/* -*- c++ -*- */ /* * Copyright 2005,2006,2007 Free Software Foundation, Inc. * * Gardner symbol recovery block for GR - Copyright 2010, 2011, 2012, 2013, 2014, 2015 KA1RBI * * This file is part of OP25 and part of GNU Radio * * This is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * This software is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this software; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include "gardner_costas_cc_impl.h" #include #include #include #include #include #include #include "p25_frame.h" #define ENABLE_COSTAS_CQPSK_HACK 0 static const float M_TWOPI = 2 * M_PI; #define VERBOSE_GARDNER 0 // Used for debugging symbol timing loop #define VERBOSE_COSTAS 0 // Used for debugging phase and frequency tracking static const gr_complex PT_45 = gr_expj( M_PI / 4.0 ); static const int NUM_COMPLEX=100; namespace gr { namespace op25_repeater { // count no. of 1 bits in masked, xor'ed, FS, return true if < threshold static inline bool check_frame_sync(uint64_t ch, int err_threshold, int len) { int errs=0; for (int i=0; i < len; i++) { errs += (ch & 1); ch = ch >> 1; } if (errs <= err_threshold) return true; return false; } static inline std::complex sgn(std::complexc) { if (c == std::complex(0.0,0.0)) return std::complex(0.0, 0.0); return c/abs(c); } uint8_t gardner_costas_cc_impl::slicer(float sym) { uint8_t dibit = 0; static const float PI_4 = M_PI / 4.0; static const float d_slice_levels[4] = {-2.0*PI_4, 0.0*PI_4, 2.0*PI_4, 4.0*PI_4}; if (d_slice_levels[3] < 0) { dibit = 1; if (d_slice_levels[3] <= sym && sym < d_slice_levels[0]) dibit = 3; } else { dibit = 3; if (d_slice_levels[2] <= sym && sym < d_slice_levels[3]) dibit = 1; } if (d_slice_levels[0] <= sym && sym < d_slice_levels[1]) dibit = 2; if (d_slice_levels[1] <= sym && sym < d_slice_levels[2]) dibit = 0; nid_accum <<= 2; nid_accum |= dibit; if(check_frame_sync((nid_accum & P25_FRAME_SYNC_MASK) ^ P25_FRAME_SYNC_MAGIC, 0, 48)) { // fprintf(stderr, "P25P1 Framing detect\n"); } if(check_frame_sync((nid_accum & P25_FRAME_SYNC_MASK) ^ 0x001050551155LL, 0, 48)) { fprintf(stderr, "tuning error -1200\n"); } if(check_frame_sync((nid_accum & P25_FRAME_SYNC_MASK) ^ 0xFFEFAFAAEEAALL, 0, 48)) { fprintf(stderr, "tuning error +1200\n"); } if(check_frame_sync((nid_accum & P25_FRAME_SYNC_MASK) ^ 0xAA8A0A008800LL, 0, 48)) { fprintf(stderr, "tuning error +/- 2400\n"); } return dibit; } gardner_costas_cc::sptr gardner_costas_cc::make(float samples_per_symbol, float gain_mu, float gain_omega, float alpha, float beta, float max_freq, float min_freq) { return gnuradio::get_initial_sptr (new gardner_costas_cc_impl(samples_per_symbol, gain_mu, gain_omega, alpha, beta, max_freq, min_freq)); } /* * The private constructor */ gardner_costas_cc_impl::gardner_costas_cc_impl(float samples_per_symbol, float gain_mu, float gain_omega, float alpha, float beta, float max_freq, float min_freq) : gr::block("gardner_costas_cc", gr::io_signature::make(1, 1, sizeof(gr_complex)), gr::io_signature::make(1, 1, sizeof(gr_complex))), d_mu(0), d_gain_omega(gain_omega), d_omega_rel(0.005), d_gain_mu(gain_mu), d_last_sample(0), d_interp(new gr::filter::mmse_fir_interpolator_cc()), //d_verbose(gr::prefs::singleton()->get_bool("gardner_costas_cc", "verbose", false)), d_verbose(false), d_dl(new gr_complex[NUM_COMPLEX]), d_dl_index(0), d_alpha(alpha), d_beta(beta), d_interp_counter(0), d_theta(M_PI / 4.0), d_phase(0), d_freq(0), d_max_freq(max_freq), nid_accum(0) { set_omega(samples_per_symbol); set_relative_rate (1.0 / d_omega); set_history(d_twice_sps); // ensure extra input is available } /* * Our virtual destructor. */ gardner_costas_cc_impl::~gardner_costas_cc_impl() { delete [] d_dl; delete d_interp; } void gardner_costas_cc_impl::set_omega (float omega) { assert (omega >= 2.0); d_omega = omega; d_min_omega = omega*(1.0 - d_omega_rel); d_max_omega = omega*(1.0 + d_omega_rel); d_omega_mid = 0.5*(d_min_omega+d_max_omega); d_twice_sps = 2 * (int) ceilf(d_omega); int num_complex = std::max(d_twice_sps*2, 16); if (num_complex > NUM_COMPLEX) fprintf(stderr, "gardner_costas_cc: warning omega %f size %d exceeds NUM_COMPLEX %d\n", omega, num_complex, NUM_COMPLEX); memset(d_dl, 0, NUM_COMPLEX * sizeof(gr_complex)); } void gardner_costas_cc_impl::forecast(int noutput_items, gr_vector_int &ninput_items_required) { unsigned ninputs = ninput_items_required.size(); for (unsigned i=0; i < ninputs; i++) ninput_items_required[i] = (int) ceil((noutput_items * d_omega) + d_interp->ntaps()); } float // for QPSK gardner_costas_cc_impl::phase_error_detector_qpsk(gr_complex sample) { float phase_error = 0; if(fabsf(sample.real()) > fabsf(sample.imag())) { if(sample.real() > 0) phase_error = -sample.imag(); else phase_error = sample.imag(); } else { if(sample.imag() > 0) phase_error = sample.real(); else phase_error = -sample.real(); } return phase_error; } void gardner_costas_cc_impl::phase_error_tracking(gr_complex sample) { float phase_error = 0; #if ENABLE_COSTAS_CQPSK_HACK if (d_interp_counter & 1) // every other symbol sample = sample * PT_45; // rotate by +45 deg d_interp_counter++; #endif /* ENABLE_COSTAS_CQPSK_HACK */ // Make phase and frequency corrections based on sampled value phase_error = phase_error_detector_qpsk(sample); d_freq += d_beta*phase_error*abs(sample); // adjust frequency based on error d_phase += d_freq + d_alpha*phase_error*abs(sample); // adjust phase based on error // Make sure we stay within +-2pi while(d_phase > M_TWOPI) d_phase -= M_TWOPI; while(d_phase < -M_TWOPI) d_phase += M_TWOPI; // Limit the frequency range d_freq = gr::branchless_clip(d_freq, d_max_freq); #if VERBOSE_COSTAS printf("cl: phase_error: %f phase: %f freq: %f sample: %f+j%f constellation: %f+j%f\n", phase_error, d_phase, d_freq, sample.real(), sample.imag(), d_constellation[d_current_const_point].real(), d_constellation[d_current_const_point].imag()); #endif } int gardner_costas_cc_impl::general_work (int noutput_items, gr_vector_int &ninput_items, gr_vector_const_void_star &input_items, gr_vector_void_star &output_items) { const gr_complex *in = (const gr_complex *) input_items[0]; gr_complex *out = (gr_complex *) output_items[0]; int i=0, o=0; gr_complex symbol, sample, nco; while((o < noutput_items) && (i < ninput_items[0])) { while((d_mu > 1.0) && (i < ninput_items[0])) { d_mu --; d_phase += d_freq; // Keep phase clamped and not walk to infinity while(d_phase > M_TWOPI) d_phase -= M_TWOPI; while(d_phase < -M_TWOPI) d_phase += M_TWOPI; nco = gr_expj(d_phase+d_theta); // get the NCO value for derotating the curr symbol = in[i]; sample = nco*symbol; // get the downconverted symbol d_dl[d_dl_index] = sample; d_dl[d_dl_index + d_twice_sps] = sample; d_dl_index ++; d_dl_index = d_dl_index % d_twice_sps; i++; } if(i < ninput_items[0]) { float half_omega = d_omega / 2.0; int half_sps = (int) floorf(half_omega); float half_mu = d_mu + half_omega - (float) half_sps; if (half_mu > 1.0) { half_mu -= 1.0; half_sps += 1; } // at this point half_sps represents the whole part, and // half_mu the fractional part, of the halfway mark. // locate two points, separated by half of one symbol time // interp_samp is (we hope) at the optimum sampling point gr_complex interp_samp_mid = d_interp->interpolate(&d_dl[ d_dl_index ], d_mu); gr_complex interp_samp = d_interp->interpolate(&d_dl[ d_dl_index + half_sps], half_mu); float error_real = (d_last_sample.real() - interp_samp.real()) * interp_samp_mid.real(); float error_imag = (d_last_sample.imag() - interp_samp.imag()) * interp_samp_mid.imag(); gr_complex diffdec = interp_samp * conj(d_last_sample); (void)slicer(std::arg(diffdec)); d_last_sample = interp_samp; // save for next time #if 1 float symbol_error = error_real + error_imag; // Gardner loop error #else float symbol_error = ((sgn(interp_samp) - sgn(d_last_sample)) * conj(interp_samp_mid)).real(); #endif if (isnan(symbol_error)) symbol_error = 0.0; if (symbol_error < -1.0) symbol_error = -1.0; if (symbol_error > 1.0) symbol_error = 1.0; d_omega = d_omega + d_gain_omega * symbol_error * abs(interp_samp); // update omega based on loop error d_omega = d_omega_mid + gr::branchless_clip(d_omega-d_omega_mid, d_omega_rel); // make sure we don't walk away #if VERBOSE_GARDNER printf("%f\t%f\t%f\t%f\t%f\n", symbol_error, d_mu, d_omega, error_real, error_imag); #endif d_mu += d_omega + d_gain_mu * symbol_error; // update mu based on loop error phase_error_tracking(diffdec * PT_45); out[o++] = interp_samp; } } #if 0 printf("ninput_items: %d noutput_items: %d consuming: %d returning: %d\n", ninput_items[0], noutput_items, i, o); #endif consume_each(i); return o; } } /* namespace op25_repeater */ } /* namespace gr */