wireshark/epan/dissectors/packet-selfm.c

2301 lines
112 KiB
C
Raw Normal View History

/* packet-selfm.c
* Routines for Schweitzer Engineering Laboratories Fast Message Protocol (SEL FM) Dissection
* By Chris Bontje (cbontje[AT]gmail.com
* Copyright Nov/Dec 2012,
*
* $Id$
*
* Schweitzer Engineering Labs manufactures and sells digital protective relay equipment for
* use in industrial high-voltage installations. SEL FM protocol evolved over time as a
* (semi)proprietary method for auto-configuration of connected SEL devices for retrieval of
* analog and digital status data. The protocol itself supports embedded binary messages
* (which are what this dissector looks for) slip-streamed in the data stream with normal
* ASCII text data. A combination of both are used for full auto-configuration of devices,
* but a wealth of information can be extracted from the binary messages alone.
*
* Documentation on Fast Meter and Fast SER messages available from www.selinc.com in
* SEL Application Guides AG95-10_20091109.pdf and AG_200214.pdf
************************************************************************************************
* Dissector Notes:
*
* 1) SEL Fast Message protocol over TCP is normally tunneled via a Telnet connection. As Telnet
* has special handling for the 0xFF character ("IAC"), normally a pair of 0xFF's are inserted
* to represent an actual payload byte of 0xFF. A function from the packet-telnet.c dissector has
* been borrowed to automatically pre-process any Ethernet-based packet and remove these 'extra'
* 0xFF bytes. Wireshark Notes on Telnet 0xFF doubling are discussed here:
* http://www.wireshark.org/lists/wireshark-bugs/201204/msg00198.html
*
* 2) As the presence of 0xFF pad bytes can render the "length" byte of a response message inaccurate
* (as the 'length' does not compensate for these extra bytes) it can be difficult to accurately determine
* the proper length of a message when attempting to do TCP reassembly. The get_selfm_len function
* does a best-guess, based on evidence observed from multiple packet captures from different devices.
* What would be ideal would be to:
* a) Attempt initial PDU re-assembly based on length byte
* b) Detect if a 0xFF pair is found in the payload and add 1 byte to the PDU length
* c) Continue re-assembly based on revised length.
* d) Once full re-assembly of (actual length) TCP data is done, pass off full frame to selfm
* dissector to have 0xFF pairs stripped and the protocol dissected as per normal.
* I'm not sure if tcp_dissect_pdus already supports this functionality, but I didn't see any examples?
*
* 3) Generally, the auto-configuration process itself will exchange several "configuration" messages
* that describe various data regions (METER, DEMAND, PEAK, etc) that will later have corresponding
* "data" messages. This dissector code will currently save and accurately retrieve one set of these
* exchanges (0xA5C1, 0xA5D1, "METER" region) using the GArray and conversation functions built into
* Wireshark. That said, a future modification would be nice to capture and retrieve multiple sets
* of configuration messages to be able to decode all the different "data" messages encountered in
* future exchanges.
*
************************************************************************************************
* Wireshark - Network traffic analyzer
* By Gerald Combs <gerald@wireshark.org>
* Copyright 1998 Gerald Combs
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "config.h"
#include <epan/packet.h>
#include "packet-tcp.h"
#include <epan/prefs.h>
#include <epan/expert.h>
#include <epan/conversation.h>
#include <epan/wmem/wmem.h>
/* Initialize the protocol and registered fields */
static int proto_selfm = -1;
static int hf_selfm_msgtype = -1;
static int hf_selfm_relaydef_len = -1;
static int hf_selfm_relaydef_numproto = -1;
static int hf_selfm_relaydef_numfm = -1;
static int hf_selfm_relaydef_numflags = -1;
static int hf_selfm_relaydef_fmcfg_cmd = -1;
static int hf_selfm_relaydef_fmdata_cmd = -1;
static int hf_selfm_relaydef_statbit = -1;
static int hf_selfm_relaydef_statbit_cmd = -1;
static int hf_selfm_relaydef_proto = -1;
static int hf_selfm_fmconfig_len = -1;
static int hf_selfm_fmconfig_numflags = -1;
static int hf_selfm_fmconfig_loc_sf = -1;
static int hf_selfm_fmconfig_num_sf = -1;
static int hf_selfm_fmconfig_num_ai = -1;
static int hf_selfm_fmconfig_num_samp = -1;
static int hf_selfm_fmconfig_num_dig = -1;
static int hf_selfm_fmconfig_num_calc = -1;
static int hf_selfm_fmconfig_ofs_ai = -1;
static int hf_selfm_fmconfig_ofs_ts = -1;
static int hf_selfm_fmconfig_ofs_dig = -1;
static int hf_selfm_fmconfig_ai_type = -1;
static int hf_selfm_fmconfig_ai_sf_type = -1;
static int hf_selfm_fmconfig_ai_sf_ofs = -1;
static int hf_selfm_fmdata_len = -1;
static int hf_selfm_fmdata_flagbyte = -1;
static int hf_selfm_fmdata_dig_b0 = -1;
static int hf_selfm_fmdata_dig_b1 = -1;
static int hf_selfm_fmdata_dig_b2 = -1;
static int hf_selfm_fmdata_dig_b3 = -1;
static int hf_selfm_fmdata_dig_b4 = -1;
static int hf_selfm_fmdata_dig_b5 = -1;
static int hf_selfm_fmdata_dig_b6 = -1;
static int hf_selfm_fmdata_dig_b7 = -1;
static int hf_selfm_fmdata_ai_sf_fp = -1;
static int hf_selfm_foconfig_len = -1;
static int hf_selfm_foconfig_num_brkr = -1;
static int hf_selfm_foconfig_num_rb = -1;
static int hf_selfm_foconfig_prb_supp = -1;
static int hf_selfm_foconfig_reserved = -1;
static int hf_selfm_foconfig_brkr_open = -1;
static int hf_selfm_foconfig_brkr_close = -1;
static int hf_selfm_foconfig_rb_cmd = -1;
static int hf_selfm_fastop_len = -1;
static int hf_selfm_fastop_rb_code = -1;
static int hf_selfm_fastop_br_code = -1;
static int hf_selfm_fastop_valid = -1;
static int hf_selfm_fastser_len = -1;
static int hf_selfm_fastser_routing_addr = -1;
static int hf_selfm_fastser_status = -1;
static int hf_selfm_fastser_funccode = -1;
static int hf_selfm_fastser_seq = -1;
static int hf_selfm_fastser_seq_fir = -1;
static int hf_selfm_fastser_seq_fin = -1;
static int hf_selfm_fastser_seq_cnt = -1;
static int hf_selfm_fastser_resp_num = -1;
static int hf_selfm_fastser_crc16 = -1;
static int hf_selfm_fastser_def_route_sup = -1;
static int hf_selfm_fastser_def_rx_stat = -1;
static int hf_selfm_fastser_def_tx_stat = -1;
static int hf_selfm_fastser_def_rx_maxfr = -1;
static int hf_selfm_fastser_def_tx_maxfr = -1;
static int hf_selfm_fastser_def_rx_num_fc = -1;
static int hf_selfm_fastser_def_rx_fc = -1;
static int hf_selfm_fastser_def_tx_num_fc = -1;
static int hf_selfm_fastser_def_tx_fc = -1;
static int hf_selfm_fastser_uns_en_fc = -1;
static int hf_selfm_fastser_uns_en_fc_data = -1;
static int hf_selfm_fastser_uns_dis_fc = -1;
static int hf_selfm_fastser_uns_dis_fc_data = -1;
static int hf_selfm_fastser_read_baseaddr = -1;
static int hf_selfm_fastser_read_numaddr = -1;
static int hf_selfm_fastser_datafmt_resp_num_tag = -1;
static int hf_selfm_fastser_datafmt_resp_tag_qty = -1;
static int hf_selfm_fastser_datafmt_resp_tag_type = -1;
static int hf_selfm_fastser_devdesc_num_reg = -1;
static int hf_selfm_fastser_unsresp_orig = -1;
static int hf_selfm_fastser_unsresp_doy = -1;
static int hf_selfm_fastser_unsresp_year = -1;
static int hf_selfm_fastser_unsresp_todms = -1;
static int hf_selfm_fastser_unsresp_num_elmt = -1;
static int hf_selfm_fastser_unsresp_elmt_idx = -1;
static int hf_selfm_fastser_unsresp_elmt_ts_ofs = -1;
static int hf_selfm_fastser_unsresp_elmt_status = -1;
static int hf_selfm_fastser_unsresp_eor = -1;
static int hf_selfm_fastser_unsresp_elmt_statword = -1;
static int hf_selfm_fastser_unswrite_addr1 = -1;
static int hf_selfm_fastser_unswrite_addr2 = -1;
static int hf_selfm_fastser_unswrite_num_reg = -1;
static int hf_selfm_fastser_unswrite_reg_val = -1;
/* Initialize the subtree pointers */
static gint ett_selfm = -1;
static gint ett_selfm_relaydef = -1;
static gint ett_selfm_relaydef_fm = -1;
static gint ett_selfm_relaydef_proto = -1;
static gint ett_selfm_relaydef_flags = -1;
static gint ett_selfm_fmconfig = -1;
static gint ett_selfm_fmconfig_ai = -1;
static gint ett_selfm_foconfig = -1;
static gint ett_selfm_foconfig_brkr = -1;
static gint ett_selfm_foconfig_rb = -1;
static gint ett_selfm_fastop = -1;
static gint ett_selfm_fmdata = -1;
static gint ett_selfm_fmdata_ai = -1;
static gint ett_selfm_fmdata_dig = -1;
static gint ett_selfm_fmdata_ai_ch = -1;
static gint ett_selfm_fmdata_dig_ch = -1;
static gint ett_selfm_fastser = -1;
static gint ett_selfm_fastser_seq = -1;
static gint ett_selfm_fastser_def_fc = -1;
static gint ett_selfm_fastser_datareg = -1;
static gint ett_selfm_fastser_tag = -1;
static gint ett_selfm_fastser_element_list = -1;
static gint ett_selfm_fastser_element = -1;
#define PORT_SELFM 0
#define CMD_FAST_SER 0xA546
#define CMD_CLEAR_STATBIT 0xA5B9
#define CMD_RELAY_DEF 0xA5C0
#define CMD_FM_CONFIG 0xA5C1
#define CMD_DFM_CONFIG 0xA5C2
#define CMD_PDFM_CONFIG 0xA5C3
#define CMD_FASTOP_RESETDEF 0xA5CD
#define CMD_FASTOP_CONFIG 0xA5CE
#define CMD_FASTOP_CONFIG_ALT 0xA5CF
#define CMD_FM_DATA 0xA5D1
#define CMD_DFM_DATA 0xA5D2
#define CMD_PDFM_DATA 0xA5D3
#define CMD_FASTOP_RB_CTRL 0xA5E0
#define CMD_FASTOP_BR_CTRL 0xA5E3
#define CMD_FASTOP_RESET 0xA5ED
#define RELAYDEF_PROTO_SEL 0x0000
#define RELAYDEF_PROTO_SEL_FO 0x0100
#define RELAYDEF_PROTO_SEL_FM 0x0200
#define RELAYDEF_PROTO_SEL_FO_FM 0x0300
#define RELAYDEF_PROTO_LMD 0x0001
#define RELAYDEF_PROTO_LMD_FO 0x0101
#define RELAYDEF_PROTO_LMD_FO_FM 0x0301
#define RELAYDEF_PROTO_MODBUS 0x0002
#define RELAYDEF_PROTO_SYMAX 0x0003
#define RELAYDEF_PROTO_R2R 0x0004
#define RELAYDEF_PROTO_DNP3 0x0005
#define RELAYDEF_PROTO_MB 0x0006
#define RELAYDEF_PROTO_C37_118 0x0007
#define RELAYDEF_PROTO_61850 0x0008
#define FM_CONFIG_SF_LOC_FM 0
#define FM_CONFIG_SF_LOC_CFG 1
#define FM_CONFIG_ANA_CHNAME_LEN 6
#define FM_CONFIG_ANA_CHTYPE_INT16 0x00
#define FM_CONFIG_ANA_CHTYPE_INT16_LEN 2
#define FM_CONFIG_ANA_CHTYPE_FP 0x01
#define FM_CONFIG_ANA_CHTYPE_FP_LEN 4
#define FM_CONFIG_ANA_CHTYPE_FPD 0x02
#define FM_CONFIG_ANA_CHTYPE_FPD_LEN 8
#define FM_CONFIG_ANA_CHTYPE_TS 0x03
#define FM_CONFIG_ANA_CHTYPE_TS_LEN 8
#define FM_CONFIG_ANA_SFTYPE_INT16 0x00
#define FM_CONFIG_ANA_SFTYPE_FP 0x01
#define FM_CONFIG_ANA_SFTYPE_FPD 0x02
#define FM_CONFIG_ANA_SFTYPE_TS 0x03
#define FM_CONFIG_ANA_SFTYPE_NONE 0xFF
#define FO_CONFIG_PRB_SUPP_NO 0
#define FO_CONFIG_PRB_SUPP_YES 1
/* Fast SER Function Codes, "response" or "ACK" messages are the same as the request, but have the MSB set */
#define FAST_SER_MESSAGE_DEF 0x00
#define FAST_SER_MESSAGE_DEF_ACK 0x80
#define FAST_SER_EN_UNS_DATA 0x01
#define FAST_SER_EN_UNS_DATA_ACK 0x81
#define FAST_SER_DIS_UNS_DATA 0x02
#define FAST_SER_DIS_UNS_DATA_ACK 0x82
#define FAST_SER_PING 0x05
#define FAST_SER_PING_ACK 0x85
#define FAST_SER_READ_REQ 0x10 /* Limited Public Documentation... */
#define FAST_SER_READ_RESP 0x90 /* Limited Public Documentation... */
#define FAST_SER_GEN_UNS_DATA 0x12 /* Limited Public Documentation... */
#define FAST_SER_SOE_STATE_REQ 0x16 /* Limited Public Documentation... */
#define FAST_SER_SOE_STATE_RESP 0x96 /* Limited Public Documentation... */
#define FAST_SER_UNS_RESP 0x18
#define FAST_SER_UNS_RESP_ACK 0x98
#define FAST_SER_UNS_WRITE 0x20
#define FAST_SER_UNS_WRITE_REQ 0x21 /* Limited Public Documentation... */
#define FAST_SER_DEVDESC_REQ 0x30 /* Limited Public Documentation... */
#define FAST_SER_DEVDESC_RESP 0xB0 /* Limited Public Documentation... */
#define FAST_SER_DATAFMT_REQ 0x31 /* Limited Public Documentation... */
#define FAST_SER_DATAFMT_RESP 0xB1 /* Limited Public Documentation... */
#define FAST_SER_UNS_DATAFMT_RESP 0x32 /* Limited Public Documentation... */
#define FAST_SER_BITLABEL_REQ 0x33 /* Limited Public Documentation... */
#define FAST_SER_BITLABEL_RESP 0xB3 /* Limited Public Documentation... */
#define FAST_SER_MGMT_REQ 0x40 /* Limited Public Documentation... */
/* Fast SER Sequence Byte Masks
Observation suggests a similar format to the DNP3 Transport Layer byte */
#define FAST_SER_SEQ_FIR 0x80
#define FAST_SER_SEQ_FIN 0x40
#define FAST_SER_SEQ_CNT 0x3f
/* Fast SER Tag Data Types, unknown exact formatting but observation suggests the following */
/* 32-bit Float 01 00 41 */
/* 2 x 32-bit Float 02 00 41 */
/* 32-bit Integer 01 00 34 */
/* 16-bit Integer 01 00 32 */
/* 22-byte string 0B 00 12 */
/* 4-byte string 02 00 12 */
/* TARGETS 80 00 21 , address 0x3004 -> 0x3183 , 384 rows */
#define FAST_SER_TAGTYPE_FLOAT 0x41
#define FAST_SER_TAGTYPE_INT32 0x34
#define FAST_SER_TAGTYPE_INT16 0x32
#define FAST_SER_TAGTYPE_DIGWORD 0x21
#define FAST_SER_TAGTYPE_CHAR16 0x12
#define FAST_SER_UNSWRITE_COM01 0x0100
#define FAST_SER_UNSWRITE_COM02 0x0200
#define FAST_SER_UNSWRITE_COM03 0x0300
#define FAST_SER_UNSWRITE_COM04 0x0400
#define FAST_SER_UNSWRITE_COM05 0x0500
#define FAST_SER_UNSWRITE_COM06 0x0600
#define FAST_SER_UNSWRITE_COM07 0x0700
#define FAST_SER_UNSWRITE_COM08 0x0800
#define FAST_SER_UNSWRITE_COM09 0x0900
#define FAST_SER_UNSWRITE_COM10 0x0A00
#define FAST_SER_UNSWRITE_COM11 0x0B00
#define FAST_SER_UNSWRITE_COM12 0x0C00
#define FAST_SER_UNSWRITE_COM13 0x0D00
#define FAST_SER_UNSWRITE_COM14 0x0E00
#define FAST_SER_UNSWRITE_COM15 0x0F00
#define FASTOP_BR1_OPEN 0x31
#define FASTOP_BR1_CLOSE 0x11
#define FASTOP_BR2_OPEN 0x32
#define FASTOP_BR2_CLOSE 0x12
#define FASTOP_BR3_OPEN 0x33
#define FASTOP_BR3_CLOSE 0x13
#define FASTOP_BR4_OPEN 0x34
#define FASTOP_BR4_CLOSE 0x14
#define FASTOP_RB01_CLEAR 0x00
#define FASTOP_RB01_SET 0x20
#define FASTOP_RB01_PULSE 0x40
#define FASTOP_RB02_CLEAR 0x01
#define FASTOP_RB02_SET 0x21
#define FASTOP_RB02_PULSE 0x41
#define FASTOP_RB03_CLEAR 0x02
#define FASTOP_RB03_SET 0x22
#define FASTOP_RB03_PULSE 0x42
#define FASTOP_RB04_CLEAR 0x03
#define FASTOP_RB04_SET 0x23
#define FASTOP_RB04_PULSE 0x43
#define FASTOP_RB05_CLEAR 0x04
#define FASTOP_RB05_SET 0x24
#define FASTOP_RB05_PULSE 0x44
#define FASTOP_RB06_CLEAR 0x05
#define FASTOP_RB06_SET 0x25
#define FASTOP_RB06_PULSE 0x45
#define FASTOP_RB07_CLEAR 0x06
#define FASTOP_RB07_SET 0x26
#define FASTOP_RB07_PULSE 0x46
#define FASTOP_RB08_CLEAR 0x07
#define FASTOP_RB08_SET 0x27
#define FASTOP_RB08_PULSE 0x47
#define FASTOP_RB09_CLEAR 0x08
#define FASTOP_RB09_SET 0x28
#define FASTOP_RB09_PULSE 0x48
#define FASTOP_RB10_CLEAR 0x09
#define FASTOP_RB10_SET 0x29
#define FASTOP_RB10_PULSE 0x49
#define FASTOP_RB11_CLEAR 0x0A
#define FASTOP_RB11_SET 0x2A
#define FASTOP_RB11_PULSE 0x4A
#define FASTOP_RB12_CLEAR 0x0B
#define FASTOP_RB12_SET 0x2B
#define FASTOP_RB12_PULSE 0x4B
#define FASTOP_RB13_CLEAR 0x0C
#define FASTOP_RB13_SET 0x2C
#define FASTOP_RB13_PULSE 0x4C
#define FASTOP_RB14_CLEAR 0x0D
#define FASTOP_RB14_SET 0x2D
#define FASTOP_RB14_PULSE 0x4D
#define FASTOP_RB15_CLEAR 0x0E
#define FASTOP_RB15_SET 0x2E
#define FASTOP_RB15_PULSE 0x4E
#define FASTOP_RB16_CLEAR 0x0F
#define FASTOP_RB16_SET 0x2F
#define FASTOP_RB16_PULSE 0x4F
#define FASTOP_RB17_CLEAR 0x10
#define FASTOP_RB17_SET 0x30
#define FASTOP_RB17_PULSE 0x50
#define FASTOP_RB18_CLEAR 0x11
#define FASTOP_RB18_SET 0x31
#define FASTOP_RB18_PULSE 0x51
#define FASTOP_RB19_CLEAR 0x12
#define FASTOP_RB19_SET 0x32
#define FASTOP_RB19_PULSE 0x52
#define FASTOP_RB20_CLEAR 0x13
#define FASTOP_RB20_SET 0x33
#define FASTOP_RB20_PULSE 0x53
#define FASTOP_RB21_CLEAR 0x14
#define FASTOP_RB21_SET 0x34
#define FASTOP_RB21_PULSE 0x54
#define FASTOP_RB22_CLEAR 0x15
#define FASTOP_RB22_SET 0x35
#define FASTOP_RB22_PULSE 0x55
#define FASTOP_RB23_CLEAR 0x16
#define FASTOP_RB23_SET 0x36
#define FASTOP_RB23_PULSE 0x56
#define FASTOP_RB24_CLEAR 0x17
#define FASTOP_RB24_SET 0x37
#define FASTOP_RB24_PULSE 0x57
#define FASTOP_RB25_CLEAR 0x18
#define FASTOP_RB25_SET 0x38
#define FASTOP_RB25_PULSE 0x58
#define FASTOP_RB26_CLEAR 0x19
#define FASTOP_RB26_SET 0x39
#define FASTOP_RB26_PULSE 0x59
#define FASTOP_RB27_CLEAR 0x1A
#define FASTOP_RB27_SET 0x3A
#define FASTOP_RB27_PULSE 0x5A
#define FASTOP_RB28_CLEAR 0x1B
#define FASTOP_RB28_SET 0x3B
#define FASTOP_RB28_PULSE 0x5B
#define FASTOP_RB29_CLEAR 0x1C
#define FASTOP_RB29_SET 0x3C
#define FASTOP_RB29_PULSE 0x5C
#define FASTOP_RB30_CLEAR 0x1D
#define FASTOP_RB30_SET 0x3D
#define FASTOP_RB30_PULSE 0x5D
#define FASTOP_RB31_CLEAR 0x1E
#define FASTOP_RB31_SET 0x3E
#define FASTOP_RB31_PULSE 0x5E
#define FASTOP_RB32_CLEAR 0x1F
#define FASTOP_RB32_SET 0x3F
#define FASTOP_RB32_PULSE 0x5F
/* Globals for SEL Protocol Preferences */
static gboolean selfm_desegment = TRUE;
static gboolean selfm_telnet_clean = TRUE;
static guint global_selfm_tcp_port = PORT_SELFM; /* Port 0, by default */
/***************************************************************************************/
/* Fast Meter Message structs */
/***************************************************************************************/
/* Holds Configuration Information required to decode a Fast Meter analog value */
typedef struct {
gchar name[FM_CONFIG_ANA_CHNAME_LEN+1]; /* Name of Analog Channel, 6 char + a null */
guint8 type; /* Analog Channel Type, Int, FP, etc */
guint8 sf_type; /* Analog Scale Factor Type, none, etc */
guint16 sf_offset; /* Analog Scale Factor Offset */
} fm_analog_info;
/* Holds Information from a single "Fast Meter Configuration" frame. Required to dissect subsequent "Data" frames. */
typedef struct {
guint32 fnum; /* frame number */
guint16 cfg_cmd; /* holds ID of config command, ie: 0xa5c1 */
guint8 num_flags; /* Number of Flag Bytes */
guint8 num_ai; /* Number of Analog Inputs */
guint8 num_ai_samples; /* Number samples per Analog Input */
guint16 offset_ai; /* Start Offset of Analog Inputs */
guint8 num_dig; /* Number of Digital Input Blocks */
guint16 offset_dig; /* Start Offset of Digital Inputs */
guint16 offset_ts; /* Start Offset of Time Stamp */
guint8 num_calc; /* Number of Calculations */
fm_analog_info *analogs; /* Array of fm_analog_infos */
} fm_config_frame;
typedef struct {
wmem_slist_t *fm_config_frames; /* Contains a fm_config_data struct for the information in the Fast Meter configuration frame */
} fm_conversation;
/**************************************************************************************/
/* Fast SER Message structs */
/**************************************************************************************/
/* Holds Configuration Information required to decode a Fast SER Data Tag */
/* Each data region format is returned as a sequential list of tags, w/o reference to */
/* an absolute address. We can determine an address based on the sequence byte count */
/* when the tag was encountered and the index position within the data format message */
typedef struct {
gchar name[11]; /* Name of Data Tag, 11 chars, null-terminated */
guint8 seq_count; /* Sequence count of data format message (0,1,2,3,4,etc) */
guint8 index_pos; /* Index Offset Position within data format message (1-16) */
guint8 quantity; /* Quantity of values within tag */
guint8 type; /* Data Tag Type, Int, FP, etc */
} fastser_tag;
/* Holds Configuration Information required to decode a Fast SER Data Region */
typedef struct {
gchar name[12]; /* Name of Data Region, 12 chars, null-terminated */
guint8 base_addr; /* Base address offset of region (0x3000, etc) */
guint8 qty_addr; /* Quantity of 16-bit addresses within region */
GArray *tags; /* Array of fastser_tags */
} fastser_region;
typedef struct {
guint32 fnum; /* frame number */
GArray *fastser_region_blocks; /* Contains a fastser_region struct for the information in the Fast SER configuration frame */
} fastser_config_frame;
static const value_string selfm_msgtype_vals[] = {
{ CMD_CLEAR_STATBIT, "Clear Status Bits Command" },
{ CMD_FAST_SER, "Fast SER Block" },
{ CMD_FASTOP_BR_CTRL, "Fast Operate Breaker Bit Control" },
{ CMD_FASTOP_RB_CTRL, "Fast Operate Remote Bit Control" },
{ CMD_FASTOP_CONFIG, "Fast Operate Configuration" },
{ CMD_FASTOP_CONFIG_ALT, "Fast Operate Configuration (alt)" },
{ CMD_FASTOP_RESET, "Fast Operate Reset" },
{ CMD_FASTOP_RESETDEF, "Fast Operate Reset Definition" },
{ CMD_RELAY_DEF, "Relay Definition Block" },
{ CMD_FM_CONFIG, "Fast Meter Configuration Block" },
{ CMD_FM_DATA, "Fast Meter Data Block" },
{ CMD_DFM_CONFIG, "Demand Fast Meter Configuration Block" },
{ CMD_DFM_DATA, "Demand Fast Meter Data Block" },
{ CMD_PDFM_CONFIG, "Peak Demand Fast Meter Configuration Block" },
{ CMD_PDFM_DATA, "Peak Demand Fast Meter Data Block" },
{ 0, NULL }
};
static value_string_ext selfm_msgtype_vals_ext = VALUE_STRING_EXT_INIT(selfm_msgtype_vals);
static const value_string selfm_relaydef_proto_vals[] = {
{ RELAYDEF_PROTO_SEL, "SEL Fast Meter" },
{ RELAYDEF_PROTO_SEL_FO, "SEL Fast Meter w/ Fast Operate" },
{ RELAYDEF_PROTO_SEL_FM, "SEL Fast Meter w/ Fast SER" },
{ RELAYDEF_PROTO_SEL_FO_FM, "SEL Fast Meter w/ Fast Operate and Fast SER" },
{ RELAYDEF_PROTO_LMD, "SEL Limited Multidrop (LMD)" },
{ RELAYDEF_PROTO_LMD_FO, "SEL Limited Multidrop (LMD) w/ Fast Operate" },
{ RELAYDEF_PROTO_LMD_FO_FM, "SEL Limited Multidrop (LMD) w/ Fast Operate and Fast SER" },
{ RELAYDEF_PROTO_MODBUS, "Modbus" },
{ RELAYDEF_PROTO_SYMAX, "SY/MAX" },
{ RELAYDEF_PROTO_R2R, "SEL Relay-to-Relay" },
{ RELAYDEF_PROTO_DNP3, "DNP 3.0" },
{ RELAYDEF_PROTO_MB, "SEL Mirrored Bits" },
{ RELAYDEF_PROTO_C37_118, "IEEE 37.118 Synchrophasors" },
{ RELAYDEF_PROTO_61850, "IEC 61850" },
{ 0, NULL }
};
static value_string_ext selfm_relaydef_proto_vals_ext = VALUE_STRING_EXT_INIT(selfm_relaydef_proto_vals);
static const value_string selfm_fmconfig_ai_chtype_vals[] = {
{ FM_CONFIG_ANA_CHTYPE_INT16, "16-Bit Integer" },
{ FM_CONFIG_ANA_CHTYPE_FP, "IEEE Floating Point" },
{ FM_CONFIG_ANA_CHTYPE_FPD, "IEEE Floating Point (Double)" },
{ FM_CONFIG_ANA_CHTYPE_TS, "8-byte Time Stamp" },
{ 0, NULL }
};
static const value_string selfm_fmconfig_ai_sftype_vals[] = {
{ FM_CONFIG_ANA_SFTYPE_INT16, "16-Bit Integer" },
{ FM_CONFIG_ANA_SFTYPE_FP, "IEEE Floating Point" },
{ FM_CONFIG_ANA_SFTYPE_FPD, "IEEE Floating Point (Double)" },
{ FM_CONFIG_ANA_SFTYPE_TS, "8-byte Time Stamp" },
{ FM_CONFIG_ANA_SFTYPE_NONE, "None" },
{ 0, NULL }
};
static const value_string selfm_fmconfig_sfloc_vals[] = {
{ FM_CONFIG_SF_LOC_FM, "In Fast Meter Message" },
{ FM_CONFIG_SF_LOC_CFG, "In Configuration Message" },
{ 0, NULL }
};
/* Depending on number of analog samples present in Fast Meter Messages, identification of data will change */
static const value_string selfm_fmconfig_numsamples1_vals[] = {
{ 1, "Magnitudes Only" },
{ 0, NULL }
};
static const value_string selfm_fmconfig_numsamples2_vals[] = {
{ 1, "Imaginary Components" },
{ 2, "Real Components" },
{ 0, NULL }
};
static const value_string selfm_fmconfig_numsamples4_vals[] = {
{ 1, "1st Quarter Cycle Data" },
{ 2, "2nd Quarter Cycle Data" },
{ 3, "5th Quarter-Cycle Data" },
{ 4, "6th Quarter-Cycle Data" },
{ 0, NULL }
};
static const value_string selfm_foconfig_prb_supp_vals[] = {
{ FO_CONFIG_PRB_SUPP_NO, "No" },
{ FO_CONFIG_PRB_SUPP_YES, "Yes" },
{ 0, NULL }
};
static const value_string selfm_ser_status_vals[] = {
{ 0, "Deasserted" },
{ 1, "Asserted" },
{ 0, NULL }
};
static const value_string selfm_fo_rb_vals[] = {
{ FASTOP_RB01_CLEAR, "RB01 Clear" },
{ FASTOP_RB01_SET, "RB01 Set" },
{ FASTOP_RB01_PULSE, "RB01 Pulse" },
{ FASTOP_RB02_CLEAR, "RB02 Clear" },
{ FASTOP_RB02_SET, "RB02 Set" },
{ FASTOP_RB02_PULSE, "RB02 Pulse" },
{ FASTOP_RB03_CLEAR, "RB03 Clear" },
{ FASTOP_RB03_SET, "RB03 Set" },
{ FASTOP_RB03_PULSE, "RB03 Pulse" },
{ FASTOP_RB04_CLEAR, "RB04 Clear" },
{ FASTOP_RB04_SET, "RB04 Set" },
{ FASTOP_RB04_PULSE, "RB04 Pulse" },
{ FASTOP_RB05_CLEAR, "RB05 Clear" },
{ FASTOP_RB05_SET, "RB05 Set" },
{ FASTOP_RB05_PULSE, "RB05 Pulse" },
{ FASTOP_RB06_CLEAR, "RB06 Clear" },
{ FASTOP_RB06_SET, "RB06 Set" },
{ FASTOP_RB06_PULSE, "RB06 Pulse" },
{ FASTOP_RB07_CLEAR, "RB07 Clear" },
{ FASTOP_RB07_SET, "RB07 Set" },
{ FASTOP_RB07_PULSE, "RB07 Pulse" },
{ FASTOP_RB08_CLEAR, "RB08 Clear" },
{ FASTOP_RB08_SET, "RB08 Set" },
{ FASTOP_RB08_PULSE, "RB08 Pulse" },
{ FASTOP_RB09_CLEAR, "RB09 Clear" },
{ FASTOP_RB09_SET, "RB09 Set" },
{ FASTOP_RB09_PULSE, "RB09 Pulse" },
{ FASTOP_RB10_CLEAR, "RB10 Clear" },
{ FASTOP_RB10_SET, "RB10 Set" },
{ FASTOP_RB10_PULSE, "RB10 Pulse" },
{ FASTOP_RB11_CLEAR, "RB11 Clear" },
{ FASTOP_RB11_SET, "RB11 Set" },
{ FASTOP_RB11_PULSE, "RB11 Pulse" },
{ FASTOP_RB12_CLEAR, "RB12 Clear" },
{ FASTOP_RB12_SET, "RB12 Set" },
{ FASTOP_RB12_PULSE, "RB12 Pulse" },
{ FASTOP_RB13_CLEAR, "RB13 Clear" },
{ FASTOP_RB13_SET, "RB13 Set" },
{ FASTOP_RB13_PULSE, "RB13 Pulse" },
{ FASTOP_RB14_CLEAR, "RB14 Clear" },
{ FASTOP_RB14_SET, "RB14 Set" },
{ FASTOP_RB14_PULSE, "RB14 Pulse" },
{ FASTOP_RB15_CLEAR, "RB15 Clear" },
{ FASTOP_RB15_SET, "RB15 Set" },
{ FASTOP_RB15_PULSE, "RB15 Pulse" },
{ FASTOP_RB16_CLEAR, "RB16 Clear" },
{ FASTOP_RB16_SET, "RB16 Set" },
{ FASTOP_RB16_PULSE, "RB16 Pulse" },
{ FASTOP_RB17_CLEAR, "RB17 Clear" },
{ FASTOP_RB17_SET, "RB17 Set" },
{ FASTOP_RB17_PULSE, "RB17 Pulse" },
{ FASTOP_RB18_CLEAR, "RB18 Clear" },
{ FASTOP_RB18_SET, "RB18 Set" },
{ FASTOP_RB18_PULSE, "RB18 Pulse" },
{ FASTOP_RB19_CLEAR, "RB19 Clear" },
{ FASTOP_RB19_SET, "RB19 Set" },
{ FASTOP_RB19_PULSE, "RB19 Pulse" },
{ FASTOP_RB20_CLEAR, "RB20 Clear" },
{ FASTOP_RB20_SET, "RB20 Set" },
{ FASTOP_RB20_PULSE, "RB20 Pulse" },
{ FASTOP_RB21_CLEAR, "RB21 Clear" },
{ FASTOP_RB21_SET, "RB21 Set" },
{ FASTOP_RB21_PULSE, "RB21 Pulse" },
{ FASTOP_RB22_CLEAR, "RB22 Clear" },
{ FASTOP_RB22_SET, "RB22 Set" },
{ FASTOP_RB22_PULSE, "RB22 Pulse" },
{ FASTOP_RB23_CLEAR, "RB23 Clear" },
{ FASTOP_RB23_SET, "RB23 Set" },
{ FASTOP_RB23_PULSE, "RB23 Pulse" },
{ FASTOP_RB24_CLEAR, "RB24 Clear" },
{ FASTOP_RB24_SET, "RB24 Set" },
{ FASTOP_RB24_PULSE, "RB24 Pulse" },
{ FASTOP_RB25_CLEAR, "RB25 Clear" },
{ FASTOP_RB25_SET, "RB25 Set" },
{ FASTOP_RB25_PULSE, "RB25 Pulse" },
{ FASTOP_RB26_CLEAR, "RB26 Clear" },
{ FASTOP_RB26_SET, "RB26 Set" },
{ FASTOP_RB26_PULSE, "RB26 Pulse" },
{ FASTOP_RB27_CLEAR, "RB27 Clear" },
{ FASTOP_RB27_SET, "RB27 Set" },
{ FASTOP_RB27_PULSE, "RB27 Pulse" },
{ FASTOP_RB28_CLEAR, "RB28 Clear" },
{ FASTOP_RB28_SET, "RB28 Set" },
{ FASTOP_RB28_PULSE, "RB28 Pulse" },
{ FASTOP_RB29_CLEAR, "RB29 Clear" },
{ FASTOP_RB29_SET, "RB29 Set" },
{ FASTOP_RB29_PULSE, "RB29 Pulse" },
{ FASTOP_RB30_CLEAR, "RB30 Clear" },
{ FASTOP_RB30_SET, "RB30 Set" },
{ FASTOP_RB30_PULSE, "RB30 Pulse" },
{ FASTOP_RB31_CLEAR, "RB31 Clear" },
{ FASTOP_RB31_SET, "RB31 Set" },
{ FASTOP_RB31_PULSE, "RB31 Pulse" },
{ FASTOP_RB32_CLEAR, "RB32 Clear" },
{ FASTOP_RB32_SET, "RB32 Set" },
{ FASTOP_RB32_PULSE, "RB32 Pulse" },
{ 0, NULL }
};
static const value_string selfm_fo_br_vals[] = {
{ FASTOP_BR1_OPEN, "Breaker Bit 1 Open (OC/OC1)" },
{ FASTOP_BR1_CLOSE, "Breaker Bit 1 Close (CC/CC1)" },
{ FASTOP_BR2_OPEN, "Breaker Bit 2 Open (OC2)" },
{ FASTOP_BR2_CLOSE, "Breaker Bit 2 Close (CC2)" },
{ FASTOP_BR3_OPEN, "Breaker Bit 3 Open (OC3)" },
{ FASTOP_BR3_CLOSE, "Breaker Bit 3 Close (CC3)" },
{ FASTOP_BR4_OPEN, "Breaker Bit 4 Open (OC4)" },
{ FASTOP_BR4_CLOSE, "Breaker Bit 4 Close (CC4)" },
{ 0, NULL }
};
static const value_string selfm_fastser_func_code_vals[] = {
{ FAST_SER_MESSAGE_DEF, "Fast SER Message Definition Block" },
{ FAST_SER_MESSAGE_DEF_ACK, "Fast SER Message Definition Block ACK" },
{ FAST_SER_EN_UNS_DATA, "Enable Unsolicited Data" },
{ FAST_SER_EN_UNS_DATA_ACK, "Enable Unsolicited Data ACK" },
{ FAST_SER_DIS_UNS_DATA, "Disable Unsolicited Data" },
{ FAST_SER_DIS_UNS_DATA_ACK, "Disable Unsolicited Data ACK" },
{ FAST_SER_PING, "Ping Message" },
{ FAST_SER_PING_ACK, "Ping Message ACK" },
{ FAST_SER_READ_REQ, "Read Request" },
{ FAST_SER_READ_RESP, "Read Response" },
{ FAST_SER_GEN_UNS_DATA, "Generic Unsolicited Data" },
{ FAST_SER_SOE_STATE_REQ, "SOE Present State Request" },
{ FAST_SER_SOE_STATE_RESP, "SOE Present State Response" },
{ FAST_SER_UNS_RESP, "Unsolicited Fast SER Data Response" },
{ FAST_SER_UNS_RESP_ACK, "Unsolicited Fast SER Data Response ACK" },
{ FAST_SER_UNS_WRITE, "Unsolicited Write" },
{ FAST_SER_UNS_WRITE_REQ, "Unsolicited Write Request" },
{ FAST_SER_DEVDESC_REQ, "Device Description Request" },
{ FAST_SER_DEVDESC_RESP, "Device Description Response" },
{ FAST_SER_DATAFMT_REQ, "Data Format Request" },
{ FAST_SER_DATAFMT_RESP, "Data Format Response" },
{ FAST_SER_UNS_DATAFMT_RESP, "Unsolicited Data Format Response" },
{ FAST_SER_BITLABEL_REQ, "Bit Label Request" },
{ FAST_SER_BITLABEL_RESP, "Bit Label Response" },
{ FAST_SER_MGMT_REQ, "Management Request" },
{ 0, NULL }
};
static const value_string selfm_fastser_seq_vals[] = {
{ FAST_SER_SEQ_FIN, "FIN" },
{ FAST_SER_SEQ_FIR, "FIR" },
{ 0, NULL }
};
static const value_string selfm_fastser_tagtype_vals[] = {
{ FAST_SER_TAGTYPE_FLOAT, "IEEE Floating Point" },
{ FAST_SER_TAGTYPE_INT32, "32-bit Integer" },
{ FAST_SER_TAGTYPE_INT16, "16-bit Integer" },
{ FAST_SER_TAGTYPE_DIGWORD, "Digital Word" },
{ FAST_SER_TAGTYPE_CHAR16, "16-bit Character Array" },
{ 0, NULL }
};
static const value_string selfm_fastser_unswrite_com_vals[] = {
{ FAST_SER_UNSWRITE_COM01, "COM01" },
{ FAST_SER_UNSWRITE_COM02, "COM02" },
{ FAST_SER_UNSWRITE_COM03, "COM03" },
{ FAST_SER_UNSWRITE_COM04, "COM04" },
{ FAST_SER_UNSWRITE_COM05, "COM05" },
{ FAST_SER_UNSWRITE_COM06, "COM06" },
{ FAST_SER_UNSWRITE_COM07, "COM07" },
{ FAST_SER_UNSWRITE_COM08, "COM08" },
{ FAST_SER_UNSWRITE_COM09, "COM09" },
{ FAST_SER_UNSWRITE_COM10, "COM10" },
{ FAST_SER_UNSWRITE_COM11, "COM11" },
{ FAST_SER_UNSWRITE_COM12, "COM12" },
{ FAST_SER_UNSWRITE_COM13, "COM13" },
{ FAST_SER_UNSWRITE_COM14, "COM14" },
{ FAST_SER_UNSWRITE_COM15, "COM15" },
{ 0, NULL }
};
/**********************************************************************************************************/
/* Clean all instances of 0xFFFF from Telnet payload to compensate for IAC control code (replace w/ 0xFF) */
/* Function Duplicated from packet-telnet.c (unescape_and_tvbuffify_telnet_option) */
/**********************************************************************************************************/
static tvbuff_t *
clean_telnet_iac(packet_info *pinfo, tvbuff_t *tvb, int offset, int len)
{
tvbuff_t *telnet_tvb;
guint8 *buf;
const guint8 *spos;
guint8 *dpos;
int skip, l;
spos=tvb_get_ptr(tvb, offset, len);
buf=(guint8 *)g_malloc(len);
dpos=buf;
skip=0;
l=len;
while(l>0){
if((spos[0]==0xff) && (spos[1]==0xff)){
skip++;
l-=2;
*(dpos++)=0xff;
spos+=2;
continue;
}
*(dpos++)=*(spos++);
l--;
}
telnet_tvb = tvb_new_child_real_data(tvb, buf, len-skip, len-skip);
tvb_set_free_cb(telnet_tvb, g_free);
add_new_data_source(pinfo, telnet_tvb, "Processed Telnet Data");
return telnet_tvb;
}
/******************************************************************************************************/
/* Execute dissection of Fast Meter configuration rames independent of any GUI access of said frames */
/* Load configuration information into fm_config_frame struct */
/******************************************************************************************************/
static fm_config_frame* fmconfig_frame_fast(tvbuff_t *tvb)
{
/* Set up structures needed to add the protocol subtree and manage it */
guint count, offset = 0;
fm_config_frame *frame;
/* get a new frame and initialize it */
frame = (fm_config_frame *)wmem_alloc(wmem_file_scope(), sizeof(fm_config_frame));
/* Get data packet setup information from config message and copy into ai_info (if required) */
frame->cfg_cmd = tvb_get_ntohs(tvb, offset);
/* skip length byte, position offset+2 */
frame->num_flags = tvb_get_guint8(tvb, offset+3);
/* skip scale factor location, position offset+4 */
/* skip number of scale factors, position offset+5 */
frame->num_ai = tvb_get_guint8(tvb, offset+6);
frame->num_ai_samples = tvb_get_guint8(tvb, offset+7);
frame->num_dig = tvb_get_guint8(tvb, offset+8);
frame->num_calc = tvb_get_guint8(tvb, offset+9);
/* Update offset pointer */
offset += 10;
/* Get data packet analog/timestamp/digital offsets and copy into ai_info */
frame->offset_ai = tvb_get_ntohs(tvb, offset);
frame->offset_ts = tvb_get_ntohs(tvb, offset+2);
frame->offset_dig = tvb_get_ntohs(tvb, offset+4);
/* Update offset pointer */
offset += 6;
frame->analogs = (fm_analog_info *)wmem_alloc(wmem_file_scope(), frame->num_ai * sizeof(fm_analog_info));
/* Get AI Channel Details and copy into ai_info */
for (count = 0; count < frame->num_ai; count++) {
fm_analog_info *analog = &(frame->analogs[count]);
tvb_memcpy(tvb, analog->name, offset, FM_CONFIG_ANA_CHNAME_LEN);
analog->name[FM_CONFIG_ANA_CHNAME_LEN] = '\0'; /* Put a terminating null onto the end of the AI Channel name */
analog->type = tvb_get_guint8(tvb, offset+6);
analog->sf_type = tvb_get_guint8(tvb, offset+7);
analog->sf_offset = tvb_get_ntohs(tvb, offset+8);
offset += 10;
}
return frame;
}
/******************************************************************************************************/
/* Code to Dissect Relay Definition Frames */
/******************************************************************************************************/
static int
dissect_relaydef_frame(tvbuff_t *tvb, proto_tree *tree, int offset)
{
/* Set up structures needed to add the protocol subtree and manage it */
proto_item *relaydef_item, *relaydef_fm_item, *relaydef_flags_item, *relaydef_proto_item;
proto_tree *relaydef_tree, *relaydef_fm_tree, *relaydef_flags_tree, *relaydef_proto_tree;
guint8 len, num_proto, num_fm, num_flags;
int count;
len = tvb_get_guint8(tvb, offset);
num_proto = tvb_get_guint8(tvb, offset+1);
num_fm = tvb_get_guint8(tvb, offset+2);
num_flags = tvb_get_guint8(tvb, offset+3);
/* Add items to protocol tree specific to Relay Definition Block */
relaydef_item = proto_tree_add_text(tree, tvb, offset, len-2, "Relay Definition Block Details");
relaydef_tree = proto_item_add_subtree(relaydef_item, ett_selfm_relaydef);
/* Reported length */
proto_tree_add_item(relaydef_tree, hf_selfm_relaydef_len, tvb, offset, 1, ENC_BIG_ENDIAN);
/* Reported Number of Protocols Supported */
relaydef_proto_item = proto_tree_add_item(relaydef_tree, hf_selfm_relaydef_numproto, tvb, offset+1, 1, ENC_BIG_ENDIAN);
relaydef_proto_tree = proto_item_add_subtree(relaydef_proto_item, ett_selfm_relaydef_proto);
/* Reported Number of Fast Meter Commands Supported */
relaydef_fm_item = proto_tree_add_item(relaydef_tree, hf_selfm_relaydef_numfm, tvb, offset+2, 1, ENC_BIG_ENDIAN);
relaydef_fm_tree = proto_item_add_subtree(relaydef_fm_item, ett_selfm_relaydef_fm);
/* Reported Number of Status Bit Flags Supported */
relaydef_flags_item = proto_tree_add_item(relaydef_tree, hf_selfm_relaydef_numflags, tvb, offset+3, 1, ENC_BIG_ENDIAN);
relaydef_flags_tree = proto_item_add_subtree(relaydef_flags_item, ett_selfm_relaydef_flags);
/* Get our offset up-to-date */
offset += 4;
/* Add each reported Fast Meter cfg/data message */
for (count = 1; count <= num_fm; count++) {
proto_tree_add_item(relaydef_fm_tree, hf_selfm_relaydef_fmcfg_cmd, tvb, offset, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(relaydef_fm_tree, hf_selfm_relaydef_fmdata_cmd, tvb, offset+2, 2, ENC_BIG_ENDIAN);
offset += 4;
}
/* Add each reported status bit flag, along with corresponding response command */
for (count = 1; count <= num_flags; count++) {
proto_tree_add_item(relaydef_flags_tree, hf_selfm_relaydef_statbit, tvb, offset, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(relaydef_flags_tree, hf_selfm_relaydef_statbit_cmd, tvb, offset+2, 6, ENC_NA);
offset += 8;
}
/* Add each supported protocol */
for (count = 1; count <= num_proto; count++) {
proto_tree_add_item(relaydef_proto_tree, hf_selfm_relaydef_proto, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
}
return tvb_length(tvb);
}
/******************************************************************************************************/
/* Code to dissect Fast Meter Configuration Frames */
/******************************************************************************************************/
static int
dissect_fmconfig_frame(tvbuff_t *tvb, proto_tree *tree, int offset)
{
/* Set up structures needed to add the protocol subtree and manage it */
proto_item *fmconfig_item, *fmconfig_ai_item=NULL;
proto_tree *fmconfig_tree, *fmconfig_ai_tree=NULL;
guint count;
guint8 len, num_ai;
gchar ai_name[FM_CONFIG_ANA_CHNAME_LEN+1]; /* 6 Characters + a Null */
len = tvb_get_guint8(tvb, offset);
/* skip num_flags, position offset+1 */
/* skip sf_loc, position offset+2 */
/* skip num_sf, position offset+3 */
num_ai = tvb_get_guint8(tvb, offset+4);
/* skip num_samp, position offset+5 */
/* skip num_dig, position offset+6 */
/* skip num_calc, position offset+7 */
fmconfig_item = proto_tree_add_text(tree, tvb, offset, len, "Fast Meter Configuration Details");
fmconfig_tree = proto_item_add_subtree(fmconfig_item, ett_selfm_fmconfig);
/* Add items to protocol tree specific to Fast Meter Configuration Block */
/* Get Setup Information for FM Config Block */
proto_tree_add_item(fmconfig_tree, hf_selfm_fmconfig_len, tvb, offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmconfig_tree, hf_selfm_fmconfig_numflags, tvb, offset+1, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmconfig_tree, hf_selfm_fmconfig_loc_sf, tvb, offset+2, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmconfig_tree, hf_selfm_fmconfig_num_sf, tvb, offset+3, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmconfig_tree, hf_selfm_fmconfig_num_ai, tvb, offset+4, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmconfig_tree, hf_selfm_fmconfig_num_samp, tvb, offset+5, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmconfig_tree, hf_selfm_fmconfig_num_dig, tvb, offset+6, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmconfig_tree, hf_selfm_fmconfig_num_calc, tvb, offset+7, 1, ENC_BIG_ENDIAN);
/* Update offset pointer */
offset += 8;
/* Add data packet offsets to tree and update offset pointer */
proto_tree_add_item(fmconfig_tree, hf_selfm_fmconfig_ofs_ai, tvb, offset, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(fmconfig_tree, hf_selfm_fmconfig_ofs_ts, tvb, offset+2, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(fmconfig_tree, hf_selfm_fmconfig_ofs_dig, tvb, offset+4, 2, ENC_BIG_ENDIAN);
offset += 6;
/* Get AI Channel Details */
for (count = 0; count < num_ai; count++) {
tvb_memcpy(tvb, &ai_name, offset, 6);
ai_name[FM_CONFIG_ANA_CHNAME_LEN] = '\0'; /* Put a terminating null onto the end of the AI name, in case none exists */
fmconfig_ai_item = proto_tree_add_text(fmconfig_tree, tvb, offset, 10, "Analog Channel: %s", ai_name);
fmconfig_ai_tree = proto_item_add_subtree(fmconfig_ai_item, ett_selfm_fmconfig_ai);
/* Add Channel Name, Channel Data Type, Scale Factor Type and Scale Factor Offset to tree */
proto_tree_add_text(fmconfig_ai_tree, tvb, offset, 6, "Analog Channel Name: %s", ai_name);
proto_tree_add_item(fmconfig_ai_tree, hf_selfm_fmconfig_ai_type, tvb, offset+6, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmconfig_ai_tree, hf_selfm_fmconfig_ai_sf_type, tvb, offset+7, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmconfig_ai_tree, hf_selfm_fmconfig_ai_sf_ofs, tvb, offset+8, 2, ENC_BIG_ENDIAN);
/* Update Offset Pointer */
offset += 10;
}
/* XXX - Need to decode any Calculation block instances here in a future version, based on num_calc */
return tvb_length(tvb);
}
/******************************************************************************************************/
/* Code to dissect Fast Meter Data Frames */
/* Formatting depends heavily on previously-encountered Configuration Frames so search array instances for them */
/******************************************************************************************************/
static int
dissect_fmdata_frame(tvbuff_t *tvb, proto_tree *tree, packet_info *pinfo, int offset, guint16 config_cmd_match)
{
/* Set up structures needed to add the protocol subtree and manage it */
proto_item *fmdata_item, *fmdata_ai_item=NULL, *fmdata_dig_item=NULL, *fmdata_ai_ch_item=NULL, *fmdata_dig_ch_item=NULL;
proto_tree *fmdata_tree, *fmdata_ai_tree=NULL, *fmdata_dig_tree=NULL, *fmdata_ai_ch_tree=NULL, *fmdata_dig_ch_tree=NULL;
guint8 len, i=0, j=0, ts_mon, ts_day, ts_year, ts_hour, ts_min, ts_sec;
guint16 config_cmd, ts_msec, ai_int16val;
gfloat ai_fpval, ai_sf_fp;
gdouble ai_fpd_val;
gboolean config_found = FALSE;
fm_conversation *conv;
fm_config_frame *cfg_data;
gint cnt = 0, ch_size=0;
len = tvb_get_guint8(tvb, offset);
fmdata_item = proto_tree_add_text(tree, tvb, offset, len-2, "Fast Meter Data Details");
fmdata_tree = proto_item_add_subtree(fmdata_item, ett_selfm_fmdata);
/* Reported length */
proto_tree_add_item(fmdata_tree, hf_selfm_fmdata_len, tvb, offset, 1, ENC_BIG_ENDIAN);
offset += 1;
/* Search for previously-encountered Configuration information to dissect the frame */
{
conv = (fm_conversation *)p_get_proto_data(pinfo->fd, proto_selfm, 0);
if (conv) {
wmem_slist_frame_t *frame = wmem_slist_front(conv->fm_config_frames);
/* Cycle through possible instances of multiple fm_config_data_blocks, looking for match */
while (frame && !config_found) {
cfg_data = (fm_config_frame *)wmem_slist_frame_data(frame);
config_cmd = cfg_data->cfg_cmd;
/* If the stored config_cmd matches the expected one we are looking for, mark that the config data was found */
if (config_cmd == config_cmd_match) {
proto_item_append_text(fmdata_item, ", using frame number %"G_GUINT32_FORMAT" as Configuration Frame",
cfg_data->fnum);
config_found = TRUE;
}
frame = wmem_slist_frame_next(frame);
}
if (config_found) {
/* Retrieve number of Status Flag bytes and setup tree */
if (cfg_data->num_flags == 1){
proto_tree_add_item(fmdata_tree, hf_selfm_fmdata_flagbyte, tvb, offset, 1, ENC_BIG_ENDIAN);
/*offset += 1;*/
}
cnt = cfg_data->num_ai; /* actual number of analog values to available to dissect */
/* Update our current tvb offset to the actual AI offset saved the Configuration message */
offset = cfg_data->offset_ai;
/* Check that we actually have analog data to dissect */
if (cnt > 0) {
/* Include decoding for each Sample provided for the Analog Channels */
for (j=0; j < cfg_data->num_ai_samples; j++) {
/* Use different lookup strings, depending on how many samples are available per Analog Channel */
if (cfg_data->num_ai_samples == 1) {
fmdata_ai_item = proto_tree_add_text(fmdata_tree, tvb, offset, ((cfg_data->offset_ts - cfg_data->offset_ai)/cfg_data->num_ai_samples),
"Analog Channels (%d), Sample: %d (%s)",
cfg_data->num_ai, j+1, val_to_str_const(j+1, selfm_fmconfig_numsamples1_vals, "Unknown"));
fmdata_ai_tree = proto_item_add_subtree(fmdata_ai_item, ett_selfm_fmdata_ai);
}
else if (cfg_data->num_ai_samples == 2) {
fmdata_ai_item = proto_tree_add_text(fmdata_tree, tvb, offset, ((cfg_data->offset_ts - cfg_data->offset_ai)/cfg_data->num_ai_samples),
"Analog Channels (%d), Sample: %d (%s)",
cfg_data->num_ai, j+1, val_to_str_const(j+1, selfm_fmconfig_numsamples2_vals, "Unknown"));
fmdata_ai_tree = proto_item_add_subtree(fmdata_ai_item, ett_selfm_fmdata_ai);
}
else if (cfg_data->num_ai_samples == 4) {
fmdata_ai_item = proto_tree_add_text(fmdata_tree, tvb, offset, ((cfg_data->offset_ts - cfg_data->offset_ai)/cfg_data->num_ai_samples),
"Analog Channels (%d), Sample: %d (%s)",
cfg_data->num_ai, j+1, val_to_str_const(j+1, selfm_fmconfig_numsamples4_vals, "Unknown"));
fmdata_ai_tree = proto_item_add_subtree(fmdata_ai_item, ett_selfm_fmdata_ai);
}
/* For each analog channel we encounter... */
for (i = 0; i < cnt; i++) {
fm_analog_info *ai = &(cfg_data->analogs[i]);
/* Channel size (in bytes) determined by data type */
switch (ai->type) {
case FM_CONFIG_ANA_CHTYPE_INT16:
ch_size = FM_CONFIG_ANA_CHTYPE_INT16_LEN; /* 2 bytes */
break;
case FM_CONFIG_ANA_CHTYPE_FP:
ch_size = FM_CONFIG_ANA_CHTYPE_FP_LEN; /* 4 bytes */
break;
case FM_CONFIG_ANA_CHTYPE_FPD:
ch_size = FM_CONFIG_ANA_CHTYPE_FPD_LEN; /* 8 bytes */
break;
default:
break;
}
/* Build sub-tree for each Analog Channel */
fmdata_ai_ch_item = proto_tree_add_text(fmdata_ai_tree, tvb, offset, ch_size, "Analog Channel %d: %s", i+1, ai->name);
fmdata_ai_ch_tree = proto_item_add_subtree(fmdata_ai_ch_item, ett_selfm_fmdata_ai_ch);
/* XXX - Need more decoding options here for different data types, but I need packet capture examples first */
/* Decode analog value appropriately, according to data type */
switch (ai->type) {
/* Channel type is 16-bit Integer */
case FM_CONFIG_ANA_CHTYPE_INT16:
ai_int16val = tvb_get_ntohs(tvb, offset);
/* If we've got a scale factor offset, apply it before printing the analog */
if ((ai->sf_offset != 0) && (ai->sf_type == FM_CONFIG_ANA_SFTYPE_FP)){
ai_sf_fp = tvb_get_ntohieee_float(tvb, ai->sf_offset);
proto_tree_add_float(fmdata_ai_ch_tree, hf_selfm_fmdata_ai_sf_fp, tvb, ai->sf_offset, 4, ai_sf_fp);
}
else {
ai_sf_fp = 1;
}
proto_tree_add_text(fmdata_ai_ch_tree, tvb, offset, ch_size, "Value (Raw): %d", ai_int16val);
proto_tree_add_text(fmdata_ai_ch_tree, tvb, offset, ch_size, "Value (w/ Scale Factor): %f", ((gfloat)ai_int16val*ai_sf_fp));
offset += ch_size;
break;
/* Channel type is IEEE Floating point */
case FM_CONFIG_ANA_CHTYPE_FP:
ai_fpval = tvb_get_ntohieee_float(tvb, offset);
proto_tree_add_text(fmdata_ai_ch_tree, tvb, offset, ch_size, "Value: %f", ai_fpval);
offset += ch_size;
break;
/* Channel type is Double IEEE Floating point */
case FM_CONFIG_ANA_CHTYPE_FPD:
ai_fpd_val = tvb_get_ntohieee_double(tvb, offset);
proto_tree_add_text(fmdata_ai_ch_tree, tvb, offset, ch_size, "Value: %f", ai_fpd_val);
offset += ch_size;
break;
} /* channel type */
} /* number of analog channels */
} /* number of samples */
} /* there were analogs */
/* Check if we have a time-stamp in this message */
if (cfg_data->offset_ts != 0xFFFF) {
/* Retrieve timestamp from 8-byte format */
/* Stored as: month, day, year (xx), hr, min, sec, msec (16-bit) */
ts_mon = tvb_get_guint8(tvb, offset);
ts_day = tvb_get_guint8(tvb, offset+1);
ts_year = tvb_get_guint8(tvb, offset+2);
ts_hour = tvb_get_guint8(tvb, offset+3);
ts_min = tvb_get_guint8(tvb, offset+4);
ts_sec = tvb_get_guint8(tvb, offset+5);
ts_msec = tvb_get_ntohs(tvb, offset+6);
proto_tree_add_text(fmdata_tree, tvb, offset, 8, "Timestamp: %.2d/%.2d/%.2d %.2d:%.2d:%.2d.%.3d", ts_mon, ts_day, ts_year, ts_hour, ts_min, ts_sec, ts_msec);
offset += 8;
}
/* Check that we actually have digital data */
if (cfg_data->num_dig > 0) {
fmdata_dig_item = proto_tree_add_text(fmdata_tree, tvb, offset, cfg_data->num_dig, "Digital Channels (%d)", cfg_data->num_dig);
fmdata_dig_tree = proto_item_add_subtree(fmdata_dig_item, ett_selfm_fmdata_dig);
for (i=0; i < cfg_data->num_dig; i++) {
fmdata_dig_ch_item = proto_tree_add_text(fmdata_dig_tree, tvb, offset, 1, "Digital Word Bit Row: %d", i+1);
fmdata_dig_ch_tree = proto_item_add_subtree(fmdata_dig_ch_item, ett_selfm_fmdata_dig_ch);
proto_tree_add_item(fmdata_dig_ch_tree, hf_selfm_fmdata_dig_b0, tvb, offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmdata_dig_ch_tree, hf_selfm_fmdata_dig_b1, tvb, offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmdata_dig_ch_tree, hf_selfm_fmdata_dig_b2, tvb, offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmdata_dig_ch_tree, hf_selfm_fmdata_dig_b3, tvb, offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmdata_dig_ch_tree, hf_selfm_fmdata_dig_b4, tvb, offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmdata_dig_ch_tree, hf_selfm_fmdata_dig_b5, tvb, offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmdata_dig_ch_tree, hf_selfm_fmdata_dig_b6, tvb, offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmdata_dig_ch_tree, hf_selfm_fmdata_dig_b7, tvb, offset, 1, ENC_BIG_ENDIAN);
offset += 1;
}
} /* digital data was available */
} /* matching config frame message was found */
} /* config data found */
if (!config_found) {
proto_item_append_text(fmdata_item, ", No Fast Meter Configuration frame found");
return 0;
}
}
return tvb_length(tvb);
}
/******************************************************************************************************/
/* Code to Dissect Fast Operate Configuration Frames */
/******************************************************************************************************/
static int
dissect_foconfig_frame(tvbuff_t *tvb, proto_tree *tree, int offset)
{
/* Set up structures needed to add the protocol subtree and manage it */
proto_item *foconfig_item, *foconfig_brkr_item, *foconfig_rb_item;
proto_tree *foconfig_tree, *foconfig_brkr_tree=NULL, *foconfig_rb_tree=NULL;
guint count;
guint8 len, num_brkr, prb_supp;
guint16 num_rb;
len = tvb_get_guint8(tvb, offset);
num_brkr = tvb_get_guint8(tvb, offset+1);
num_rb = tvb_get_ntohs(tvb, offset+2);
prb_supp = tvb_get_guint8(tvb, offset+4);
foconfig_item = proto_tree_add_text(tree, tvb, offset, len-2, "Fast Operate Configuration Details");
foconfig_tree = proto_item_add_subtree(foconfig_item, ett_selfm_foconfig);
/* Add items to protocol tree specific to Fast Operate Configuration Block */
/* Reported length */
proto_tree_add_item(foconfig_tree, hf_selfm_foconfig_len, tvb, offset, 1, ENC_BIG_ENDIAN);
/* Supported Breaker Bits */
foconfig_brkr_item = proto_tree_add_item(foconfig_tree, hf_selfm_foconfig_num_brkr, tvb, offset+1, 1, ENC_BIG_ENDIAN);
/* Supported Remote Bits */
foconfig_rb_item = proto_tree_add_item(foconfig_tree, hf_selfm_foconfig_num_rb, tvb, offset+2, 2, ENC_BIG_ENDIAN);
/* Add "Remote Bit Pulse Supported?" and "Reserved Bit" to Tree */
proto_tree_add_item(foconfig_tree, hf_selfm_foconfig_prb_supp, tvb, offset+4, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(foconfig_tree, hf_selfm_foconfig_reserved, tvb, offset+5, 1, ENC_BIG_ENDIAN);
/* Update offset pointer */
offset += 6;
/* Get Breaker Bit Command Details */
for (count = 1; count <= num_brkr; count++) {
foconfig_brkr_tree = proto_item_add_subtree(foconfig_brkr_item, ett_selfm_foconfig_brkr);
/* Add Breaker Open/Close commands to tree */
proto_tree_add_item(foconfig_brkr_tree, hf_selfm_foconfig_brkr_open, tvb, offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(foconfig_brkr_tree, hf_selfm_foconfig_brkr_close, tvb, offset+1, 1, ENC_BIG_ENDIAN);
offset += 2;
}
/* Get Remote Bit Command Details */
for (count = 1; count <= num_rb; count++) {
foconfig_rb_tree = proto_item_add_subtree(foconfig_rb_item, ett_selfm_foconfig_rb);
/* Add "Remote Bit Set" command to tree */
proto_tree_add_item(foconfig_rb_tree, hf_selfm_foconfig_rb_cmd, tvb, offset, 1, ENC_BIG_ENDIAN);
/* Print "Remote Bit Clear" command to tree */
proto_tree_add_item(foconfig_rb_tree, hf_selfm_foconfig_rb_cmd, tvb, offset+1, 1, ENC_BIG_ENDIAN);
/* If Remote Bit "pulse" is supported, retrieve that command as well */
if (prb_supp) {
proto_tree_add_item(foconfig_rb_tree, hf_selfm_foconfig_rb_cmd, tvb, offset+2, 1, ENC_BIG_ENDIAN);
offset += 3;
}
else{
offset += 2;
}
}
return tvb_length(tvb);
}
/******************************************************************************************************/
/* Code to Dissect Fast Operate (Remote Bit or Breaker Bit) Frames */
/******************************************************************************************************/
static int
dissect_fastop_frame(tvbuff_t *tvb, proto_tree *tree, packet_info *pinfo, int offset)
{
/* Set up structures needed to add the protocol subtree and manage it */
proto_item *fastop_item;
proto_tree *fastop_tree;
guint8 len, opcode;
guint16 msg_type;
msg_type = tvb_get_ntohs(tvb, offset-2);
len = tvb_get_guint8(tvb, offset);
fastop_item = proto_tree_add_text(tree, tvb, offset, len-2, "Fast Operate Details");
fastop_tree = proto_item_add_subtree(fastop_item, ett_selfm_fastop);
/* Add Reported length to tree*/
proto_tree_add_item(fastop_tree, hf_selfm_fastop_len, tvb, offset, 1, ENC_BIG_ENDIAN);
offset += 1;
/* Operate Code */
opcode = tvb_get_guint8(tvb, offset);
/* Use different lookup table for different msg_type */
if (msg_type == CMD_FASTOP_RB_CTRL) {
proto_tree_add_item(fastop_tree, hf_selfm_fastop_rb_code, tvb, offset, 1, ENC_BIG_ENDIAN);
/* Append Column Info w/ Control Code Code */
col_append_sep_fstr(pinfo->cinfo, COL_INFO, NULL, "%s", val_to_str_const(opcode, selfm_fo_rb_vals, "Unknown Control Code"));
}
else if (msg_type == CMD_FASTOP_BR_CTRL) {
proto_tree_add_item(fastop_tree, hf_selfm_fastop_br_code, tvb, offset, 1, ENC_BIG_ENDIAN);
/* Append Column Info w/ Control Code Code */
col_append_sep_fstr(pinfo->cinfo, COL_INFO, NULL, "%s", val_to_str_const(opcode, selfm_fo_br_vals, "Unknown Control Code"));
}
offset += 1;
/* Operate Code Validation */
proto_tree_add_item(fastop_tree, hf_selfm_fastop_valid, tvb, offset, 1, ENC_BIG_ENDIAN);
return tvb_length(tvb);
}
/******************************************************************************************************/
/* Code to dissect Fast SER Frames */
/* Some protocol structure is guessed at */
/******************************************************************************************************/
static int
dissect_fastser_frame(tvbuff_t *tvb, proto_tree *tree, packet_info *pinfo, int offset)
{
/* Set up structures needed to add the protocol subtree and manage it */
proto_item *fastser_item, *fastser_def_fc_item=NULL, *fastser_seq_item=NULL, *fastser_elementlist_item=NULL;
proto_item *fastser_element_item=NULL, *fastser_datareg_item=NULL, *fastser_tag_item=NULL;
proto_tree *fastser_tree, *fastser_def_fc_tree=NULL, *fastser_seq_tree=NULL, *fastser_elementlist_tree=NULL;
proto_tree *fastser_element_tree=NULL, *fastser_datareg_tree=NULL, *fastser_tag_tree=NULL;
gint cnt, num_elements, elmt_status32_ofs=0, elmt_status;
guint8 len, funccode, seq, rx_num_fc, tx_num_fc;
guint8 seq_cnt, seq_fir, seq_fin, elmt_idx, fc_enable;
guint8 *fid_str_ptr, *rid_str_ptr, *region_name_ptr, *tag_name_ptr;
guint16 base_addr, num_addr, num_reg, addr1, addr2;
guint32 tod_ms, elmt_status32, elmt_ts_offset;
len = tvb_get_guint8(tvb, offset);
fastser_item = proto_tree_add_text(tree, tvb, offset, len-2, "Fast SER Message Details");
fastser_tree = proto_item_add_subtree(fastser_item, ett_selfm_fastser);
/* Reported length */
proto_tree_add_item(fastser_tree, hf_selfm_fastser_len, tvb, offset, 1, ENC_BIG_ENDIAN);
/* 5-byte Future Routing Address */
proto_tree_add_item(fastser_tree, hf_selfm_fastser_routing_addr, tvb, offset+1, 5, ENC_NA);
offset += 6;
/* Add Status Byte to tree */
proto_tree_add_item(fastser_tree, hf_selfm_fastser_status, tvb, offset, 1, ENC_BIG_ENDIAN);
offset += 1;
/* Get Function Code, add to tree */
funccode = tvb_get_guint8(tvb, offset);
proto_tree_add_item(fastser_tree, hf_selfm_fastser_funccode, tvb, offset, 1, ENC_BIG_ENDIAN);
/* Append Column Info w/ Function Code */
col_append_sep_fstr(pinfo->cinfo, COL_INFO, NULL, "%s", val_to_str_const(funccode, selfm_fastser_func_code_vals, "Unknown Function Code"));
offset += 1;
/* Get Sequence Byte, add to Tree */
/* Some more decoding may be required here, format of this byte for multi-frame messages is guessed */
/* based on observations from communications */
/* 0x80 - First Message */
/* 0x40 - Final Message */
/* 0x3f - Sequence Count */
/* Sequence Byte(s): */
/* SEL-2411 */
/* 0xC0 (11000000) - single frame req message m->r or r->m */
/* 0x80 (10000000) - multi-frame message r->m */
/* 0xC1 (11000001) - next scan after multi-frame message response m->r */
/* 0x41 (01000001) - final response of multi-frame message r->m */
/* SEL-735 */
/* 0xC0 (11000000) - single frame req message m->r or r->m */
/* 0x80 (10000000) - multi-frame message r->m */
/* 0xC1 (11000001) - next scan after multi-frame message response m->r */
/* 0x01 (00000001) - continued response of multi-frame message r->m */
/* 0xC2 (11000010) - next scan after multi-frame message response m->r */
/* 0x02 (00000010) - continued response of multi-frame message r->m */
/* 0xC3 (11000011) - next scan after multi-frame message response m->r */
/* 0x43 (01000011) - final response of multi-frame message r->m */
/* SEL-421 */
/* 0xC0 (11000000) - single frame req message m->r or r->m */
/* 0x80 (10000000) - multi-frame message r->m */
/* 0xC1 (11000001) - next scan after multi-frame message response m->r */
/* 0x01 (00000001) - continued response of multi-frame message r->m */
/* 0xC2 (11000010) - next scan after multi-frame message response m->r */
/* 0x02 (00000010) - continued response of multi-frame message r->m */
/* 0xC3 (11000011) - next scan after multi-frame message response m->r */
/* 0x03 (00000011) - continued response of multi-frame message r->m */
/* 0xC4 (11000100) - next scan after multi-frame message response m->r */
/* 0x04 (00000100) - continued response of multi-frame message r->m */
/* 0xC5 (11000100) - next scan after multi-frame message response m->r */
/* 0x45 (01000101) - final response of multi-frame message r->m */
seq = tvb_get_guint8(tvb, offset);
seq_cnt = seq & FAST_SER_SEQ_CNT;
seq_fir = seq & FAST_SER_SEQ_FIR;
seq_fin = seq & FAST_SER_SEQ_FIN;
fastser_seq_item = proto_tree_add_uint_format(fastser_tree, hf_selfm_fastser_seq, tvb, offset, 1, seq, "Sequence Byte: 0x%02x (", seq);
if (seq_fir) proto_item_append_text(fastser_seq_item, "FIR, ");
if (seq_fin) proto_item_append_text(fastser_seq_item, "FIN, ");
proto_item_append_text(fastser_seq_item, "Count %u)", seq_cnt);
fastser_seq_tree = proto_item_add_subtree(fastser_seq_item, ett_selfm_fastser_seq);
proto_tree_add_boolean(fastser_seq_tree, hf_selfm_fastser_seq_fir, tvb, offset, 1, seq);
proto_tree_add_boolean(fastser_seq_tree, hf_selfm_fastser_seq_fin, tvb, offset, 1, seq);
proto_tree_add_item(fastser_seq_tree, hf_selfm_fastser_seq_cnt, tvb, offset, 1, ENC_BIG_ENDIAN);
offset += 1;
/* Add Response Number to tree */
proto_tree_add_item(fastser_tree, hf_selfm_fastser_resp_num, tvb, offset, 1, ENC_BIG_ENDIAN);
offset += 1;
/* Depending on Function Code used, remaining section of packet will be handled differently. */
switch (funccode) {
case FAST_SER_MESSAGE_DEF_ACK: /* 0x80 (resp to 0x00) - Fast SER Message Definition Acknowledge */
/* Routing Support */
proto_tree_add_item(fastser_tree, hf_selfm_fastser_def_route_sup, tvb, offset, 1, ENC_BIG_ENDIAN);
offset += 1;
/* RX / TX Status */
proto_tree_add_item(fastser_tree, hf_selfm_fastser_def_rx_stat, tvb, offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fastser_tree, hf_selfm_fastser_def_tx_stat, tvb, offset+1, 1, ENC_BIG_ENDIAN);
offset += 2;
/* Max Frames RX/TX */
proto_tree_add_item(fastser_tree, hf_selfm_fastser_def_rx_maxfr, tvb, offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fastser_tree, hf_selfm_fastser_def_tx_maxfr, tvb, offset+1, 1, ENC_BIG_ENDIAN);
offset += 2;
/* 6 bytes of reserved space */
offset += 6;
/* Number of Supported RX Function Codes */
rx_num_fc = tvb_get_guint8(tvb, offset);
fastser_def_fc_item = proto_tree_add_item(fastser_tree, hf_selfm_fastser_def_rx_num_fc, tvb, offset, 1, ENC_BIG_ENDIAN);
fastser_def_fc_tree = proto_item_add_subtree(fastser_def_fc_item, ett_selfm_fastser_def_fc);
offset += 1;
/* Add Supported RX Function Codes to tree */
for (cnt=0; cnt<rx_num_fc; cnt++) {
proto_tree_add_item(fastser_def_fc_tree, hf_selfm_fastser_def_rx_fc, tvb, offset, 1, ENC_BIG_ENDIAN);
offset += 2;
}
/* Number of Supported TX Function Codes */
tx_num_fc = tvb_get_guint8(tvb, offset);
fastser_def_fc_item = proto_tree_add_item(fastser_tree, hf_selfm_fastser_def_tx_num_fc, tvb, offset, 1, ENC_BIG_ENDIAN);
fastser_def_fc_tree = proto_item_add_subtree(fastser_def_fc_item, ett_selfm_fastser_def_fc);
offset += 1;
/* Add Supported TX Function Codes to tree */
for (cnt=0; cnt<tx_num_fc; cnt++) {
proto_tree_add_item(fastser_def_fc_tree, hf_selfm_fastser_def_tx_fc, tvb, offset, 1, ENC_BIG_ENDIAN);
offset += 2;
}
break;
case FAST_SER_EN_UNS_DATA: /* 0x01 - Enabled Unsolicited Data Transfers */
/* Function code to enable */
fc_enable = tvb_get_guint8(tvb, offset);
proto_tree_add_item(fastser_tree, hf_selfm_fastser_uns_en_fc, tvb, offset, 1, ENC_BIG_ENDIAN);
/* Append Column Info w/ "Enable" Function Code */
col_append_sep_fstr(pinfo->cinfo, COL_INFO, NULL, "Function to Enable (%#x)", fc_enable);
/* 3-byte Function Code data */
proto_tree_add_item(fastser_tree, hf_selfm_fastser_uns_en_fc_data, tvb, offset+1, 3, ENC_NA);
offset += 4;
break;
case FAST_SER_DIS_UNS_DATA: /* 0x02 - Disable Unsolicited Data Transfers */
/* Function code to disable */
fc_enable = tvb_get_guint8(tvb, offset);
proto_tree_add_item(fastser_tree, hf_selfm_fastser_uns_dis_fc, tvb, offset, 1, ENC_BIG_ENDIAN);
/* Append Column Info w/ "Disable" Function Code */
col_append_sep_fstr(pinfo->cinfo, COL_INFO, NULL, "Function to Disable (%#x)", fc_enable);
/* 1-byte Function Code data */
proto_tree_add_item(fastser_tree, hf_selfm_fastser_uns_dis_fc_data, tvb, offset+1, 1, ENC_NA);
offset += 2;
break;
case FAST_SER_READ_REQ: /* 0x10 - Read Request - unknown full structure */
offset += 2; /* 2 unknown bytes */
base_addr = tvb_get_ntohs(tvb, offset); /* unknown - 16-bit field with base address to read? */
/* Append Column Info w/ Base Address */
col_append_sep_fstr(pinfo->cinfo, COL_INFO, NULL, "%#x", base_addr);
proto_tree_add_item(fastser_tree, hf_selfm_fastser_read_baseaddr, tvb, offset, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(fastser_tree, hf_selfm_fastser_read_numaddr, tvb, offset+2, 2, ENC_BIG_ENDIAN);
offset += 4;
break;
case FAST_SER_READ_RESP: /* 0x90 (resp to 0x10) - Read Response - unknown full structure */
offset += 2; /* 2 unknown bytes */
base_addr = tvb_get_ntohs(tvb, offset); /* unknown - 16-bit field with base address to read? */
num_addr = tvb_get_ntohs(tvb, offset+2); /* unknown - 16-bit field with number of 16-bit addresses to read? */
/* Append Column Info w/ Base Address */
col_append_sep_fstr(pinfo->cinfo, COL_INFO, NULL, "%#x", base_addr);
proto_tree_add_item(fastser_tree, hf_selfm_fastser_read_baseaddr, tvb, offset, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(fastser_tree, hf_selfm_fastser_read_numaddr, tvb, offset+2, 2, ENC_BIG_ENDIAN);
offset += 4;
/* Skip over read response data, we'll be able to format and decode this later once specifications are out */
offset += num_addr*2;
break;
case FAST_SER_UNS_RESP: /* 0x18 - Unsolicited Fast SER Data Response */
/* 4 bytes - "Origination Path" */
proto_tree_add_item(fastser_tree, hf_selfm_fastser_unsresp_orig, tvb, offset, 4, ENC_NA);
offset += 4;
/* Timestamp: 2-byte day-of-year, 2-byte year, 4-byte time-of-day in milliseconds */
/* XXX - We can use a built-in function to convert the tod_ms to a readable time format, is there anything for day_of_year? */
tod_ms = tvb_get_ntohl(tvb, offset+4);
proto_tree_add_item(fastser_tree, hf_selfm_fastser_unsresp_doy, tvb, offset, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(fastser_tree, hf_selfm_fastser_unsresp_year, tvb, offset+2, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(fastser_tree, hf_selfm_fastser_unsresp_todms, tvb, offset+4, 4, ENC_BIG_ENDIAN);
proto_tree_add_text(fastser_tree, tvb, offset+4, 4, "Time of Day (decoded): %s", time_msecs_to_str(tod_ms));
offset += 8;
/* Build element tree */
/* Determine the number of elements returned in this unsolicited message */
/* The general formula is: (Length - 34) / 4 */
num_elements = (len-34) / 4;
fastser_elementlist_item = proto_tree_add_uint(fastser_tree, hf_selfm_fastser_unsresp_num_elmt, tvb, offset, (4*num_elements), num_elements);
fastser_elementlist_tree = proto_item_add_subtree(fastser_elementlist_item, ett_selfm_fastser_element_list);
/* "Reported New Status" word for up to 32 index elements is following the upcoming 0xFFFFFFFE End-of-record indicator
Search for that indicator and use the detected tvb offset+4 to retrieve the proper 32-bit status word.
Save this word for use in the element index printing but don't print the word itself until the end of the tree dissection */
for (cnt = offset; cnt < len; cnt++) {
if (tvb_memeql(tvb, cnt, "\xFF\xFF\xFF\xFE", 4) == 0) {
elmt_status32_ofs = cnt+4;
}
}
elmt_status32 = tvb_get_ntohl(tvb, elmt_status32_ofs );
/* Cycle through each element we have detected that exists in the SER record */
for (cnt=0; cnt<num_elements; cnt++) {
/* Get Element Index and Timestamp Offset (in uSec) */
elmt_idx = tvb_get_guint8(tvb, offset);
elmt_ts_offset = (guint32)((tvb_get_guint8(tvb, offset+1) << 16) | (tvb_get_guint8(tvb, offset+2) << 8) | (tvb_get_guint8(tvb, offset+3)));
/* Bit shift the appropriate element from the 32-bit elmt_status word to position 0 and get the bit state for use in the tree */
elmt_status = ((elmt_status32 >> cnt) & 0x01);
/* Build the tree */
fastser_element_item = proto_tree_add_text(fastser_elementlist_tree, tvb, offset, 4,
"Reported Event %d (Index: %d, New State: %s)", cnt+1, elmt_idx, val_to_str_const(elmt_status, selfm_ser_status_vals, "Unknown"));
fastser_element_tree = proto_item_add_subtree(fastser_element_item, ett_selfm_fastser_element);
/* Add Index Number and Timestamp offset to tree */
proto_tree_add_item(fastser_element_tree, hf_selfm_fastser_unsresp_elmt_idx, tvb, offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fastser_element_tree, hf_selfm_fastser_unsresp_elmt_ts_ofs, tvb, offset+1, 3, ENC_NA);
proto_tree_add_text(fastser_element_tree, tvb, offset+1, 3,
"SER Element Timestamp Offset (decoded): %s", time_msecs_to_str(tod_ms + (elmt_ts_offset/1000)));
proto_tree_add_uint(fastser_element_tree, hf_selfm_fastser_unsresp_elmt_status, tvb, elmt_status32_ofs, 4, elmt_status);
offset += 4;
}
/* 4-byte End-of-Record Terminator 0xFFFFFFFE */
proto_tree_add_item(fastser_tree, hf_selfm_fastser_unsresp_eor, tvb, offset, 4, ENC_NA);
offset += 4;
/* 4-byte Element Status word */
proto_tree_add_item(fastser_tree, hf_selfm_fastser_unsresp_elmt_statword, tvb, offset, 4, ENC_BIG_ENDIAN);
offset += 4;
break;
case FAST_SER_UNS_WRITE: /* 0x20 - Unsolicited Write */
/* Write Address Region #1 and #2, along with number of 16-bit registers */
addr1 = tvb_get_ntohs(tvb, offset);
addr2 = tvb_get_ntohs(tvb, offset+2);
num_reg = tvb_get_ntohs(tvb, offset+4);
/* Append Column Info w/ Address Information */
col_append_sep_fstr(pinfo->cinfo, COL_INFO, NULL, "%#x, %#x", addr1, addr2);
proto_tree_add_item(fastser_tree, hf_selfm_fastser_unswrite_addr1, tvb, offset, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(fastser_tree, hf_selfm_fastser_unswrite_addr2, tvb, offset+2, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(fastser_tree, hf_selfm_fastser_unswrite_num_reg, tvb, offset+4, 2, ENC_BIG_ENDIAN);
offset += 6;
/* For the number of registers, step through and retrieve/print each 16-bit component */
for (cnt=0; cnt < num_reg; cnt++) {
proto_tree_add_item(fastser_tree, hf_selfm_fastser_unswrite_reg_val, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
}
break;
case FAST_SER_DEVDESC_RESP: /* 0xB0 - Device Description Response - unknown full structure */
fid_str_ptr = tvb_get_ephemeral_string(tvb, offset, 50); /* Add FID / RID ASCII data to tree */
rid_str_ptr = tvb_get_ephemeral_string(tvb, offset+50, 40);
proto_tree_add_text(fastser_tree, tvb, offset, 50, "FID: %s", fid_str_ptr);
proto_tree_add_text(fastser_tree, tvb, offset+50, 40, "RID: %s", rid_str_ptr);
offset += 90;
/* unknown - 16-bit field with number of data regions? */
num_reg = tvb_get_ntohs(tvb, offset);
proto_tree_add_item(fastser_tree, hf_selfm_fastser_devdesc_num_reg, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
/* 2 unknown bytes */
offset += 2;
/* exact arrangement of these regions are unknown, but I think believe we have a 12 byte region name,
followed by 16-bit base and address count fields */
for (cnt=0; cnt<num_reg; cnt++) {
fastser_datareg_item = proto_tree_add_text(fastser_tree, tvb, offset, 18, "Fast SER Data Region #%d", cnt+1);
fastser_datareg_tree = proto_item_add_subtree(fastser_datareg_item, ett_selfm_fastser_datareg);
region_name_ptr = tvb_get_ephemeral_string(tvb, offset, 12);
proto_tree_add_text(fastser_datareg_tree, tvb, offset, 12, "Data Region Name: %s", region_name_ptr);
offset += 12;
/* unknown - 16-bit field with base address of data region? */
proto_tree_add_item(fastser_datareg_tree, hf_selfm_fastser_read_baseaddr, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
/* unknown - 16-bit field with number of addresses in data region? */
proto_tree_add_item(fastser_datareg_tree, hf_selfm_fastser_read_numaddr, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
/* 2 unknown bytes */
offset += 2;
}
break;
case FAST_SER_DATAFMT_REQ: /* 0x31 - Data Format Request - unknown full structure */
/* 2 unknown bytes */
offset += 2;
/* unknown - 16-bit field with base address to read? */
base_addr = tvb_get_ntohs(tvb, offset);
proto_tree_add_item(fastser_tree, hf_selfm_fastser_read_baseaddr, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
/* Append Column Info w/ Base Address */
col_append_sep_fstr(pinfo->cinfo, COL_INFO, NULL, "%#x", base_addr);
break;
case FAST_SER_DATAFMT_RESP: /* 0xB1 - Data Format Response - unknown full structure */
/* 2 unknown bytes */
offset += 2;
/* unknown - 16-bit field with base address to read? */
base_addr = tvb_get_ntohs(tvb, offset);
proto_tree_add_item(fastser_tree, hf_selfm_fastser_read_baseaddr, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
/* Append Column Info w/ Base Address */
col_append_sep_fstr(pinfo->cinfo, COL_INFO, NULL, "%#x", base_addr);
/* unknown - 16-bit field with number of tags to follow? */
proto_tree_add_item(fastser_tree, hf_selfm_fastser_datafmt_resp_num_tag, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
while ((tvb_reported_length_remaining(tvb, offset)) > 2) {
tag_name_ptr = tvb_get_ephemeral_string(tvb, offset, 11); /* unknown field - Tag name 11 bytes? */
fastser_tag_item = proto_tree_add_text(fastser_tree, tvb, offset, 14, "Tag Name: %s", tag_name_ptr);
fastser_tag_tree = proto_item_add_subtree(fastser_tag_item, ett_selfm_fastser_tag);
/* Unknown 3 bytes that follow */
/* 01 - Quantity of Values within Tag */
/* 02 - Unused ??? */
/* 03 - Data Type of Tag */
proto_tree_add_item(fastser_tag_tree, hf_selfm_fastser_datafmt_resp_tag_qty, tvb, offset+11, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fastser_tag_tree, hf_selfm_fastser_datafmt_resp_tag_type, tvb, offset+13, 1, ENC_BIG_ENDIAN);
offset += 14;
}
break;
case FAST_SER_BITLABEL_REQ: /* 0x33 - Bit Label Request - unknown full structure */
/* 2 unknown bytes */
offset += 2;
/* unknown - 16-bit field with base address to read? */
base_addr = tvb_get_ntohs(tvb, offset);
proto_tree_add_item(fastser_tree, hf_selfm_fastser_read_baseaddr, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
/* Append Column Info w/ Base Address */
col_append_sep_fstr(pinfo->cinfo, COL_INFO, NULL, "%#x", base_addr);
break;
case FAST_SER_BITLABEL_RESP: /* 0xB3 - Bit Label Response - unknown full structure */
/* Variable length string containing the names of 8 digital bits. Each name is max 8 chars and each is null-seperated */
proto_tree_add_text(fastser_tree, tvb, offset, (tvb_reported_length_remaining(tvb, offset)-2), "Bit Label Data %s",
tvb_format_text(tvb, offset, (tvb_reported_length_remaining(tvb, offset)-2)));
/* Skip over variable-length string */
offset += (tvb_reported_length_remaining(tvb, offset)-2);
default:
break;
} /* func_code */
/* XXX - Should eventually get a function here to validate this CRC16 */
proto_tree_add_item(fastser_tree, hf_selfm_fastser_crc16, tvb, offset, 2, ENC_BIG_ENDIAN);
return tvb_length(tvb);
}
/******************************************************************************************************/
/* Code to dissect SEL Fast Message Protocol packets */
/* Will call other sub-dissectors, as needed */
/******************************************************************************************************/
static void
dissect_selfm(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)
{
/* Set up structures needed to add the protocol subtree and manage it */
proto_item *selfm_item=NULL;
proto_tree *selfm_tree=NULL;
int offset=0;
guint16 msg_type, len;
tvbuff_t *selfm_tvb;
/* Make entries in Protocol column on summary display */
col_set_str(pinfo->cinfo, COL_PROTOCOL, "SEL Fast Msg");
col_clear(pinfo->cinfo, COL_INFO);
len = tvb_length(tvb);
/* If this is a Telnet-encapsulated Ethernet, let's clean out the IAC 0xFF instances */
if ((pinfo->srcport) && selfm_telnet_clean) {
selfm_tvb=clean_telnet_iac(pinfo, tvb, offset, len);
}
else {
selfm_tvb = tvb_new_subset( tvb, offset, len, len);
}
msg_type = tvb_get_ntohs(selfm_tvb, offset);
/* Configuration (0xA5C1, 0xA5C2, 0xA5C3) and corresponding data frames (0xA5D1, 0xA5D2, 0xA5D3)
* need special treatment during the first run:
* For Fast Meter Configuration frames (0xA5C1), a 'fm_config_frame' struct is created to hold the
* information necessary to decode subsequent Fast Meter Data frames (0xA5D1). A pointer to this
* struct is saved in the conversation and is copied to the per-packet information if a
* Fast Meter Data frame is dissected.
*/
if (!pinfo->fd->flags.visited) {
conversation_t *conversation;
fm_conversation *conv_data;
/* Find a conversation, create a new if no one exists */
conversation = find_or_create_conversation(pinfo);
conv_data = (fm_conversation *)conversation_get_proto_data(conversation, proto_selfm);
if (conv_data == NULL) {
conv_data = (fm_conversation *)wmem_alloc(wmem_file_scope(), sizeof(fm_conversation));
conv_data->fm_config_frames = wmem_slist_new(wmem_file_scope());
conversation_add_proto_data(conversation, proto_selfm, (void *)conv_data);
}
p_add_proto_data(pinfo->fd, proto_selfm, 0, conv_data);
if ((CMD_FM_CONFIG == msg_type) || (CMD_DFM_CONFIG == msg_type) || (CMD_PDFM_CONFIG == msg_type)) {
/* Fill the fm_config_frame */
fm_config_frame *frame_ptr = fmconfig_frame_fast(selfm_tvb);
frame_ptr->fnum = pinfo->fd->num;
wmem_slist_prepend(conv_data->fm_config_frames, frame_ptr);
}
} /* if (!visited) */
if (tree) {
selfm_item = proto_tree_add_protocol_format(tree, proto_selfm, selfm_tvb, 0, len, "SEL Fast Message");
selfm_tree = proto_item_add_subtree(selfm_item, ett_selfm);
col_clear(pinfo->cinfo, COL_INFO); /* clear out stuff in the info column */
col_add_fstr(pinfo->cinfo, COL_INFO, "%s", val_to_str_const(msg_type, selfm_msgtype_vals, "Unknown Message Type"));
/* Add Message Type to Protocol Tree */
proto_tree_add_item(selfm_tree, hf_selfm_msgtype, selfm_tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
/* Determine correct message type and call appropriate dissector */
if (tvb_reported_length_remaining(selfm_tvb, offset) > 0) {
switch (msg_type) {
case CMD_RELAY_DEF:
dissect_relaydef_frame(selfm_tvb, selfm_tree, offset);
break;
case CMD_FM_CONFIG:
case CMD_DFM_CONFIG:
case CMD_PDFM_CONFIG:
dissect_fmconfig_frame(selfm_tvb, selfm_tree, offset);
break;
case CMD_FM_DATA:
dissect_fmdata_frame(selfm_tvb, selfm_tree, pinfo, offset, CMD_FM_CONFIG);
break;
case CMD_DFM_DATA:
dissect_fmdata_frame(selfm_tvb, selfm_tree, pinfo, offset, CMD_DFM_CONFIG);
break;
case CMD_PDFM_DATA:
dissect_fmdata_frame(selfm_tvb, selfm_tree, pinfo, offset, CMD_PDFM_CONFIG);
break;
case CMD_FASTOP_CONFIG:
dissect_foconfig_frame(selfm_tvb, selfm_tree, offset);
break;
case CMD_FAST_SER:
dissect_fastser_frame(selfm_tvb, selfm_tree, pinfo, offset);
break;
case CMD_FASTOP_RB_CTRL:
case CMD_FASTOP_BR_CTRL:
dissect_fastop_frame(selfm_tvb, selfm_tree, pinfo, offset);
break;
default:
break;
} /* msg_type */
} /* remaining length > 0 */
} /* tree */
}
/******************************************************************************************************/
/* Return length of SEL Protocol over TCP message (used for re-assembly) */
/* SEL Protocol "Scan" messages are generally 2-bytes in length and only include a 16-bit message type */
/* SEL Protocol "Response" messages include a "length" byte in each response message but an issue */
/* is that the "length" byte does not always line up with the actual length of the data packet due to */
/* Telnet 0xFF pad bytes (as documented elsewhere). Make a best-guess "total size" effort here. */
/******************************************************************************************************/
static guint
get_selfm_len(packet_info *pinfo _U_, tvbuff_t *tvb, int offset _U_)
{
guint message_len=0; /* message length, inclusive of header, data, crc */
guint16 msg_type;
if (tvb_length(tvb) > 2) {
msg_type = tvb_get_ntohs(tvb, 0);
switch (msg_type) {
case CMD_FM_CONFIG:
/* 0xA5C1 messages have reported lengths, but extra 0xFF pad bytes strewn about in 'Telnet' mode */
/* Attempt to guess the length by using the num_ai (normal size 10 bytes) and num_calc (normal size 15 bytes) block fields */
/* If the number of scale factors is 0 (offset 5) then there will be 1 extra 0xFFs per num_ai (offset 6) */
/* Number of calculation blocks (offset 9) will typically produce a minimum of 20 bytes including padding */
/* 18 bytes of hardcoded data are: hdr(2), len, flag, sf_loc, sf_num, ai_num, samp_num,
dig_num, num_calc, ai_ofs(2), ts_ofs(2), dig_ofs(2), pad, crc */
/* Only attempt to retrieve bytes that we know will exist */
if (tvb_length(tvb) > 10) {
if (tvb_get_guint8(tvb, 5) != 0) {
message_len = ((tvb_get_guint8(tvb, 6) * 10) + (tvb_get_guint8(tvb, 9) * 20) + 18);
}
else {
message_len = ((tvb_get_guint8(tvb, 6) * 11) + (tvb_get_guint8(tvb, 9) * 20) + 18);
}
}
/* Otherwise we can fall back on the length byte */
else {
message_len = tvb_get_guint8(tvb, 2);
}
/* After calculating theoretical length, check if actual length of tvb is longer. In that case, use the tvb length */
if (message_len < tvb_length(tvb)) {
message_len = tvb_length(tvb);
}
break;
case CMD_DFM_CONFIG:
case CMD_PDFM_CONFIG:
/* 0xA5C2/C2 messages have reported lengths, but typically extra 0xFF pad bytes strewn about in Telnet mode */
/* Attempt to guess the length by using the num_ai (normal size 11 bytes) and harcoded fields */
/* 20 bytes of hardcoded data are: hdr(2), len, flag, sf_loc, sf_num, ai_num, samp_num,
dig_num, num_calc, ai_ofs(2), ts_ofs(2), dig_ofs(4), pad, crc */
/* Only attempt to retrieve bytes that we know will exist */
if (tvb_length(tvb) > 7) {
message_len = ((tvb_get_guint8(tvb, 6) * 11) + 20);
}
/* Otherwise we can fall back on the length byte */
else {
message_len = tvb_get_guint8(tvb, 2);
}
/* After calculating theoretical length, check if actual length of tvb is longer. In that case, use the tvb length */
if (message_len < tvb_length(tvb)) {
message_len = tvb_length(tvb);
}
break;
case CMD_RELAY_DEF:
case CMD_FM_DATA:
case CMD_DFM_DATA:
case CMD_PDFM_DATA:
case CMD_FAST_SER:
/* Theses messages include length byte and don't generally contain 0xFF data */
message_len = tvb_get_guint8(tvb, 2);
/* After processing length byte, check if actual length of tvb is longer. In that case, use the tvb length */
if (message_len < tvb_length(tvb)) {
message_len = tvb_length(tvb);
}
break;
default:
/* For remaining packet types, fall back whatever length is greater, len byte from packet or tvb length */
if (tvb_get_guint8(tvb, 2) > tvb_length(tvb)) {
message_len = tvb_get_guint8(tvb, 2);
}
else {
message_len = tvb_length(tvb);
}
break;
}
}
/* for 2-byte poll messages, manually set the length to 2 */
else if (tvb_length(tvb) == 2) {
message_len = 2;
}
return message_len;
}
/******************************************************************************************************/
/* Dissect (and possibly Re-assemble) SEL protocol payload data */
/******************************************************************************************************/
static gboolean
dissect_selfm_tcp(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data _U_)
{
gint length = tvb_length(tvb);
/* Check for a SEL FM packet. It should begin with 0xA5 */
if(length < 2 || tvb_get_guint8(tvb, 0) != 0xA5) {
/* Not a SEL Protocol packet, just happened to use the same port */
return FALSE;
}
tcp_dissect_pdus(tvb, pinfo, tree, selfm_desegment, 2,
get_selfm_len, dissect_selfm);
return TRUE;
}
/******************************************************************************************************/
/* Dissect "simple" SEL protocol payload (no TCP re-assembly) */
/******************************************************************************************************/
static gboolean
dissect_selfm_simple(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data _U_)
{
gint length = tvb_length(tvb);
/* Check for a SEL FM packet. It should begin with 0xA5 */
if(length < 2 || tvb_get_guint8(tvb, 0) != 0xA5) {
/* Not a SEL Protocol packet, just happened to use the same port */
return FALSE;
}
dissect_selfm(tvb, pinfo, tree);
return TRUE;
}
/******************************************************************************************************/
/* Register the protocol with Wireshark */
/******************************************************************************************************/
void proto_reg_handoff_selfm(void);
void
proto_register_selfm(void)
{
/* SEL Protocol header fields */
static hf_register_info selfm_hf[] = {
{ &hf_selfm_msgtype,
{ "Message Type", "selfm.msgtype", FT_UINT16, BASE_HEX|BASE_EXT_STRING, &selfm_msgtype_vals_ext, 0x0, NULL, HFILL }},
/* "Relay Definition" specific fields */
{ &hf_selfm_relaydef_len,
{ "Length", "selfm.relaydef.len", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_relaydef_numproto,
{ "Number of Protocols", "selfm.relaydef.numproto", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_relaydef_numfm,
{ "Number of Fast Meter Messages", "selfm.relaydef.numfm", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_relaydef_numflags,
{ "Number of Status Flags", "selfm.relaydef.numflags", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_relaydef_fmcfg_cmd,
{ "Fast Meter Config Command", "selfm.relaydef.fmcfg_cmd", FT_UINT16, BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_relaydef_fmdata_cmd,
{ "Fast Meter Data Command", "selfm.relaydef.fmdata_cmd", FT_UINT16, BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_relaydef_statbit,
{ "Status Flag Bit", "selfm.relaydef.status_bit", FT_UINT16, BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_relaydef_statbit_cmd,
{ "Status Flag Bit Response Command", "selfm.relaydef.status_bit_cmd", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_relaydef_proto,
{ "Supported Protocol", "selfm.relaydef.proto", FT_UINT16, BASE_HEX|BASE_EXT_STRING, &selfm_relaydef_proto_vals_ext, 0x0, NULL, HFILL }},
/* "Fast Meter Configuration" specific fields */
{ &hf_selfm_fmconfig_len,
{ "Length", "selfm.fmconfig.len", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fmconfig_numflags,
{ "Number of Status Flags", "selfm.fmconfig.numflags", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fmconfig_loc_sf,
{ "Location of Scale Factor", "selfm.fmconfig.loc_sf", FT_UINT8, BASE_DEC, VALS(selfm_fmconfig_sfloc_vals), 0x0, NULL, HFILL }},
{ &hf_selfm_fmconfig_num_sf,
{ "Number of Scale Factors", "selfm.fmconfig.num_sf", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fmconfig_num_ai,
{ "Number of Analog Input Channels", "selfm.fmconfig.num_ai", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fmconfig_num_samp,
{ "Number of Samples per AI Channel", "selfm.fmconfig.num_samp", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fmconfig_num_dig,
{ "Number of Digital Banks", "selfm.fmconfig.num_dig", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fmconfig_num_calc,
{ "Number of Calculation Blocks", "selfm.fmconfig.num_calc", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fmconfig_ofs_ai,
{ "First Analog Channel Offset", "selfm.fmconfig.ofs_ai", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fmconfig_ofs_ts,
{ "Timestamp Offset", "selfm.fmconfig.ofs_ts", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fmconfig_ofs_dig,
{ "First Digital Bank Offset", "selfm.fmconfig.ofs_dig", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fmconfig_ai_type,
{ "Analog Channel Type", "selfm.fmconfig.ai_type", FT_UINT8, BASE_DEC, VALS(selfm_fmconfig_ai_chtype_vals), 0x0, NULL, HFILL }},
{ &hf_selfm_fmconfig_ai_sf_type,
{ "Analog Channel Scale Factor Type", "selfm.fmconfig.ai_sf_type", FT_UINT8, BASE_DEC, VALS(selfm_fmconfig_ai_sftype_vals), 0x0, NULL, HFILL }},
{ &hf_selfm_fmconfig_ai_sf_ofs,
{ "Analog Channel Scale Factor Offset", "selfm.fmconfig.ai_sf_ofs", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
/* "Fast Meter Data" specific fields */
{ &hf_selfm_fmdata_len,
{ "Length", "selfm.fmdata.len", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fmdata_flagbyte,
{ "Status Flags Byte", "selfm.fmdata.flagbyte", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fmdata_ai_sf_fp,
{ "Using IEEE FP Format Scale Factor", "selfm.fmdata.ai.sf_fp",FT_FLOAT, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fmdata_dig_b0,
{ "Bit 0", "selfm.fmdata.dig_b0", FT_BOOLEAN, 8, NULL, 0x01, NULL, HFILL }},
{ &hf_selfm_fmdata_dig_b1,
{ "Bit 1", "selfm.fmdata.dig_b1", FT_BOOLEAN, 8, NULL, 0x02, NULL, HFILL }},
{ &hf_selfm_fmdata_dig_b2,
{ "Bit 2", "selfm.fmdata.dig_b2", FT_BOOLEAN, 8, NULL, 0x04, NULL, HFILL }},
{ &hf_selfm_fmdata_dig_b3,
{ "Bit 3", "selfm.fmdata.dig_b3", FT_BOOLEAN, 8, NULL, 0x08, NULL, HFILL }},
{ &hf_selfm_fmdata_dig_b4,
{ "Bit 4", "selfm.fmdata.dig_b4", FT_BOOLEAN, 8, NULL, 0x10, NULL, HFILL }},
{ &hf_selfm_fmdata_dig_b5,
{ "Bit 5", "selfm.fmdata.dig_b5", FT_BOOLEAN, 8, NULL, 0x20, NULL, HFILL }},
{ &hf_selfm_fmdata_dig_b6,
{ "Bit 6", "selfm.fmdata.dig_b6", FT_BOOLEAN, 8, NULL, 0x40, NULL, HFILL }},
{ &hf_selfm_fmdata_dig_b7,
{ "Bit 7", "selfm.fmdata.dig_b7", FT_BOOLEAN, 8, NULL, 0x80, NULL, HFILL }},
/* "Fast Operate Configuration" specific fields */
{ &hf_selfm_foconfig_len,
{ "Length", "selfm.foconfig.len", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_foconfig_num_brkr,
{ "Number of Breaker Bits", "selfm.foconfig.num_brkr", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_foconfig_num_rb,
{ "Number of Remote Bits", "selfm.foconfig.num_rb", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_foconfig_prb_supp,
{ "Remote Bit Pulse Supported", "selfm.foconfig.prb_supp", FT_UINT8, BASE_DEC, VALS(selfm_foconfig_prb_supp_vals), 0x0, NULL, HFILL }},
{ &hf_selfm_foconfig_reserved,
{ "Reserved Bit (Future)", "selfm.foconfig.reserved", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_foconfig_brkr_open,
{ "Breaker Bit Open Command", "selfm.foconfig.brkr_open", FT_UINT8, BASE_HEX, VALS(selfm_fo_br_vals), 0x0, NULL, HFILL }},
{ &hf_selfm_foconfig_brkr_close,
{ "Breaker Bit Close Command", "selfm.foconfig.brkr_close", FT_UINT8, BASE_HEX, VALS(selfm_fo_br_vals), 0x0, NULL, HFILL }},
{ &hf_selfm_foconfig_rb_cmd,
{ "Remote Bit Command", "selfm.foconfig.rb_cmd", FT_UINT8, BASE_HEX, VALS(selfm_fo_rb_vals), 0x0, NULL, HFILL }},
/* "Fast Operate" specific fields */
{ &hf_selfm_fastop_len,
{ "Length", "selfm.fastop.len", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastop_rb_code,
{ "Remote Bit Operate Code", "selfm.fastop.rb_code", FT_UINT8, BASE_HEX, VALS(selfm_fo_rb_vals), 0x0, NULL, HFILL }},
{ &hf_selfm_fastop_br_code,
{ "Breaker Bit Operate Code", "selfm.fastop.br_code", FT_UINT8, BASE_HEX, VALS(selfm_fo_br_vals), 0x0, NULL, HFILL }},
{ &hf_selfm_fastop_valid,
{ "Operate Code Validation", "selfm.fastop.valid", FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL }},
/* "Fast SER Message" specific fields */
{ &hf_selfm_fastser_len,
{ "Length", "selfm.fastser.len", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_routing_addr,
{ "Routing Address (future)", "selfm.fastser.routing_addr", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_status,
{ "Status Byte", "selfm.fastser.status", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_funccode,
{ "Function Code", "selfm.fastser.funccode", FT_UINT8, BASE_HEX, VALS(selfm_fastser_func_code_vals), 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_seq,
{ "Sequence Byte", "selfm.fastser.seq", FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_seq_fir,
{ "FIR", "selfm.fastser.seq_fir", FT_BOOLEAN, 8, NULL, FAST_SER_SEQ_FIR, NULL, HFILL }},
{ &hf_selfm_fastser_seq_fin,
{ "FIN", "selfm.fastser.seq_fin", FT_BOOLEAN, 8, NULL, FAST_SER_SEQ_FIN, NULL, HFILL }},
{ &hf_selfm_fastser_seq_cnt,
{ "Count", "selfm.fastser.seq_cnt", FT_UINT8, BASE_DEC, NULL, FAST_SER_SEQ_CNT, "Frame Count Number", HFILL }},
{ &hf_selfm_fastser_resp_num,
{ "Response Number", "selfm.fastser.resp_num", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_crc16,
{ "CRC-16", "selfm.fastser.crc16", FT_UINT16, BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_def_route_sup,
{ "Routing Support", "selfm.fastser.def_route_sup", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_def_rx_stat,
{ "Status RX", "selfm.fastser.def_rx_stat", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_def_tx_stat,
{ "Status TX", "selfm.fastser.def_tx_stat", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_def_rx_maxfr,
{ "Max Frames RX", "selfm.fastser.def_rx_maxfr", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_def_tx_maxfr,
{ "Max Frames TX", "selfm.fastser.def_tx_maxfr", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_def_rx_num_fc,
{ "Number of Supported RX Function Codes", "selfm.fastser.def_rx_num_fc", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_def_rx_fc,
{ "Receive Function Code", "selfm.fastser.def_rx_fc", FT_UINT8, BASE_HEX, VALS(selfm_fastser_func_code_vals), 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_def_tx_num_fc,
{ "Number of Supported TX Function Codes", "selfm.fastser.def_tx_num_fc", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_def_tx_fc,
{ "Transmit Function Code", "selfm.fastser.def_tx_fc", FT_UINT8, BASE_HEX, VALS(selfm_fastser_func_code_vals), 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_uns_en_fc,
{ "Function Code to Enable", "selfm.fastser.uns_en_fc", FT_UINT8, BASE_HEX, VALS(selfm_fastser_func_code_vals), 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_uns_en_fc_data,
{ "Function Code Data", "selfm.fastser.uns_en_fc_data", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_uns_dis_fc,
{ "Function Code to Disable", "selfm.fastser.uns_dis_fc", FT_UINT8, BASE_HEX, VALS(selfm_fastser_func_code_vals), 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_uns_dis_fc_data,
{ "Function Code Data", "selfm.fastser.uns_dis_fc_data", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_unsresp_orig,
{ "Origination path", "selfm.fastser.unsresp_orig", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_unsresp_doy,
{ "Day of Year", "selfm.fastser.unsresp_doy", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_unsresp_year,
{ "Year", "selfm.fastser.unsresp_year", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_unsresp_todms,
{ "Time of Day (in ms)", "selfm.fastser.unsresp_todms", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_unsresp_num_elmt,
{ "Number of SER Elements", "selfm.fastser.unsresp_num_elmt", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_unsresp_elmt_idx,
{ "SER Element Index", "selfm.fastser.unsresp_elmt_idx", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_unsresp_elmt_ts_ofs,
{ "SER Element Timestamp Offset (us)", "selfm.fastser.unsresp_elmt_ts_ofs", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_unsresp_elmt_status,
{ "SER Element Status", "selfm.fastser.unsresp_elmt_status", FT_UINT8, BASE_DEC, VALS(selfm_ser_status_vals), 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_unsresp_eor,
{ "End of Record Indicator", "selfm.fastser.unsresp_eor", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_unsresp_elmt_statword,
{ "SER Element Status Word", "selfm.fastser.unsresp_elmt_statword", FT_UINT32, BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_unswrite_addr1,
{ "Write Address Region #1", "selfm.fastser.unswrite_addr1", FT_UINT16, BASE_HEX, VALS(selfm_fastser_unswrite_com_vals), 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_unswrite_addr2,
{ "Write Address Region #2", "selfm.fastser.unswrite_addr2", FT_UINT16, BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_unswrite_num_reg,
{ "Number of Registers", "selfm.fastser.unswrite_num_reg", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_unswrite_reg_val,
{ "Register Value", "selfm.fastser.unswrite_reg_val", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_read_baseaddr,
{ "Base Address", "selfm.fastser.read_baseaddr", FT_UINT16, BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_read_numaddr,
{ "Number of Addresses", "selfm.fastser.read_numaddr", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_datafmt_resp_num_tag,
{ "Number of Tags", "selfm.fastser.datafmt_resp_numtag", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_datafmt_resp_tag_qty,
{ "Quantity of Values within Tag", "selfm.fastser.datafmt_resp_tagqty", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_datafmt_resp_tag_type,
{ "Tag Data Type", "selfm.fastser.datafmt_resp_tagtype", FT_UINT8, BASE_HEX, VALS(selfm_fastser_tagtype_vals), 0x0, NULL, HFILL }},
{ &hf_selfm_fastser_devdesc_num_reg,
{ "Number of Data Regions", "selfm.fastser.devdesc_num_reg", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
};
/* Setup protocol subtree array */
static gint *ett[] = {
&ett_selfm,
&ett_selfm_relaydef,
&ett_selfm_relaydef_fm,
&ett_selfm_relaydef_proto,
&ett_selfm_relaydef_flags,
&ett_selfm_fmconfig,
&ett_selfm_fmconfig_ai,
&ett_selfm_foconfig,
&ett_selfm_foconfig_brkr,
&ett_selfm_foconfig_rb,
&ett_selfm_fastop,
&ett_selfm_fmdata,
&ett_selfm_fmdata_ai,
&ett_selfm_fmdata_dig,
&ett_selfm_fmdata_ai_ch,
&ett_selfm_fmdata_dig_ch,
&ett_selfm_fastser,
&ett_selfm_fastser_seq,
&ett_selfm_fastser_def_fc,
&ett_selfm_fastser_tag,
&ett_selfm_fastser_element_list,
&ett_selfm_fastser_element,
&ett_selfm_fastser_datareg,
};
module_t *selfm_module;
/* Register the protocol name and description */
proto_selfm = proto_register_protocol("SEL Fast Message", "SEL Fast Message", "selfm");
/* Registering protocol to be called by another dissector */
new_register_dissector("selfm", dissect_selfm_simple, proto_selfm);
/* Required function calls to register the header fields and subtrees used */
proto_register_field_array(proto_selfm, selfm_hf, array_length(selfm_hf));
proto_register_subtree_array(ett, array_length(ett));
/* Register required preferences for SEL Protocol register decoding */
selfm_module = prefs_register_protocol(proto_selfm, proto_reg_handoff_selfm);
/* SEL Protocol - Desegmentmentation; defaults to TRUE for TCP desegmentation*/
prefs_register_bool_preference(selfm_module, "desegment",
"Desegment all SEL Fast Message Protocol packets spanning multiple TCP segments",
"Whether the SEL Protocol dissector should desegment all messages spanning multiple TCP segments",
&selfm_desegment);
/* SEL Protocol - Telnet protocol IAC (0xFF) processing; defaults to TRUE to allow Telnet Encapsulated Data */
prefs_register_bool_preference(selfm_module, "telnetclean",
"Enable Automatic pre-processing of Telnet-encapsulated data to remove extra 0xFF (IAC) bytes",
"Whether the SEL Protocol dissector should automatically pre-process Telnet data to remove IAC bytes",
&selfm_telnet_clean);
/* SEL Protocol Preference - Default TCP Port, allows for "user" port either than 0. */
prefs_register_uint_preference(selfm_module, "tcp.port", "SEL Protocol Port",
"Set the TCP port for SEL FM Protocol packets (if other"
" than the default of 0)",
10, &global_selfm_tcp_port);
}
/******************************************************************************************************/
/* If this dissector uses sub-dissector registration add a registration routine.
This format is required because a script is used to find these routines and
create the code that calls these routines.
*/
/******************************************************************************************************/
void
proto_reg_handoff_selfm(void)
{
static int selfm_prefs_initialized = FALSE;
static dissector_handle_t selfm_handle;
static unsigned int selfm_port;
/* Make sure to use SEL FM Protocol Preferences field to determine default TCP port */
if (! selfm_prefs_initialized) {
selfm_handle = new_create_dissector_handle(dissect_selfm_tcp, proto_selfm);
selfm_prefs_initialized = TRUE;
}
else {
dissector_delete_uint("tcp.port", selfm_port, selfm_handle);
}
selfm_port = global_selfm_tcp_port;
dissector_add_uint("tcp.port", selfm_port, selfm_handle);
}
/*
* Editor modelines - http://www.wireshark.org/tools/modelines.html
*
* Local variables:
* c-basic-offset: 4
* tab-width: 8
* indent-tabs-mode: nil
* End:
*
* vi: set shiftwidth=4 tabstop=8 expandtab:
* :indentSize=4:tabSize=8:noTabs=true:
*/