptime) {
fprintf(stderr, "editcap: start time is after the stop time\n");
exit(1);
}
wth = wtap_open_offline(argv[optind], &err, &err_info, FALSE);
if (!wth) {
@ -522,7 +577,7 @@ int main(int argc, char *argv[])
} else {
filename = argv[optind+1];
}
pdh = wtap_dump_open(filename, out_file_type,
out_frame_type, wtap_snapshot_length(wth), FALSE /* compressed */, &err);
if (pdh == NULL) {
@ -555,11 +610,11 @@ int main(int argc, char *argv[])
pdh = wtap_dump_open(filename, out_file_type,
out_frame_type, wtap_snapshot_length(wth), FALSE /* compressed */, &err);
if (pdh == NULL) {
fprintf(stderr, "editcap: Can't open or create %s: %s\n", filename,
wtap_strerror(err));
exit(1);
}
}
@ -619,6 +674,16 @@ int main(int argc, char *argv[])
phdr = &snap_phdr;
}
if (dup_detect) {
buf = wtap_buf_ptr(wth);
if (is_duplicate(buf, phdr->caplen)) {
if (verbose)
printf("Skipping duplicate: %u\n", count);
count++;
continue;
}
}
if (err_prob > 0.0) {
buf = wtap_buf_ptr(wth);
for (i = 0; i < (int) phdr->caplen; i++) {