/* -*- c++ -*- */ /* * AMBE halfrate encoder - Copyright 2016 Max H. Parke KA1RBI * * This file is part of OP25 and part of GNU Radio * * This is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * This software is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this software; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include "imbe_vocoder/imbe_vocoder.h" #include "ambe3600x2250_const.h" #include "ambe3600x2400_const.h" #include "op25_imbe_frame.h" #include "mbelib.h" #include "ambe.h" #include "p25p2_vf.h" #include "ambe_encoder.h" static const short b0_lookup[] = { 0, 0, 0, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 11, 11, 11, 12, 12, 12, 13, 13, 13, 14, 14, 14, 15, 15, 15, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 19, 19, 19, 20, 20, 20, 21, 21, 21, 21, 22, 22, 22, 23, 23, 23, 24, 24, 24, 24, 25, 25, 25, 25, 26, 26, 26, 27, 27, 27, 27, 28, 28, 28, 29, 29, 29, 29, 30, 30, 30, 30, 31, 31, 31, 31, 31, 32, 32, 32, 32, 33, 33, 33, 33, 34, 34, 34, 34, 35, 35, 35, 35, 36, 36, 36, 36, 37, 37, 37, 37, 38, 38, 38, 38, 38, 39, 39, 39, 39, 40, 40, 40, 40, 40, 41, 41, 41, 41, 42, 42, 42, 42, 42, 43, 43, 43, 43, 43, 44, 44, 44, 44, 45, 45, 45, 45, 45, 46, 46, 46, 46, 46, 47, 47, 47, 47, 47, 48, 48, 48, 48, 48, 49, 49, 49, 49, 49, 49, 50, 50, 50, 50, 50, 51, 51, 51, 51, 51, 52, 52, 52, 52, 52, 52, 53, 53, 53, 53, 53, 54, 54, 54, 54, 54, 54, 55, 55, 55, 55, 55, 56, 56, 56, 56, 56, 56, 57, 57, 57, 57, 57, 57, 58, 58, 58, 58, 58, 58, 59, 59, 59, 59, 59, 59, 60, 60, 60, 60, 60, 60, 61, 61, 61, 61, 61, 61, 62, 62, 62, 62, 62, 62, 63, 63, 63, 63, 63, 63, 63, 64, 64, 64, 64, 64, 64, 65, 65, 65, 65, 65, 65, 65, 66, 66, 66, 66, 66, 66, 67, 67, 67, 67, 67, 67, 67, 68, 68, 68, 68, 68, 68, 68, 69, 69, 69, 69, 69, 69, 69, 70, 70, 70, 70, 70, 70, 70, 71, 71, 71, 71, 71, 71, 71, 72, 72, 72, 72, 72, 72, 72, 73, 73, 73, 73, 73, 73, 73, 73, 74, 74, 74, 74, 74, 74, 74, 75, 75, 75, 75, 75, 75, 75, 75, 76, 76, 76, 76, 76, 76, 76, 76, 77, 77, 77, 77, 77, 77, 77, 77, 77, 78, 78, 78, 78, 78, 78, 78, 78, 79, 79, 79, 79, 79, 79, 79, 79, 80, 80, 80, 80, 80, 80, 80, 80, 81, 81, 81, 81, 81, 81, 81, 81, 81, 82, 82, 82, 82, 82, 82, 82, 82, 83, 83, 83, 83, 83, 83, 83, 83, 83, 84, 84, 84, 84, 84, 84, 84, 84, 84, 85, 85, 85, 85, 85, 85, 85, 85, 85, 86, 86, 86, 86, 86, 86, 86, 86, 86, 87, 87, 87, 87, 87, 87, 87, 87, 87, 88, 88, 88, 88, 88, 88, 88, 88, 88, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 91, 91, 91, 91, 91, 91, 91, 91, 91, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 96, 97, 97, 97, 97, 97, 97, 97, 97, 97, 97, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 101, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 102, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 103, 104, 104, 104, 104, 104, 104, 104, 104, 104, 104, 104, 104, 105, 105, 105, 105, 105, 105, 105, 105, 105, 105, 105, 105, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 106, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 107, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 108, 109, 109, 109, 109, 109, 109, 109, 109, 109, 109, 109, 109, 109, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 111, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 112, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 113, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 114, 115, 115, 115, 115, 115, 115, 115, 115, 115, 115, 115, 115, 115, 115, 116, 116, 116, 116, 116, 116, 116, 116, 116, 116, 116, 116, 116, 116, 116, 117, 117, 117, 117, 117, 117, 117, 117, 117, 117, 117, 117, 117, 117, 118, 118, 118, 118, 118, 118, 118, 118, 118, 118, 118, 118, 118, 118, 118, 119, 119, 119, 119, 119, 119, 119, 119 }; #if 0 // fixme: should not be static static mbe_parms cur_mp; static mbe_parms prev_mp; #endif static inline float make_f0(int b0) { return (powf(2, (-4.311767578125 - (2.1336e-2 * ((float)b0+0.5))))); } static void encode_ambe(const IMBE_PARAM *imbe_param, int b[], mbe_parms*cur_mp, mbe_parms*prev_mp, bool dstar, float gain_adjust) { static const float SQRT_2 = sqrtf(2.0); static const int b0_lmax = sizeof(b0_lookup) / sizeof(b0_lookup[0]); // int b[9]; // ref_pitch is Q8_8 in range 19.875 - 123.125 int b0_i = (imbe_param->ref_pitch >> 5) - 159; if (b0_i < 0 || b0_i > b0_lmax) { fprintf(stderr, "encode error b0_i %d\n", b0_i); return; } b[0] = b0_lookup[b0_i]; int L; if (dstar) L = (int) AmbePlusLtable[b[0]]; else L = (int) AmbeLtable[b[0]]; #if 1 // adjust b0 until L agrees while (L != imbe_param->num_harms) { if (L < imbe_param->num_harms) b0_i ++; else if (L > imbe_param->num_harms) b0_i --; if (b0_i < 0 || b0_i > b0_lmax) { fprintf(stderr, "encode error2 b0_i %d\n", b0_i); return; } b[0] = b0_lookup[b0_i]; if (dstar) L = (int) AmbePlusLtable[b[0]]; else L = (int) AmbeLtable[b[0]]; } #endif float m_float2[NUM_HARMS_MAX]; for (int l=1; l <= L; l++) { m_float2[l-1] = (float)imbe_param->sa[l-1] ; m_float2[l-1] = m_float2[l-1] * m_float2[l-1]; } float en_min = 0; b[1] = 0; int vuv_max = (dstar) ? 16 : 17; for (int n=0; n < vuv_max; n++) { float En = 0; for (int l=1; l <= L; l++) { int jl; if (dstar) jl = (int) ((float) l * (float) 16.0 * make_f0(b[0])); else jl = (int) ((float) l * (float) 16.0 * AmbeW0table[b[0]]); int kl = 12; if (l <= 36) kl = (l + 2) / 3; if (dstar) { if (imbe_param->v_uv_dsn[(kl-1)*3] != AmbePlusVuv[n][jl]) En += m_float2[l-1]; } else { if (imbe_param->v_uv_dsn[(kl-1)*3] != AmbeVuv[n][jl]) En += m_float2[l-1]; } } if (n == 0) en_min = En; else if (En < en_min) { b[1] = n; en_min = En; } } // log spectral amplitudes float num_harms_f = (float) imbe_param->num_harms; float log_l_2 = 0.5 * log2f(num_harms_f); // fixme: table lookup float log_l_w0; if (dstar) log_l_w0 = 0.5 * log2f(num_harms_f * make_f0(b[0]) * 2.0 * M_PI) + 2.289; else log_l_w0 = 0.5 * log2f(num_harms_f * AmbeW0table[b[0]] * 2.0 * M_PI) + 2.289; float lsa[NUM_HARMS_MAX]; float lsa_sum=0.0; for (int i1 = 0; i1 < imbe_param->num_harms; i1++) { float sa = (float)imbe_param->sa[i1]; if (sa < 1) sa = 1.0; if (imbe_param->v_uv_dsn[i1]) lsa[i1] = log_l_2 + log2f(sa); else lsa[i1] = log_l_w0 + log2f(sa); lsa_sum += lsa[i1]; } float gain = lsa_sum / num_harms_f; float diff_gain; if (dstar) diff_gain = gain; else diff_gain = gain - 0.5 * prev_mp->gamma; diff_gain -= gain_adjust; float error; int error_index; int max_dg = (dstar) ? 64 : 32; for (int i1 = 0; i1 < max_dg; i1++) { float diff; if (dstar) diff = fabsf(diff_gain - AmbePlusDg[i1]); else diff = fabsf(diff_gain - AmbeDg[i1]); if (i1 == 0 || diff < error) { error = diff; error_index = i1; } } b[2] = error_index; // prediction residuals float l_prev_l = (float) (prev_mp->L) / num_harms_f; float tmp_s = 0.0; prev_mp->log2Ml[0] = prev_mp->log2Ml[1]; for (int i1 = 0; i1 < imbe_param->num_harms; i1++) { float kl = l_prev_l * (float)(i1+1); int kl_floor = (int) kl; float kl_frac = kl - kl_floor; tmp_s += (1.0 - kl_frac) * prev_mp->log2Ml[kl_floor +0] + kl_frac * prev_mp->log2Ml[kl_floor+1 +0]; } float T[NUM_HARMS_MAX]; for (int i1 = 0; i1 < imbe_param->num_harms; i1++) { float kl = l_prev_l * (float)(i1+1); int kl_floor = (int) kl; float kl_frac = kl - kl_floor; T[i1] = lsa[i1] - 0.65 * (1.0 - kl_frac) * prev_mp->log2Ml[kl_floor +0] \ - 0.65 * kl_frac * prev_mp->log2Ml[kl_floor+1 +0]; } // DCT const int * J; if (dstar) J = AmbePlusLmprbl[imbe_param->num_harms]; else J = AmbeLmprbl[imbe_param->num_harms]; float * c[4]; int acc = 0; for (int i=0; i<4; i++) { c[i] = &T[acc]; acc += J[i]; } float C[4][17]; for (int i=1; i<=4; i++) { for (int k=1; k<=J[i-1]; k++) { float s = 0.0; for (int j=1; j<=J[i-1]; j++) { //fixme: lut? s += (c[i-1][j-1] * cosf((M_PI * (((float)k) - 1.0) * (((float)j) - 0.5)) / (float)J[i-1])); } C[i-1][k-1] = s / (float)J[i-1]; } } float R[8]; R[0] = C[0][0] + SQRT_2 * C[0][1]; R[1] = C[0][0] - SQRT_2 * C[0][1]; R[2] = C[1][0] + SQRT_2 * C[1][1]; R[3] = C[1][0] - SQRT_2 * C[1][1]; R[4] = C[2][0] + SQRT_2 * C[2][1]; R[5] = C[2][0] - SQRT_2 * C[2][1]; R[6] = C[3][0] + SQRT_2 * C[3][1]; R[7] = C[3][0] - SQRT_2 * C[3][1]; // encode PRBA float G[8]; for (int m=1; m<=8; m++) { G[m-1] = 0.0; for (int i=1; i<=8; i++) { //fixme: lut? G[m-1] += (R[i-1] * cosf((M_PI * (((float)m) - 1.0) * (((float)i) - 0.5)) / 8.0)); } G[m-1] /= 8.0; } for (int i=0; i<512; i++) { float err=0.0; float diff; if (dstar) { diff = G[1] - AmbePlusPRBA24[i][0]; err += (diff * diff); diff = G[2] - AmbePlusPRBA24[i][1]; err += (diff * diff); diff = G[3] - AmbePlusPRBA24[i][2]; err += (diff * diff); } else { diff = G[1] - AmbePRBA24[i][0]; err += (diff * diff); diff = G[2] - AmbePRBA24[i][1]; err += (diff * diff); diff = G[3] - AmbePRBA24[i][2]; err += (diff * diff); } if (i == 0 || err < error) { error = err; error_index = i; } } b[3] = error_index; // PRBA58 for (int i=0; i<128; i++) { float err=0.0; float diff; if (dstar) { diff = G[4] - AmbePlusPRBA58[i][0]; err += (diff * diff); diff = G[5] - AmbePlusPRBA58[i][1]; err += (diff * diff); diff = G[6] - AmbePlusPRBA58[i][2]; err += (diff * diff); diff = G[7] - AmbePlusPRBA58[i][3]; err += (diff * diff); } else { diff = G[4] - AmbePRBA58[i][0]; err += (diff * diff); diff = G[5] - AmbePRBA58[i][1]; err += (diff * diff); diff = G[6] - AmbePRBA58[i][2]; err += (diff * diff); diff = G[7] - AmbePRBA58[i][3]; err += (diff * diff); } if (i == 0 || err < error) { error = err; error_index = i; } } b[4] = error_index; // higher order coeffs b5 int ii = 1; if (J[ii-1] <= 2) { b[4+ii] = 0.0; } else { int max_5 = (dstar) ? 16 : 32; for (int n=0; n < max_5; n++) { float err=0.0; float diff; for (int j=1; j <= J[ii-1]-2 && j <= 4; j++) { if (dstar) diff = AmbePlusHOCb5[n][j-1] - C[ii-1][j+2-1]; else diff = AmbeHOCb5[n][j-1] - C[ii-1][j+2-1]; err += (diff * diff); } if (n == 0 || err < error) { error = err; error_index = n; } } b[4+ii] = error_index; } // higher order coeffs b6 ii = 2; if (J[ii-1] <= 2) { b[4+ii] = 0.0; } else { for (int n=0; n < 16; n++) { float err=0.0; float diff; for (int j=1; j <= J[ii-1]-2 && j <= 4; j++) { if (dstar) diff = AmbePlusHOCb6[n][j-1] - C[ii-1][j+2-1]; else diff = AmbeHOCb6[n][j-1] - C[ii-1][j+2-1]; err += (diff * diff); } if (n == 0 || err < error) { error = err; error_index = n; } } b[4+ii] = error_index; } // higher order coeffs b7 ii = 3; if (J[ii-1] <= 2) { b[4+ii] = 0.0; } else { for (int n=0; n < 16; n++) { float err=0.0; float diff; for (int j=1; j <= J[ii-1]-2 && j <= 4; j++) { if (dstar) diff = AmbePlusHOCb7[n][j-1] - C[ii-1][j+2-1]; else diff = AmbeHOCb7[n][j-1] - C[ii-1][j+2-1]; err += (diff * diff); } if (n == 0 || err < error) { error = err; error_index = n; } } b[4+ii] = error_index; } // higher order coeffs b8 ii = 4; if (J[ii-1] <= 2) { b[4+ii] = 0.0; } else { int max_8 = (dstar) ? 16 : 8; for (int n=0; n < max_8; n++) { float err=0.0; float diff; for (int j=1; j <= J[ii-1]-2 && j <= 4; j++) { if (dstar) diff = AmbePlusHOCb8[n][j-1] - C[ii-1][j+2-1]; else diff = AmbeHOCb8[n][j-1] - C[ii-1][j+2-1]; err += (diff * diff); } if (n == 0 || err < error) { error = err; error_index = n; } } b[4+ii] = error_index; } // fprintf (stderr, "B\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\n", b[0], b[1], b[2], b[3], b[4], b[5], b[6], b[7], b[8]); int rc; if (dstar) rc = mbe_dequantizeAmbe2400Parms (cur_mp, prev_mp, b); else rc = mbe_dequantizeAmbe2250Parms (cur_mp, prev_mp, b); mbe_moveMbeParms (cur_mp, prev_mp); } static void encode_49bit(uint8_t outp[49], const int b[9]) { outp[0] = (b[0] >> 6) & 1; outp[1] = (b[0] >> 5) & 1; outp[2] = (b[0] >> 4) & 1; outp[3] = (b[0] >> 3) & 1; outp[4] = (b[1] >> 4) & 1; outp[5] = (b[1] >> 3) & 1; outp[6] = (b[1] >> 2) & 1; outp[7] = (b[1] >> 1) & 1; outp[8] = (b[2] >> 4) & 1; outp[9] = (b[2] >> 3) & 1; outp[10] = (b[2] >> 2) & 1; outp[11] = (b[2] >> 1) & 1; outp[12] = (b[3] >> 8) & 1; outp[13] = (b[3] >> 7) & 1; outp[14] = (b[3] >> 6) & 1; outp[15] = (b[3] >> 5) & 1; outp[16] = (b[3] >> 4) & 1; outp[17] = (b[3] >> 3) & 1; outp[18] = (b[3] >> 2) & 1; outp[19] = (b[3] >> 1) & 1; outp[20] = (b[4] >> 6) & 1; outp[21] = (b[4] >> 5) & 1; outp[22] = (b[4] >> 4) & 1; outp[23] = (b[4] >> 3) & 1; outp[24] = (b[5] >> 4) & 1; outp[25] = (b[5] >> 3) & 1; outp[26] = (b[5] >> 2) & 1; outp[27] = (b[5] >> 1) & 1; outp[28] = (b[6] >> 3) & 1; outp[29] = (b[6] >> 2) & 1; outp[30] = (b[6] >> 1) & 1; outp[31] = (b[7] >> 3) & 1; outp[32] = (b[7] >> 2) & 1; outp[33] = (b[7] >> 1) & 1; outp[34] = (b[8] >> 2) & 1; outp[35] = b[1] & 1; outp[36] = b[2] & 1; outp[37] = (b[0] >> 2) & 1; outp[38] = (b[0] >> 1) & 1; outp[39] = b[0] & 1; outp[40] = b[3] & 1; outp[41] = (b[4] >> 2) & 1; outp[42] = (b[4] >> 1) & 1; outp[43] = b[4] & 1; outp[44] = b[5] & 1; outp[45] = b[6] & 1; outp[46] = b[7] & 1; outp[47] = (b[8] >> 1) & 1; outp[48] = b[8] & 1; } ambe_encoder::ambe_encoder(void) : d_49bit_mode(false), d_dstar_mode(false), d_alt_dstar_interleave(false), d_gain_adjust(0) { mbe_parms enh_mp; mbe_initMbeParms (&cur_mp, &prev_mp, &enh_mp); } void ambe_encoder::set_dstar_mode(void) { d_dstar_mode = true; } void ambe_encoder::set_49bit_mode(void) { d_49bit_mode = true; } // given a buffer of 160 audio samples (S16_LE), // generate 72-bit ambe codeword (as 36 dibits in codeword[]) // (as 72 bits in codeword[] if in dstar mode) // or 49-bit output codeword (if set_49bit_mode() has been called) void ambe_encoder::encode(int16_t samples[], uint8_t codeword[]) { int b[9]; int16_t frame_vector[8]; // result ignored // TODO: should disable fullrate encoding/quantization/interleaving // (unneeded in ambe encoder) to save CPU // first do speech analysis to generate mbe model parameters vocoder.imbe_encode(frame_vector, samples); // halfrate audio encoding - output rate is 2450 (49 bits) encode_ambe(vocoder.param(), b, &cur_mp, &prev_mp, d_dstar_mode, d_gain_adjust); if (d_dstar_mode) { interleaver.encode_dstar(codeword, b, d_alt_dstar_interleave); } else if (d_49bit_mode) { encode_49bit(codeword, b); } else { // add FEC and interleaving - output rate is 3600 (72 bits) interleaver.encode_vcw(codeword, b); } }