wireshark/epan/tvbuff.c

4681 lines
121 KiB
C
Raw Normal View History

/* tvbuff.c
*
* Testy, Virtual(-izable) Buffer of guint8*'s
*
* "Testy" -- the buffer gets mad when an attempt to access data
* beyond the bounds of the buffer. An exception is thrown.
*
* "Virtual" -- the buffer can have its own data, can use a subset of
* the data of a backing tvbuff, or can be a composite of
* other tvbuffs.
*
* Copyright (c) 2000 by Gilbert Ramirez <gram@alumni.rice.edu>
*
* Code to convert IEEE floating point formats to native floating point
* derived from code Copyright (c) Ashok Narayanan, 2000
*
* Wireshark - Network traffic analyzer
* By Gerald Combs <gerald@wireshark.org>
* Copyright 1998 Gerald Combs
*
* SPDX-License-Identifier: GPL-2.0-or-later
*/
#include "config.h"
#include <string.h>
#include <stdio.h>
#include <errno.h>
#include "wsutil/pint.h"
#include "wsutil/sign_ext.h"
#include "wsutil/unicode-utils.h"
#include "wsutil/nstime.h"
#include "wsutil/time_util.h"
2021-06-18 18:21:42 +00:00
#include <wsutil/ws_assert.h>
#include "tvbuff.h"
#include "tvbuff-int.h"
#include "strutil.h"
#include "to_str.h"
#include "charsets.h"
#include "proto.h" /* XXX - only used for DISSECTOR_ASSERT, probably a new header file? */
#include "exceptions.h"
#include <time.h>
static guint64
_tvb_get_bits64(tvbuff_t *tvb, guint bit_offset, const gint total_no_of_bits);
static guint64
_tvb_get_bits64_le(tvbuff_t *tvb, guint bit_offset, const gint total_no_of_bits);
static inline gint
_tvb_captured_length_remaining(const tvbuff_t *tvb, const gint offset);
static inline const guint8*
ensure_contiguous(tvbuff_t *tvb, const gint offset, const gint length);
static inline guint8 *
tvb_get_raw_string(wmem_allocator_t *scope, tvbuff_t *tvb, const gint offset, const gint length);
tvbuff_t *
tvb_new(const struct tvb_ops *ops)
{
tvbuff_t *tvb;
gsize size = ops->tvb_size;
2021-06-18 18:21:42 +00:00
ws_assert(size >= sizeof(*tvb));
tvb = (tvbuff_t *) g_slice_alloc(size);
tvb->next = NULL;
tvb->ops = ops;
tvb->initialized = FALSE;
tvb->flags = 0;
tvb->length = 0;
tvb->reported_length = 0;
tvb->contained_length = 0;
tvb->real_data = NULL;
tvb->raw_offset = -1;
tvb->ds_tvb = NULL;
return tvb;
}
static void
tvb_free_internal(tvbuff_t *tvb)
{
gsize size;
DISSECTOR_ASSERT(tvb);
if (tvb->ops->tvb_free)
tvb->ops->tvb_free(tvb);
size = tvb->ops->tvb_size;
g_slice_free1(size, tvb);
}
/* XXX: just call tvb_free_chain();
* Not removed so that existing dissectors using tvb_free() need not be changed.
* I'd argue that existing calls to tvb_free() should have actually beeen
* calls to tvb_free_chain() although the calls were OK as long as no
* subsets, etc had been created on the tvb. */
void
tvb_free(tvbuff_t *tvb)
{
tvb_free_chain(tvb);
}
void
tvb_free_chain(tvbuff_t *tvb)
{
tvbuff_t *next_tvb;
DISSECTOR_ASSERT(tvb);
while (tvb) {
next_tvb = tvb->next;
tvb_free_internal(tvb);
tvb = next_tvb;
}
}
tvbuff_t *
tvb_new_chain(tvbuff_t *parent, tvbuff_t *backing)
{
tvbuff_t *tvb = tvb_new_proxy(backing);
tvb_add_to_chain(parent, tvb);
return tvb;
}
void
tvb_add_to_chain(tvbuff_t *parent, tvbuff_t *child)
{
2022-11-20 21:18:22 +00:00
tvbuff_t *tmp;
DISSECTOR_ASSERT(parent);
DISSECTOR_ASSERT(child);
while (child) {
tmp = child;
child = child->next;
tmp->next = parent->next;
parent->next = tmp;
}
}
/*
* Check whether that offset goes more than one byte past the
* end of the buffer.
*
* If not, return 0; otherwise, return exception
*/
static inline int
validate_offset(const tvbuff_t *tvb, const guint abs_offset)
{
if (G_LIKELY(abs_offset <= tvb->length)) {
/* It's OK. */
return 0;
}
/*
* It's not OK, but why? Which boundaries is it
* past?
*/
if (abs_offset <= tvb->contained_length) {
/*
* It's past the captured length, but not past
* the reported end of any parent tvbuffs from
* which this is constructed, or the reported
* end of this tvbuff, so it's out of bounds
* solely because we're past the end of the
* captured data.
*/
return BoundsError;
}
/*
* There's some actual packet boundary, not just the
* artificial boundary imposed by packet slicing, that
* we're past.
*/
if (tvb->flags & TVBUFF_FRAGMENT) {
/*
* This tvbuff is the first fragment of a larger
* packet that hasn't been reassembled, so we
exceptions: set FragmentBoundsError priority above ContainedBoundsError All fragment errors are bounds errors that go past the contained length, but they do not necessarily involve going past the reported length, so the checks for FragmentBoundsError should reflect that. With some forms of reassembly, like IP fragmentation, we don't know how big the PDU/reassembled packet is until reassembly is complete, so we probably use tvb_new_subset_remaining() to create fragments and the tvb's reported length is equal to its contained length. In these cases ReportedBoundsError would be otherwise thrown, except when the existing checks for FragmentBoundsError intervene. However, with other forms of reassembly, like various PDUs carried over TCP, we know the total PDU length, so we use tvb_new_subset_length[_caplen](), setting the proper reported length, but not changing the contained length when reassembly is not performed. In those cases, a bounds error that occurs due to lack of reassembly is otherwise a ContainedBoundsError, not a ReportedBoundsError. In both cases, a bounds error caused by an unreassembled fragment should be a FragmentBoundsError for the existing reasons. It is not necessarily a malformed packet (to the extent reassembly is not performed because of a malformed error elsewhere, that should be reported separately) and can likely be avoided by changing preferences (e.g., turning reassembly preferences on, turning off checksum verification, etc.) Otherwise it is probably a dissector bug.
2021-10-15 21:53:23 +00:00
* assume that's the source of the problem - if
* we'd reassembled the packet, we wouldn't have
* gone past the end.
*
* That might not be true, but for at least
* some forms of reassembly, such as IP
* reassembly, you don't know how big the
* reassembled packet is unless you reassemble
* it, so, in those cases, we can't determine
* whether we would have gone past the end
* had we reassembled the packet.
*/
return FragmentBoundsError;
}
exceptions: set FragmentBoundsError priority above ContainedBoundsError All fragment errors are bounds errors that go past the contained length, but they do not necessarily involve going past the reported length, so the checks for FragmentBoundsError should reflect that. With some forms of reassembly, like IP fragmentation, we don't know how big the PDU/reassembled packet is until reassembly is complete, so we probably use tvb_new_subset_remaining() to create fragments and the tvb's reported length is equal to its contained length. In these cases ReportedBoundsError would be otherwise thrown, except when the existing checks for FragmentBoundsError intervene. However, with other forms of reassembly, like various PDUs carried over TCP, we know the total PDU length, so we use tvb_new_subset_length[_caplen](), setting the proper reported length, but not changing the contained length when reassembly is not performed. In those cases, a bounds error that occurs due to lack of reassembly is otherwise a ContainedBoundsError, not a ReportedBoundsError. In both cases, a bounds error caused by an unreassembled fragment should be a FragmentBoundsError for the existing reasons. It is not necessarily a malformed packet (to the extent reassembly is not performed because of a malformed error elsewhere, that should be reported separately) and can likely be avoided by changing preferences (e.g., turning reassembly preferences on, turning off checksum verification, etc.) Otherwise it is probably a dissector bug.
2021-10-15 21:53:23 +00:00
/* OK, we're not an unreassembled fragment (that we know of). */
if (abs_offset <= tvb->reported_length) {
/*
* We're within the bounds of what this tvbuff
* purportedly contains, based on some length
* value, but we're not within the bounds of
* something from which this tvbuff was
* extracted, so that length value ran past
* the end of some parent tvbuff.
*/
return ContainedBoundsError;
}
/*
* OK, it looks as if we ran past the claimed length
* of data.
*/
return ReportedBoundsError;
}
static inline int
compute_offset(const tvbuff_t *tvb, const gint offset, guint *offset_ptr)
{
if (offset >= 0) {
/* Positive offset - relative to the beginning of the packet. */
if (G_LIKELY((guint) offset <= tvb->length)) {
*offset_ptr = offset;
} else if ((guint) offset <= tvb->contained_length) {
return BoundsError;
} else if (tvb->flags & TVBUFF_FRAGMENT) {
return FragmentBoundsError;
exceptions: set FragmentBoundsError priority above ContainedBoundsError All fragment errors are bounds errors that go past the contained length, but they do not necessarily involve going past the reported length, so the checks for FragmentBoundsError should reflect that. With some forms of reassembly, like IP fragmentation, we don't know how big the PDU/reassembled packet is until reassembly is complete, so we probably use tvb_new_subset_remaining() to create fragments and the tvb's reported length is equal to its contained length. In these cases ReportedBoundsError would be otherwise thrown, except when the existing checks for FragmentBoundsError intervene. However, with other forms of reassembly, like various PDUs carried over TCP, we know the total PDU length, so we use tvb_new_subset_length[_caplen](), setting the proper reported length, but not changing the contained length when reassembly is not performed. In those cases, a bounds error that occurs due to lack of reassembly is otherwise a ContainedBoundsError, not a ReportedBoundsError. In both cases, a bounds error caused by an unreassembled fragment should be a FragmentBoundsError for the existing reasons. It is not necessarily a malformed packet (to the extent reassembly is not performed because of a malformed error elsewhere, that should be reported separately) and can likely be avoided by changing preferences (e.g., turning reassembly preferences on, turning off checksum verification, etc.) Otherwise it is probably a dissector bug.
2021-10-15 21:53:23 +00:00
} else if ((guint) offset <= tvb->reported_length) {
return ContainedBoundsError;
} else {
return ReportedBoundsError;
}
}
else {
/* Negative offset - relative to the end of the packet. */
if (G_LIKELY((guint) -offset <= tvb->length)) {
*offset_ptr = tvb->length + offset;
} else if ((guint) -offset <= tvb->contained_length) {
return BoundsError;
} else if (tvb->flags & TVBUFF_FRAGMENT) {
return FragmentBoundsError;
exceptions: set FragmentBoundsError priority above ContainedBoundsError All fragment errors are bounds errors that go past the contained length, but they do not necessarily involve going past the reported length, so the checks for FragmentBoundsError should reflect that. With some forms of reassembly, like IP fragmentation, we don't know how big the PDU/reassembled packet is until reassembly is complete, so we probably use tvb_new_subset_remaining() to create fragments and the tvb's reported length is equal to its contained length. In these cases ReportedBoundsError would be otherwise thrown, except when the existing checks for FragmentBoundsError intervene. However, with other forms of reassembly, like various PDUs carried over TCP, we know the total PDU length, so we use tvb_new_subset_length[_caplen](), setting the proper reported length, but not changing the contained length when reassembly is not performed. In those cases, a bounds error that occurs due to lack of reassembly is otherwise a ContainedBoundsError, not a ReportedBoundsError. In both cases, a bounds error caused by an unreassembled fragment should be a FragmentBoundsError for the existing reasons. It is not necessarily a malformed packet (to the extent reassembly is not performed because of a malformed error elsewhere, that should be reported separately) and can likely be avoided by changing preferences (e.g., turning reassembly preferences on, turning off checksum verification, etc.) Otherwise it is probably a dissector bug.
2021-10-15 21:53:23 +00:00
} else if ((guint) -offset <= tvb->reported_length) {
return ContainedBoundsError;
} else {
return ReportedBoundsError;
}
}
return 0;
}
static inline int
compute_offset_and_remaining(const tvbuff_t *tvb, const gint offset, guint *offset_ptr, guint *rem_len)
{
int exception;
exception = compute_offset(tvb, offset, offset_ptr);
if (!exception)
*rem_len = tvb->length - *offset_ptr;
return exception;
}
/* Computes the absolute offset and length based on a possibly-negative offset
* and a length that is possible -1 (which means "to the end of the data").
* Returns integer indicating whether the offset is in bounds (0) or
* not (exception number). The integer ptrs are modified with the new offset,
* captured (available) length, and contained length (amount that's present
* in the parent tvbuff based on its reported length).
* No exception is thrown; on success, we return 0, otherwise we return an
* exception for the caller to throw if appropriate.
*
* XXX - we return success (0), if the offset is positive and right
* after the end of the tvbuff (i.e., equal to the length). We do this
* so that a dissector constructing a subset tvbuff for the next protocol
* will get a zero-length tvbuff, not an exception, if there's no data
* left for the next protocol - we want the next protocol to be the one
* that gets an exception, so the error is reported as an error in that
* protocol rather than the containing protocol. */
static inline int
check_offset_length_no_exception(const tvbuff_t *tvb,
const gint offset, gint const length_val,
guint *offset_ptr, guint *length_ptr)
{
guint end_offset;
int exception;
DISSECTOR_ASSERT(offset_ptr);
DISSECTOR_ASSERT(length_ptr);
/* Compute the offset */
exception = compute_offset(tvb, offset, offset_ptr);
if (exception)
return exception;
if (length_val < -1) {
/* XXX - ReportedBoundsError? */
return BoundsError;
}
/* Compute the length */
if (length_val == -1)
*length_ptr = tvb->length - *offset_ptr;
else
*length_ptr = length_val;
/*
* Compute the offset of the first byte past the length.
*/
end_offset = *offset_ptr + *length_ptr;
/*
* Check for an overflow
*/
if (end_offset < *offset_ptr)
return BoundsError;
return validate_offset(tvb, end_offset);
}
/* Checks (+/-) offset and length and throws an exception if
* either is out of bounds. Sets integer ptrs to the new offset
* and length. */
static inline void
check_offset_length(const tvbuff_t *tvb,
const gint offset, gint const length_val,
guint *offset_ptr, guint *length_ptr)
{
int exception;
exception = check_offset_length_no_exception(tvb, offset, length_val, offset_ptr, length_ptr);
if (exception)
THROW(exception);
}
void
tvb_check_offset_length(const tvbuff_t *tvb,
const gint offset, gint const length_val,
guint *offset_ptr, guint *length_ptr)
{
check_offset_length(tvb, offset, length_val, offset_ptr, length_ptr);
}
static const unsigned char left_aligned_bitmask[] = {
0xff,
0x80,
0xc0,
0xe0,
0xf0,
0xf8,
0xfc,
0xfe
};
tvbuff_t *
tvb_new_octet_aligned(tvbuff_t *tvb, guint32 bit_offset, gint32 no_of_bits)
{
tvbuff_t *sub_tvb = NULL;
guint32 byte_offset;
gint32 datalen, i;
guint8 left, right, remaining_bits, *buf;
const guint8 *data;
DISSECTOR_ASSERT(tvb && tvb->initialized);
byte_offset = bit_offset >> 3;
left = bit_offset % 8; /* for left-shifting */
right = 8 - left; /* for right-shifting */
if (no_of_bits == -1) {
datalen = _tvb_captured_length_remaining(tvb, byte_offset);
remaining_bits = 0;
} else {
datalen = no_of_bits >> 3;
remaining_bits = no_of_bits % 8;
if (remaining_bits) {
datalen++;
}
}
/* already aligned -> shortcut */
if ((left == 0) && (remaining_bits == 0)) {
return tvb_new_subset_length_caplen(tvb, byte_offset, datalen, datalen);
}
DISSECTOR_ASSERT(datalen>0);
/* if at least one trailing byte is available, we must use the content
* of that byte for the last shift (i.e. tvb_get_ptr() must use datalen + 1
* if non extra byte is available, the last shifted byte requires
* special treatment
*/
if (_tvb_captured_length_remaining(tvb, byte_offset) > datalen) {
data = ensure_contiguous(tvb, byte_offset, datalen + 1); /* tvb_get_ptr */
/* Do this allocation AFTER tvb_get_ptr() (which could throw an exception) */
buf = (guint8 *)g_malloc(datalen);
/* shift tvb data bit_offset bits to the left */
for (i = 0; i < datalen; i++)
buf[i] = (data[i] << left) | (data[i+1] >> right);
} else {
data = ensure_contiguous(tvb, byte_offset, datalen); /* tvb_get_ptr() */
/* Do this allocation AFTER tvb_get_ptr() (which could throw an exception) */
buf = (guint8 *)g_malloc(datalen);
/* shift tvb data bit_offset bits to the left */
for (i = 0; i < (datalen-1); i++)
buf[i] = (data[i] << left) | (data[i+1] >> right);
buf[datalen-1] = data[datalen-1] << left; /* set last octet */
}
buf[datalen-1] &= left_aligned_bitmask[remaining_bits];
sub_tvb = tvb_new_child_real_data(tvb, buf, datalen, datalen);
tvb_set_free_cb(sub_tvb, g_free);
return sub_tvb;
}
tvbuff_t *
tvb_new_octet_right_aligned(tvbuff_t *tvb, guint32 bit_offset, gint32 no_of_bits)
{
tvbuff_t *sub_tvb = NULL;
guint32 byte_offset;
gint src_len, dst_len, i;
guint8 left, right, remaining_bits, *buf;
const guint8 *data;
DISSECTOR_ASSERT(tvb && tvb->initialized);
byte_offset = bit_offset / 8;
/* right shift to put bits in place and discard least significant bits */
right = bit_offset % 8;
/* left shift to get most significant bits from next octet */
left = 8 - right;
if (no_of_bits == -1) {
dst_len = _tvb_captured_length_remaining(tvb, byte_offset);
remaining_bits = 0;
} else {
dst_len = no_of_bits / 8;
remaining_bits = no_of_bits % 8;
if (remaining_bits) {
dst_len++;
}
}
/* already aligned -> shortcut */
if ((right == 0) && (remaining_bits == 0)) {
return tvb_new_subset_length_caplen(tvb, byte_offset, dst_len, dst_len);
}
DISSECTOR_ASSERT(dst_len>0);
if (_tvb_captured_length_remaining(tvb, byte_offset) > dst_len) {
/* last octet will get data from trailing octet */
src_len = dst_len + 1;
} else {
/* last octet will be zero padded */
src_len = dst_len;
}
data = ensure_contiguous(tvb, byte_offset, src_len); /* tvb_get_ptr */
/* Do this allocation AFTER tvb_get_ptr() (which could throw an exception) */
buf = (guint8 *)g_malloc(dst_len);
for (i = 0; i < (dst_len - 1); i++)
buf[i] = (data[i] >> right) | (data[i+1] << left);
/* Special handling for last octet */
buf[i] = (data[i] >> right);
/* Shift most significant bits from trailing octet if available */
if (src_len > dst_len)
buf[i] |= (data[i+1] << left);
/* Preserve only remaining bits in last octet if not multiple of 8 */
if (remaining_bits)
buf[i] &= ((1 << remaining_bits) - 1);
sub_tvb = tvb_new_child_real_data(tvb, buf, dst_len, dst_len);
tvb_set_free_cb(sub_tvb, g_free);
return sub_tvb;
}
static tvbuff_t *
tvb_generic_clone_offset_len(tvbuff_t *tvb, guint offset, guint len)
{
tvbuff_t *cloned_tvb;
guint8 *data;
DISSECTOR_ASSERT(tvb_bytes_exist(tvb, offset, len));
data = (guint8 *) g_malloc(len);
tvb_memcpy(tvb, data, offset, len);
cloned_tvb = tvb_new_real_data(data, len, len);
tvb_set_free_cb(cloned_tvb, g_free);
return cloned_tvb;
}
tvbuff_t *
tvb_clone_offset_len(tvbuff_t *tvb, guint offset, guint len)
{
if (tvb->ops->tvb_clone) {
tvbuff_t *cloned_tvb;
cloned_tvb = tvb->ops->tvb_clone(tvb, offset, len);
if (cloned_tvb)
return cloned_tvb;
}
return tvb_generic_clone_offset_len(tvb, offset, len);
}
tvbuff_t *
tvb_clone(tvbuff_t *tvb)
{
return tvb_clone_offset_len(tvb, 0, tvb->length);
}
guint
tvb_captured_length(const tvbuff_t *tvb)
{
DISSECTOR_ASSERT(tvb && tvb->initialized);
return tvb->length;
}
/* For tvbuff internal use */
static inline gint
_tvb_captured_length_remaining(const tvbuff_t *tvb, const gint offset)
{
guint abs_offset = 0, rem_length;
int exception;
exception = compute_offset_and_remaining(tvb, offset, &abs_offset, &rem_length);
if (exception)
return 0;
return rem_length;
}
gint
tvb_captured_length_remaining(const tvbuff_t *tvb, const gint offset)
{
guint abs_offset = 0, rem_length;
int exception;
DISSECTOR_ASSERT(tvb && tvb->initialized);
exception = compute_offset_and_remaining(tvb, offset, &abs_offset, &rem_length);
if (exception)
return 0;
return rem_length;
}
guint
tvb_ensure_captured_length_remaining(const tvbuff_t *tvb, const gint offset)
{
guint abs_offset = 0, rem_length = 0;
int exception;
DISSECTOR_ASSERT(tvb && tvb->initialized);
exception = compute_offset_and_remaining(tvb, offset, &abs_offset, &rem_length);
if (exception)
THROW(exception);
if (rem_length == 0) {
/*
* This routine ensures there's at least one byte available.
* There aren't any bytes available, so throw the appropriate
* exception.
*/
if (abs_offset < tvb->contained_length) {
THROW(BoundsError);
} else if (tvb->flags & TVBUFF_FRAGMENT) {
THROW(FragmentBoundsError);
exceptions: set FragmentBoundsError priority above ContainedBoundsError All fragment errors are bounds errors that go past the contained length, but they do not necessarily involve going past the reported length, so the checks for FragmentBoundsError should reflect that. With some forms of reassembly, like IP fragmentation, we don't know how big the PDU/reassembled packet is until reassembly is complete, so we probably use tvb_new_subset_remaining() to create fragments and the tvb's reported length is equal to its contained length. In these cases ReportedBoundsError would be otherwise thrown, except when the existing checks for FragmentBoundsError intervene. However, with other forms of reassembly, like various PDUs carried over TCP, we know the total PDU length, so we use tvb_new_subset_length[_caplen](), setting the proper reported length, but not changing the contained length when reassembly is not performed. In those cases, a bounds error that occurs due to lack of reassembly is otherwise a ContainedBoundsError, not a ReportedBoundsError. In both cases, a bounds error caused by an unreassembled fragment should be a FragmentBoundsError for the existing reasons. It is not necessarily a malformed packet (to the extent reassembly is not performed because of a malformed error elsewhere, that should be reported separately) and can likely be avoided by changing preferences (e.g., turning reassembly preferences on, turning off checksum verification, etc.) Otherwise it is probably a dissector bug.
2021-10-15 21:53:23 +00:00
} else if (abs_offset < tvb->reported_length) {
THROW(ContainedBoundsError);
} else {
THROW(ReportedBoundsError);
}
}
return rem_length;
}
/* Validates that 'length' bytes are available starting from
* offset (pos/neg). Does not throw an exception. */
gboolean
tvb_bytes_exist(const tvbuff_t *tvb, const gint offset, const gint length)
{
guint abs_offset = 0, abs_length;
int exception;
DISSECTOR_ASSERT(tvb && tvb->initialized);
/*
* Negative lengths are not possible and indicate a bug (e.g. arithmetic
* error or an overly large value from packet data).
*/
if (length < 0)
return FALSE;
exception = check_offset_length_no_exception(tvb, offset, length, &abs_offset, &abs_length);
if (exception)
return FALSE;
return TRUE;
}
/* Validates that 'length' bytes, where 'length' is a 64-bit unsigned
* integer, are available starting from offset (pos/neg). Throws an
* exception if they aren't. */
void
tvb_ensure_bytes_exist64(const tvbuff_t *tvb, const gint offset, const guint64 length)
{
/*
* Make sure the value fits in a signed integer; if not, assume
* that means that it's too big.
*/
if (length > G_MAXINT) {
THROW(ReportedBoundsError);
}
/* OK, now cast it and try it with tvb_ensure_bytes_exist(). */
tvb_ensure_bytes_exist(tvb, offset, (gint)length);
}
/* Validates that 'length' bytes are available starting from
* offset (pos/neg). Throws an exception if they aren't. */
void
tvb_ensure_bytes_exist(const tvbuff_t *tvb, const gint offset, const gint length)
{
guint real_offset, end_offset;
DISSECTOR_ASSERT(tvb && tvb->initialized);
/*
* -1 doesn't mean "until end of buffer", as that's pointless
* for this routine. We must treat it as a Really Large Positive
* Number, so that we throw an exception; we throw
* ReportedBoundsError, as if it were past even the end of a
* reassembled packet, and past the end of even the data we
* didn't capture.
*
* We do the same with other negative lengths.
*/
if (length < 0) {
THROW(ReportedBoundsError);
}
/* XXX: Below this point could be replaced with a call to
* check_offset_length with no functional change, however this is a
* *very* hot path and check_offset_length is not well-optimized for
* this case, so we eat some code duplication for a lot of speedup. */
if (offset >= 0) {
/* Positive offset - relative to the beginning of the packet. */
if (G_LIKELY((guint) offset <= tvb->length)) {
real_offset = offset;
} else if ((guint) offset <= tvb->contained_length) {
THROW(BoundsError);
} else if (tvb->flags & TVBUFF_FRAGMENT) {
THROW(FragmentBoundsError);
exceptions: set FragmentBoundsError priority above ContainedBoundsError All fragment errors are bounds errors that go past the contained length, but they do not necessarily involve going past the reported length, so the checks for FragmentBoundsError should reflect that. With some forms of reassembly, like IP fragmentation, we don't know how big the PDU/reassembled packet is until reassembly is complete, so we probably use tvb_new_subset_remaining() to create fragments and the tvb's reported length is equal to its contained length. In these cases ReportedBoundsError would be otherwise thrown, except when the existing checks for FragmentBoundsError intervene. However, with other forms of reassembly, like various PDUs carried over TCP, we know the total PDU length, so we use tvb_new_subset_length[_caplen](), setting the proper reported length, but not changing the contained length when reassembly is not performed. In those cases, a bounds error that occurs due to lack of reassembly is otherwise a ContainedBoundsError, not a ReportedBoundsError. In both cases, a bounds error caused by an unreassembled fragment should be a FragmentBoundsError for the existing reasons. It is not necessarily a malformed packet (to the extent reassembly is not performed because of a malformed error elsewhere, that should be reported separately) and can likely be avoided by changing preferences (e.g., turning reassembly preferences on, turning off checksum verification, etc.) Otherwise it is probably a dissector bug.
2021-10-15 21:53:23 +00:00
} else if ((guint) offset <= tvb->reported_length) {
THROW(ContainedBoundsError);
} else {
THROW(ReportedBoundsError);
}
}
else {
/* Negative offset - relative to the end of the packet. */
if (G_LIKELY((guint) -offset <= tvb->length)) {
real_offset = tvb->length + offset;
} else if ((guint) -offset <= tvb->contained_length) {
THROW(BoundsError);
} else if (tvb->flags & TVBUFF_FRAGMENT) {
THROW(FragmentBoundsError);
exceptions: set FragmentBoundsError priority above ContainedBoundsError All fragment errors are bounds errors that go past the contained length, but they do not necessarily involve going past the reported length, so the checks for FragmentBoundsError should reflect that. With some forms of reassembly, like IP fragmentation, we don't know how big the PDU/reassembled packet is until reassembly is complete, so we probably use tvb_new_subset_remaining() to create fragments and the tvb's reported length is equal to its contained length. In these cases ReportedBoundsError would be otherwise thrown, except when the existing checks for FragmentBoundsError intervene. However, with other forms of reassembly, like various PDUs carried over TCP, we know the total PDU length, so we use tvb_new_subset_length[_caplen](), setting the proper reported length, but not changing the contained length when reassembly is not performed. In those cases, a bounds error that occurs due to lack of reassembly is otherwise a ContainedBoundsError, not a ReportedBoundsError. In both cases, a bounds error caused by an unreassembled fragment should be a FragmentBoundsError for the existing reasons. It is not necessarily a malformed packet (to the extent reassembly is not performed because of a malformed error elsewhere, that should be reported separately) and can likely be avoided by changing preferences (e.g., turning reassembly preferences on, turning off checksum verification, etc.) Otherwise it is probably a dissector bug.
2021-10-15 21:53:23 +00:00
} else if ((guint) -offset <= tvb->reported_length) {
THROW(ContainedBoundsError);
} else {
THROW(ReportedBoundsError);
}
}
/*
* Compute the offset of the first byte past the length.
*/
end_offset = real_offset + length;
/*
* Check for an overflow
*/
if (end_offset < real_offset)
THROW(BoundsError);
if (G_LIKELY(end_offset <= tvb->length))
return;
else if (end_offset <= tvb->contained_length)
THROW(BoundsError);
else if (tvb->flags & TVBUFF_FRAGMENT)
THROW(FragmentBoundsError);
exceptions: set FragmentBoundsError priority above ContainedBoundsError All fragment errors are bounds errors that go past the contained length, but they do not necessarily involve going past the reported length, so the checks for FragmentBoundsError should reflect that. With some forms of reassembly, like IP fragmentation, we don't know how big the PDU/reassembled packet is until reassembly is complete, so we probably use tvb_new_subset_remaining() to create fragments and the tvb's reported length is equal to its contained length. In these cases ReportedBoundsError would be otherwise thrown, except when the existing checks for FragmentBoundsError intervene. However, with other forms of reassembly, like various PDUs carried over TCP, we know the total PDU length, so we use tvb_new_subset_length[_caplen](), setting the proper reported length, but not changing the contained length when reassembly is not performed. In those cases, a bounds error that occurs due to lack of reassembly is otherwise a ContainedBoundsError, not a ReportedBoundsError. In both cases, a bounds error caused by an unreassembled fragment should be a FragmentBoundsError for the existing reasons. It is not necessarily a malformed packet (to the extent reassembly is not performed because of a malformed error elsewhere, that should be reported separately) and can likely be avoided by changing preferences (e.g., turning reassembly preferences on, turning off checksum verification, etc.) Otherwise it is probably a dissector bug.
2021-10-15 21:53:23 +00:00
else if (end_offset <= tvb->reported_length)
THROW(ContainedBoundsError);
else
THROW(ReportedBoundsError);
}
gboolean
tvb_offset_exists(const tvbuff_t *tvb, const gint offset)
{
guint abs_offset = 0;
int exception;
DISSECTOR_ASSERT(tvb && tvb->initialized);
exception = compute_offset(tvb, offset, &abs_offset);
if (exception)
Add "tvb_reported_length()" to get the "reported length" of a tvbuff (i.e., the amount of data that was in the packet, even if not all of it was captured), for use when dissecting packets containing data that fills the packet (we want the dissector to try to dissect all of it; if it runs past the end of the captured data, we want it to throw an exception so that we'll put a "Short Frame" note in the protocol tree). This means we always want a tvbuff to have a real reported length value, so we make it an unsigned integer, and don't bother checking it for -1, as it should never be -1. If the reported length passed in to "tvb_set_subset()" is -1, set the reported length to the reported length of the tvbuff of which the new tvbuff will be a subset minus the offset in that tvbuff of the subset, so that "-1" means "what's left of the packet after we chop off the header". This is necessary in order to ensure that all tvbuffs have a real reported length value. Have "dissect_packet()" set the reported length of the top-level tvbuff to the reported length of the frame, so that we start out with a tvbuff with a real reported length value. Have "tvb_offset_exists()" return FALSE if the offset is past the end of the tvbuff. If the offset passed to it is postitive, have "compute_offset_length()" check for that it's not more than one byte past the end of the tvbuff - if it's just past the end, we don't want the check to fail, as we don't want attempts to create a subset tvbuff containing zero bytes to fail; that would be done if a captured packet was all header and no payload, and we'd want the dissector of the payload, not the dissector of the header, to throw an exception, as the problem isn't with the protocol for the header, it's with the protocol for the payload. Convert the ATM dissector, the SSCOP dissector, the Q.2931 dissector, and the Q.931 dissector to use tvbuffs. Make the LAPD dissector set up a tvbuff for the Q.931 dissector (it's not converted yet). svn path=/trunk/; revision=2023
2000-05-29 08:57:42 +00:00
return FALSE;
/* compute_offset only throws an exception on >, not >= because of the
* comment above check_offset_length_no_exception, but here we want the
* opposite behaviour so we check ourselves... */
if (abs_offset < tvb->length) {
return TRUE;
}
else {
return FALSE;
}
}
Add "tvb_reported_length()" to get the "reported length" of a tvbuff (i.e., the amount of data that was in the packet, even if not all of it was captured), for use when dissecting packets containing data that fills the packet (we want the dissector to try to dissect all of it; if it runs past the end of the captured data, we want it to throw an exception so that we'll put a "Short Frame" note in the protocol tree). This means we always want a tvbuff to have a real reported length value, so we make it an unsigned integer, and don't bother checking it for -1, as it should never be -1. If the reported length passed in to "tvb_set_subset()" is -1, set the reported length to the reported length of the tvbuff of which the new tvbuff will be a subset minus the offset in that tvbuff of the subset, so that "-1" means "what's left of the packet after we chop off the header". This is necessary in order to ensure that all tvbuffs have a real reported length value. Have "dissect_packet()" set the reported length of the top-level tvbuff to the reported length of the frame, so that we start out with a tvbuff with a real reported length value. Have "tvb_offset_exists()" return FALSE if the offset is past the end of the tvbuff. If the offset passed to it is postitive, have "compute_offset_length()" check for that it's not more than one byte past the end of the tvbuff - if it's just past the end, we don't want the check to fail, as we don't want attempts to create a subset tvbuff containing zero bytes to fail; that would be done if a captured packet was all header and no payload, and we'd want the dissector of the payload, not the dissector of the header, to throw an exception, as the problem isn't with the protocol for the header, it's with the protocol for the payload. Convert the ATM dissector, the SSCOP dissector, the Q.2931 dissector, and the Q.931 dissector to use tvbuffs. Make the LAPD dissector set up a tvbuff for the Q.931 dissector (it's not converted yet). svn path=/trunk/; revision=2023
2000-05-29 08:57:42 +00:00
guint
tvb_reported_length(const tvbuff_t *tvb)
Add "tvb_reported_length()" to get the "reported length" of a tvbuff (i.e., the amount of data that was in the packet, even if not all of it was captured), for use when dissecting packets containing data that fills the packet (we want the dissector to try to dissect all of it; if it runs past the end of the captured data, we want it to throw an exception so that we'll put a "Short Frame" note in the protocol tree). This means we always want a tvbuff to have a real reported length value, so we make it an unsigned integer, and don't bother checking it for -1, as it should never be -1. If the reported length passed in to "tvb_set_subset()" is -1, set the reported length to the reported length of the tvbuff of which the new tvbuff will be a subset minus the offset in that tvbuff of the subset, so that "-1" means "what's left of the packet after we chop off the header". This is necessary in order to ensure that all tvbuffs have a real reported length value. Have "dissect_packet()" set the reported length of the top-level tvbuff to the reported length of the frame, so that we start out with a tvbuff with a real reported length value. Have "tvb_offset_exists()" return FALSE if the offset is past the end of the tvbuff. If the offset passed to it is postitive, have "compute_offset_length()" check for that it's not more than one byte past the end of the tvbuff - if it's just past the end, we don't want the check to fail, as we don't want attempts to create a subset tvbuff containing zero bytes to fail; that would be done if a captured packet was all header and no payload, and we'd want the dissector of the payload, not the dissector of the header, to throw an exception, as the problem isn't with the protocol for the header, it's with the protocol for the payload. Convert the ATM dissector, the SSCOP dissector, the Q.2931 dissector, and the Q.931 dissector to use tvbuffs. Make the LAPD dissector set up a tvbuff for the Q.931 dissector (it's not converted yet). svn path=/trunk/; revision=2023
2000-05-29 08:57:42 +00:00
{
DISSECTOR_ASSERT(tvb && tvb->initialized);
Add "tvb_reported_length()" to get the "reported length" of a tvbuff (i.e., the amount of data that was in the packet, even if not all of it was captured), for use when dissecting packets containing data that fills the packet (we want the dissector to try to dissect all of it; if it runs past the end of the captured data, we want it to throw an exception so that we'll put a "Short Frame" note in the protocol tree). This means we always want a tvbuff to have a real reported length value, so we make it an unsigned integer, and don't bother checking it for -1, as it should never be -1. If the reported length passed in to "tvb_set_subset()" is -1, set the reported length to the reported length of the tvbuff of which the new tvbuff will be a subset minus the offset in that tvbuff of the subset, so that "-1" means "what's left of the packet after we chop off the header". This is necessary in order to ensure that all tvbuffs have a real reported length value. Have "dissect_packet()" set the reported length of the top-level tvbuff to the reported length of the frame, so that we start out with a tvbuff with a real reported length value. Have "tvb_offset_exists()" return FALSE if the offset is past the end of the tvbuff. If the offset passed to it is postitive, have "compute_offset_length()" check for that it's not more than one byte past the end of the tvbuff - if it's just past the end, we don't want the check to fail, as we don't want attempts to create a subset tvbuff containing zero bytes to fail; that would be done if a captured packet was all header and no payload, and we'd want the dissector of the payload, not the dissector of the header, to throw an exception, as the problem isn't with the protocol for the header, it's with the protocol for the payload. Convert the ATM dissector, the SSCOP dissector, the Q.2931 dissector, and the Q.931 dissector to use tvbuffs. Make the LAPD dissector set up a tvbuff for the Q.931 dissector (it's not converted yet). svn path=/trunk/; revision=2023
2000-05-29 08:57:42 +00:00
return tvb->reported_length;
}
gint
tvb_reported_length_remaining(const tvbuff_t *tvb, const gint offset)
{
guint abs_offset = 0;
int exception;
DISSECTOR_ASSERT(tvb && tvb->initialized);
exception = compute_offset(tvb, offset, &abs_offset);
if (exception)
return 0;
if (tvb->reported_length >= abs_offset)
return tvb->reported_length - abs_offset;
else
return 0;
}
guint
tvb_ensure_reported_length_remaining(const tvbuff_t *tvb, const gint offset)
{
guint abs_offset = 0;
int exception;
DISSECTOR_ASSERT(tvb && tvb->initialized);
exception = compute_offset(tvb, offset, &abs_offset);
if (exception)
THROW(exception);
if (tvb->reported_length >= abs_offset)
return tvb->reported_length - abs_offset;
else
THROW(ReportedBoundsError);
}
/* Set the reported length of a tvbuff to a given value; used for protocols
* whose headers contain an explicit length and where the calling
* dissector's payload may include padding as well as the packet for
* this protocol.
* Also adjusts the available and contained length. */
void
tvb_set_reported_length(tvbuff_t *tvb, const guint reported_length)
{
DISSECTOR_ASSERT(tvb && tvb->initialized);
if (reported_length > tvb->reported_length)
THROW(ReportedBoundsError);
tvb->reported_length = reported_length;
if (reported_length < tvb->length)
tvb->length = reported_length;
if (reported_length < tvb->contained_length)
tvb->contained_length = reported_length;
}
/* Repair a tvbuff where the captured length is greater than the
* reported length; such a tvbuff makes no sense, as it's impossible
* to capture more data than is in the packet.
*/
void
tvb_fix_reported_length(tvbuff_t *tvb)
{
DISSECTOR_ASSERT(tvb && tvb->initialized);
DISSECTOR_ASSERT(tvb->reported_length < tvb->length);
tvb->reported_length = tvb->length;
if (tvb->contained_length < tvb->length)
tvb->contained_length = tvb->length;
}
guint
tvb_offset_from_real_beginning_counter(const tvbuff_t *tvb, const guint counter)
{
if (tvb->ops->tvb_offset)
return tvb->ops->tvb_offset(tvb, counter);
DISSECTOR_ASSERT_NOT_REACHED();
return 0;
}
guint
tvb_offset_from_real_beginning(const tvbuff_t *tvb)
{
return tvb_offset_from_real_beginning_counter(tvb, 0);
}
static inline const guint8*
ensure_contiguous_no_exception(tvbuff_t *tvb, const gint offset, const gint length, int *pexception)
{
guint abs_offset = 0, abs_length = 0;
int exception;
exception = check_offset_length_no_exception(tvb, offset, length, &abs_offset, &abs_length);
if (exception) {
if (pexception)
*pexception = exception;
return NULL;
}
tvb: gracefully handle reading 0 bytes from an empty buffer proto_tree_add_item with a zero length argument could end up calling tvb_get_ptr to retrieve the (empty) backing buffer. This empty tvb was possibly the result of bad reassembly, but let's gracefully handle it to avoid a dissector exception. Call trace for the original exception (only present on the first pass): proto_report_dissector_bug (format=0x7ffffffecea0 "") at epan/proto.c:1368 ensure_contiguous_no_exception (tvb=0x6060001a5460, offset=0, length=0, pexception=0x7ffffffed060) at epan/tvbuff.c:775 ensure_contiguous (tvb=0x6060001a5460, offset=0, length=0) at epan/tvbuff.c:785 tvb_get_ptr (tvb=0x6060001a5460, offset=0, length=0) at epan/tvbuff.c:906 subset_get_ptr (tvb=0x607000194b90, abs_offset=0, abs_length=0) at epan/tvbuff_subset.c:58 ensure_contiguous_no_exception (tvb=0x607000194b90, offset=0, length=0, pexception=0x7ffffffed3c0) at epan/tvbuff.c:773 ensure_contiguous (tvb=0x607000194b90, offset=0, length=0) at epan/tvbuff.c:785 tvb_get_ptr (tvb=0x607000194b90, offset=0, length=0) at epan/tvbuff.c:906 proto_tree_set_bytes_tvb (fi=0x608000535ca0, tvb=0x607000194b90, offset=0, length=0) at epan/proto.c:3862 proto_tree_new_item (new_fi=0x608000535ca0, tree=0x604000543150, tvb=0x607000194b90, start=0, length=0, encoding=0) at epan/proto.c:2318 proto_tree_add_item_new (tree=0x604000543150, hfinfo=0x7ffff30e91f8, tvb=0x607000194b90, start=0, length=0, encoding=0) at epan/proto.c:3381 proto_tree_add_item (tree=0x604000543150, hfindex=65120, tvb=0x607000194b90, start=0, length=0, encoding=0) at epan/proto.c:3391 dissect_body_data (tree=0x604000543150, pinfo=0x614000000a58, tvb=0x607000194b90, start=0, length=0, encoding=0) at epan/dissectors/packet-http2.c:1974 Change-Id: Icfae83d61ddcc9e26f16eab7f6e0e84e2f0d73ac Reviewed-on: https://code.wireshark.org/review/29851 Petri-Dish: Peter Wu <peter@lekensteyn.nl> Tested-by: Petri Dish Buildbot Reviewed-by: Anders Broman <a.broman58@gmail.com>
2018-09-26 10:26:21 +00:00
/*
* Special case: if the caller (e.g. tvb_get_ptr) requested no data,
* then it is acceptable to have an empty tvb (!tvb->real_data).
*/
if (length == 0) {
return NULL;
}
Add new routines: tvb_get_string() - takes a tvbuff, an offset, and a length as arguments, allocates a buffer big enough to hold a string with the specified number of bytes plus an added null terminator (i.e., length+1), copies the specified number of bytes from the tvbuff, at the specified offset, to that buffer and puts in a null terminator, and returns a pointer to that buffer (or throws an exception before allocating the buffer if that many bytes aren't available in the tvbuff); tvb_get_stringz() - takes a tvbuff, an offset, and a pointer to a "gint" as arguments, gets the size of the null-terminated string starting at the specified offset in the tvbuff (throwing an exception if the null terminator isn't found), allocates a buffer big enough to hold that string, copies the string to that buffer, and returns a pointer to that buffer and stores the length of the string (including the terminating null) in the variable pointed to by the "gint" pointer. Replace many pieces of code allocating a buffer and copying a string with calls to "tvb_get_string()" (for one thing, "tvb_get_string()" doesn't require you to remember that the argument to "tvb_get_nstringz0()" is the size of the buffer into which you're copying the string, which might be the length of the string to be copied *plus 1*). Don't use fixed-length buffers for null-terminated strings (even if the code that generates those packets has a #define to limit the length of the string). Use "tvb_get_stringz()", instead. In some cases where a value is fetched but is only used to pass an argument to a "proto_tree_add_XXX" routine, use "proto_tree_add_item()" instead. svn path=/trunk/; revision=7859
2003-06-12 08:33:32 +00:00
/*
* We know that all the data is present in the tvbuff, so
* no exceptions should be thrown.
*/
if (tvb->real_data)
return tvb->real_data + abs_offset;
if (tvb->ops->tvb_get_ptr)
return tvb->ops->tvb_get_ptr(tvb, abs_offset, abs_length);
DISSECTOR_ASSERT_NOT_REACHED();
return NULL;
}
static inline const guint8*
ensure_contiguous(tvbuff_t *tvb, const gint offset, const gint length)
{
int exception = 0;
const guint8 *p;
p = ensure_contiguous_no_exception(tvb, offset, length, &exception);
tvb: gracefully handle reading 0 bytes from an empty buffer proto_tree_add_item with a zero length argument could end up calling tvb_get_ptr to retrieve the (empty) backing buffer. This empty tvb was possibly the result of bad reassembly, but let's gracefully handle it to avoid a dissector exception. Call trace for the original exception (only present on the first pass): proto_report_dissector_bug (format=0x7ffffffecea0 "") at epan/proto.c:1368 ensure_contiguous_no_exception (tvb=0x6060001a5460, offset=0, length=0, pexception=0x7ffffffed060) at epan/tvbuff.c:775 ensure_contiguous (tvb=0x6060001a5460, offset=0, length=0) at epan/tvbuff.c:785 tvb_get_ptr (tvb=0x6060001a5460, offset=0, length=0) at epan/tvbuff.c:906 subset_get_ptr (tvb=0x607000194b90, abs_offset=0, abs_length=0) at epan/tvbuff_subset.c:58 ensure_contiguous_no_exception (tvb=0x607000194b90, offset=0, length=0, pexception=0x7ffffffed3c0) at epan/tvbuff.c:773 ensure_contiguous (tvb=0x607000194b90, offset=0, length=0) at epan/tvbuff.c:785 tvb_get_ptr (tvb=0x607000194b90, offset=0, length=0) at epan/tvbuff.c:906 proto_tree_set_bytes_tvb (fi=0x608000535ca0, tvb=0x607000194b90, offset=0, length=0) at epan/proto.c:3862 proto_tree_new_item (new_fi=0x608000535ca0, tree=0x604000543150, tvb=0x607000194b90, start=0, length=0, encoding=0) at epan/proto.c:2318 proto_tree_add_item_new (tree=0x604000543150, hfinfo=0x7ffff30e91f8, tvb=0x607000194b90, start=0, length=0, encoding=0) at epan/proto.c:3381 proto_tree_add_item (tree=0x604000543150, hfindex=65120, tvb=0x607000194b90, start=0, length=0, encoding=0) at epan/proto.c:3391 dissect_body_data (tree=0x604000543150, pinfo=0x614000000a58, tvb=0x607000194b90, start=0, length=0, encoding=0) at epan/dissectors/packet-http2.c:1974 Change-Id: Icfae83d61ddcc9e26f16eab7f6e0e84e2f0d73ac Reviewed-on: https://code.wireshark.org/review/29851 Petri-Dish: Peter Wu <peter@lekensteyn.nl> Tested-by: Petri Dish Buildbot Reviewed-by: Anders Broman <a.broman58@gmail.com>
2018-09-26 10:26:21 +00:00
if (p == NULL && length != 0) {
DISSECTOR_ASSERT(exception > 0);
THROW(exception);
}
return p;
}
static inline const guint8*
fast_ensure_contiguous(tvbuff_t *tvb, const gint offset, const guint length)
{
guint end_offset;
guint u_offset;
DISSECTOR_ASSERT(tvb && tvb->initialized);
/* We don't check for overflow in this fast path so we only handle simple types */
DISSECTOR_ASSERT(length <= 8);
if (offset < 0 || !tvb->real_data) {
return ensure_contiguous(tvb, offset, length);
}
u_offset = offset;
end_offset = u_offset + length;
if (G_LIKELY(end_offset <= tvb->length)) {
return tvb->real_data + u_offset;
} else if (end_offset <= tvb->contained_length) {
THROW(BoundsError);
} else if (tvb->flags & TVBUFF_FRAGMENT) {
THROW(FragmentBoundsError);
exceptions: set FragmentBoundsError priority above ContainedBoundsError All fragment errors are bounds errors that go past the contained length, but they do not necessarily involve going past the reported length, so the checks for FragmentBoundsError should reflect that. With some forms of reassembly, like IP fragmentation, we don't know how big the PDU/reassembled packet is until reassembly is complete, so we probably use tvb_new_subset_remaining() to create fragments and the tvb's reported length is equal to its contained length. In these cases ReportedBoundsError would be otherwise thrown, except when the existing checks for FragmentBoundsError intervene. However, with other forms of reassembly, like various PDUs carried over TCP, we know the total PDU length, so we use tvb_new_subset_length[_caplen](), setting the proper reported length, but not changing the contained length when reassembly is not performed. In those cases, a bounds error that occurs due to lack of reassembly is otherwise a ContainedBoundsError, not a ReportedBoundsError. In both cases, a bounds error caused by an unreassembled fragment should be a FragmentBoundsError for the existing reasons. It is not necessarily a malformed packet (to the extent reassembly is not performed because of a malformed error elsewhere, that should be reported separately) and can likely be avoided by changing preferences (e.g., turning reassembly preferences on, turning off checksum verification, etc.) Otherwise it is probably a dissector bug.
2021-10-15 21:53:23 +00:00
} else if (end_offset <= tvb->reported_length) {
THROW(ContainedBoundsError);
} else {
THROW(ReportedBoundsError);
}
/* not reached */
return NULL;
}
/************** ACCESSORS **************/
void *
tvb_memcpy(tvbuff_t *tvb, void *target, const gint offset, size_t length)
{
guint abs_offset = 0, abs_length = 0;
DISSECTOR_ASSERT(tvb && tvb->initialized);
/*
* XXX - we should eliminate the "length = -1 means 'to the end
* of the tvbuff'" convention, and use other means to achieve
* that; this would let us eliminate a bunch of checks for
* negative lengths in cases where the protocol has a 32-bit
* length field.
*
* Allowing -1 but throwing an assertion on other negative
* lengths is a bit more work with the length being a size_t;
* instead, we check for a length <= 2^31-1.
*/
DISSECTOR_ASSERT(length <= 0x7FFFFFFF);
check_offset_length(tvb, offset, (gint) length, &abs_offset, &abs_length);
if (target && tvb->real_data) {
return memcpy(target, tvb->real_data + abs_offset, abs_length);
}
if (target && tvb->ops->tvb_memcpy)
return tvb->ops->tvb_memcpy(tvb, target, abs_offset, abs_length);
/*
* If the length is 0, there's nothing to do.
* (tvb->real_data could be null if it's allocated with
* a size of length.)
*/
if (length != 0) {
/*
* XXX, fallback to slower method
*/
DISSECTOR_ASSERT_NOT_REACHED();
}
return NULL;
}
/*
* XXX - this doesn't treat a length of -1 as an error.
* If it did, this could replace some code that calls
* "tvb_ensure_bytes_exist()" and then allocates a buffer and copies
* data to it.
*
* "composite_get_ptr()" depends on -1 not being
* an error; does anything else depend on this routine treating -1 as
* meaning "to the end of the buffer"?
*
* If scope is NULL, memory is allocated with g_malloc() and user must
* explicitly free it with g_free().
* If scope is not NULL, memory is allocated with the corresponding pool
* lifetime.
*/
void *
tvb_memdup(wmem_allocator_t *scope, tvbuff_t *tvb, const gint offset, size_t length)
{
guint abs_offset = 0, abs_length = 0;
void *duped;
DISSECTOR_ASSERT(tvb && tvb->initialized);
check_offset_length(tvb, offset, (gint) length, &abs_offset, &abs_length);
if (abs_length == 0)
return NULL;
duped = wmem_alloc(scope, abs_length);
return tvb_memcpy(tvb, duped, abs_offset, abs_length);
}
const guint8*
tvb_get_ptr(tvbuff_t *tvb, const gint offset, const gint length)
{
return ensure_contiguous(tvb, offset, length);
}
/* ---------------- */
guint8
tvb_get_guint8(tvbuff_t *tvb, const gint offset)
{
const guint8 *ptr;
ptr = fast_ensure_contiguous(tvb, offset, 1);
return *ptr;
}
gint8
tvb_get_gint8(tvbuff_t *tvb, const gint offset)
{
const guint8 *ptr;
ptr = fast_ensure_contiguous(tvb, offset, 1);
return *ptr;
}
guint16
tvb_get_ntohs(tvbuff_t *tvb, const gint offset)
{
const guint8 *ptr;
ptr = fast_ensure_contiguous(tvb, offset, 2);
return pntoh16(ptr);
}
gint16
tvb_get_ntohis(tvbuff_t *tvb, const gint offset)
{
const guint8 *ptr;
ptr = fast_ensure_contiguous(tvb, offset, 2);
return pntoh16(ptr);
}
guint32
tvb_get_ntoh24(tvbuff_t *tvb, const gint offset)
{
const guint8 *ptr;
ptr = fast_ensure_contiguous(tvb, offset, 3);
return pntoh24(ptr);
}
gint32
tvb_get_ntohi24(tvbuff_t *tvb, const gint offset)
{
guint32 ret;
ret = ws_sign_ext32(tvb_get_ntoh24(tvb, offset), 24);
return (gint32)ret;
}
guint32
tvb_get_ntohl(tvbuff_t *tvb, const gint offset)
{
const guint8 *ptr;
ptr = fast_ensure_contiguous(tvb, offset, 4);
return pntoh32(ptr);
}
gint32
tvb_get_ntohil(tvbuff_t *tvb, const gint offset)
{
const guint8 *ptr;
ptr = fast_ensure_contiguous(tvb, offset, 4);
return pntoh32(ptr);
}
guint64
tvb_get_ntoh40(tvbuff_t *tvb, const gint offset)
{
const guint8 *ptr;
ptr = fast_ensure_contiguous(tvb, offset, 5);
return pntoh40(ptr);
}
gint64
tvb_get_ntohi40(tvbuff_t *tvb, const gint offset)
{
guint64 ret;
ret = ws_sign_ext64(tvb_get_ntoh40(tvb, offset), 40);
return (gint64)ret;
}
guint64
tvb_get_ntoh48(tvbuff_t *tvb, const gint offset)
{
const guint8 *ptr;
ptr = fast_ensure_contiguous(tvb, offset, 6);
return pntoh48(ptr);
}
gint64
tvb_get_ntohi48(tvbuff_t *tvb, const gint offset)
{
guint64 ret;
ret = ws_sign_ext64(tvb_get_ntoh48(tvb, offset), 48);
return (gint64)ret;
}
guint64
tvb_get_ntoh56(tvbuff_t *tvb, const gint offset)
{
const guint8 *ptr;
ptr = fast_ensure_contiguous(tvb, offset, 7);
return pntoh56(ptr);
}
gint64
tvb_get_ntohi56(tvbuff_t *tvb, const gint offset)
{
guint64 ret;
ret = ws_sign_ext64(tvb_get_ntoh56(tvb, offset), 56);
return (gint64)ret;
}
guint64
tvb_get_ntoh64(tvbuff_t *tvb, const gint offset)
{
const guint8 *ptr;
ptr = fast_ensure_contiguous(tvb, offset, 8);
return pntoh64(ptr);
}
gint64
tvb_get_ntohi64(tvbuff_t *tvb, const gint offset)
{
const guint8 *ptr;
ptr = fast_ensure_contiguous(tvb, offset, 8);
return pntoh64(ptr);
}
guint16
tvb_get_guint16(tvbuff_t *tvb, const gint offset, const guint encoding) {
if (encoding & ENC_LITTLE_ENDIAN) {
return tvb_get_letohs(tvb, offset);
} else {
return tvb_get_ntohs(tvb, offset);
}
}
gint16
tvb_get_gint16(tvbuff_t *tvb, const gint offset, const guint encoding) {
if (encoding & ENC_LITTLE_ENDIAN) {
return tvb_get_letohis(tvb, offset);
} else {
return tvb_get_ntohis(tvb, offset);
}
}
guint32
tvb_get_guint24(tvbuff_t *tvb, const gint offset, const guint encoding) {
if (encoding & ENC_LITTLE_ENDIAN) {
return tvb_get_letoh24(tvb, offset);
} else {
return tvb_get_ntoh24(tvb, offset);
}
}
gint32
tvb_get_gint24(tvbuff_t *tvb, const gint offset, const guint encoding) {
if (encoding & ENC_LITTLE_ENDIAN) {
return tvb_get_letohi24(tvb, offset);
} else {
return tvb_get_ntohi24(tvb, offset);
}
}
guint32
tvb_get_guint32(tvbuff_t *tvb, const gint offset, const guint encoding) {
if (encoding & ENC_LITTLE_ENDIAN) {
return tvb_get_letohl(tvb, offset);
} else {
return tvb_get_ntohl(tvb, offset);
}
}
gint32
tvb_get_gint32(tvbuff_t *tvb, const gint offset, const guint encoding) {
if (encoding & ENC_LITTLE_ENDIAN) {
return tvb_get_letohil(tvb, offset);
} else {
return tvb_get_ntohil(tvb, offset);
}
}
guint64
tvb_get_guint40(tvbuff_t *tvb, const gint offset, const guint encoding) {
if (encoding & ENC_LITTLE_ENDIAN) {
return tvb_get_letoh40(tvb, offset);
} else {
return tvb_get_ntoh40(tvb, offset);
}
}
gint64
tvb_get_gint40(tvbuff_t *tvb, const gint offset, const guint encoding) {
if (encoding & ENC_LITTLE_ENDIAN) {
return tvb_get_letohi40(tvb, offset);
} else {
return tvb_get_ntohi40(tvb, offset);
}
}
guint64
tvb_get_guint48(tvbuff_t *tvb, const gint offset, const guint encoding) {
if (encoding & ENC_LITTLE_ENDIAN) {
return tvb_get_letoh48(tvb, offset);
} else {
return tvb_get_ntoh48(tvb, offset);
}
}
gint64
tvb_get_gint48(tvbuff_t *tvb, const gint offset, const guint encoding) {
if (encoding & ENC_LITTLE_ENDIAN) {
return tvb_get_letohi48(tvb, offset);
} else {
return tvb_get_ntohi48(tvb, offset);
}
}
guint64
tvb_get_guint56(tvbuff_t *tvb, const gint offset, const guint encoding) {
if (encoding & ENC_LITTLE_ENDIAN) {
return tvb_get_letoh56(tvb, offset);
} else {
return tvb_get_ntoh56(tvb, offset);
}
}
gint64
tvb_get_gint56(tvbuff_t *tvb, const gint offset, const guint encoding) {
if (encoding & ENC_LITTLE_ENDIAN) {
return tvb_get_letohi56(tvb, offset);
} else {
return tvb_get_ntohi56(tvb, offset);
}
}
guint64
tvb_get_guint64(tvbuff_t *tvb, const gint offset, const guint encoding) {
if (encoding & ENC_LITTLE_ENDIAN) {
return tvb_get_letoh64(tvb, offset);
} else {
return tvb_get_ntoh64(tvb, offset);
}
}
gint64
tvb_get_gint64(tvbuff_t *tvb, const gint offset, const guint encoding) {
if (encoding & ENC_LITTLE_ENDIAN) {
return tvb_get_letohi64(tvb, offset);
} else {
return tvb_get_ntohi64(tvb, offset);
}
}
gfloat
tvb_get_ieee_float(tvbuff_t *tvb, const gint offset, const guint encoding) {
if (encoding & ENC_LITTLE_ENDIAN) {
return tvb_get_letohieee_float(tvb, offset);
} else {
return tvb_get_ntohieee_float(tvb, offset);
}
}
gdouble
tvb_get_ieee_double(tvbuff_t *tvb, const gint offset, const guint encoding) {
if (encoding & ENC_LITTLE_ENDIAN) {
return tvb_get_letohieee_double(tvb, offset);
} else {
return tvb_get_ntohieee_double(tvb, offset);
}
}
/*
* Stuff for IEEE float handling on platforms that don't have IEEE
* format as the native floating-point format.
*
* For now, we treat only the VAX as such a platform.
*
* XXX - other non-IEEE boxes that can run UN*X include some Crays,
* and possibly other machines. However, I don't know whether there
* are any other machines that could run Wireshark and that don't use
* IEEE format. As far as I know, all of the main current and past
* commercial microprocessor families on which OSes that support
* Wireshark can run use IEEE format (x86, ARM, 68k, SPARC, MIPS,
* PA-RISC, Alpha, IA-64, and so on), and it appears that the official
* Linux port to System/390 and zArchitecture uses IEEE format floating-
* point rather than IBM hex floating-point (not a huge surprise), so
* I'm not sure that leaves any 32-bit or larger UN*X or Windows boxes,
* other than VAXes, that don't use IEEE format. If you're not running
* UN*X or Windows, the floating-point format is probably going to be
* the least of your problems in a port.
*/
#if defined(vax)
#include <math.h>
/*
* Single-precision.
*/
#define IEEE_SP_NUMBER_WIDTH 32 /* bits in number */
#define IEEE_SP_EXP_WIDTH 8 /* bits in exponent */
#define IEEE_SP_MANTISSA_WIDTH 23 /* IEEE_SP_NUMBER_WIDTH - 1 - IEEE_SP_EXP_WIDTH */
#define IEEE_SP_SIGN_MASK 0x80000000
#define IEEE_SP_EXPONENT_MASK 0x7F800000
#define IEEE_SP_MANTISSA_MASK 0x007FFFFF
#define IEEE_SP_INFINITY IEEE_SP_EXPONENT_MASK
#define IEEE_SP_IMPLIED_BIT (1 << IEEE_SP_MANTISSA_WIDTH)
#define IEEE_SP_INFINITE ((1 << IEEE_SP_EXP_WIDTH) - 1)
#define IEEE_SP_BIAS ((1 << (IEEE_SP_EXP_WIDTH - 1)) - 1)
static int
ieee_float_is_zero(const guint32 w)
{
return ((w & ~IEEE_SP_SIGN_MASK) == 0);
}
static gfloat
get_ieee_float(const guint32 w)
{
long sign;
long exponent;
long mantissa;
sign = w & IEEE_SP_SIGN_MASK;
exponent = w & IEEE_SP_EXPONENT_MASK;
mantissa = w & IEEE_SP_MANTISSA_MASK;
if (ieee_float_is_zero(w)) {
/* number is zero, unnormalized, or not-a-number */
return 0.0;
}
#if 0
/*
* XXX - how to handle this?
*/
if (IEEE_SP_INFINITY == exponent) {
/*
* number is positive or negative infinity, or a special value
*/
return (sign? MINUS_INFINITY: PLUS_INFINITY);
}
#endif
exponent = ((exponent >> IEEE_SP_MANTISSA_WIDTH) - IEEE_SP_BIAS) -
IEEE_SP_MANTISSA_WIDTH;
mantissa |= IEEE_SP_IMPLIED_BIT;
if (sign)
return -mantissa * pow(2, exponent);
else
return mantissa * pow(2, exponent);
}
/*
* Double-precision.
* We assume that if you don't have IEEE floating-point, you have a
* compiler that understands 64-bit integral quantities.
*/
#define IEEE_DP_NUMBER_WIDTH 64 /* bits in number */
#define IEEE_DP_EXP_WIDTH 11 /* bits in exponent */
#define IEEE_DP_MANTISSA_WIDTH 52 /* IEEE_DP_NUMBER_WIDTH - 1 - IEEE_DP_EXP_WIDTH */
#define IEEE_DP_SIGN_MASK G_GINT64_CONSTANT(0x8000000000000000)
#define IEEE_DP_EXPONENT_MASK G_GINT64_CONSTANT(0x7FF0000000000000)
#define IEEE_DP_MANTISSA_MASK G_GINT64_CONSTANT(0x000FFFFFFFFFFFFF)
#define IEEE_DP_INFINITY IEEE_DP_EXPONENT_MASK
#define IEEE_DP_IMPLIED_BIT (G_GINT64_CONSTANT(1) << IEEE_DP_MANTISSA_WIDTH)
#define IEEE_DP_INFINITE ((1 << IEEE_DP_EXP_WIDTH) - 1)
#define IEEE_DP_BIAS ((1 << (IEEE_DP_EXP_WIDTH - 1)) - 1)
static int
ieee_double_is_zero(const guint64 w)
{
return ((w & ~IEEE_SP_SIGN_MASK) == 0);
}
static gdouble
get_ieee_double(const guint64 w)
{
gint64 sign;
gint64 exponent;
gint64 mantissa;
sign = w & IEEE_DP_SIGN_MASK;
exponent = w & IEEE_DP_EXPONENT_MASK;
mantissa = w & IEEE_DP_MANTISSA_MASK;
if (ieee_double_is_zero(w)) {
/* number is zero, unnormalized, or not-a-number */
return 0.0;
}
#if 0
/*
* XXX - how to handle this?
*/
if (IEEE_DP_INFINITY == exponent) {
/*
* number is positive or negative infinity, or a special value
*/
return (sign? MINUS_INFINITY: PLUS_INFINITY);
}
#endif
exponent = ((exponent >> IEEE_DP_MANTISSA_WIDTH) - IEEE_DP_BIAS) -
IEEE_DP_MANTISSA_WIDTH;
mantissa |= IEEE_DP_IMPLIED_BIT;
if (sign)
return -mantissa * pow(2, exponent);
else
return mantissa * pow(2, exponent);
}
#endif
/*
* Fetches an IEEE single-precision floating-point number, in
* big-endian form, and returns a "float".
*
* XXX - should this be "double", in case there are IEEE single-
* precision numbers that won't fit in some platform's native
* "float" format?
*/
gfloat
tvb_get_ntohieee_float(tvbuff_t *tvb, const int offset)
{
#if defined(vax)
return get_ieee_float(tvb_get_ntohl(tvb, offset));
#else
union {
gfloat f;
guint32 w;
} ieee_fp_union;
ieee_fp_union.w = tvb_get_ntohl(tvb, offset);
return ieee_fp_union.f;
#endif
}
/*
* Fetches an IEEE double-precision floating-point number, in
* big-endian form, and returns a "double".
*/
gdouble
tvb_get_ntohieee_double(tvbuff_t *tvb, const int offset)
{
#if defined(vax)
union {
guint32 w[2];
guint64 dw;
} ieee_fp_union;
#else
union {
gdouble d;
guint32 w[2];
} ieee_fp_union;
#endif
#if G_BYTE_ORDER == G_BIG_ENDIAN
ieee_fp_union.w[0] = tvb_get_ntohl(tvb, offset);
ieee_fp_union.w[1] = tvb_get_ntohl(tvb, offset+4);
#else
ieee_fp_union.w[0] = tvb_get_ntohl(tvb, offset+4);
ieee_fp_union.w[1] = tvb_get_ntohl(tvb, offset);
#endif
#if defined(vax)
return get_ieee_double(ieee_fp_union.dw);
#else
return ieee_fp_union.d;
#endif
}
guint16
tvb_get_letohs(tvbuff_t *tvb, const gint offset)
{
const guint8 *ptr;
ptr = fast_ensure_contiguous(tvb, offset, 2);
return pletoh16(ptr);
}
gint16
tvb_get_letohis(tvbuff_t *tvb, const gint offset)
{
const guint8 *ptr;
ptr = fast_ensure_contiguous(tvb, offset, 2);
return pletoh16(ptr);
}
guint32
tvb_get_letoh24(tvbuff_t *tvb, const gint offset)
{
const guint8 *ptr;
ptr = fast_ensure_contiguous(tvb, offset, 3);
return pletoh24(ptr);
}
gint32
tvb_get_letohi24(tvbuff_t *tvb, const gint offset)
{
guint32 ret;
ret = ws_sign_ext32(tvb_get_letoh24(tvb, offset), 24);
return (gint32)ret;
}
guint32
tvb_get_letohl(tvbuff_t *tvb, const gint offset)
{
const guint8 *ptr;
ptr = fast_ensure_contiguous(tvb, offset, 4);
return pletoh32(ptr);
}
gint32
tvb_get_letohil(tvbuff_t *tvb, const gint offset)
{
const guint8 *ptr;
ptr = fast_ensure_contiguous(tvb, offset, 4);
return pletoh32(ptr);
}
guint64
tvb_get_letoh40(tvbuff_t *tvb, const gint offset)
{
const guint8 *ptr;
ptr = fast_ensure_contiguous(tvb, offset, 5);
return pletoh40(ptr);
}
gint64
tvb_get_letohi40(tvbuff_t *tvb, const gint offset)
{
guint64 ret;
ret = ws_sign_ext64(tvb_get_letoh40(tvb, offset), 40);
return (gint64)ret;
}
guint64
tvb_get_letoh48(tvbuff_t *tvb, const gint offset)
{
const guint8 *ptr;
ptr = fast_ensure_contiguous(tvb, offset, 6);
return pletoh48(ptr);
}
gint64
tvb_get_letohi48(tvbuff_t *tvb, const gint offset)
{
guint64 ret;
ret = ws_sign_ext64(tvb_get_letoh48(tvb, offset), 48);
return (gint64)ret;
}
guint64
tvb_get_letoh56(tvbuff_t *tvb, const gint offset)
{
const guint8 *ptr;
ptr = fast_ensure_contiguous(tvb, offset, 7);
return pletoh56(ptr);
}
gint64
tvb_get_letohi56(tvbuff_t *tvb, const gint offset)
{
guint64 ret;
ret = ws_sign_ext64(tvb_get_letoh56(tvb, offset), 56);
return (gint64)ret;
}
guint64
tvb_get_letoh64(tvbuff_t *tvb, const gint offset)
{
const guint8 *ptr;
ptr = fast_ensure_contiguous(tvb, offset, 8);
return pletoh64(ptr);
}
gint64
tvb_get_letohi64(tvbuff_t *tvb, const gint offset)
{
const guint8 *ptr;
ptr = fast_ensure_contiguous(tvb, offset, 8);
return pletoh64(ptr);
}
/*
* Fetches an IEEE single-precision floating-point number, in
* little-endian form, and returns a "float".
*
* XXX - should this be "double", in case there are IEEE single-
* precision numbers that won't fit in some platform's native
* "float" format?
*/
gfloat
tvb_get_letohieee_float(tvbuff_t *tvb, const int offset)
{
#if defined(vax)
return get_ieee_float(tvb_get_letohl(tvb, offset));
#else
union {
gfloat f;
guint32 w;
} ieee_fp_union;
ieee_fp_union.w = tvb_get_letohl(tvb, offset);
return ieee_fp_union.f;
#endif
}
/*
* Fetches an IEEE double-precision floating-point number, in
* little-endian form, and returns a "double".
*/
gdouble
tvb_get_letohieee_double(tvbuff_t *tvb, const int offset)
{
#if defined(vax)
union {
guint32 w[2];
guint64 dw;
} ieee_fp_union;
#else
union {
gdouble d;
guint32 w[2];
} ieee_fp_union;
#endif
#if G_BYTE_ORDER == G_BIG_ENDIAN
ieee_fp_union.w[0] = tvb_get_letohl(tvb, offset+4);
ieee_fp_union.w[1] = tvb_get_letohl(tvb, offset);
#else
ieee_fp_union.w[0] = tvb_get_letohl(tvb, offset);
ieee_fp_union.w[1] = tvb_get_letohl(tvb, offset+4);
#endif
#if defined(vax)
return get_ieee_double(ieee_fp_union.dw);
#else
return ieee_fp_union.d;
#endif
}
/* This function is a slight misnomer. It accepts all encodings that are
* ASCII "enough", which means encodings that are the same as US-ASCII
* for textual representations of dates and hex bytes; i.e., the same
* for the hex digits and Z (in practice, all alphanumerics), and the
* four separators ':' '-' '.' and ' '
* That means that any encoding that keeps the ISO/IEC 646 invariant
* characters the same (including the T.61 8 bit encoding and multibyte
* encodings like EUC-KR and GB18030) are OK, even if they replace characters
* like '$' '#' and '\' with national variants, but not encodings like UTF-16
* that include extra null bytes.
* For our current purposes, the unpacked GSM 7-bit default alphabet (but not
* all National Language Shift Tables) also satisfies this requirement, but
* note that it does *not* keep all ISO/IEC 646 invariant characters the same.
* If this internal function gets used for additional purposes than currently,
* the set of encodings that it accepts could change.
* */
static inline void
validate_single_byte_ascii_encoding(const guint encoding)
{
const guint enc = encoding & ~ENC_CHARENCODING_MASK;
switch (enc) {
case ENC_UTF_16:
case ENC_UCS_2:
case ENC_UCS_4:
case ENC_3GPP_TS_23_038_7BITS_PACKED:
case ENC_ASCII_7BITS:
case ENC_EBCDIC:
case ENC_EBCDIC_CP037:
case ENC_BCD_DIGITS_0_9:
case ENC_KEYPAD_ABC_TBCD:
case ENC_KEYPAD_BC_TBCD:
case ENC_ETSI_TS_102_221_ANNEX_A:
2021-05-20 10:58:06 +00:00
case ENC_APN_STR:
case ENC_DECT_STANDARD_4BITS_TBCD:
2021-05-20 10:58:06 +00:00
REPORT_DISSECTOR_BUG("Invalid string encoding type passed to tvb_get_string_XXX");
break;
default:
2021-05-20 10:58:06 +00:00
break;
}
/* make sure something valid was set */
if (enc == 0)
REPORT_DISSECTOR_BUG("No string encoding type passed to tvb_get_string_XXX");
}
GByteArray*
tvb_get_string_bytes(tvbuff_t *tvb, const gint offset, const gint length,
const guint encoding, GByteArray *bytes, gint *endoff)
{
gchar *ptr;
const gchar *begin;
const gchar *end = NULL;
GByteArray *retval = NULL;
errno = EDOM;
validate_single_byte_ascii_encoding(encoding);
ptr = (gchar*) tvb_get_raw_string(NULL, tvb, offset, length);
begin = ptr;
if (endoff) *endoff = offset;
while (*begin == ' ') begin++;
if (*begin && bytes) {
if (hex_str_to_bytes_encoding(begin, bytes, &end, encoding, FALSE)) {
if (bytes->len > 0) {
if (endoff) *endoff = offset + (gint)(end - ptr);
errno = 0;
retval = bytes;
}
}
}
wmem_free(NULL, ptr);
return retval;
}
static gboolean
parse_month_name(const char *name, int *tm_mon)
{
static const char months[][4] = { "Jan", "Feb", "Mar", "Apr", "May",
"Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" };
for (int i = 0; i < 12; i++) {
if (memcmp(months[i], name, 4) == 0) {
*tm_mon = i;
return TRUE;
}
}
return FALSE;
}
/* support hex-encoded time values? */
nstime_t*
tvb_get_string_time(tvbuff_t *tvb, const gint offset, const gint length,
const guint encoding, nstime_t *ns, gint *endoff)
{
gchar *begin;
const gchar *ptr;
const gchar *end = NULL;
struct tm tm;
nstime_t* retval = NULL;
char sign = '+';
int off_hr = 0;
int off_min = 0;
int num_chars = 0;
gboolean matched = FALSE;
errno = EDOM;
validate_single_byte_ascii_encoding(encoding);
DISSECTOR_ASSERT(ns);
begin = (gchar*) tvb_get_raw_string(NULL, tvb, offset, length);
ptr = begin;
while (*ptr == ' ') ptr++;
if (*ptr) {
if ((encoding & ENC_ISO_8601_DATE_TIME) == ENC_ISO_8601_DATE_TIME) {
if ((num_chars = iso8601_to_nstime(ns, ptr, ISO8601_DATETIME))) {
errno = 0;
end = ptr + num_chars;
}
} else if ((encoding & ENC_ISO_8601_DATE_TIME_BASIC) == ENC_ISO_8601_DATE_TIME_BASIC) {
if ((num_chars = iso8601_to_nstime(ns, ptr, ISO8601_DATETIME_BASIC))) {
errno = 0;
end = ptr + num_chars;
}
} else {
memset(&tm, 0, sizeof(tm));
tm.tm_isdst = -1;
ns->secs = 0;
ns->nsecs = 0;
/* note: sscanf is known to be inconsistent across platforms with respect
to whether a %n is counted as a return value or not, so we have to use
'>=' a lot */
if (encoding & ENC_ISO_8601_DATE) {
/* 2014-04-07 */
if (sscanf(ptr, "%d-%d-%d%n",
&tm.tm_year,
&tm.tm_mon,
&tm.tm_mday,
&num_chars) >= 3)
{
errno = 0;
end = ptr + num_chars;
tm.tm_mon--;
if (tm.tm_year > 1900) tm.tm_year -= 1900;
}
}
else if (encoding & ENC_ISO_8601_TIME) {
/* 2014-04-07 */
if (sscanf(ptr, "%d:%d:%d%n",
&tm.tm_hour,
&tm.tm_min,
&tm.tm_sec,
&num_chars) >= 2)
{
/* what should we do about day/month/year? */
/* setting it to "now" for now */
time_t time_now = time(NULL);
struct tm *tm_now = gmtime(&time_now);
if (tm_now != NULL) {
tm.tm_year = tm_now->tm_year;
tm.tm_mon = tm_now->tm_mon;
tm.tm_mday = tm_now->tm_mday;
} else {
/* The second before the Epoch */
tm.tm_year = 69;
tm.tm_mon = 12;
tm.tm_mday = 31;
}
end = ptr + num_chars;
errno = 0;
}
}
else if (encoding & ENC_RFC_822 || encoding & ENC_RFC_1123) {
/*
* Match [dow,] day month year hh:mm[:ss] with two-digit
* years (RFC 822) or four-digit years (RFC 1123). Skip
* the day of week since it is locale dependent and does
* not affect the resulting date anyway.
*/
if (g_ascii_isalpha(ptr[0]) && g_ascii_isalpha(ptr[1]) && g_ascii_isalpha(ptr[2]) && ptr[3] == ',')
ptr += 4; /* Skip day of week. */
char month_name[4] = { 0 };
if (sscanf(ptr, "%d %3s %d %d:%d%n:%d%n",
&tm.tm_mday,
month_name,
&tm.tm_year,
&tm.tm_hour,
&tm.tm_min,
&num_chars,
&tm.tm_sec,
&num_chars) >= 5)
{
if (encoding & ENC_RFC_822) {
/* Match strptime behavior: years 00-68
* are in the 21th century. */
if (tm.tm_year <= 68) {
tm.tm_year += 100;
matched = TRUE;
} else if (tm.tm_year <= 99) {
matched = TRUE;
}
} else if (encoding & ENC_RFC_1123) {
tm.tm_year -= 1900;
matched = TRUE;
}
if (!parse_month_name(month_name, &tm.tm_mon))
matched = FALSE;
if (matched)
end = ptr + num_chars;
}
if (end) {
errno = 0;
if (*end == ' ') end++;
if (g_ascii_strncasecmp(end, "UT", 2) == 0)
{
end += 2;
}
else if (g_ascii_strncasecmp(end, "GMT", 3) == 0)
{
end += 3;
}
else if (sscanf(end, "%c%2d%2d%n",
&sign,
&off_hr,
&off_min,
&num_chars) < 3)
{
errno = ERANGE;
}
if (sign == '-') off_hr = -off_hr;
}
}
if (errno == 0) {
ns->secs = mktime_utc (&tm);
if (off_hr > 0)
ns->secs += (off_hr * 3600) + (off_min * 60);
else if (off_hr < 0)
ns->secs -= ((-off_hr) * 3600) + (off_min * 60);
}
}
}
if (errno == 0) {
retval = ns;
if (endoff)
*endoff = (gint)(offset + (end - begin));
}
wmem_free(NULL, begin);
return retval;
}
/* Fetch an IPv4 address, in network byte order.
* We do *not* convert them to host byte order; we leave them in
* network byte order. */
guint32
tvb_get_ipv4(tvbuff_t *tvb, const gint offset)
{
const guint8 *ptr;
guint32 addr;
ptr = fast_ensure_contiguous(tvb, offset, sizeof(guint32));
memcpy(&addr, ptr, sizeof addr);
return addr;
}
/* Fetch an IPv6 address. */
void
tvb_get_ipv6(tvbuff_t *tvb, const gint offset, ws_in6_addr *addr)
{
const guint8 *ptr;
ptr = ensure_contiguous(tvb, offset, sizeof(*addr));
memcpy(addr, ptr, sizeof *addr);
}
/* Fetch a GUID. */
void
tvb_get_ntohguid(tvbuff_t *tvb, const gint offset, e_guid_t *guid)
{
const guint8 *ptr = ensure_contiguous(tvb, offset, GUID_LEN);
guid->data1 = pntoh32(ptr + 0);
guid->data2 = pntoh16(ptr + 4);
guid->data3 = pntoh16(ptr + 6);
memcpy(guid->data4, ptr + 8, sizeof guid->data4);
}
void
tvb_get_letohguid(tvbuff_t *tvb, const gint offset, e_guid_t *guid)
{
const guint8 *ptr = ensure_contiguous(tvb, offset, GUID_LEN);
guid->data1 = pletoh32(ptr + 0);
guid->data2 = pletoh16(ptr + 4);
guid->data3 = pletoh16(ptr + 6);
memcpy(guid->data4, ptr + 8, sizeof guid->data4);
}
/*
* NOTE: to support code written when proto_tree_add_item() took a
* gboolean as its last argument, with FALSE meaning "big-endian"
* and TRUE meaning "little-endian", we treat any non-zero value of
* "encoding" as meaning "little-endian".
*/
void
tvb_get_guid(tvbuff_t *tvb, const gint offset, e_guid_t *guid, const guint encoding)
{
if (encoding) {
tvb_get_letohguid(tvb, offset, guid);
} else {
tvb_get_ntohguid(tvb, offset, guid);
}
}
static const guint8 bit_mask8[] = {
0x00,
0x01,
0x03,
0x07,
0x0f,
0x1f,
0x3f,
0x7f,
0xff
};
/* Get a variable ammount of bits
*
* Return a byte array with bit limited data.
* When encoding is ENC_BIG_ENDIAN, the data is aligned to the left.
* When encoding is ENC_LITTLE_ENDIAN, the data is aligned to the right.
*/
guint8 *
tvb_get_bits_array(wmem_allocator_t *scope, tvbuff_t *tvb, const gint bit_offset,
size_t no_of_bits, size_t *data_length, const guint encoding)
{
tvbuff_t *sub_tvb;
if (encoding & ENC_LITTLE_ENDIAN) {
sub_tvb = tvb_new_octet_right_aligned(tvb, bit_offset, (gint32) no_of_bits);
} else {
sub_tvb = tvb_new_octet_aligned(tvb, bit_offset, (gint32) no_of_bits);
}
*data_length = tvb_reported_length(sub_tvb);
return (guint8*)tvb_memdup(scope, sub_tvb, 0, *data_length);
}
/* Get 1 - 8 bits */
guint8
tvb_get_bits8(tvbuff_t *tvb, guint bit_offset, const gint no_of_bits)
{
return (guint8)_tvb_get_bits64(tvb, bit_offset, no_of_bits);
}
/* Get 1 - 16 bits */
guint16
tvb_get_bits16(tvbuff_t *tvb, guint bit_offset, const gint no_of_bits, const guint encoding)
{
return (guint16)tvb_get_bits64(tvb, bit_offset, no_of_bits, encoding);
}
/* Get 1 - 32 bits */
guint32
tvb_get_bits32(tvbuff_t *tvb, guint bit_offset, const gint no_of_bits, const guint encoding)
{
return (guint32)tvb_get_bits64(tvb, bit_offset, no_of_bits, encoding);
}
/* Get 1 - 64 bits */
guint64
tvb_get_bits64(tvbuff_t *tvb, guint bit_offset, const gint no_of_bits, const guint encoding)
{
/* encoding determines bit numbering within octet array */
if (encoding & ENC_LITTLE_ENDIAN) {
return _tvb_get_bits64_le(tvb, bit_offset, no_of_bits);
} else {
return _tvb_get_bits64(tvb, bit_offset, no_of_bits);
}
}
/*
* This function will dissect a sequence of bits that does not need to be byte aligned; the bits
* set will be shown in the tree as ..10 10.. and the integer value returned if return_value is set.
* Offset should be given in bits from the start of the tvb.
* Bits within octet are numbered from MSB (0) to LSB (7). Bit at bit_offset is return value most significant bit.
* The function tolerates requests for more than 64 bits, but will only return the least significant 64 bits.
*/
static guint64
_tvb_get_bits64(tvbuff_t *tvb, guint bit_offset, const gint total_no_of_bits)
{
guint64 value;
guint octet_offset = bit_offset >> 3;
guint8 required_bits_in_first_octet = 8 - (bit_offset % 8);
if(required_bits_in_first_octet > total_no_of_bits)
{
/* the required bits don't extend to the end of the first octet */
guint8 right_shift = required_bits_in_first_octet - total_no_of_bits;
value = (tvb_get_guint8(tvb, octet_offset) >> right_shift) & bit_mask8[total_no_of_bits % 8];
}
else
{
guint8 remaining_bit_length = total_no_of_bits;
/* get the bits up to the first octet boundary */
value = 0;
required_bits_in_first_octet %= 8;
if(required_bits_in_first_octet != 0)
{
value = tvb_get_guint8(tvb, octet_offset) & bit_mask8[required_bits_in_first_octet];
remaining_bit_length -= required_bits_in_first_octet;
octet_offset ++;
}
/* take the biggest words, shorts or octets that we can */
while (remaining_bit_length > 7)
{
switch (remaining_bit_length >> 4)
{
case 0:
/* 8 - 15 bits. (note that 0 - 7 would have dropped out of the while() loop) */
value <<= 8;
value += tvb_get_guint8(tvb, octet_offset);
remaining_bit_length -= 8;
octet_offset ++;
break;
case 1:
/* 16 - 31 bits */
value <<= 16;
value += tvb_get_ntohs(tvb, octet_offset);
remaining_bit_length -= 16;
octet_offset += 2;
break;
case 2:
case 3:
/* 32 - 63 bits */
value <<= 32;
value += tvb_get_ntohl(tvb, octet_offset);
remaining_bit_length -= 32;
octet_offset += 4;
break;
default:
/* 64 bits (or more???) */
value = tvb_get_ntoh64(tvb, octet_offset);
remaining_bit_length -= 64;
octet_offset += 8;
break;
}
}
/* get bits from any partial octet at the tail */
if(remaining_bit_length)
{
value <<= remaining_bit_length;
value += (tvb_get_guint8(tvb, octet_offset) >> (8 - remaining_bit_length));
}
}
return value;
}
/*
* Offset should be given in bits from the start of the tvb.
* Bits within octet are numbered from LSB (0) to MSB (7). Bit at bit_offset is return value least significant bit.
* The function tolerates requests for more than 64 bits, but will only return the least significant 64 bits.
*/
static guint64
_tvb_get_bits64_le(tvbuff_t *tvb, guint bit_offset, const gint total_no_of_bits)
{
guint64 value = 0;
guint octet_offset = bit_offset / 8;
gint remaining_bits = total_no_of_bits;
gint shift = 0;
if (remaining_bits > 64)
{
remaining_bits = 64;
}
if (bit_offset % 8)
{
/* not aligned, extract bits from first octet */
shift = 8 - (bit_offset % 8);
value = tvb_get_guint8(tvb, octet_offset) >> (bit_offset % 8);
if (shift > total_no_of_bits)
{
/* keep only the requested bits */
value &= (G_GUINT64_CONSTANT(1) << total_no_of_bits) - 1;
remaining_bits = 0;
}
else
{
remaining_bits = total_no_of_bits - shift;
}
octet_offset++;
}
while (remaining_bits > 0)
{
/* take the biggest words, shorts or octets that we can */
if (remaining_bits >= 32)
{
value |= ((guint64)tvb_get_letohl(tvb, octet_offset) << shift);
shift += 32;
remaining_bits -= 32;
octet_offset += 4;
}
else if (remaining_bits >= 16)
{
value |= ((guint64)tvb_get_letohs(tvb, octet_offset) << shift);
shift += 16;
remaining_bits -= 16;
octet_offset += 2;
}
else if (remaining_bits >= 8)
{
value |= ((guint64)tvb_get_guint8(tvb, octet_offset) << shift);
shift += 8;
remaining_bits -= 8;
octet_offset += 1;
}
else
{
guint mask = (1 << remaining_bits) - 1;
value |= (((guint64)tvb_get_guint8(tvb, octet_offset) & mask) << shift);
shift += remaining_bits;
remaining_bits = 0;
octet_offset += 1;
}
}
return value;
}
/* Get 1 - 32 bits (should be deprecated as same as tvb_get_bits32??) */
guint32
tvb_get_bits(tvbuff_t *tvb, const guint bit_offset, const gint no_of_bits, const guint encoding)
{
return (guint32)tvb_get_bits64(tvb, bit_offset, no_of_bits, encoding);
}
static gint
tvb_find_guint8_generic(tvbuff_t *tvb, guint abs_offset, guint limit, guint8 needle)
{
const guint8 *ptr;
const guint8 *result;
ptr = ensure_contiguous(tvb, abs_offset, limit); /* tvb_get_ptr() */
if (!ptr)
return -1;
result = (const guint8 *) memchr(ptr, needle, limit);
if (!result)
return -1;
return (gint) ((result - ptr) + abs_offset);
}
/* Find first occurrence of needle in tvbuff, starting at offset. Searches
* at most maxlength number of bytes; if maxlength is -1, searches to
* end of tvbuff.
* Returns the offset of the found needle, or -1 if not found.
* Will not throw an exception, even if maxlength exceeds boundary of tvbuff;
* in that case, -1 will be returned if the boundary is reached before
* finding needle. */
gint
tvb_find_guint8(tvbuff_t *tvb, const gint offset, const gint maxlength, const guint8 needle)
{
const guint8 *result;
guint abs_offset = 0;
guint limit = 0;
int exception;
DISSECTOR_ASSERT(tvb && tvb->initialized);
exception = compute_offset_and_remaining(tvb, offset, &abs_offset, &limit);
if (exception)
THROW(exception);
/* Only search to end of tvbuff, w/o throwing exception. */
if (maxlength >= 0 && limit > (guint) maxlength) {
/* Maximum length doesn't go past end of tvbuff; search
to that value. */
limit = (guint) maxlength;
}
/* If we have real data, perform our search now. */
if (tvb->real_data) {
result = (const guint8 *)memchr(tvb->real_data + abs_offset, needle, limit);
if (result == NULL) {
return -1;
}
else {
return (gint) (result - tvb->real_data);
}
}
if (tvb->ops->tvb_find_guint8)
return tvb->ops->tvb_find_guint8(tvb, abs_offset, limit, needle);
return tvb_find_guint8_generic(tvb, offset, limit, needle);
}
/* Same as tvb_find_guint8() with 16bit needle. */
gint
tvb_find_guint16(tvbuff_t *tvb, const gint offset, const gint maxlength,
const guint16 needle)
{
guint abs_offset = 0;
guint limit = 0;
int exception;
exception = compute_offset_and_remaining(tvb, offset, &abs_offset, &limit);
if (exception)
THROW(exception);
/* Only search to end of tvbuff, w/o throwing exception. */
if (maxlength >= 0 && limit > (guint) maxlength) {
/* Maximum length doesn't go past end of tvbuff; search
to that value. */
limit = (guint) maxlength;
}
const guint8 needle1 = ((needle & 0xFF00) >> 8);
const guint8 needle2 = ((needle & 0x00FF) >> 0);
guint searched_bytes = 0;
guint pos = abs_offset;
do {
gint offset1 =
tvb_find_guint8(tvb, pos, limit - searched_bytes, needle1);
gint offset2 = -1;
if (offset1 == -1) {
return -1;
}
searched_bytes = (guint)offset1 - abs_offset + 1;
if (searched_bytes >= limit) {
return -1;
}
offset2 = tvb_find_guint8(tvb, offset1 + 1, 1, needle2);
searched_bytes += 1;
if (offset2 != -1) {
if (searched_bytes > limit) {
return -1;
}
return offset1;
}
pos = offset1 + 1;
} while (searched_bytes < limit);
return -1;
}
static inline gint
tvb_ws_mempbrk_guint8_generic(tvbuff_t *tvb, guint abs_offset, guint limit, const ws_mempbrk_pattern* pattern, guchar *found_needle)
{
const guint8 *ptr;
const guint8 *result;
ptr = ensure_contiguous(tvb, abs_offset, limit); /* tvb_get_ptr */
if (!ptr)
return -1;
result = ws_mempbrk_exec(ptr, limit, pattern, found_needle);
if (!result)
return -1;
return (gint) ((result - ptr) + abs_offset);
}
/* Find first occurrence of any of the pattern chars in tvbuff, starting at offset.
* Searches at most maxlength number of bytes; if maxlength is -1, searches
* to end of tvbuff.
* Returns the offset of the found needle, or -1 if not found.
* Will not throw an exception, even if maxlength exceeds boundary of tvbuff;
* in that case, -1 will be returned if the boundary is reached before
* finding needle. */
gint
tvb_ws_mempbrk_pattern_guint8(tvbuff_t *tvb, const gint offset, const gint maxlength,
const ws_mempbrk_pattern* pattern, guchar *found_needle)
{
const guint8 *result;
guint abs_offset = 0;
guint limit = 0;
int exception;
DISSECTOR_ASSERT(tvb && tvb->initialized);
exception = compute_offset_and_remaining(tvb, offset, &abs_offset, &limit);
if (exception)
THROW(exception);
/* Only search to end of tvbuff, w/o throwing exception. */
if (limit > (guint) maxlength) {
/* Maximum length doesn't go past end of tvbuff; search
to that value. */
limit = maxlength;
}
/* If we have real data, perform our search now. */
if (tvb->real_data) {
result = ws_mempbrk_exec(tvb->real_data + abs_offset, limit, pattern, found_needle);
if (result == NULL) {
return -1;
}
else {
return (gint) (result - tvb->real_data);
}
}
if (tvb->ops->tvb_ws_mempbrk_pattern_guint8)
return tvb->ops->tvb_ws_mempbrk_pattern_guint8(tvb, abs_offset, limit, pattern, found_needle);
return tvb_ws_mempbrk_guint8_generic(tvb, abs_offset, limit, pattern, found_needle);
}
/* Find size of stringz (NUL-terminated string) by looking for terminating
* NUL. The size of the string includes the terminating NUL.
*
* If the NUL isn't found, it throws the appropriate exception.
*/
guint
tvb_strsize(tvbuff_t *tvb, const gint offset)
{
guint abs_offset = 0, junk_length;
gint nul_offset;
DISSECTOR_ASSERT(tvb && tvb->initialized);
check_offset_length(tvb, offset, 0, &abs_offset, &junk_length);
nul_offset = tvb_find_guint8(tvb, abs_offset, -1, 0);
if (nul_offset == -1) {
/*
* OK, we hit the end of the tvbuff, so we should throw
* an exception.
*/
if (tvb->length < tvb->contained_length) {
THROW(BoundsError);
} else if (tvb->flags & TVBUFF_FRAGMENT) {
THROW(FragmentBoundsError);
exceptions: set FragmentBoundsError priority above ContainedBoundsError All fragment errors are bounds errors that go past the contained length, but they do not necessarily involve going past the reported length, so the checks for FragmentBoundsError should reflect that. With some forms of reassembly, like IP fragmentation, we don't know how big the PDU/reassembled packet is until reassembly is complete, so we probably use tvb_new_subset_remaining() to create fragments and the tvb's reported length is equal to its contained length. In these cases ReportedBoundsError would be otherwise thrown, except when the existing checks for FragmentBoundsError intervene. However, with other forms of reassembly, like various PDUs carried over TCP, we know the total PDU length, so we use tvb_new_subset_length[_caplen](), setting the proper reported length, but not changing the contained length when reassembly is not performed. In those cases, a bounds error that occurs due to lack of reassembly is otherwise a ContainedBoundsError, not a ReportedBoundsError. In both cases, a bounds error caused by an unreassembled fragment should be a FragmentBoundsError for the existing reasons. It is not necessarily a malformed packet (to the extent reassembly is not performed because of a malformed error elsewhere, that should be reported separately) and can likely be avoided by changing preferences (e.g., turning reassembly preferences on, turning off checksum verification, etc.) Otherwise it is probably a dissector bug.
2021-10-15 21:53:23 +00:00
} else if (tvb->length < tvb->reported_length) {
THROW(ContainedBoundsError);
} else {
THROW(ReportedBoundsError);
}
}
return (nul_offset - abs_offset) + 1;
}
/* UTF-16/UCS-2 version of tvb_strsize */
/* Returns number of bytes including the (two-bytes) null terminator */
guint
tvb_unicode_strsize(tvbuff_t *tvb, const gint offset)
{
guint i = 0;
gunichar2 uchar;
DISSECTOR_ASSERT(tvb && tvb->initialized);
do {
/* Endianness doesn't matter when looking for null */
uchar = tvb_get_ntohs(tvb, offset + i);
i += 2;
} while(uchar != 0);
return i;
}
/* Find length of string by looking for end of string ('\0'), up to
* 'maxlength' characters'; if 'maxlength' is -1, searches to end
* of tvbuff.
* Returns -1 if 'maxlength' reached before finding EOS. */
gint
tvb_strnlen(tvbuff_t *tvb, const gint offset, const guint maxlength)
{
gint result_offset;
guint abs_offset = 0, junk_length;
DISSECTOR_ASSERT(tvb && tvb->initialized);
check_offset_length(tvb, offset, 0, &abs_offset, &junk_length);
result_offset = tvb_find_guint8(tvb, abs_offset, maxlength, 0);
if (result_offset == -1) {
return -1;
}
else {
return result_offset - abs_offset;
}
}
/*
* Implement strneql etc
*/
/*
* Call strncmp after checking if enough chars left, returning 0 if
* it returns 0 (meaning "equal") and -1 otherwise, otherwise return -1.
*/
gint
tvb_strneql(tvbuff_t *tvb, const gint offset, const gchar *str, const size_t size)
{
const guint8 *ptr;
ptr = ensure_contiguous_no_exception(tvb, offset, (gint)size, NULL);
if (ptr) {
int cmp = strncmp((const char *)ptr, str, size);
/*
* Return 0 if equal, -1 otherwise.
*/
return (cmp == 0 ? 0 : -1);
} else {
/*
* Not enough characters in the tvbuff to match the
* string.
*/
return -1;
}
}
/*
* Call g_ascii_strncasecmp after checking if enough chars left, returning
* 0 if it returns 0 (meaning "equal") and -1 otherwise, otherwise return -1.
*/
gint
tvb_strncaseeql(tvbuff_t *tvb, const gint offset, const gchar *str, const size_t size)
{
const guint8 *ptr;
ptr = ensure_contiguous_no_exception(tvb, offset, (gint)size, NULL);
if (ptr) {
int cmp = g_ascii_strncasecmp((const char *)ptr, str, size);
/*
* Return 0 if equal, -1 otherwise.
*/
return (cmp == 0 ? 0 : -1);
} else {
/*
* Not enough characters in the tvbuff to match the
* string.
*/
return -1;
}
}
/*
* Check that the tvbuff contains at least size bytes, starting at
* offset, and that those bytes are equal to str. Return 0 for success
* and -1 for error. This function does not throw an exception.
*/
gint
tvb_memeql(tvbuff_t *tvb, const gint offset, const guint8 *str, size_t size)
{
const guint8 *ptr;
ptr = ensure_contiguous_no_exception(tvb, offset, (gint) size, NULL);
if (ptr) {
int cmp = memcmp(ptr, str, size);
/*
* Return 0 if equal, -1 otherwise.
*/
return (cmp == 0 ? 0 : -1);
} else {
/*
* Not enough characters in the tvbuff to match the
* string.
*/
return -1;
}
}
/**
* Format the data in the tvb from offset for size. Returned string is
* wmem packet_scoped so call must be in that scope.
*/
gchar *
tvb_format_text(wmem_allocator_t *scope, tvbuff_t *tvb, const gint offset, const gint size)
{
const guint8 *ptr;
gint len;
len = (size > 0) ? size : 0;
ptr = ensure_contiguous(tvb, offset, size);
return format_text(scope, ptr, len);
}
/*
* Format the data in the tvb from offset for length ...
*/
gchar *
tvb_format_text_wsp(wmem_allocator_t* allocator, tvbuff_t *tvb, const gint offset, const gint size)
{
const guint8 *ptr;
gint len;
len = (size > 0) ? size : 0;
ptr = ensure_contiguous(tvb, offset, size);
return format_text_wsp(allocator, ptr, len);
}
/**
* Like "tvb_format_text()", but for null-padded strings; don't show
* the null padding characters as "\000". Returned string is wmem packet_scoped
* so call must be in that scope.
*/
gchar *
tvb_format_stringzpad(wmem_allocator_t *scope, tvbuff_t *tvb, const gint offset, const gint size)
{
const guint8 *ptr, *p;
gint len;
gint stringlen;
len = (size > 0) ? size : 0;
ptr = ensure_contiguous(tvb, offset, size);
for (p = ptr, stringlen = 0; stringlen < len && *p != '\0'; p++, stringlen++)
;
return format_text(scope, ptr, stringlen);
}
/*
* Like "tvb_format_text_wsp()", but for null-padded strings; don't show
* the null padding characters as "\000".
*/
gchar *
tvb_format_stringzpad_wsp(wmem_allocator_t* allocator, tvbuff_t *tvb, const gint offset, const gint size)
{
const guint8 *ptr, *p;
gint len;
gint stringlen;
len = (size > 0) ? size : 0;
ptr = ensure_contiguous(tvb, offset, size);
for (p = ptr, stringlen = 0; stringlen < len && *p != '\0'; p++, stringlen++)
;
return format_text_wsp(allocator, ptr, stringlen);
}
Add new routines: tvb_get_string() - takes a tvbuff, an offset, and a length as arguments, allocates a buffer big enough to hold a string with the specified number of bytes plus an added null terminator (i.e., length+1), copies the specified number of bytes from the tvbuff, at the specified offset, to that buffer and puts in a null terminator, and returns a pointer to that buffer (or throws an exception before allocating the buffer if that many bytes aren't available in the tvbuff); tvb_get_stringz() - takes a tvbuff, an offset, and a pointer to a "gint" as arguments, gets the size of the null-terminated string starting at the specified offset in the tvbuff (throwing an exception if the null terminator isn't found), allocates a buffer big enough to hold that string, copies the string to that buffer, and returns a pointer to that buffer and stores the length of the string (including the terminating null) in the variable pointed to by the "gint" pointer. Replace many pieces of code allocating a buffer and copying a string with calls to "tvb_get_string()" (for one thing, "tvb_get_string()" doesn't require you to remember that the argument to "tvb_get_nstringz0()" is the size of the buffer into which you're copying the string, which might be the length of the string to be copied *plus 1*). Don't use fixed-length buffers for null-terminated strings (even if the code that generates those packets has a #define to limit the length of the string). Use "tvb_get_stringz()", instead. In some cases where a value is fetched but is only used to pass an argument to a "proto_tree_add_XXX" routine, use "proto_tree_add_item()" instead. svn path=/trunk/; revision=7859
2003-06-12 08:33:32 +00:00
/*
* All string functions below take a scope as an argument.
*
*
* If scope is NULL, memory is allocated with g_malloc() and user must
* explicitly free it with g_free().
* If scope is not NULL, memory is allocated with the corresponding pool
* lifetime.
*
* All functions throw an exception if the tvbuff ends before the string
* does.
Add new routines: tvb_get_string() - takes a tvbuff, an offset, and a length as arguments, allocates a buffer big enough to hold a string with the specified number of bytes plus an added null terminator (i.e., length+1), copies the specified number of bytes from the tvbuff, at the specified offset, to that buffer and puts in a null terminator, and returns a pointer to that buffer (or throws an exception before allocating the buffer if that many bytes aren't available in the tvbuff); tvb_get_stringz() - takes a tvbuff, an offset, and a pointer to a "gint" as arguments, gets the size of the null-terminated string starting at the specified offset in the tvbuff (throwing an exception if the null terminator isn't found), allocates a buffer big enough to hold that string, copies the string to that buffer, and returns a pointer to that buffer and stores the length of the string (including the terminating null) in the variable pointed to by the "gint" pointer. Replace many pieces of code allocating a buffer and copying a string with calls to "tvb_get_string()" (for one thing, "tvb_get_string()" doesn't require you to remember that the argument to "tvb_get_nstringz0()" is the size of the buffer into which you're copying the string, which might be the length of the string to be copied *plus 1*). Don't use fixed-length buffers for null-terminated strings (even if the code that generates those packets has a #define to limit the length of the string). Use "tvb_get_stringz()", instead. In some cases where a value is fetched but is only used to pass an argument to a "proto_tree_add_XXX" routine, use "proto_tree_add_item()" instead. svn path=/trunk/; revision=7859
2003-06-12 08:33:32 +00:00
*/
/*
* Given a wmem scope, a tvbuff, an offset, and a length, treat the string
* of bytes referred to by the tvbuff, offset, and length as an ASCII string,
* with all bytes with the high-order bit set being invalid, and return a
* pointer to a UTF-8 string, allocated using the wmem scope.
*
* Octets with the highest bit set will be converted to the Unicode
* REPLACEMENT CHARACTER.
*/
static guint8 *
tvb_get_ascii_string(wmem_allocator_t *scope, tvbuff_t *tvb, gint offset, gint length)
Add new routines: tvb_get_string() - takes a tvbuff, an offset, and a length as arguments, allocates a buffer big enough to hold a string with the specified number of bytes plus an added null terminator (i.e., length+1), copies the specified number of bytes from the tvbuff, at the specified offset, to that buffer and puts in a null terminator, and returns a pointer to that buffer (or throws an exception before allocating the buffer if that many bytes aren't available in the tvbuff); tvb_get_stringz() - takes a tvbuff, an offset, and a pointer to a "gint" as arguments, gets the size of the null-terminated string starting at the specified offset in the tvbuff (throwing an exception if the null terminator isn't found), allocates a buffer big enough to hold that string, copies the string to that buffer, and returns a pointer to that buffer and stores the length of the string (including the terminating null) in the variable pointed to by the "gint" pointer. Replace many pieces of code allocating a buffer and copying a string with calls to "tvb_get_string()" (for one thing, "tvb_get_string()" doesn't require you to remember that the argument to "tvb_get_nstringz0()" is the size of the buffer into which you're copying the string, which might be the length of the string to be copied *plus 1*). Don't use fixed-length buffers for null-terminated strings (even if the code that generates those packets has a #define to limit the length of the string). Use "tvb_get_stringz()", instead. In some cases where a value is fetched but is only used to pass an argument to a "proto_tree_add_XXX" routine, use "proto_tree_add_item()" instead. svn path=/trunk/; revision=7859
2003-06-12 08:33:32 +00:00
{
const guint8 *ptr;
ptr = ensure_contiguous(tvb, offset, length);
return get_ascii_string(scope, ptr, length);
Add new routines: tvb_get_string() - takes a tvbuff, an offset, and a length as arguments, allocates a buffer big enough to hold a string with the specified number of bytes plus an added null terminator (i.e., length+1), copies the specified number of bytes from the tvbuff, at the specified offset, to that buffer and puts in a null terminator, and returns a pointer to that buffer (or throws an exception before allocating the buffer if that many bytes aren't available in the tvbuff); tvb_get_stringz() - takes a tvbuff, an offset, and a pointer to a "gint" as arguments, gets the size of the null-terminated string starting at the specified offset in the tvbuff (throwing an exception if the null terminator isn't found), allocates a buffer big enough to hold that string, copies the string to that buffer, and returns a pointer to that buffer and stores the length of the string (including the terminating null) in the variable pointed to by the "gint" pointer. Replace many pieces of code allocating a buffer and copying a string with calls to "tvb_get_string()" (for one thing, "tvb_get_string()" doesn't require you to remember that the argument to "tvb_get_nstringz0()" is the size of the buffer into which you're copying the string, which might be the length of the string to be copied *plus 1*). Don't use fixed-length buffers for null-terminated strings (even if the code that generates those packets has a #define to limit the length of the string). Use "tvb_get_stringz()", instead. In some cases where a value is fetched but is only used to pass an argument to a "proto_tree_add_XXX" routine, use "proto_tree_add_item()" instead. svn path=/trunk/; revision=7859
2003-06-12 08:33:32 +00:00
}
/*
* Given a wmem scope, a tvbuff, an offset, a length, and a translation table,
* treat the string of bytes referred to by the tvbuff, offset, and length
* as a string encoded using one octet per character, with octets with the
* high-order bit clear being mapped by the translation table to 2-byte
* Unicode Basic Multilingual Plane characters (including REPLACEMENT
* CHARACTER) and octets with the high-order bit set being mapped to
* REPLACEMENT CHARACTER, and return a pointer to a UTF-8 string,
* allocated using the wmem scope.
*
* Octets with the highest bit set will be converted to the Unicode
* REPLACEMENT CHARACTER.
*/
static guint8 *
tvb_get_iso_646_string(wmem_allocator_t *scope, tvbuff_t *tvb, gint offset, gint length, const gunichar2 table[0x80])
{
const guint8 *ptr;
ptr = ensure_contiguous(tvb, offset, length);
return get_iso_646_string(scope, ptr, length, table);
}
/*
* Given a wmem scope, a tvbuff, an offset, and a length, treat the string
* of bytes referred to by the tvbuff, the offset. and the length as a UTF-8
* string, and return a pointer to a UTF-8 string, allocated using the wmem
* scope, with all ill-formed sequences replaced with the Unicode REPLACEMENT
* CHARACTER according to the recommended "best practices" given in the Unicode
* Standard and specified by W3C/WHATWG.
*
* Note that in conformance with the Unicode Standard, this treats three
* byte sequences corresponding to UTF-16 surrogate halves (paired or unpaired)
* and two byte overlong encodings of 7-bit ASCII characters as invalid and
* substitutes REPLACEMENT CHARACTER for them. Explicit support for nonstandard
* derivative encoding formats (e.g. CESU-8, Java Modified UTF-8, WTF-8) could
* be added later.
*/
static guint8 *
tvb_get_utf_8_string(wmem_allocator_t *scope, tvbuff_t *tvb, const gint offset, const gint length)
{
const guint8 *ptr;
ptr = ensure_contiguous(tvb, offset, length);
return get_utf_8_string(scope, ptr, length);
}
/*
* Given a wmem scope, a tvbuff, an offset, and a length, treat the string
* of bytes referred to by the tvbuff, the offset, and the length as a
* raw string, and return a pointer to that string, allocated using the
* wmem scope. This means a null is appended at the end, but no replacement
* checking is done otherwise, unlike tvb_get_utf_8_string().
*
* Also, this one allows a length of -1 to mean get all, but does not
* allow a negative offset.
*/
static inline guint8 *
tvb_get_raw_string(wmem_allocator_t *scope, tvbuff_t *tvb, const gint offset, const gint length)
{
guint8 *strbuf;
gint abs_length = length;
DISSECTOR_ASSERT(offset >= 0);
DISSECTOR_ASSERT(abs_length >= -1);
if (abs_length < 0)
abs_length = tvb->length - offset;
tvb_ensure_bytes_exist(tvb, offset, abs_length);
strbuf = (guint8 *)wmem_alloc(scope, abs_length + 1);
tvb_memcpy(tvb, strbuf, offset, abs_length);
strbuf[abs_length] = '\0';
return strbuf;
}
/*
* Given a wmem scope, a tvbuff, an offset, and a length, treat the string
* of bytes referred to by the tvbuff, the offset, and the length as an
* ISO 8859/1 string, and return a pointer to a UTF-8 string, allocated
* using the wmem scope.
*/
static guint8 *
tvb_get_string_8859_1(wmem_allocator_t *scope, tvbuff_t *tvb, gint offset, gint length)
{
const guint8 *ptr;
ptr = ensure_contiguous(tvb, offset, length);
return get_8859_1_string(scope, ptr, length);
}
/*
* Given a wmem scope, a tvbuff, an offset, a length, and a translation
* table, treat the string of bytes referred to by the tvbuff, the offset,
* and the length as a string encoded using one octet per character, with
* octets with the high-order bit clear being ASCII and octets with the
* high-order bit set being mapped by the translation table to 2-byte
* Unicode Basic Multilingual Plane characters (including REPLACEMENT
* CHARACTER), and return a pointer to a UTF-8 string, allocated with the
* wmem scope.
*/
static guint8 *
tvb_get_string_unichar2(wmem_allocator_t *scope, tvbuff_t *tvb, gint offset, gint length, const gunichar2 table[0x80])
{
const guint8 *ptr;
ptr = ensure_contiguous(tvb, offset, length);
return get_unichar2_string(scope, ptr, length, table);
}
/*
* Given a wmem scope, a tvbuff, an offset, a length, and an encoding
* giving the byte order, treat the string of bytes referred to by the
* tvbuff, the offset, and the length as a UCS-2 encoded string in
* the byte order in question, containing characters from the Basic
* Multilingual Plane (plane 0) of Unicode, and return a pointer to a
* UTF-8 string, allocated with the wmem scope.
*
* Encoding parameter should be ENC_BIG_ENDIAN or ENC_LITTLE_ENDIAN.
*
* Specify length in bytes.
*
* XXX - should map lead and trail surrogate values to REPLACEMENT
* CHARACTERs (0xFFFD)?
* XXX - if there are an odd number of bytes, should put a
* REPLACEMENT CHARACTER at the end.
*/
static guint8 *
tvb_get_ucs_2_string(wmem_allocator_t *scope, tvbuff_t *tvb, const gint offset, gint length, const guint encoding)
{
const guint8 *ptr;
ptr = ensure_contiguous(tvb, offset, length);
return get_ucs_2_string(scope, ptr, length, encoding);
}
/*
* Given a wmem scope, a tvbuff, an offset, a length, and an encoding
* giving the byte order, treat the string of bytes referred to by the
* tvbuff, the offset, and the length as a UTF-16 encoded string in
* the byte order in question, and return a pointer to a UTF-8 string,
* allocated with the wmem scope.
*
* Encoding parameter should be ENC_BIG_ENDIAN or ENC_LITTLE_ENDIAN.
*
* Specify length in bytes.
*
* XXX - should map surrogate errors to REPLACEMENT CHARACTERs (0xFFFD).
* XXX - should map code points > 10FFFF to REPLACEMENT CHARACTERs.
* XXX - if there are an odd number of bytes, should put a
* REPLACEMENT CHARACTER at the end.
*/
static guint8 *
tvb_get_utf_16_string(wmem_allocator_t *scope, tvbuff_t *tvb, const gint offset, gint length, const guint encoding)
{
const guint8 *ptr;
ptr = ensure_contiguous(tvb, offset, length);
return get_utf_16_string(scope, ptr, length, encoding);
}
/*
* Given a wmem scope, a tvbuff, an offset, a length, and an encoding
* giving the byte order, treat the string of bytes referred to by the
* tvbuff, the offset, and the length as a UCS-4 encoded string in
* the byte order in question, and return a pointer to a UTF-8 string,
* allocated with the wmem scope.
*
* Encoding parameter should be ENC_BIG_ENDIAN or ENC_LITTLE_ENDIAN
*
* Specify length in bytes
*
* XXX - should map lead and trail surrogate values to a "substitute"
* UTF-8 character?
* XXX - should map code points > 10FFFF to REPLACEMENT CHARACTERs.
* XXX - if the number of bytes isn't a multiple of 4, should put a
* REPLACEMENT CHARACTER at the end.
*/
static gchar *
tvb_get_ucs_4_string(wmem_allocator_t *scope, tvbuff_t *tvb, const gint offset, gint length, const guint encoding)
{
const guint8 *ptr;
ptr = ensure_contiguous(tvb, offset, length);
return get_ucs_4_string(scope, ptr, length, encoding);
}
gchar *
tvb_get_ts_23_038_7bits_string_packed(wmem_allocator_t *scope, tvbuff_t *tvb,
const gint bit_offset, gint no_of_chars)
{
gint in_offset = bit_offset >> 3; /* Current pointer to the input buffer */
gint length = ((no_of_chars + 1) * 7 + (bit_offset & 0x07)) >> 3;
const guint8 *ptr;
DISSECTOR_ASSERT(tvb && tvb->initialized);
ptr = ensure_contiguous(tvb, in_offset, length);
return get_ts_23_038_7bits_string_packed(scope, ptr, bit_offset, no_of_chars);
}
gchar *
tvb_get_ts_23_038_7bits_string_unpacked(wmem_allocator_t *scope, tvbuff_t *tvb,
const gint offset, gint length)
{
const guint8 *ptr;
DISSECTOR_ASSERT(tvb && tvb->initialized);
ptr = ensure_contiguous(tvb, offset, length);
return get_ts_23_038_7bits_string_unpacked(scope, ptr, length);
}
gchar *
tvb_get_etsi_ts_102_221_annex_a_string(wmem_allocator_t *scope, tvbuff_t *tvb,
const gint offset, gint length)
{
const guint8 *ptr;
DISSECTOR_ASSERT(tvb && tvb->initialized);
ptr = ensure_contiguous(tvb, offset, length);
return get_etsi_ts_102_221_annex_a_string(scope, ptr, length);
}
gchar *
tvb_get_ascii_7bits_string(wmem_allocator_t *scope, tvbuff_t *tvb,
const gint bit_offset, gint no_of_chars)
{
gint in_offset = bit_offset >> 3; /* Current pointer to the input buffer */
gint length = ((no_of_chars + 1) * 7 + (bit_offset & 0x07)) >> 3;
const guint8 *ptr;
DISSECTOR_ASSERT(tvb && tvb->initialized);
ptr = ensure_contiguous(tvb, in_offset, length);
return get_ascii_7bits_string(scope, ptr, bit_offset, no_of_chars);
}
/*
* Given a wmem scope, a tvbuff, an offset, a length, and a translation
* table, treat the string of bytes referred to by the tvbuff, the offset,
* and the length as a string encoded using one octet per character, with
* octets being mapped by the translation table to 2-byte Unicode Basic
* Multilingual Plane characters (including REPLACEMENT CHARACTER), and
* return a pointer to a UTF-8 string, allocated with the wmem scope.
*/
static guint8 *
tvb_get_nonascii_unichar2_string(wmem_allocator_t *scope, tvbuff_t *tvb, gint offset, gint length, const gunichar2 table[256])
{
const guint8 *ptr;
ptr = ensure_contiguous(tvb, offset, length);
return get_nonascii_unichar2_string(scope, ptr, length, table);
}
/*
* Given a wmem scope, a tvbuff, an offset, and a length, treat the bytes
* referred to by the tvbuff, offset, and length as a GB18030 encoded string,
* and return a pointer to a UTF-8 string, allocated with the wmem scope,
* converted having substituted REPLACEMENT CHARACTER according to the
* Unicode Standard 5.22 U+FFFD Substitution for Conversion.
* ( https://www.unicode.org/versions/Unicode13.0.0/ch05.pdf )
*
* As expected, this will also decode GBK and GB2312 strings.
*/
static guint8 *
tvb_get_gb18030_string(wmem_allocator_t *scope, tvbuff_t *tvb, gint offset, gint length)
{
const guint8 *ptr;
ptr = ensure_contiguous(tvb, offset, length);
return get_gb18030_string(scope, ptr, length);
}
/*
* Given a wmem scope, a tvbuff, an offset, and a length, treat the bytes
* referred to by the tvbuff, offset, and length as a EUC-KR encoded string,
* and return a pointer to a UTF-8 string, allocated with the wmem scope,
* converted having substituted REPLACEMENT CHARACTER according to the
* Unicode Standard 5.22 U+FFFD Substitution for Conversion.
* ( https://www.unicode.org/versions/Unicode13.0.0/ch05.pdf )
*/
static guint8 *
tvb_get_euc_kr_string(wmem_allocator_t *scope, tvbuff_t *tvb, gint offset, gint length)
{
const guint8 *ptr;
ptr = ensure_contiguous(tvb, offset, length);
return get_euc_kr_string(scope, ptr, length);
}
static guint8 *
tvb_get_t61_string(wmem_allocator_t *scope, tvbuff_t *tvb, gint offset, gint length)
{
const guint8 *ptr;
ptr = ensure_contiguous(tvb, offset, length);
return get_t61_string(scope, ptr, length);
}
/*
* Encoding tables for BCD strings.
*/
static const dgt_set_t Dgt0_9_bcd = {
{
/* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
'0','1','2','3','4','5','6','7','8','9','?','?','?','?','?','?'
}
};
static const dgt_set_t Dgt_keypad_abc_tbcd = {
{
/* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
'0','1','2','3','4','5','6','7','8','9','*','#','a','b','c','?'
}
};
static const dgt_set_t Dgt_ansi_tbcd = {
{
/* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
'0','1','2','3','4','5','6','7','8','9','?','B','C','*','#','?'
}
};
static const dgt_set_t Dgt_dect_standard_4bits_tbcd = {
{
/* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
'0','1','2','3','4','5','6','7','8','9','?',' ','?','?','?','?'
}
};
static guint8 *
tvb_get_apn_string(wmem_allocator_t *scope, tvbuff_t *tvb, const gint offset,
gint length)
{
wmem_strbuf_t *str;
/*
* This is a domain name.
*
* 3GPP TS 23.003, section 19.4.2 "Fully Qualified Domain Names
* (FQDNs)", subsection 19.4.2.1 "General", says:
*
* The encoding of any identifier used as part of a Fully
* Qualifed Domain Name (FQDN) shall follow the Name Syntax
* defined in IETF RFC 2181 [18], IETF RFC 1035 [19] and
* IETF RFC 1123 [20]. An FQDN consists of one or more
* labels. Each label is coded as a one octet length field
* followed by that number of octets coded as 8 bit ASCII
* characters.
*
* so this does not appear to use full-blown DNS compression -
* the upper 2 bits of the length don't indicate that it's a
* pointer or an extended label (RFC 2673).
*/
str = wmem_strbuf_new_sized(scope, length + 1);
if (length > 0) {
const guint8 *ptr;
ptr = ensure_contiguous(tvb, offset, length);
for (;;) {
guint label_len;
/*
* Process this label.
*/
label_len = *ptr;
ptr++;
length--;
while (label_len != 0) {
guint8 ch;
if (length == 0)
goto end;
ch = *ptr;
if (ch < 0x80)
wmem_strbuf_append_c(str, ch);
else
wmem_strbuf_append_unichar_repl(str);
ptr++;
label_len--;
length--;
}
if (length == 0)
goto end;
wmem_strbuf_append_c(str, '.');
}
}
end:
return (guint8 *) wmem_strbuf_finalize(str);
}
static guint8 *
tvb_get_dect_standard_8bits_string(wmem_allocator_t *scope, tvbuff_t *tvb, gint offset, gint length)
{
const guint8 *ptr;
ptr = ensure_contiguous(tvb, offset, length);
return get_dect_standard_8bits_string(scope, ptr, length);
}
/*
* Given a tvbuff, an offset, a length, and an encoding, allocate a
* buffer big enough to hold a non-null-terminated string of that length
* at that offset, plus a trailing '\0', copy into the buffer the
* string as converted from the appropriate encoding to UTF-8, and
* return a pointer to the string.
*/
guint8 *
tvb_get_string_enc(wmem_allocator_t *scope, tvbuff_t *tvb, const gint offset,
const gint length, const guint encoding)
{
guint8 *strptr;
gboolean odd, skip_first;
DISSECTOR_ASSERT(tvb && tvb->initialized);
/* make sure length = -1 fails */
if (length < 0) {
THROW(ReportedBoundsError);
}
switch (encoding & ENC_CHARENCODING_MASK) {
case ENC_ASCII:
default:
/*
* For now, we treat bogus values as meaning
* "ASCII" rather than reporting an error,
* for the benefit of old dissectors written
* when the last argument to proto_tree_add_item()
* was a gboolean for the byte order, not an
* encoding value, and passed non-zero values
* other than TRUE to mean "little-endian".
*/
strptr = tvb_get_ascii_string(scope, tvb, offset, length);
break;
case ENC_UTF_8:
strptr = tvb_get_utf_8_string(scope, tvb, offset, length);
break;
case ENC_UTF_16:
strptr = tvb_get_utf_16_string(scope, tvb, offset, length,
encoding & ENC_LITTLE_ENDIAN);
break;
case ENC_UCS_2:
strptr = tvb_get_ucs_2_string(scope, tvb, offset, length,
encoding & ENC_LITTLE_ENDIAN);
break;
case ENC_UCS_4:
strptr = tvb_get_ucs_4_string(scope, tvb, offset, length,
encoding & ENC_LITTLE_ENDIAN);
break;
case ENC_ISO_8859_1:
/*
* ISO 8859-1 printable code point values are equal
* to the equivalent Unicode code point value, so
* no translation table is needed.
*/
strptr = tvb_get_string_8859_1(scope, tvb, offset, length);
break;
case ENC_ISO_8859_2:
strptr = tvb_get_string_unichar2(scope, tvb, offset, length, charset_table_iso_8859_2);
break;
case ENC_ISO_8859_3:
strptr = tvb_get_string_unichar2(scope, tvb, offset, length, charset_table_iso_8859_3);
break;
case ENC_ISO_8859_4:
strptr = tvb_get_string_unichar2(scope, tvb, offset, length, charset_table_iso_8859_4);
break;
case ENC_ISO_8859_5:
strptr = tvb_get_string_unichar2(scope, tvb, offset, length, charset_table_iso_8859_5);
break;
case ENC_ISO_8859_6:
strptr = tvb_get_string_unichar2(scope, tvb, offset, length, charset_table_iso_8859_6);
break;
case ENC_ISO_8859_7:
strptr = tvb_get_string_unichar2(scope, tvb, offset, length, charset_table_iso_8859_7);
break;
case ENC_ISO_8859_8:
strptr = tvb_get_string_unichar2(scope, tvb, offset, length, charset_table_iso_8859_8);
break;
case ENC_ISO_8859_9:
strptr = tvb_get_string_unichar2(scope, tvb, offset, length, charset_table_iso_8859_9);
break;
case ENC_ISO_8859_10:
strptr = tvb_get_string_unichar2(scope, tvb, offset, length, charset_table_iso_8859_10);
break;
case ENC_ISO_8859_11:
strptr = tvb_get_string_unichar2(scope, tvb, offset, length, charset_table_iso_8859_11);
break;
case ENC_ISO_8859_13:
strptr = tvb_get_string_unichar2(scope, tvb, offset, length, charset_table_iso_8859_13);
break;
case ENC_ISO_8859_14:
strptr = tvb_get_string_unichar2(scope, tvb, offset, length, charset_table_iso_8859_14);
break;
case ENC_ISO_8859_15:
strptr = tvb_get_string_unichar2(scope, tvb, offset, length, charset_table_iso_8859_15);
break;
case ENC_ISO_8859_16:
strptr = tvb_get_string_unichar2(scope, tvb, offset, length, charset_table_iso_8859_16);
break;
case ENC_WINDOWS_1250:
strptr = tvb_get_string_unichar2(scope, tvb, offset, length, charset_table_cp1250);
break;
case ENC_WINDOWS_1251:
strptr = tvb_get_string_unichar2(scope, tvb, offset, length, charset_table_cp1251);
break;
case ENC_WINDOWS_1252:
strptr = tvb_get_string_unichar2(scope, tvb, offset, length, charset_table_cp1252);
break;
case ENC_MAC_ROMAN:
strptr = tvb_get_string_unichar2(scope, tvb, offset, length, charset_table_mac_roman);
break;
case ENC_CP437:
strptr = tvb_get_string_unichar2(scope, tvb, offset, length, charset_table_cp437);
break;
case ENC_CP855:
strptr = tvb_get_string_unichar2(scope, tvb, offset, length, charset_table_cp855);
break;
case ENC_CP866:
strptr = tvb_get_string_unichar2(scope, tvb, offset, length, charset_table_cp866);
break;
case ENC_ISO_646_BASIC:
strptr = tvb_get_iso_646_string(scope, tvb, offset, length, charset_table_iso_646_basic);
break;
case ENC_3GPP_TS_23_038_7BITS_PACKED:
{
gint bit_offset = offset << 3;
gint no_of_chars = (length << 3) / 7;
strptr = tvb_get_ts_23_038_7bits_string_packed(scope, tvb, bit_offset, no_of_chars);
}
break;
case ENC_ASCII_7BITS:
{
gint bit_offset = offset << 3;
gint no_of_chars = (length << 3) / 7;
strptr = tvb_get_ascii_7bits_string(scope, tvb, bit_offset, no_of_chars);
}
break;
case ENC_EBCDIC:
/*
* "Common" EBCDIC, covering all characters with the
* same code point in all Roman-alphabet EBCDIC code
* pages.
*/
strptr = tvb_get_nonascii_unichar2_string(scope, tvb, offset, length, charset_table_ebcdic);
break;
case ENC_EBCDIC_CP037:
/*
* EBCDIC code page 037.
*/
strptr = tvb_get_nonascii_unichar2_string(scope, tvb, offset, length, charset_table_ebcdic_cp037);
break;
case ENC_T61:
strptr = tvb_get_t61_string(scope, tvb, offset, length);
break;
case ENC_BCD_DIGITS_0_9:
/*
* Packed BCD, with digits 0-9.
*/
odd = (encoding & ENC_BCD_ODD_NUM_DIG) >> 16;
skip_first = (encoding & ENC_BCD_SKIP_FIRST) >> 17;
strptr = tvb_get_bcd_string(scope, tvb, offset, length, &Dgt0_9_bcd, skip_first, odd, FALSE);
break;
case ENC_KEYPAD_ABC_TBCD:
/*
* Keypad-with-a/b/c "telephony BCD" - packed BCD, with
* digits 0-9 and symbols *, #, a, b, and c.
*/
odd = (encoding & ENC_BCD_ODD_NUM_DIG) >> 16;
skip_first = (encoding & ENC_BCD_SKIP_FIRST) >> 17;
strptr = tvb_get_bcd_string(scope, tvb, offset, length, &Dgt_keypad_abc_tbcd, skip_first, odd, FALSE);
break;
case ENC_KEYPAD_BC_TBCD:
/*
* Keypad-with-B/C "telephony BCD" - packed BCD, with
* digits 0-9 and symbols B, C, *, and #.
*/
odd = (encoding & ENC_BCD_ODD_NUM_DIG) >> 16;
skip_first = (encoding & ENC_BCD_SKIP_FIRST) >> 17;
strptr = tvb_get_bcd_string(scope, tvb, offset, length, &Dgt_ansi_tbcd, skip_first, odd, FALSE);
break;
case ENC_3GPP_TS_23_038_7BITS_UNPACKED:
strptr = tvb_get_ts_23_038_7bits_string_unpacked(scope, tvb, offset, length);
break;
case ENC_ETSI_TS_102_221_ANNEX_A:
strptr = tvb_get_etsi_ts_102_221_annex_a_string(scope, tvb, offset, length);
break;
case ENC_GB18030:
strptr = tvb_get_gb18030_string(scope, tvb, offset, length);
break;
case ENC_EUC_KR:
strptr = tvb_get_euc_kr_string(scope, tvb, offset, length);
break;
2021-05-20 09:27:53 +00:00
case ENC_APN_STR:
strptr = tvb_get_apn_string(scope, tvb, offset, length);
2021-05-20 09:27:53 +00:00
break;
case ENC_DECT_STANDARD_8BITS:
strptr = tvb_get_dect_standard_8bits_string(scope, tvb, offset, length);
break;
case ENC_DECT_STANDARD_4BITS_TBCD:
/*
* DECT standard 4bits "telephony BCD" - packed BCD, with
* digits 0-9 and symbol SPACE for 0xb.
*/
odd = (encoding & ENC_BCD_ODD_NUM_DIG) >> 16;
skip_first = (encoding & ENC_BCD_SKIP_FIRST) >> 17;
strptr = tvb_get_bcd_string(scope, tvb, offset, length, &Dgt_dect_standard_4bits_tbcd, skip_first, odd, FALSE);
break;
}
return strptr;
}
/*
* This is like tvb_get_string_enc(), except that it handles null-padded
* strings.
*
* Currently, string values are stored as UTF-8 null-terminated strings,
* so nothing needs to be done differently for null-padded strings; we
* could save a little memory by not storing the null padding.
*
* If we ever store string values differently, in a fashion that doesn't
* involve null termination, that might change.
*/
guint8 *
tvb_get_stringzpad(wmem_allocator_t *scope, tvbuff_t *tvb, const gint offset,
const gint length, const guint encoding)
{
return tvb_get_string_enc(scope, tvb, offset, length, encoding);
}
/*
* These routines are like the above routines, except that they handle
* null-terminated strings. They find the length of that string (and
* throw an exception if the tvbuff ends before we find the null), and
* also return through a pointer the length of the string, in bytes,
* including the terminating null (the terminating null being 2 bytes
* for UCS-2 and UTF-16, 4 bytes for UCS-4, and 1 byte for other
* encodings).
*/
static guint8 *
tvb_get_ascii_stringz(wmem_allocator_t *scope, tvbuff_t *tvb, gint offset, gint *lengthp)
{
guint size;
const guint8 *ptr;
size = tvb_strsize(tvb, offset);
ptr = ensure_contiguous(tvb, offset, size);
/* XXX, conversion between signed/unsigned integer */
if (lengthp)
*lengthp = size;
return get_ascii_string(scope, ptr, size);
}
static guint8 *
tvb_get_iso_646_stringz(wmem_allocator_t *scope, tvbuff_t *tvb, gint offset, gint *lengthp, const gunichar2 table[0x80])
{
guint size;
const guint8 *ptr;
size = tvb_strsize(tvb, offset);
ptr = ensure_contiguous(tvb, offset, size);
/* XXX, conversion between signed/unsigned integer */
if (lengthp)
*lengthp = size;
return get_iso_646_string(scope, ptr, size, table);
}
static guint8 *
tvb_get_utf_8_stringz(wmem_allocator_t *scope, tvbuff_t *tvb, const gint offset, gint *lengthp)
Add new routines: tvb_get_string() - takes a tvbuff, an offset, and a length as arguments, allocates a buffer big enough to hold a string with the specified number of bytes plus an added null terminator (i.e., length+1), copies the specified number of bytes from the tvbuff, at the specified offset, to that buffer and puts in a null terminator, and returns a pointer to that buffer (or throws an exception before allocating the buffer if that many bytes aren't available in the tvbuff); tvb_get_stringz() - takes a tvbuff, an offset, and a pointer to a "gint" as arguments, gets the size of the null-terminated string starting at the specified offset in the tvbuff (throwing an exception if the null terminator isn't found), allocates a buffer big enough to hold that string, copies the string to that buffer, and returns a pointer to that buffer and stores the length of the string (including the terminating null) in the variable pointed to by the "gint" pointer. Replace many pieces of code allocating a buffer and copying a string with calls to "tvb_get_string()" (for one thing, "tvb_get_string()" doesn't require you to remember that the argument to "tvb_get_nstringz0()" is the size of the buffer into which you're copying the string, which might be the length of the string to be copied *plus 1*). Don't use fixed-length buffers for null-terminated strings (even if the code that generates those packets has a #define to limit the length of the string). Use "tvb_get_stringz()", instead. In some cases where a value is fetched but is only used to pass an argument to a "proto_tree_add_XXX" routine, use "proto_tree_add_item()" instead. svn path=/trunk/; revision=7859
2003-06-12 08:33:32 +00:00
{
guint size;
const guint8 *ptr;
Add new routines: tvb_get_string() - takes a tvbuff, an offset, and a length as arguments, allocates a buffer big enough to hold a string with the specified number of bytes plus an added null terminator (i.e., length+1), copies the specified number of bytes from the tvbuff, at the specified offset, to that buffer and puts in a null terminator, and returns a pointer to that buffer (or throws an exception before allocating the buffer if that many bytes aren't available in the tvbuff); tvb_get_stringz() - takes a tvbuff, an offset, and a pointer to a "gint" as arguments, gets the size of the null-terminated string starting at the specified offset in the tvbuff (throwing an exception if the null terminator isn't found), allocates a buffer big enough to hold that string, copies the string to that buffer, and returns a pointer to that buffer and stores the length of the string (including the terminating null) in the variable pointed to by the "gint" pointer. Replace many pieces of code allocating a buffer and copying a string with calls to "tvb_get_string()" (for one thing, "tvb_get_string()" doesn't require you to remember that the argument to "tvb_get_nstringz0()" is the size of the buffer into which you're copying the string, which might be the length of the string to be copied *plus 1*). Don't use fixed-length buffers for null-terminated strings (even if the code that generates those packets has a #define to limit the length of the string). Use "tvb_get_stringz()", instead. In some cases where a value is fetched but is only used to pass an argument to a "proto_tree_add_XXX" routine, use "proto_tree_add_item()" instead. svn path=/trunk/; revision=7859
2003-06-12 08:33:32 +00:00
size = tvb_strsize(tvb, offset);
ptr = ensure_contiguous(tvb, offset, size);
/* XXX, conversion between signed/unsigned integer */
if (lengthp)
*lengthp = size;
return get_utf_8_string(scope, ptr, size);
}
static guint8 *
tvb_get_stringz_8859_1(wmem_allocator_t *scope, tvbuff_t *tvb, gint offset, gint *lengthp)
{
guint size;
const guint8 *ptr;
size = tvb_strsize(tvb, offset);
ptr = ensure_contiguous(tvb, offset, size);
/* XXX, conversion between signed/unsigned integer */
if (lengthp)
*lengthp = size;
return get_8859_1_string(scope, ptr, size);
}
static guint8 *
tvb_get_stringz_unichar2(wmem_allocator_t *scope, tvbuff_t *tvb, gint offset, gint *lengthp, const gunichar2 table[0x80])
{
guint size;
const guint8 *ptr;
size = tvb_strsize(tvb, offset);
ptr = ensure_contiguous(tvb, offset, size);
/* XXX, conversion between signed/unsigned integer */
if (lengthp)
*lengthp = size;
return get_unichar2_string(scope, ptr, size, table);
}
/*
* Given a tvbuff and an offset, with the offset assumed to refer to
* a null-terminated string, find the length of that string (and throw
* an exception if the tvbuff ends before we find the null), ensure that
* the TVB is flat, and return a pointer to the string (in the TVB).
* Also return the length of the string (including the terminating null)
* through a pointer.
*
* As long as we aren't using composite TVBs, this saves the cycles used
* (often unnecessariliy) in allocating a buffer and copying the string into
* it. (If we do start using composite TVBs, we may want to replace this
* function with the _ephemeral version.)
*/
const guint8 *
tvb_get_const_stringz(tvbuff_t *tvb, const gint offset, gint *lengthp)
{
guint size;
const guint8 *strptr;
size = tvb_strsize(tvb, offset);
strptr = ensure_contiguous(tvb, offset, size);
if (lengthp)
*lengthp = size;
return strptr;
}
static gchar *
tvb_get_ucs_2_stringz(wmem_allocator_t *scope, tvbuff_t *tvb, const gint offset, gint *lengthp, const guint encoding)
{
gint size; /* Number of bytes in string */
const guint8 *ptr;
size = tvb_unicode_strsize(tvb, offset);
ptr = ensure_contiguous(tvb, offset, size);
/* XXX, conversion between signed/unsigned integer */
if (lengthp)
*lengthp = size;
return get_ucs_2_string(scope, ptr, size, encoding);
}
static gchar *
tvb_get_utf_16_stringz(wmem_allocator_t *scope, tvbuff_t *tvb, const gint offset, gint *lengthp, const guint encoding)
{
gint size;
const guint8 *ptr;
size = tvb_unicode_strsize(tvb, offset);
ptr = ensure_contiguous(tvb, offset, size);
/* XXX, conversion between signed/unsigned integer */
if (lengthp)
*lengthp = size;
return get_utf_16_string(scope, ptr, size, encoding);
}
static gchar *
tvb_get_ucs_4_stringz(wmem_allocator_t *scope, tvbuff_t *tvb, const gint offset, gint *lengthp, const guint encoding)
{
gint size;
gunichar uchar;
const guint8 *ptr;
size = 0;
do {
/* Endianness doesn't matter when looking for null */
uchar = tvb_get_ntohl(tvb, offset + size);
size += 4;
} while(uchar != 0);
ptr = ensure_contiguous(tvb, offset, size);
/* XXX, conversion between signed/unsigned integer */
if (lengthp)
*lengthp = size;
return get_ucs_4_string(scope, ptr, size, encoding);
}
static guint8 *
tvb_get_nonascii_unichar2_stringz(wmem_allocator_t *scope, tvbuff_t *tvb, gint offset, gint *lengthp, const gunichar2 table[256])
{
guint size;
const guint8 *ptr;
size = tvb_strsize(tvb, offset);
ptr = ensure_contiguous(tvb, offset, size);
/* XXX, conversion between signed/unsigned integer */
if (lengthp)
*lengthp = size;
return get_nonascii_unichar2_string(scope, ptr, size, table);
}
static guint8 *
tvb_get_t61_stringz(wmem_allocator_t *scope, tvbuff_t *tvb, gint offset, gint *lengthp)
{
guint size;
const guint8 *ptr;
size = tvb_strsize(tvb, offset);
ptr = ensure_contiguous(tvb, offset, size);
/* XXX, conversion between signed/unsigned integer */
if (lengthp)
*lengthp = size;
return get_t61_string(scope, ptr, size);
}
static guint8 *
tvb_get_gb18030_stringz(wmem_allocator_t *scope, tvbuff_t *tvb, gint offset, gint *lengthp)
{
guint size;
const guint8 *ptr;
size = tvb_strsize(tvb, offset);
ptr = ensure_contiguous(tvb, offset, size);
/* XXX, conversion between signed/unsigned integer */
if (lengthp)
*lengthp = size;
return get_gb18030_string(scope, ptr, size);
}
static guint8 *
tvb_get_euc_kr_stringz(wmem_allocator_t *scope, tvbuff_t *tvb, gint offset, gint *lengthp)
{
guint size;
const guint8 *ptr;
size = tvb_strsize(tvb, offset);
ptr = ensure_contiguous(tvb, offset, size);
/* XXX, conversion between signed/unsigned integer */
if (lengthp)
*lengthp = size;
return get_euc_kr_string(scope, ptr, size);
}
static guint8 *
tvb_get_dect_standard_8bits_stringz(wmem_allocator_t *scope, tvbuff_t *tvb, gint offset, gint *lengthp)
{
guint size;
const guint8 *ptr;
size = tvb_strsize(tvb, offset);
ptr = ensure_contiguous(tvb, offset, size);
/* XXX, conversion between signed/unsigned integer */
if (lengthp)
*lengthp = size;
return get_t61_string(scope, ptr, size);
}
guint8 *
tvb_get_stringz_enc(wmem_allocator_t *scope, tvbuff_t *tvb, const gint offset, gint *lengthp, const guint encoding)
{
guint8 *strptr;
DISSECTOR_ASSERT(tvb && tvb->initialized);
switch (encoding & ENC_CHARENCODING_MASK) {
case ENC_ASCII:
default:
/*
* For now, we treat bogus values as meaning
* "ASCII" rather than reporting an error,
* for the benefit of old dissectors written
* when the last argument to proto_tree_add_item()
* was a gboolean for the byte order, not an
* encoding value, and passed non-zero values
* other than TRUE to mean "little-endian".
*/
strptr = tvb_get_ascii_stringz(scope, tvb, offset, lengthp);
break;
case ENC_UTF_8:
/*
* XXX - should map all invalid UTF-8 sequences
* to a "substitute" UTF-8 character.
* XXX - should map code points > 10FFFF to REPLACEMENT
* CHARACTERs.
*/
strptr = tvb_get_utf_8_stringz(scope, tvb, offset, lengthp);
break;
case ENC_UTF_16:
strptr = tvb_get_utf_16_stringz(scope, tvb, offset, lengthp,
encoding & ENC_LITTLE_ENDIAN);
break;
case ENC_UCS_2:
strptr = tvb_get_ucs_2_stringz(scope, tvb, offset, lengthp,
encoding & ENC_LITTLE_ENDIAN);
break;
case ENC_UCS_4:
strptr = tvb_get_ucs_4_stringz(scope, tvb, offset, lengthp,
encoding & ENC_LITTLE_ENDIAN);
break;
case ENC_ISO_8859_1:
/*
* ISO 8859-1 printable code point values are equal
* to the equivalent Unicode code point value, so
* no translation table is needed.
*/
strptr = tvb_get_stringz_8859_1(scope, tvb, offset, lengthp);
break;
case ENC_ISO_8859_2:
strptr = tvb_get_stringz_unichar2(scope, tvb, offset, lengthp, charset_table_iso_8859_2);
break;
case ENC_ISO_8859_3:
strptr = tvb_get_stringz_unichar2(scope, tvb, offset, lengthp, charset_table_iso_8859_3);
break;
case ENC_ISO_8859_4:
strptr = tvb_get_stringz_unichar2(scope, tvb, offset, lengthp, charset_table_iso_8859_4);
break;
case ENC_ISO_8859_5:
strptr = tvb_get_stringz_unichar2(scope, tvb, offset, lengthp, charset_table_iso_8859_5);
break;
case ENC_ISO_8859_6:
strptr = tvb_get_stringz_unichar2(scope, tvb, offset, lengthp, charset_table_iso_8859_6);
break;
case ENC_ISO_8859_7:
strptr = tvb_get_stringz_unichar2(scope, tvb, offset, lengthp, charset_table_iso_8859_7);
break;
case ENC_ISO_8859_8:
strptr = tvb_get_stringz_unichar2(scope, tvb, offset, lengthp, charset_table_iso_8859_8);
break;
case ENC_ISO_8859_9:
strptr = tvb_get_stringz_unichar2(scope, tvb, offset, lengthp, charset_table_iso_8859_9);
break;
case ENC_ISO_8859_10:
strptr = tvb_get_stringz_unichar2(scope, tvb, offset, lengthp, charset_table_iso_8859_10);
break;
case ENC_ISO_8859_11:
strptr = tvb_get_stringz_unichar2(scope, tvb, offset, lengthp, charset_table_iso_8859_11);
break;
case ENC_ISO_8859_13:
strptr = tvb_get_stringz_unichar2(scope, tvb, offset, lengthp, charset_table_iso_8859_13);
break;
case ENC_ISO_8859_14:
strptr = tvb_get_stringz_unichar2(scope, tvb, offset, lengthp, charset_table_iso_8859_14);
break;
case ENC_ISO_8859_15:
strptr = tvb_get_stringz_unichar2(scope, tvb, offset, lengthp, charset_table_iso_8859_15);
break;
case ENC_ISO_8859_16:
strptr = tvb_get_stringz_unichar2(scope, tvb, offset, lengthp, charset_table_iso_8859_16);
break;
case ENC_WINDOWS_1250:
strptr = tvb_get_stringz_unichar2(scope, tvb, offset, lengthp, charset_table_cp1250);
break;
case ENC_WINDOWS_1251:
strptr = tvb_get_stringz_unichar2(scope, tvb, offset, lengthp, charset_table_cp1251);
break;
case ENC_WINDOWS_1252:
strptr = tvb_get_stringz_unichar2(scope, tvb, offset, lengthp, charset_table_cp1252);
break;
case ENC_MAC_ROMAN:
strptr = tvb_get_stringz_unichar2(scope, tvb, offset, lengthp, charset_table_mac_roman);
break;
case ENC_CP437:
strptr = tvb_get_stringz_unichar2(scope, tvb, offset, lengthp, charset_table_cp437);
break;
case ENC_CP855:
strptr = tvb_get_stringz_unichar2(scope, tvb, offset, lengthp, charset_table_cp855);
break;
case ENC_CP866:
strptr = tvb_get_stringz_unichar2(scope, tvb, offset, lengthp, charset_table_cp866);
break;
case ENC_ISO_646_BASIC:
strptr = tvb_get_iso_646_stringz(scope, tvb, offset, lengthp, charset_table_iso_646_basic);
break;
case ENC_3GPP_TS_23_038_7BITS_PACKED:
case ENC_3GPP_TS_23_038_7BITS_UNPACKED:
case ENC_ETSI_TS_102_221_ANNEX_A:
REPORT_DISSECTOR_BUG("TS 23.038 7bits has no null character and doesn't support null-terminated strings");
break;
case ENC_ASCII_7BITS:
REPORT_DISSECTOR_BUG("tvb_get_stringz_enc function with ENC_ASCII_7BITS not implemented yet");
break;
case ENC_EBCDIC:
/*
* "Common" EBCDIC, covering all characters with the
* same code point in all Roman-alphabet EBCDIC code
* pages.
*/
strptr = tvb_get_nonascii_unichar2_stringz(scope, tvb, offset, lengthp, charset_table_ebcdic);
break;
case ENC_EBCDIC_CP037:
/*
* EBCDIC code page 037.
*/
strptr = tvb_get_nonascii_unichar2_stringz(scope, tvb, offset, lengthp, charset_table_ebcdic_cp037);
break;
case ENC_T61:
strptr = tvb_get_t61_stringz(scope, tvb, offset, lengthp);
break;
case ENC_GB18030:
strptr = tvb_get_gb18030_stringz(scope, tvb, offset, lengthp);
break;
case ENC_EUC_KR:
strptr = tvb_get_euc_kr_stringz(scope, tvb, offset, lengthp);
break;
case ENC_DECT_STANDARD_8BITS:
strptr = tvb_get_dect_standard_8bits_stringz(scope, tvb, offset, lengthp);
break;
}
Add new routines: tvb_get_string() - takes a tvbuff, an offset, and a length as arguments, allocates a buffer big enough to hold a string with the specified number of bytes plus an added null terminator (i.e., length+1), copies the specified number of bytes from the tvbuff, at the specified offset, to that buffer and puts in a null terminator, and returns a pointer to that buffer (or throws an exception before allocating the buffer if that many bytes aren't available in the tvbuff); tvb_get_stringz() - takes a tvbuff, an offset, and a pointer to a "gint" as arguments, gets the size of the null-terminated string starting at the specified offset in the tvbuff (throwing an exception if the null terminator isn't found), allocates a buffer big enough to hold that string, copies the string to that buffer, and returns a pointer to that buffer and stores the length of the string (including the terminating null) in the variable pointed to by the "gint" pointer. Replace many pieces of code allocating a buffer and copying a string with calls to "tvb_get_string()" (for one thing, "tvb_get_string()" doesn't require you to remember that the argument to "tvb_get_nstringz0()" is the size of the buffer into which you're copying the string, which might be the length of the string to be copied *plus 1*). Don't use fixed-length buffers for null-terminated strings (even if the code that generates those packets has a #define to limit the length of the string). Use "tvb_get_stringz()", instead. In some cases where a value is fetched but is only used to pass an argument to a "proto_tree_add_XXX" routine, use "proto_tree_add_item()" instead. svn path=/trunk/; revision=7859
2003-06-12 08:33:32 +00:00
return strptr;
}
/* Looks for a stringz (NUL-terminated string) in tvbuff and copies
* no more than bufsize number of bytes, including terminating NUL, to buffer.
* Returns length of string (not including terminating NUL), or -1 if the string was
* truncated in the buffer due to not having reached the terminating NUL.
* In this way, it acts like snprintf().
*
* bufsize MUST be greater than 0.
*
* When processing a packet where the remaining number of bytes is less
* than bufsize, an exception is not thrown if the end of the packet
* is reached before the NUL is found. If no NUL is found before reaching
* the end of the short packet, -1 is still returned, and the string
* is truncated with a NUL, albeit not at buffer[bufsize - 1], but
* at the correct spot, terminating the string.
*
* *bytes_copied will contain the number of bytes actually copied,
* including the terminating-NUL.
*/
static gint
_tvb_get_raw_bytes_as_stringz(tvbuff_t *tvb, const gint offset, const guint bufsize, guint8* buffer, gint *bytes_copied)
{
gint stringlen;
guint abs_offset = 0;
gint limit, len = 0;
gboolean decreased_max = FALSE;
/* Only read to end of tvbuff, w/o throwing exception. */
check_offset_length(tvb, offset, -1, &abs_offset, &len);
/* There must at least be room for the terminating NUL. */
DISSECTOR_ASSERT(bufsize != 0);
/* If there's no room for anything else, just return the NUL. */
if (bufsize == 1) {
buffer[0] = 0;
*bytes_copied = 1;
return 0;
}
/* check_offset_length() won't throw an exception if we're
* looking at the byte immediately after the end of the tvbuff. */
if (len == 0) {
THROW(ReportedBoundsError);
}
/* This should not happen because check_offset_length() would
* have already thrown an exception if 'offset' were out-of-bounds.
*/
DISSECTOR_ASSERT(len != -1);
/*
* If we've been passed a negative number, bufsize will
* be huge.
*/
DISSECTOR_ASSERT(bufsize <= G_MAXINT);
if ((guint)len < bufsize) {
limit = len;
decreased_max = TRUE;
}
else {
limit = bufsize;
}
stringlen = tvb_strnlen(tvb, abs_offset, limit - 1);
/* If NUL wasn't found, copy the data and return -1 */
if (stringlen == -1) {
tvb_memcpy(tvb, buffer, abs_offset, limit);
if (decreased_max) {
buffer[limit] = 0;
/* Add 1 for the extra NUL that we set at buffer[limit],
* pretending that it was copied as part of the string. */
*bytes_copied = limit + 1;
}
else {
*bytes_copied = limit;
}
return -1;
}
/* Copy the string to buffer */
tvb_memcpy(tvb, buffer, abs_offset, stringlen + 1);
*bytes_copied = stringlen + 1;
return stringlen;
}
gint
tvb_get_raw_bytes_as_stringz(tvbuff_t *tvb, const gint offset, const guint bufsize, guint8* buffer)
{
gint len, bytes_copied;
DISSECTOR_ASSERT(tvb && tvb->initialized);
len = _tvb_get_raw_bytes_as_stringz(tvb, offset, bufsize, buffer, &bytes_copied);
if (len == -1) {
buffer[bufsize - 1] = 0;
return bytes_copied - 1;
}
else {
return len;
}
}
/*
* Given a tvbuff, an offset into the tvbuff, a buffer, and a buffer size,
* extract as many raw bytes from the tvbuff, starting at the offset,
* as 1) are available in the tvbuff and 2) will fit in the buffer, leaving
* room for a terminating NUL.
*/
gint
tvb_get_raw_bytes_as_string(tvbuff_t *tvb, const gint offset, char *buffer, size_t bufsize)
{
gint len = 0;
DISSECTOR_ASSERT(tvb && tvb->initialized);
/* There must be room for the string and the terminating NUL. */
DISSECTOR_ASSERT(bufsize > 0);
DISSECTOR_ASSERT(bufsize - 1 < G_MAXINT);
len = tvb_captured_length_remaining(tvb, offset);
if (len <= 0) {
buffer[0] = '\0';
return 0;
}
if (len > (gint)(bufsize - 1))
len = (gint)(bufsize - 1);
/* Copy the string to buffer */
tvb_memcpy(tvb, buffer, offset, len);
buffer[len] = '\0';
return len;
}
gboolean tvb_ascii_isprint(tvbuff_t *tvb, const gint offset, const gint length)
{
const guint8* buf = tvb_get_ptr(tvb, offset, length);
guint abs_offset, abs_length = length;
if (length == -1) {
/* tvb_get_ptr has already checked for exceptions. */
compute_offset_and_remaining(tvb, offset, &abs_offset, &abs_length);
}
for (guint i = 0; i < abs_length; i++, buf++)
if (!g_ascii_isprint(*buf))
return FALSE;
return TRUE;
}
gboolean tvb_utf_8_isprint(tvbuff_t *tvb, const gint offset, const gint length)
{
const guint8* buf = tvb_get_ptr(tvb, offset, length);
guint abs_offset, abs_length = length;
if (length == -1) {
/* tvb_get_ptr has already checked for exceptions. */
compute_offset_and_remaining(tvb, offset, &abs_offset, &abs_length);
}
return isprint_utf8_string(buf, abs_length);
}
gboolean tvb_ascii_isdigit(tvbuff_t *tvb, const gint offset, const gint length)
{
const guint8* buf = tvb_get_ptr(tvb, offset, length);
guint abs_offset, abs_length = length;
if (length == -1) {
/* tvb_get_ptr has already checked for exceptions. */
compute_offset_and_remaining(tvb, offset, &abs_offset, &abs_length);
}
for (guint i = 0; i < abs_length; i++, buf++)
if (!g_ascii_isdigit(*buf))
return FALSE;
return TRUE;
}
static ws_mempbrk_pattern pbrk_crlf;
/*
* Given a tvbuff, an offset into the tvbuff, and a length that starts
* at that offset (which may be -1 for "all the way to the end of the
* tvbuff"), find the end of the (putative) line that starts at the
* specified offset in the tvbuff, going no further than the specified
* length.
*
* Return the length of the line (not counting the line terminator at
* the end), or, if we don't find a line terminator:
*
* if "desegment" is true, return -1;
*
* if "desegment" is false, return the amount of data remaining in
* the buffer.
*
* If "next_offset" is not NULL, set "*next_offset" to the offset of the
* character past the line terminator, or past the end of the buffer if
* we don't find a line terminator. (It's not set if we return -1.)
*/
gint
tvb_find_line_end(tvbuff_t *tvb, const gint offset, int len, gint *next_offset, const gboolean desegment)
{
gint eob_offset;
gint eol_offset;
int linelen;
guchar found_needle = 0;
static gboolean compiled = FALSE;
DISSECTOR_ASSERT(tvb && tvb->initialized);
if (len == -1) {
len = _tvb_captured_length_remaining(tvb, offset);
/* if offset is past the end of the tvbuff, len is now 0 */
}
eob_offset = offset + len;
if (!compiled) {
ws_mempbrk_compile(&pbrk_crlf, "\r\n");
compiled = TRUE;
}
/*
* Look either for a CR or an LF.
*/
eol_offset = tvb_ws_mempbrk_pattern_guint8(tvb, offset, len, &pbrk_crlf, &found_needle);
if (eol_offset == -1) {
/*
* No CR or LF - line is presumably continued in next packet.
*/
if (desegment) {
/*
* Tell our caller we saw no EOL, so they can
* try to desegment and get the entire line
* into one tvbuff.
*/
return -1;
} else {
/*
* Pretend the line runs to the end of the tvbuff.
*/
linelen = eob_offset - offset;
if (next_offset)
*next_offset = eob_offset;
}
} else {
/*
* Find the number of bytes between the starting offset
* and the CR or LF.
*/
linelen = eol_offset - offset;
/*
* Is it a CR?
*/
if (found_needle == '\r') {
/*
* Yes - is it followed by an LF?
*/
if (eol_offset + 1 >= eob_offset) {
/*
* Dunno - the next byte isn't in this
* tvbuff.
*/
if (desegment) {
/*
* We'll return -1, although that
* runs the risk that if the line
* really *is* terminated with a CR,
* we won't properly dissect this
* tvbuff.
*
* It's probably more likely that
* the line ends with CR-LF than
* that it ends with CR by itself.
*/
return -1;
}
} else {
/*
* Well, we can at least look at the next
* byte.
*/
if (tvb_get_guint8(tvb, eol_offset + 1) == '\n') {
/*
* It's an LF; skip over the CR.
*/
eol_offset++;
}
}
}
/*
* Return the offset of the character after the last
* character in the line, skipping over the last character
* in the line terminator.
*/
if (next_offset)
*next_offset = eol_offset + 1;
}
return linelen;
}
static ws_mempbrk_pattern pbrk_crlf_dquote;
/*
* Given a tvbuff, an offset into the tvbuff, and a length that starts
* at that offset (which may be -1 for "all the way to the end of the
* tvbuff"), find the end of the (putative) line that starts at the
* specified offset in the tvbuff, going no further than the specified
* length.
*
* However, treat quoted strings inside the buffer specially - don't
* treat newlines in quoted strings as line terminators.
*
* Return the length of the line (not counting the line terminator at
* the end), or the amount of data remaining in the buffer if we don't
* find a line terminator.
*
* If "next_offset" is not NULL, set "*next_offset" to the offset of the
* character past the line terminator, or past the end of the buffer if
* we don't find a line terminator.
*/
gint
tvb_find_line_end_unquoted(tvbuff_t *tvb, const gint offset, int len, gint *next_offset)
{
gint cur_offset, char_offset;
gboolean is_quoted;
guchar c = 0;
gint eob_offset;
int linelen;
static gboolean compiled = FALSE;
DISSECTOR_ASSERT(tvb && tvb->initialized);
if (len == -1)
len = _tvb_captured_length_remaining(tvb, offset);
if (!compiled) {
ws_mempbrk_compile(&pbrk_crlf_dquote, "\r\n\"");
compiled = TRUE;
}
/*
* XXX - what if "len" is still -1, meaning "offset is past the
* end of the tvbuff"?
*/
eob_offset = offset + len;
cur_offset = offset;
is_quoted = FALSE;
for (;;) {
/*
* Is this part of the string quoted?
*/
if (is_quoted) {
/*
* Yes - look only for the terminating quote.
*/
char_offset = tvb_find_guint8(tvb, cur_offset, len,
'"');
} else {
/*
* Look either for a CR, an LF, or a '"'.
*/
char_offset = tvb_ws_mempbrk_pattern_guint8(tvb, cur_offset, len, &pbrk_crlf_dquote, &c);
}
if (char_offset == -1) {
/*
* Not found - line is presumably continued in
* next packet.
* We pretend the line runs to the end of the tvbuff.
*/
linelen = eob_offset - offset;
if (next_offset)
*next_offset = eob_offset;
break;
}
if (is_quoted) {
/*
* We're processing a quoted string.
* We only looked for ", so we know it's a ";
* as we're processing a quoted string, it's a
* closing quote.
*/
is_quoted = FALSE;
} else {
/*
* OK, what is it?
*/
if (c == '"') {
/*
* Un-quoted "; it begins a quoted
* string.
*/
is_quoted = TRUE;
} else {
/*
* It's a CR or LF; we've found a line
* terminator.
*
* Find the number of bytes between the
* starting offset and the CR or LF.
*/
linelen = char_offset - offset;
/*
* Is it a CR?
*/
if (c == '\r') {
/*
* Yes; is it followed by an LF?
*/
if (char_offset + 1 < eob_offset &&
tvb_get_guint8(tvb, char_offset + 1)
== '\n') {
/*
* Yes; skip over the CR.
*/
char_offset++;
}
}
/*
* Return the offset of the character after
* the last character in the line, skipping
* over the last character in the line
* terminator, and quit.
*/
if (next_offset)
*next_offset = char_offset + 1;
break;
}
}
/*
* Step past the character we found.
*/
cur_offset = char_offset + 1;
if (cur_offset >= eob_offset) {
/*
* The character we found was the last character
* in the tvbuff - line is presumably continued in
* next packet.
* We pretend the line runs to the end of the tvbuff.
*/
linelen = eob_offset - offset;
if (next_offset)
*next_offset = eob_offset;
break;
}
}
return linelen;
}
/*
* Copied from the mgcp dissector. (This function should be moved to /epan )
* tvb_skip_wsp - Returns the position in tvb of the first non-whitespace
* character following offset or offset + maxlength -1 whichever
* is smaller.
*
* Parameters:
* tvb - The tvbuff in which we are skipping whitespace.
* offset - The offset in tvb from which we begin trying to skip whitespace.
* maxlength - The maximum distance from offset that we may try to skip
* whitespace.
*
* Returns: The position in tvb of the first non-whitespace
* character following offset or offset + maxlength -1 whichever
* is smaller.
*/
gint
tvb_skip_wsp(tvbuff_t *tvb, const gint offset, const gint maxlength)
{
2022-11-20 21:18:22 +00:00
gint counter;
gint end, tvb_len;
guint8 tempchar;
DISSECTOR_ASSERT(tvb && tvb->initialized);
/* Get the length remaining */
/*tvb_len = tvb_captured_length(tvb);*/
tvb_len = tvb->length;
end = offset + maxlength;
if (end >= tvb_len)
{
end = tvb_len;
}
/* Skip past spaces, tabs, CRs and LFs until run out or meet something else */
for (counter = offset;
counter < end &&
((tempchar = tvb_get_guint8(tvb,counter)) == ' ' ||
tempchar == '\t' || tempchar == '\r' || tempchar == '\n');
counter++);
return (counter);
}
gint
tvb_skip_wsp_return(tvbuff_t *tvb, const gint offset)
{
2022-11-20 21:18:22 +00:00
gint counter;
guint8 tempchar;
DISSECTOR_ASSERT(tvb && tvb->initialized);
for (counter = offset; counter > 0 &&
((tempchar = tvb_get_guint8(tvb,counter)) == ' ' ||
tempchar == '\t' || tempchar == '\n' || tempchar == '\r'); counter--);
counter++;
return (counter);
}
int
tvb_skip_guint8(tvbuff_t *tvb, int offset, const int maxlength, const guint8 ch)
{
int end, tvb_len;
DISSECTOR_ASSERT(tvb && tvb->initialized);
/* Get the length remaining */
/*tvb_len = tvb_captured_length(tvb);*/
tvb_len = tvb->length;
end = offset + maxlength;
if (end >= tvb_len)
end = tvb_len;
while (offset < end) {
guint8 tempch = tvb_get_guint8(tvb, offset);
if (tempch != ch)
break;
offset++;
}
return offset;
}
static ws_mempbrk_pattern pbrk_whitespace;
int tvb_get_token_len(tvbuff_t *tvb, const gint offset, int len, gint *next_offset, const gboolean desegment)
{
gint eob_offset;
gint eot_offset;
int tokenlen;
guchar found_needle = 0;
static gboolean compiled = FALSE;
DISSECTOR_ASSERT(tvb && tvb->initialized);
if (len == -1) {
len = _tvb_captured_length_remaining(tvb, offset);
/* if offset is past the end of the tvbuff, len is now 0 */
}
eob_offset = offset + len;
if (!compiled) {
ws_mempbrk_compile(&pbrk_whitespace, " \r\n");
compiled = TRUE;
}
/*
* Look either for a space, CR, or LF.
*/
eot_offset = tvb_ws_mempbrk_pattern_guint8(tvb, offset, len, &pbrk_whitespace, &found_needle);
if (eot_offset == -1) {
/*
* No space, CR or LF - token is presumably continued in next packet.
*/
if (desegment) {
/*
* Tell our caller we saw no whitespace, so they can
* try to desegment and get the entire line
* into one tvbuff.
*/
return -1;
}
else {
/*
* Pretend the token runs to the end of the tvbuff.
*/
tokenlen = eob_offset - offset;
if (next_offset)
*next_offset = eob_offset;
}
}
else {
/*
* Find the number of bytes between the starting offset
* and the space, CR or LF.
*/
tokenlen = eot_offset - offset;
/*
* Return the offset of the character after the last
* character in the line, skipping over the last character
* in the line terminator.
*/
if (next_offset)
*next_offset = eot_offset + 1;
}
return tokenlen;
}
/*
* Format a bunch of data from a tvbuff as bytes, returning a pointer
* to the string with the formatted data, with "punct" as a byte
* separator.
*/
gchar *
tvb_bytes_to_str_punct(wmem_allocator_t *scope, tvbuff_t *tvb, const gint offset, const gint len, const gchar punct)
{
DISSECTOR_ASSERT(len > 0);
return bytes_to_str_punct(scope, ensure_contiguous(tvb, offset, len), len, punct);
}
/*
* Given a wmem scope, a tvbuff, an offset, a length, an input digit
* set, and a boolean indicator, fetch BCD-encoded digits from a
* tvbuff starting from either the low or high half byte of the
* first byte depending on the boolean indicator (TRUE means "start
* with the high half byte, ignoring the low half byte", and FALSE
* means "start with the low half byte and proceed to the high half
* byte), formating the digits into characters according to the
* input digit set, and return a pointer to a UTF-8 string, allocated
* using the wmem scope. A high-order nibble of 0xf is considered a
* 'filler' and will end the conversion. Similarrily if odd is set the last
* high nibble will be omitted.
*/
gchar *
tvb_get_bcd_string(wmem_allocator_t *scope, tvbuff_t *tvb, const gint offset, gint len, const dgt_set_t *dgt, gboolean skip_first, gboolean odd, gboolean bigendian)
{
const guint8 *ptr;
int i = 0;
char *digit_str;
guint8 octet;
DISSECTOR_ASSERT(tvb && tvb->initialized);
if (len == -1) {
/*
* Run to the end of the captured data.
*
* XXX - captured, or total?
*/
/*length = tvb_captured_length(tvb);*/
len = tvb->length;
if (len < offset) {
return (char *)"";
}
len -= offset;
}
ptr = ensure_contiguous(tvb, offset, len);
/*
* XXX - map illegal digits (digits that map to 0) to REPLACEMENT
* CHARACTER, and have all the tables in epan/tvbuff.c use 0 rather
* than '?'?
*/
digit_str = (char *)wmem_alloc(scope, len*2 + 1);
while (len > 0) {
octet = *ptr;
if (!skip_first) {
if (bigendian) {
digit_str[i] = dgt->out[(octet >> 4) & 0x0f];
} else {
digit_str[i] = dgt->out[octet & 0x0f];
}
i++;
}
skip_first = FALSE;
/*
* unpack second value in byte
*/
if (!bigendian) {
octet = octet >> 4;
}
if (octet == 0x0f) {
/*
* This is the stop digit or a filler digit. Ignore
* it.
*/
break;
}
if ((len == 1) && (odd == TRUE )){
/* Last octet, skipp last high nibble incase of odd number of digits*/
break;
}
digit_str[i] = dgt->out[octet & 0x0f];
i++;
ptr++;
len--;
}
digit_str[i] = '\0';
return digit_str;
}
/* XXXX Fix me - needs odd indicator added */
const gchar *
tvb_bcd_dig_to_str(wmem_allocator_t *scope, tvbuff_t *tvb, const gint offset, const gint len, const dgt_set_t *dgt, gboolean skip_first)
{
if (!dgt)
dgt = &Dgt0_9_bcd;
return tvb_get_bcd_string(scope, tvb, offset, len, dgt, skip_first, FALSE, FALSE);
}
const gchar *
tvb_bcd_dig_to_str_be(wmem_allocator_t *scope, tvbuff_t *tvb, const gint offset, const gint len, const dgt_set_t *dgt, gboolean skip_first)
{
if (!dgt)
dgt = &Dgt0_9_bcd;
return tvb_get_bcd_string(scope, tvb, offset, len, dgt, skip_first, FALSE, TRUE);
}
/*
* Format a bunch of data from a tvbuff as bytes, returning a pointer
* to the string with the formatted data.
*/
gchar *tvb_bytes_to_str(wmem_allocator_t *allocator, tvbuff_t *tvb,
const gint offset, const gint len)
{
DISSECTOR_ASSERT(len > 0);
return bytes_to_str(allocator, ensure_contiguous(tvb, offset, len), len);
}
/* Find a needle tvbuff within a haystack tvbuff. */
gint
tvb_find_tvb(tvbuff_t *haystack_tvb, tvbuff_t *needle_tvb, const gint haystack_offset)
{
guint haystack_abs_offset = 0, haystack_abs_length = 0;
const guint8 *haystack_data;
const guint8 *needle_data;
const guint needle_len = needle_tvb->length;
const guint8 *location;
DISSECTOR_ASSERT(haystack_tvb && haystack_tvb->initialized);
if (haystack_tvb->length < 1 || needle_tvb->length < 1) {
return -1;
}
/* Get pointers to the tvbuffs' data. */
haystack_data = ensure_contiguous(haystack_tvb, 0, -1);
needle_data = ensure_contiguous(needle_tvb, 0, -1);
check_offset_length(haystack_tvb, haystack_offset, -1,
&haystack_abs_offset, &haystack_abs_length);
location = ws_memmem(haystack_data + haystack_abs_offset, haystack_abs_length,
needle_data, needle_len);
if (location) {
return (gint) (location - haystack_data);
}
return -1;
}
gint
tvb_raw_offset(tvbuff_t *tvb)
{
return ((tvb->raw_offset==-1) ? (tvb->raw_offset = tvb_offset_from_real_beginning(tvb)) : tvb->raw_offset);
}
void
tvb_set_fragment(tvbuff_t *tvb)
{
tvb->flags |= TVBUFF_FRAGMENT;
}
struct tvbuff *
tvb_get_ds_tvb(tvbuff_t *tvb)
{
return(tvb->ds_tvb);
}
guint
tvb_get_varint(tvbuff_t *tvb, guint offset, guint maxlen, guint64 *value, const guint encoding)
{
*value = 0;
2021-12-23 14:27:30 +00:00
switch (encoding & ENC_VARINT_MASK) {
case ENC_VARINT_PROTOBUF:
{
guint i;
guint64 b; /* current byte */
for (i = 0; ((i < FT_VARINT_MAX_LEN) && (i < maxlen)); ++i) {
b = tvb_get_guint8(tvb, offset++);
*value |= ((b & 0x7F) << (i * 7)); /* add lower 7 bits to val */
if (b < 0x80) {
/* end successfully becauseof last byte's msb(most significant bit) is zero */
return i + 1;
}
}
2021-12-23 14:27:30 +00:00
break;
}
case ENC_VARINT_ZIGZAG:
{
guint i;
guint64 b; /* current byte */
for (i = 0; ((i < FT_VARINT_MAX_LEN) && (i < maxlen)); ++i) {
b = tvb_get_guint8(tvb, offset++);
*value |= ((b & 0x7F) << (i * 7)); /* add lower 7 bits to val */
if (b < 0x80) {
/* end successfully becauseof last byte's msb(most significant bit) is zero */
*value = (*value >> 1) ^ ((*value & 1) ? -1 : 0);
return i + 1;
}
}
2021-12-23 14:27:30 +00:00
break;
}
case ENC_VARINT_SDNV:
{
/* Decodes similar to protobuf but in MSByte order */
guint i;
guint64 b; /* current byte */
for (i = 0; ((i < FT_VARINT_MAX_LEN) && (i < maxlen)); ++i) {
b = tvb_get_guint8(tvb, offset++);
if ((i == 9) && (*value >= G_GUINT64_CONSTANT(1)<<(64-7))) {
// guaranteed overflow, not valid SDNV
return 0;
}
*value <<= 7;
*value |= (b & 0x7F); /* add lower 7 bits to val */
if (b < 0x80) {
/* end successfully because of last byte's msb(most significant bit) is zero */
return i + 1;
}
}
break;
}
2021-12-23 14:27:30 +00:00
case ENC_VARINT_QUIC:
{
/* calculate variable length */
*value = tvb_get_guint8(tvb, offset);
switch((*value) >> 6) {
case 0: /* 0b00 => 1 byte length (6 bits Usable) */
(*value) &= 0x3F;
return 1;
case 1: /* 0b01 => 2 bytes length (14 bits Usable) */
*value = tvb_get_ntohs(tvb, offset) & 0x3FFF;
return 2;
case 2: /* 0b10 => 4 bytes length (30 bits Usable) */
*value = tvb_get_ntohl(tvb, offset) & 0x3FFFFFFF;
return 4;
case 3: /* 0b11 => 8 bytes length (62 bits Usable) */
*value = tvb_get_ntoh64(tvb, offset) & G_GUINT64_CONSTANT(0x3FFFFFFFFFFFFFFF);
return 8;
default: /* No Possible */
2021-06-18 18:21:42 +00:00
ws_assert_not_reached();
break;
}
2021-12-23 14:27:30 +00:00
break;
}
2021-12-23 14:27:30 +00:00
default:
DISSECTOR_ASSERT_NOT_REACHED();
}
return 0; /* 10 bytes scanned, but no bytes' msb is zero */
}
/*
* Editor modelines - https://www.wireshark.org/tools/modelines.html
*
* Local variables:
* c-basic-offset: 8
* tab-width: 8
* indent-tabs-mode: t
* End:
*
* vi: set shiftwidth=8 tabstop=8 noexpandtab:
* :indentSize=8:tabSize=8:noTabs=false:
*/