/* -*- c++ -*- */ /* * Copyright 2005,2006 Free Software Foundation, Inc. * * Tone detect symbol recovery block for GR - Copyright 2012, KA1RBI * * This file is part of GNU Radio * * GNU Radio is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * GNU Radio is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Radio; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include #include #include #include #include #include #include #include "cic_filter.h" #define VERBOSE_TDETECT 0 // Used for debugging symbol timing loop // Public constructor repeater_tdetect_cc_sptr repeater_make_tdetect_cc (int samples_per_symbol, float step_size, int theta, int cic_length) { return repeater_tdetect_cc_sptr (new repeater_tdetect_cc (samples_per_symbol, step_size, theta, cic_length)); } repeater_tdetect_cc::repeater_tdetect_cc (int samples_per_symbol, float step_size, int theta, int cic_length) : gr_block ("repeater_tdetect_cc", gr_make_io_signature (1, 1, sizeof (gr_complex)), gr_make_io_signature (1, 1, sizeof (gr_complex))), d_samples_per_symbol(samples_per_symbol), d_half_sps(samples_per_symbol >> 1), d_step_size(step_size), d_theta(theta), d_cic_length(cic_length), d_integrator(), d_comb(cic_length), input_delay(samples_per_symbol), d_l2ctr(0), d_delta(0), d_delta_c(0), d_previous_phase_offset(0) { assert((samples_per_symbol & 1) == 0); // sps must be even set_relative_rate (1.0 / (float) samples_per_symbol); set_history(samples_per_symbol * 2); // ensure extra input is available } repeater_tdetect_cc::~repeater_tdetect_cc () { } void repeater_tdetect_cc::forecast(int noutput_items, gr_vector_int &ninput_items_required) { unsigned ninputs = ninput_items_required.size(); for (unsigned i=0; i < ninputs; i++) ninput_items_required[i] = (int) ceil((noutput_items * d_samples_per_symbol)); } /* * Tone detect symbol recovery block for GR - Copyright 2012, KA1RBI * * symbol timing synchronization using tone detection * * CQPSK signals when AM-demodulated contain a strong tone at 4,800 Hz. * This tone is filtered (using a CIC to remove the DC offset at zero Hz)., * amplified, and decimated. The resulting error signal is applied to steer * the symbol sampling point toward the optimum phase. * * NOTE: input samples should be normalized (AGC) such that the range of * signal magnitudes is in the standard zone (0 through +1.0). * * * Source: Software Radios (Second Ed.) B. Farhang-Boroujeny, Sec. 10.2.3 * */ int repeater_tdetect_cc::general_work (int noutput_items, gr_vector_int &ninput_items, gr_vector_const_void_star &input_items, gr_vector_void_star &output_items) { const gr_complex *in = (const gr_complex *) input_items[0]; gr_complex *out = (gr_complex *) output_items[0]; int i=0, o=0; gr_complex sample; while((o < noutput_items) && (i < ninput_items[0])) { sample = in[ i++ ]; sample = input_delay.cycle(sample, d_delta); if (++d_l2ctr < d_half_sps) continue; // decimate by sps/2 d_l2ctr = 0; int64_t s = (int64_t) (262143.0 * (pow(sample.real(), 2.0) + pow(sample.imag(), 2.0))); /* mag sq */ s = d_comb.cycle(s, d_cic_length); s = d_integrator.cycle(s); if (++d_d2ctr & 1) continue; // decimate by 2 float symbol_error = d_step_size * (float)s; // now adjust delta_continuous by the amount of the symbol timing error d_delta_c += symbol_error; while (d_delta_c > d_samples_per_symbol) d_delta_c -= d_samples_per_symbol; while (d_delta_c < 0) d_delta_c += d_samples_per_symbol; d_delta = (int) rint(d_delta_c); // quantize to nearest int // d_theta sets optimum sampling point phase offset (delay), // in one-sample units int phase_offset = d_delta + d_theta; while (phase_offset > d_samples_per_symbol) phase_offset -= d_samples_per_symbol; while (phase_offset < 0) phase_offset += d_samples_per_symbol; // handle frequency mismatch between local clock and extracted clock // when mismatch reaches a full cycle we must either insert one "extra" // symbol or skip one symbol (depending on algebraic sign of mismatch) int dd = phase_offset - d_previous_phase_offset; int skip_store = 0; if (abs(dd) >= d_half_sps) { if (dd < 0 && o < noutput_items-1) { sample = input_delay.get(d_previous_phase_offset); out[o++] = sample; } if (dd > 0) { skip_store = 1; } } d_previous_phase_offset = phase_offset; if (!skip_store) { sample = input_delay.get(phase_offset); out[o++] = sample; } } consume_each(i); return o; }