op25/op25/gr-op25_repeater/lib/gardner_costas_cc_impl.cc

302 lines
9.8 KiB
C++

/* -*- c++ -*- */
/*
* Copyright 2005,2006,2007 Free Software Foundation, Inc.
*
* Gardner symbol recovery block for GR - Copyright 2010, 2011, 2012, 2013, 2014, 2015 KA1RBI
*
* This file is part of OP25 and part of GNU Radio
*
* This is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* This software is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this software; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <gnuradio/io_signature.h>
#include "gardner_costas_cc_impl.h"
#include <gnuradio/math.h>
#include <gnuradio/expj.h>
#include <gnuradio/filter/mmse_fir_interpolator_cc.h>
#include <stdexcept>
#include <cstdio>
#include <string.h>
#include "p25_frame.h"
#include "check_frame_sync.h"
#define ENABLE_COSTAS_CQPSK_HACK 0
static const float M_TWOPI = 2 * M_PI;
#define VERBOSE_GARDNER 0 // Used for debugging symbol timing loop
#define VERBOSE_COSTAS 0 // Used for debugging phase and frequency tracking
static const gr_complex PT_45 = gr_expj( M_PI / 4.0 );
static const int NUM_COMPLEX=100;
namespace gr {
namespace op25_repeater {
static inline std::complex<float> sgn(std::complex<float>c) {
if (c == std::complex<float>(0.0,0.0))
return std::complex<float>(0.0, 0.0);
return c/abs(c);
}
uint8_t gardner_costas_cc_impl::slicer(float sym) {
uint8_t dibit = 0;
static const float PI_4 = M_PI / 4.0;
static const float d_slice_levels[4] = {-2.0*PI_4, 0.0*PI_4, 2.0*PI_4, 4.0*PI_4};
if (d_slice_levels[3] < 0) {
dibit = 1;
if (d_slice_levels[3] <= sym && sym < d_slice_levels[0])
dibit = 3;
} else {
dibit = 3;
if (d_slice_levels[2] <= sym && sym < d_slice_levels[3])
dibit = 1;
}
if (d_slice_levels[0] <= sym && sym < d_slice_levels[1])
dibit = 2;
if (d_slice_levels[1] <= sym && sym < d_slice_levels[2])
dibit = 0;
nid_accum <<= 2;
nid_accum |= dibit;
if(check_frame_sync((nid_accum & P25_FRAME_SYNC_MASK) ^ P25_FRAME_SYNC_MAGIC, 0, 48)) {
// fprintf(stderr, "P25P1 Framing detect\n");
}
if(check_frame_sync((nid_accum & P25_FRAME_SYNC_MASK) ^ 0x001050551155LL, 0, 48)) {
fprintf(stderr, "tuning error -1200\n");
}
if(check_frame_sync((nid_accum & P25_FRAME_SYNC_MASK) ^ 0xFFEFAFAAEEAALL, 0, 48)) {
fprintf(stderr, "tuning error +1200\n");
}
if(check_frame_sync((nid_accum & P25_FRAME_SYNC_MASK) ^ 0xAA8A0A008800LL, 0, 48)) {
fprintf(stderr, "tuning error +/- 2400\n");
}
return dibit;
}
gardner_costas_cc::sptr
gardner_costas_cc::make(float samples_per_symbol, float gain_mu, float gain_omega, float alpha, float beta, float max_freq, float min_freq)
{
return gnuradio::get_initial_sptr
(new gardner_costas_cc_impl(samples_per_symbol, gain_mu, gain_omega, alpha, beta, max_freq, min_freq));
}
/*
* The private constructor
*/
gardner_costas_cc_impl::gardner_costas_cc_impl(float samples_per_symbol, float gain_mu, float gain_omega, float alpha, float beta, float max_freq, float min_freq)
: gr::block("gardner_costas_cc",
gr::io_signature::make(1, 1, sizeof(gr_complex)),
gr::io_signature::make(1, 1, sizeof(gr_complex))),
d_mu(0),
d_gain_omega(gain_omega),
d_omega_rel(0.005),
d_gain_mu(gain_mu),
d_last_sample(0), d_interp(new gr::filter::mmse_fir_interpolator_cc()),
//d_verbose(gr::prefs::singleton()->get_bool("gardner_costas_cc", "verbose", false)),
d_verbose(false),
d_dl(new gr_complex[NUM_COMPLEX]),
d_dl_index(0),
d_alpha(alpha), d_beta(beta),
d_interp_counter(0),
d_theta(M_PI / 4.0), d_phase(0), d_freq(0), d_max_freq(max_freq),
nid_accum(0)
{
set_omega(samples_per_symbol);
set_relative_rate (1.0 / d_omega);
set_history(d_twice_sps); // ensure extra input is available
}
/*
* Our virtual destructor.
*/
gardner_costas_cc_impl::~gardner_costas_cc_impl()
{
delete [] d_dl;
delete d_interp;
}
void gardner_costas_cc_impl::set_omega (float omega) {
assert (omega >= 2.0);
d_omega = omega;
d_min_omega = omega*(1.0 - d_omega_rel);
d_max_omega = omega*(1.0 + d_omega_rel);
d_omega_mid = 0.5*(d_min_omega+d_max_omega);
d_twice_sps = 2 * (int) ceilf(d_omega);
int num_complex = std::max(d_twice_sps*2, 16);
if (num_complex > NUM_COMPLEX)
fprintf(stderr, "gardner_costas_cc: warning omega %f size %d exceeds NUM_COMPLEX %d\n", omega, num_complex, NUM_COMPLEX);
memset(d_dl, 0, NUM_COMPLEX * sizeof(gr_complex));
}
float gardner_costas_cc_impl::get_freq_error (void) {
return (d_freq);
}
void
gardner_costas_cc_impl::forecast(int noutput_items, gr_vector_int &ninput_items_required)
{
unsigned ninputs = ninput_items_required.size();
for (unsigned i=0; i < ninputs; i++)
ninput_items_required[i] =
(int) ceil((noutput_items * d_omega) + d_interp->ntaps());
}
float // for QPSK
gardner_costas_cc_impl::phase_error_detector_qpsk(gr_complex sample)
{
float phase_error = 0;
if(fabsf(sample.real()) > fabsf(sample.imag())) {
if(sample.real() > 0)
phase_error = -sample.imag();
else
phase_error = sample.imag();
}
else {
if(sample.imag() > 0)
phase_error = sample.real();
else
phase_error = -sample.real();
}
return phase_error;
}
void
gardner_costas_cc_impl::phase_error_tracking(gr_complex sample)
{
float phase_error = 0;
#if ENABLE_COSTAS_CQPSK_HACK
if (d_interp_counter & 1) // every other symbol
sample = sample * PT_45; // rotate by +45 deg
d_interp_counter++;
#endif /* ENABLE_COSTAS_CQPSK_HACK */
// Make phase and frequency corrections based on sampled value
phase_error = phase_error_detector_qpsk(sample);
d_freq += d_beta*phase_error*abs(sample); // adjust frequency based on error
d_phase += d_freq + d_alpha*phase_error*abs(sample); // adjust phase based on error
// Make sure we stay within +-2pi
while(d_phase > M_TWOPI)
d_phase -= M_TWOPI;
while(d_phase < -M_TWOPI)
d_phase += M_TWOPI;
// Limit the frequency range
d_freq = gr::branchless_clip(d_freq, d_max_freq);
#if VERBOSE_COSTAS
printf("cl: phase_error: %f phase: %f freq: %f sample: %f+j%f constellation: %f+j%f\n",
phase_error, d_phase, d_freq, sample.real(), sample.imag(),
d_constellation[d_current_const_point].real(), d_constellation[d_current_const_point].imag());
#endif
}
int
gardner_costas_cc_impl::general_work (int noutput_items,
gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
{
const gr_complex *in = (const gr_complex *) input_items[0];
gr_complex *out = (gr_complex *) output_items[0];
int i=0, o=0;
gr_complex symbol, sample, nco;
while((o < noutput_items) && (i < ninput_items[0])) {
while((d_mu > 1.0) && (i < ninput_items[0])) {
d_mu --;
d_phase += d_freq;
// Keep phase clamped and not walk to infinity
while(d_phase > M_TWOPI)
d_phase -= M_TWOPI;
while(d_phase < -M_TWOPI)
d_phase += M_TWOPI;
nco = gr_expj(d_phase+d_theta); // get the NCO value for derotating the curr
symbol = in[i];
sample = nco*symbol; // get the downconverted symbol
d_dl[d_dl_index] = sample;
d_dl[d_dl_index + d_twice_sps] = sample;
d_dl_index ++;
d_dl_index = d_dl_index % d_twice_sps;
i++;
}
if(i < ninput_items[0]) {
float half_omega = d_omega / 2.0;
int half_sps = (int) floorf(half_omega);
float half_mu = d_mu + half_omega - (float) half_sps;
if (half_mu > 1.0) {
half_mu -= 1.0;
half_sps += 1;
}
// at this point half_sps represents the whole part, and
// half_mu the fractional part, of the halfway mark.
// locate two points, separated by half of one symbol time
// interp_samp is (we hope) at the optimum sampling point
gr_complex interp_samp_mid = d_interp->interpolate(&d_dl[ d_dl_index ], d_mu);
gr_complex interp_samp = d_interp->interpolate(&d_dl[ d_dl_index + half_sps], half_mu);
float error_real = (d_last_sample.real() - interp_samp.real()) * interp_samp_mid.real();
float error_imag = (d_last_sample.imag() - interp_samp.imag()) * interp_samp_mid.imag();
gr_complex diffdec = interp_samp * conj(d_last_sample);
// cpu reduction (void)slicer(std::arg(diffdec));
d_last_sample = interp_samp; // save for next time
#if 1
float symbol_error = error_real + error_imag; // Gardner loop error
#else
float symbol_error = ((sgn(interp_samp) - sgn(d_last_sample)) * conj(interp_samp_mid)).real();
#endif
if (std::isnan(symbol_error)) symbol_error = 0.0;
if (symbol_error < -1.0) symbol_error = -1.0;
if (symbol_error > 1.0) symbol_error = 1.0;
d_omega = d_omega + d_gain_omega * symbol_error * abs(interp_samp); // update omega based on loop error
d_omega = d_omega_mid + gr::branchless_clip(d_omega-d_omega_mid, d_omega_rel); // make sure we don't walk away
#if VERBOSE_GARDNER
printf("%f\t%f\t%f\t%f\t%f\n", symbol_error, d_mu, d_omega, error_real, error_imag);
#endif
d_mu += d_omega + d_gain_mu * symbol_error; // update mu based on loop error
phase_error_tracking(diffdec * PT_45);
out[o++] = interp_samp;
}
}
#if 0
printf("ninput_items: %d noutput_items: %d consuming: %d returning: %d\n",
ninput_items[0], noutput_items, i, o);
#endif
consume_each(i);
return o;
}
} /* namespace op25_repeater */
} /* namespace gr */