
E
NTFS On-Disk

Structure

One of the interesting file system control operations defined in winioctl.h is
FSCTL_GET_NTFS_FILE_RECORD, which retrieves a file record from the Master File Table
(MFT) on an NTFS volume.When calling ZwFsControlFile (or the Win32 function
DeviceIoControl) with this control code, the InputBuffer parameter points to a
NTFS_FILE_RECORD_INPUT_BUFFER structure, and the OutputBuffer parameter points to a
buffer large enough to hold a NTFS_FILE_RECORD_OUTPUT_BUFFER structure and a file
record.
typedef struct {

ULONGLONG FileReferenceNumber;
} NTFS_FILE_RECORD_INPUT_BUFFER, *PNTFS_FILE_RECORD_INPUT_BUFFER;

typedef struct {
ULONGLONG FileReferenceNumber;
ULONG FileRecordLength;
UCHAR FileRecordBuffer[1];

} NTFS_FILE_RECORD_OUTPUT_BUFFER, *PNTFS_FILE_RECORD_OUTPUT_BUFFER;

Strictly speaking, a FileReferenceNumber consists of a 48-bit index into the Master File
Table and a 16-bit sequence number that records how many times the entry in the
table has been reused, but the sequence number is ignored when using
FSCTL_GET_NTFS_FILE_RECORD.Therefore, to retrieve the file record at index 30, the
value 30 should be assigned to FileReferenceNumber. If the table entry at index 30 is
empty, FSCTL_GET_NTFS_FILE_RECORD retrieves a nearby entry that is not empty.To veri-
fy that the intended table entry has been retrieved, it is necessary to compare the low
order 48 bits of FileReferenceNumber in the output buffer with that in the input
buffer.

The remainder of this chapter describes the data structures that represent the on-
disk structure of NTFS. It includes a sample utility that interprets the data structures
to recover the data of a deleted file.The descriptions of the on-disk data structures also
serve to explain the contents of the FileRecordBuffer returned by
FSCTL_GET_NTFS_FILE_RECORD.

1996 AppE 12/1/99 12:33 PM Page 457

NTFS On-Disk Structure: NTFS_RECORD_HEADER458

NTFS_RECORD_HEADER
typedef struct {

ULONG Type;
USHORT UsaOffset;
USHORT UsaCount;
USN Usn;

} NTFS_RECORD_HEADER, *PNTFS_RECORD_HEADER;

Members

Type
The type of NTFS record.When the value of Type is considered as a sequence of four
one-byte characters, it normally spells an acronym for the type. Defined values include:

‘FILE’
‘INDX’
‘BAAD’
‘HOLE’
‘CHKD’

UsaOffset
The offset, in bytes, from the start of the structure to the Update Sequence Array.

UsaCount
The number of values in the Update Sequence Array.

Usn
The Update Sequence Number of the NTFS record.

Remarks
None.

FILE_RECORD_HEADER
typedef struct {

NTFS_RECORD_HEADER Ntfs;
USHORT SequenceNumber;
USHORT LinkCount;
USHORT AttributesOffset;
USHORT Flags; // 0x0001 = InUse, 0x0002 = Directory
ULONG BytesInUse;
ULONG BytesAllocated;
ULONGLONG BaseFileRecord;
USHORT NextAttributeNumber;

} FILE_RECORD_HEADER, *PFILE_RECORD_HEADER;

Members

Ntfs
An NTFS_RECORD_HEADER structure with a Type of ‘FILE’.

1996 AppE 12/1/99 12:33 PM Page 458

NTFS On-Disk Structure: ATTRIBUTE 459

SequenceNumber
The number of times that the MFT entry has been reused.

LinkCount
The number of directory links to the MFT entry.

AttributeOffset
The offset, in bytes, from the start of the structure to the first attribute of the MFT
entry.

Flags
A bit array of flags specifying properties of the MFT entry.The values defined include:

InUse 0x0001 // The MFT entry is in use
Directory 0x0002 // The MFT entry represents a directory

BytesInUse
The number of bytes used by the MFT entry.

BytesAllocated
The number of bytes allocated for the MFT entry.

BaseFileRecord
If the MFT entry contains attributes that overflowed a base MFT entry, this member
contains the file reference number of the base entry; otherwise, it contains zero.

NextAttributeNumber
The number that will be assigned to the next attribute added to the MFT entry.

Remarks
An entry in the MFT consists of a FILE_RECORD_HEADER followed by a sequence of
attributes.

ATTRIBUTE
typedef struct {

ATTRIBUTE_TYPE AttributeType;
ULONG Length;
BOOLEAN Nonresident;
UCHAR NameLength;
USHORT NameOffset;
USHORT Flags; // 0x0001 = Compressed
USHORT AttributeNumber;

} ATTRIBUTE, *PATTRIBUTE;

1996 AppE 12/1/99 12:33 PM Page 459

NTFS On-Disk Structure: ATTRIBUTE460

Members

AttributeType
The type of the attribute.The following types are defined:

typedef enum {
AttributeStandardInformation = 0x10,
AttributeAttributeList = 0x20,
AttributeFileName = 0x30,
AttributeObjectId = 0x40,
AttributeSecurityDescriptor = 0x50,
AttributeVolumeName = 0x60,
AttributeVolumeInformation = 0x70,
AttributeData = 0x80,
AttributeIndexRoot = 0x90,
AttributeIndexAllocation = 0xA0,
AttributeBitmap = 0xB0,
AttributeReparsePoint = 0xC0,
AttributeEAInformation = 0xD0,
AttributeEA = 0xE0,
AttributePropertySet = 0xF0,
AttributeLoggedUtilityStream = 0x100

} ATTRIBUTE_TYPE, *PATTRIBUTE_TYPE;

Length
The size, in bytes, of the resident part of the attribute.

Nonresident
Specifies, when true, that the attribute value is nonresident.

NameLength
The size, in characters, of the name (if any) of the attribute.

NameOffset
The offset, in bytes, from the start of the structure to the attribute name.The attribute
name is stored as a Unicode string.

Flags
A bit array of flags specifying properties of the attribute.The values defined include:

Compressed 0x0001 // The attribute is compressed

AttributeNumber
A numeric identifier for the instance of the attribute.

Remarks
None.

1996 AppE 12/1/99 12:33 PM Page 460

NTFS On-Disk Structure: NONRESIDENT_ATTRIBUTE 461

RESIDENT_ATTRIBUTE
typedef struct {

ATTRIBUTE Attribute;
ULONG ValueLength;
USHORT ValueOffset;
USHORT Flags; // 0x0001 = Indexed

} RESIDENT_ATTRIBUTE, *PRESIDENT_ATTRIBUTE;

Members

Attribute
An ATTRIBUTE structure containing members common to resident and nonresident
attributes.

ValueLength
The size, in bytes, of the attribute value.

ValueOffset
The offset, in bytes, from the start of the structure to the attribute value.

Flags
A bit array of flags specifying properties of the attribute.The values defined include:

Indexed 0x0001 // The attribute is indexed

Remarks
None.

NONRESIDENT_ATTRIBUTE
typedef struct {

ATTRIBUTE Attribute;
ULONGLONG LowVcn;
ULONGLONG HighVcn;
USHORT RunArrayOffset;
UCHAR CompressionUnit;
UCHAR AlignmentOrReserved[5];
ULONGLONG AllocatedSize;
ULONGLONG DataSize;
ULONGLONG InitializedSize;
ULONGLONG CompressedSize; // Only when compressed

} NONRESIDENT_ATTRIBUTE, *PNONRESIDENT_ATTRIBUTE;

Members

Attribute
An ATTRIBUTE structure containing members common to resident and nonresident
attributes.

1996 AppE 12/1/99 12:33 PM Page 461

NTFS On-Disk Structure: NONRESIDENT_ATTRIBUTE462

LowVcn
The lowest valid Virtual Cluster Number (VCN) of this portion of the attribute value.
Unless the attribute value is very fragmented (to the extent that an attribute list is
needed to describe it), there is only one portion of the attribute value, and the value of
LowVcn is zero.

HighVcn
The highest valid VCN of this portion of the attribute value.

RunArrayOffset
The offset, in bytes, from the start of the structure to the run array that contains the
mappings between VCNs and Logical Cluster Numbers (LCNs).

CompressionUnit
The compression unit for the attribute expressed as the logarithm to the base two of
the number of clusters in a compression unit. If CompressionUnit is zero, the attribute
is not compressed.

AllocatedSize
The size, in bytes, of disk space allocated to hold the attribute value.

DataSize
The size, in bytes, of the attribute value.This may be larger than the AllocatedSize if
the attribute value is compressed or sparse.

InitializedSize
The size, in bytes, of the initialized portion of the attribute value.

CompressedSize
The size, in bytes, of the attribute value after compression.This member is only present
when the attribute is compressed.

Remarks
None.

AttributeStandardInformation
typedef struct {

ULONGLONG CreationTime;
ULONGLONG ChangeTime;
ULONGLONG LastWriteTime;
ULONGLONG LastAccessTime;
ULONG FileAttributes;
ULONG AlignmentOrReservedOrUnknown[3];
ULONG QuotaId; // NTFS 3.0 only
ULONG SecurityId; // NTFS 3.0 only
ULONGLONG QuotaCharge; // NTFS 3.0 only
USN Usn; // NTFS 3.0 only

} STANDARD_INFORMATION, *PSTANDARD_INFORMATION;

1996 AppE 12/1/99 12:33 PM Page 462

NTFS On-Disk Structure: AttributeStandardInformation 463

Members

CreationTime
The time when the file was created in the standard time format (that is, the number of
100-nanosecond intervals since January 1, 1601).

ChangeTime
The time when the file attributes were last changed in the standard time format (that
is, the number of 100-nanosecond intervals since January 1, 1601).

LastWriteTime
The time when the file was last written in the standard time format (that is, the num-
ber of 100-nanosecond intervals since January 1, 1601).

LastAccessTime
The time when the file was last accessed in the standard time format (that is, the num-
ber of 100-nanosecond intervals since January 1, 1601).

FileAttributes
The attributes of the file. Defined attributes include:

FILE_ATTRIBUTE_READONLY
FILE_ATTRIBUTE_HIDDEN
FILE_ATTRIBUTE_SYSTEM
FILE_ATTRIBUTE_DIRECTORY
FILE_ATTRIBUTE_ARCHIVE
FILE_ATTRIBUTE_NORMAL
FILE_ATTRIBUTE_TEMPORARY
FILE_ATTRIBUTE_SPARSE_FILE
FILE_ATTRIBUTE_REPARSE_POINT
FILE_ATTRIBUTE_COMPRESSED
FILE_ATTRIBUTE_OFFLINE
FILE_ATTRIBUTE_NOT_CONTENT_INDEXED
FILE_ATTRIBUTE_ENCRYPTED

AlignmentOrReservedOrUnknown
Normally contains zero. Interpretation unknown.

QuotaId
A numeric identifier of the disk quota that has been charged for the file (probably an
index into the file “\$Extend\$Quota”). If quotas are disabled, the value of QuotaId is
zero.This member is only present in NTFS 3.0. If a volume has been upgraded from
an earlier version of NTFS to version 3.0, this member is only present if the file has
been accessed since the upgrade.

SecurityId
A numeric identifier of the security descriptor that applies to the file (probably an
index into the file “\$Secure”).This member is only present in NTFS 3.0. If a volume
has been upgraded from an earlier version of NTFS to version 3.0, this member is
only present if the file has been accessed since the upgrade.

1996 AppE 12/1/99 12:33 PM Page 463

NTFS On-Disk Structure: AttributeStandardInformation464

QuotaCharge
The size, in bytes, of the charge to the quota for the file. If quotas are disabled, the
value of QuotaCharge is zero.This member is only present in NTFS 3.0. If a volume
has been upgraded from an earlier version of NTFS to version 3.0, this member is
only present if the file has been accessed since the upgrade.

Usn
The Update Sequence Number of the file. If journaling is not enabled, the value of
Usn is zero.This member is only present in NTFS 3.0. If a volume has been upgraded
from an earlier version of NTFS to version 3.0, this member is only present if the file
has been accessed since the upgrade.

Remarks
The standard information attribute is always resident.

AttributeAttributeList
typedef struct {

ATTRIBUTE_TYPE AttributeType;
USHORT Length;
UCHAR NameLength;
UCHAR NameOffset;
ULONGLONG LowVcn;
ULONGLONG FileReferenceNumber;
USHORT AttributeNumber;
USHORT AlignmentOrReserved[3];

} ATTRIBUTE_LIST, *PATTRIBUTE_LIST;

Members

AttributeType
The type of the attribute.

Length
The size, in bytes, of the attribute list entry.

NameLength
The size, in characters, of the name (if any) of the attribute.

NameOffset
The offset, in bytes, from the start of the ATTRIBUTE_LIST structure to the attribute
name.The attribute name is stored as a Unicode string.

LowVcn
The lowest valid Virtual Cluster Number (VCN) of this portion of the attribute value.

FileReferenceNumber
The file reference number of the MFT entry containing the NONRESIDENT_ATTRIBUTE
structure for this portion of the attribute value.

1996 AppE 12/1/99 12:33 PM Page 464

NTFS On-Disk Structure: AttributeFileName 465

AttributeNumber
A numeric identifier for the instance of the attribute.

Remarks
The attribute list attribute is always nonresident and consists of an array of
ATTRIBUTE_LIST structures.

An attribute list attribute is only needed when the attributes of a file do not fit in a
single MFT record. Possible reasons for overflowing a single MFT entry include:

n The file has a large numbers of alternate names (hard links)

n The attribute value is large, and the volume is badly fragmented

n The file has a complex security descriptor (does not affect NTFS 3.0)

n The file has many streams

AttributeFileName
typedef struct {

ULONGLONG DirectoryFileReferenceNumber;
ULONGLONG CreationTime; // Saved when filename last changed
ULONGLONG ChangeTime; // ditto
ULONGLONG LastWriteTime; // ditto
ULONGLONG LastAccessTime; // ditto
ULONGLONG AllocatedSize; // ditto
ULONGLONG DataSize; // ditto
ULONG FileAttributes; // ditto
ULONG AlignmentOrReserved;
UCHAR NameLength;
UCHAR NameType; // 0x01 = Long, 0x02 = Short
WCHAR Name[1];

} FILENAME_ATTRIBUTE, *PFILENAME_ATTRIBUTE;

Members

DirectoryFileReferenceNumber
The file reference number of the directory in which the filename is entered.

CreationTime
The time when the file was created in the standard time format (that is. the number of
100-nanosecond intervals since January 1, 1601).This member is only updated when
the filename changes and may differ from the field of the same name in the STAN-
DARD_INFORMATION structure.

ChangeTime
The time when the file attributes were last changed in the standard time format (that
is, the number of 100-nanosecond intervals since January 1, 1601).This member is
only updated when the filename changes and may differ from the field of the same
name in the STANDARD_INFORMATION structure.

1996 AppE 12/1/99 12:33 PM Page 465

NTFS On-Disk Structure: AttributeFileName466

LastWriteTime
The time when the file was last written in the standard time format (that is, the num-
ber of 100-nanosecond intervals since January 1, 1601).This member is only updated
when the filename changes and may differ from the field of the same name in the
STANDARD_INFORMATION structure.

LastAccessTime
The time when the file was last accessed in the standard time format (that is, the num-
ber of 100-nanosecond intervals since January 1, 1601).This member is only updated
when the filename changes and may differ from the field of the same name in the
STANDARD_INFORMATION structure.

AllocatedSize
The size, in bytes, of disk space allocated to hold the attribute value.This member is
only updated when the filename changes.

DataSize
The size, in bytes, of the attribute value.This member is only updated when the file-
name changes.

FileAttributes
The attributes of the file.This member is only updated when the filename changes and
may differ from the field of the same name in the STANDARD_INFORMATION structure.

NameLength
The size, in characters, of the filename.

NameType
The type of the name.A type of zero indicates an ordinary name, a type of one indi-
cates a long name corresponding to a short name, and a type of two indicates a short
name corresponding to a long name.

Name
The name, in Unicode, of the file.

Remarks
The filename attribute is always resident.

AttributeObjectId
typedef struct {

GUID ObjectId;
union {

struct {
GUID BirthVolumeId;
GUID BirthObjectId;
GUID DomainId;

} ;
UCHAR ExtendedInfo[48];

};
} OBJECTID_ATTRIBUTE, *POBJECTID_ATTRIBUTE;

1996 AppE 12/1/99 12:33 PM Page 466

NTFS On-Disk Structure: AttributeVolumeInformation 467

Members

ObjectId
The unique identifier assigned to the file.

BirtVolumeId
The unique identifier of the volume on which the file was first created. Need not be
present.

BirthObjectId
The unique identifier assigned to the file when it was first created. Need not be
present.

DomainId
Reserved. Need not be present.

Remarks
The object identifier attribute is always resident.

AttributeSecurityDescriptor

The security descriptor attribute is stored on disk as a standard self-relative security
descriptor.This attribute does not normally appear in MFT entries on NTFS 3.0 for-
mat volumes.

AttributeVolumeName

The volume name attribute just contains the volume label as a Unicode string.

AttributeVolumeInformation
typedef struct {

ULONG Unknown[2];
UCHAR MajorVersion;
UCHAR MinorVersion;
USHORT Flags;

} VOLUME_INFORMATION, *PVOLUME_INFORMATION;

Members

Unknown
Interpretation unknown.

MajorVersion
The major version number of the NTFS format.

MinorVersion
The minor version number of the NTFS format.

1996 AppE 12/1/99 12:33 PM Page 467

NTFS On-Disk Structure: AttributeVolumeInformation468

Flags
A bit array of flags specifying properties of the volume.The values defined include:

VolumeIsDirty 0x0001

Remarks
Windows 2000 formats new volumes as NTFS version 3.0.Windows NT 4.0 formats
new volumes as NTFS version 2.1.

AttributeData

The data attribute contains whatever data the creator of the attribute chooses.

AttributeIndexRoot
typedef struct {

ATTRIBUTE_TYPE Type;
ULONG CollationRule;
ULONG BytesPerIndexBlock;
ULONG ClustersPerIndexBlock;
DIRECTORY_INDEX DirectoryIndex;

} INDEX_ROOT, *PINDEX_ROOT;

Members

Type
The type of the attribute that is indexed.

CollationRule
A numeric identifier of the collation rule used to sort the index entries.

BytesPerIndexBlock
The number of bytes per index block.

ClustersPerIndexBlock
The number of clusters per index block.

DirectoryIndex
A DIRECTORY_INDEX structure.

Remarks
An INDEX_ROOT structure is followed by a sequence of DIRECTORY_ENTRY structures.

1996 AppE 12/1/99 12:33 PM Page 468

NTFS On-Disk Structure: DIRECTORY_INDEX 469

AttributeIndexAllocation
typedef struct {

NTFS_RECORD_HEADER Ntfs;
ULONGLONG IndexBlockVcn;
DIRECTORY_INDEX DirectoryIndex;

} INDEX_BLOCK_HEADER, *PINDEX_BLOCK_HEADER;

Members

Ntfs
An NTFS_RECORD_HEADER structure with a Type of ‘INDX’.

IndexBlockVcn
The VCN of the index block.

DirectoryIndex
A DIRECTORY_INDEX structure.

Remarks
The index allocation attribute is an array of index blocks. Each index block starts with
an INDEX_BLOCK_HEADER structure, which is followed by a sequence of DIRECTORY_ENTRY
structures.

DIRECTORY_INDEX
typedef struct {

ULONG EntriesOffset;
ULONG IndexBlockLength;
ULONG AllocatedSize;
ULONG Flags; // 0x00 = Small directory, 0x01 = Large directory

} DIRECTORY_INDEX, *PDIRECTORY_INDEX;

Members

EntriesOffset
The offset, in bytes, from the start of the structure to the first DIRECTORY_ENTRY
structure.

IndexBlockLength
The size, in bytes, of the portion of the index block that is in use.

AllocatedSize
The size, in bytes, of disk space allocated for the index block.

1996 AppE 12/1/99 12:33 PM Page 469

NTFS On-Disk Structure: DIRECTORY_INDEX470

Flags
A bit array of flags specifying properties of the index.The values defined include:

SmallDirectory 0x0000 // Directory fits in index root
LargeDirectory 0x0001 // Directory overflows index root

Remarks
None.

DIRECTORY_ENTRY
typedef struct {

ULONGLONG FileReferenceNumber;
USHORT Length;
USHORT AttributeLength;
ULONG Flags; // 0x01 = Has trailing VCN, 0x02 = Last entry
// FILENAME_ATTRIBUTE Name;
// ULONGLONG Vcn; // VCN in IndexAllocation of earlier entries

} DIRECTORY_ENTRY, *PDIRECTORY_ENTRY;

Members

FileReferenceNumber
The file reference number of the file described by the directory entry.

Length
The size, in bytes, of the directory entry.

AttributeLength
The size, in bytes, of the attribute that is indexed.

Flags
A bit array of flags specifying properties of the entry.The values defined include:

HasTrailingVcn 0x0001 // A VCN follows the indexed attribute
LastEntry 0x0002 // The last entry in an index block

Remarks
Until NTFS version 3.0, only filename attributes were indexed.

If the HasTrailingVcn flag of a DIRECTORY_ENTRY structure is set, the last eight bytes of
the directory entry contain the VCN of the index block that holds the entries imme-
diately preceding the current entry.

AttributeBitmap

The bitmap attribute contains an array of bits.The file “\$Mft” contains a bitmap
attribute that records which MFT table entries are in use, and directories normally
contain a bitmap attribute that records which index blocks contain valid entries.

1996 AppE 12/1/99 12:33 PM Page 470

NTFS On-Disk Structure: AttributeEAInformation 471

AttributeReparsePoint
typedef struct {

ULONG ReparseTag;
USHORT ReparseDataLength;
USHORT Reserved;
UCHAR ReparseData[1];

} REPARSE_POINT, *PREPARSE_POINT;

Members

ReparseTag
The reparse tag identifies the type of reparse point.The high order three bits of the tag
indicate whether the tag is owned by Microsoft, whether there is a high latency in
accessing the file data, and whether the filename is an alias for another object.

ReparseDataLength
The size, in bytes, of the reparse data in the ReparseData member.

ReparseData
The reparse data.The interpretation of the data depends upon the type of the reparse
point.

Remarks
None.

AttributeEAInformation
typedef struct {

ULONG EaLength;
ULONG EaQueryLength;

} EA_INFORMATION, *PEA_INFORMATION;

Members

EaLength
The size, in bytes, of the extended attribute information.

EaQueryLength
The size, in bytes, of the buffer needed to query the extended attributes when calling
ZwQueryEaFile.

Remarks
None.

1996 AppE 12/1/99 12:33 PM Page 471

NTFS On-Disk Structure: AttributeEA472

AttributeEA
typedef struct {

ULONG NextEntryOffset;
UCHAR Flags;
UCHAR EaNameLength;
USHORT EaValueLength;
CHAR EaName[1];
// UCHAR EaData[];

} EA_ATTRIBUTE, *PEA_ATTRIBUTE;

Members

NextEntryOffset
The number of bytes that must be skipped to get to the next entry.

Flags
A bit array of flags qualifying the extended attribute.

EaNameLength
The size, in bytes, of the extended attribute name.

EaValueLength
The size, in bytes, of the extended attribute value.

EaName
The extended attribute name.

EaData
The extended attribute data.

Remarks
None.

AttributePropertySet

Intended to support Native Structured Storage (NSS)—a feature that was removed
from NTFS 3.0 during beta testing.

AttributeLoggedUtilityStream

A logged utility stream attribute contains whatever data the creator of the attribute
chooses, but operations on the attribute are logged to the NTFS log file just like
NTFS metadata changes. It is used by the Encrypting File System (EFS).

1996 AppE 12/1/99 12:33 PM Page 472

NTFS On-Disk Structure: Special Files 473

Special Files

The first sixteen entries in the Master File Table (MFT) are reserved for special files.
NTFS 3.0 uses only the first twelve entries.

\$MFT (entry 0)
The Master File Table.The data attribute contains the MFT entries, and the bitmap
attribute records which entries are in use.

\$MFTMirr (entry 1)
A mirror (backup copy) of the first four entries of the MFT.

\$LogFile (entry 2)
The volume log file that records changes to the volume structure.

\$Volume (entry 3)
The data attribute of $Volume represents the whole volume. Opening the Win32 path-
name “\\.\C:” opens the volume file on drive C: (presuming that C: is an NTFS-
formatted volume).

The $Volume file also has volume name, volume information, and object identifier
attributes.

\$AttrDef (entry 4)
The data attribute of $AttrDef contains an array of attribute definitions.
typedef struct {

WCHAR AttributeName[64];
ULONG AttributeNumber;
ULONG Unknown[2];
ULONG Flags;
ULONGLONG MinimumSize;
ULONGLONG MaximumSize;

} ATTRIBUTE_DEFINITION, *PATTRIBUTE_DEFINITION;

\ (entry 5)
The root directory of the volume.

\$Bitmap (entry 6)
The data attribute of $Bitmap is a bitmap of the allocated clusters on the volume.

\$Boot (entry 7)
The first sector of $Boot is also the first sector of the volume. Because it is used early
in the system boot process (if the volume is bootable), space is at a premium and the
data stored in it is not aligned on natural boundaries.The format of the first sector can
be represented by a BOOT_BLOCK structure.
#pragma pack(push, 1)

typedef struct {
UCHAR Jump[3];

1996 AppE 12/1/99 12:33 PM Page 473

NTFS On-Disk Structure: Special Files474

UCHAR Format[8];
USHORT BytesPerSector;
UCHAR SectorsPerCluster;
USHORT BootSectors;
UCHAR Mbz1;
USHORT Mbz2;
USHORT Reserved1;
UCHAR MediaType;
USHORT Mbz3;
USHORT SectorsPerTrack;
USHORT NumberOfHeads;
ULONG PartitionOffset;
ULONG Reserved2[2];
ULONGLONG TotalSectors;
ULONGLONG MftStartLcn;
ULONGLONG Mft2StartLcn;
ULONG ClustersPerFileRecord;
ULONG ClustersPerIndexBlock;
ULONGLONG VolumeSerialNumber;
UCHAR Code[0x1AE];
USHORT BootSignature;

} BOOT_BLOCK, *PBOOT_BLOCK;

#pragma pack(pop)

\$BadClus (entry 8)
Bad clusters are appended to the data attribute of this file.

\$Secure (entry 9)
The data attribute of $Secure contains the shared security descriptors. $Secure also has
two indexes.

\$UpCase (entry 10)
The data attribute of $Upcase contains the uppercase equivalent of all 65536 Unicode
characters.

\$Extend (entry 11)
$Extend is a directory that holds the special files used by some of the extended func-
tionality of NTFS 3.0.The (semi-) special files which are stored in the directory
include “$ObjId,” “$Quota,” “$Reparse” and “$UsnJrnl.”

Opening Special Files

Although the special files are indeed files, they cannot normally be opened by calling
ZwOpenFile or ZwCreateFile because even though the ACL on the special files grants
read access to Administrators, ntfs.sys (the NTFS file system driver) always returns
STATUS_ACCESS_DENIED.There are two variables in ntfs.sys that affect this behavior:
NtfsProtectSystemFiles and NtfsProtectSystemAttributes. By default, both of these
variables are set to TRUE.

If NtfsProtectSystemAttributes is set to FALSE (by a debugger, for example), the sys-
tem attributes (such as the standard information attribute) can be opened, using the
names of the form “filename::$STANDARD_INFORMATION.”

1996 AppE 12/1/99 12:33 PM Page 474

NTFS On-Disk Structure: Example 21.1 475

If NtfsProtectSystemFiles is set to FALSE, then the special files can be opened.There
are, however, some drawbacks associated with attempting to do this: Because many of
the special files are opened in a special way when mounting the volume, they are not
prepared to handle the IRP_MJ_READ requests resulting from a call to ZwReadFile, and
the system crashes if such a request is received.These special files can be read by map-
ping the special file with ZwCreateSection and ZwMapViewOfSection and then reading
the mapped data.A further problem is that a few of the special files are not prepared to
handle the IRP_MJ_CLEANUP request that is generated when the last handle to a file
object is closed, and the system crashes if such a request is received.The only option is
to duplicate the open handle to the special file into a process that never terminates
(such as the system process).

Recovering Data from Deleted Files

Example E.1 demonstrates how to recover data from the unnamed data attribute of a
file identified by drive letter and MFT entry index—even if the MFT entry represents
a deleted file. It can also display a list of the deleted files on the volume. MFT entries
are allocated on a first-free basis, so the entries for deleted files are normally quickly
reused.Therefore, the example is of little practical use for recovering deleted files, but
it can be used to make copies of the unnamed data attributes of the special files.

If the file to be recovered is compressed, the recovered data remains compressed and
can be decompressed by a separate utility; Example E.2 shows one way in which
this can be done.

Example E.1: Recovering Data from a File
#include <windows.h>
#include <stdlib.h>
#include <stdio.h>
#include “ntfs.h”

ULONG BytesPerFileRecord;
HANDLE hVolume;
BOOT_BLOCK bootb;
PFILE_RECORD_HEADER MFT;

template <class T1, class T2> inline
T1* Padd(T1* p, T2 n) { return (T1*)((char *)p + n); }

ULONG RunLength(PUCHAR run)
{

return (*run & 0xf) + ((*run >> 4) & 0xf) + 1;
}

LONGLONG RunLCN(PUCHAR run)
{

UCHAR n1 = *run & 0xf;
UCHAR n2 = (*run >> 4) & 0xf;
LONGLONG lcn = n2 == 0 ? 0 : CHAR(run[n1 + n2]);

for (LONG i = n1 + n2 - 1; i > n1; i—)
lcn = (lcn << 8) + run[i];

return lcn;
}

1996 AppE 12/1/99 12:33 PM Page 475

NTFS On-Disk Structure: Example E.1476

ULONGLONG RunCount(PUCHAR run)
{

UCHAR n = *run & 0xf;
ULONGLONG count = 0;

for (ULONG i = n; i > 0; i—)
count = (count << 8) + run[i];

return count;
}

BOOL FindRun(PNONRESIDENT_ATTRIBUTE attr, ULONGLONG vcn,
PULONGLONG lcn, PULONGLONG count)

{
if (vcn < attr->LowVcn || vcn > attr->HighVcn) return FALSE;

*lcn = 0;
ULONGLONG base = attr->LowVcn;

for (PUCHAR run = PUCHAR(Padd(attr, attr->RunArrayOffset));
*run != 0;
run += RunLength(run)) {

*lcn += RunLCN(run);
*count = RunCount(run);

if (base <= vcn && vcn < base + *count) {
*lcn = RunLCN(run) == 0 ? 0 : *lcn + vcn - base;
*count -= ULONG(vcn - base);

return TRUE;
}
else

base += *count;
}

return FALSE;
}

PATTRIBUTE FindAttribute(PFILE_RECORD_HEADER file,
ATTRIBUTE_TYPE type, PWSTR name)

{
for (PATTRIBUTE attr = PATTRIBUTE(Padd(file, file->AttributesOffset));

attr->AttributeType != -1;
attr = Padd(attr, attr->Length)) {

if (attr->AttributeType == type) {
if (name == 0 && attr->NameLength == 0) return attr;

if (name != 0 && wcslen(name) == attr->NameLength
&& _wcsicmp(name, PWSTR(Padd(attr, attr->NameOffset))) == 0)
return attr;

}
}

return 0;
}

VOID FixupUpdateSequenceArray(PFILE_RECORD_HEADER file)
{

PUSHORT usa = PUSHORT(Padd(file, file->Ntfs.UsaOffset));
PUSHORT sector = PUSHORT(file);

1996 AppE 12/1/99 12:33 PM Page 476

NTFS On-Disk Structure: Example E.1 477

for (ULONG i = 1; i < file->Ntfs.UsaCount; i++) {
sector[255] = usa[i];
sector += 256;

}
}

VOID ReadSector(ULONGLONG sector, ULONG count, PVOID buffer)
{

ULARGE_INTEGER offset;
OVERLAPPED overlap = {0};
ULONG n;

offset.QuadPart = sector * bootb.BytesPerSector;
overlap.Offset = offset.LowPart; overlap.OffsetHigh = offset.HighPart;

ReadFile(hVolume, buffer, count * bootb.BytesPerSector, &n, &overlap);
}

VOID ReadLCN(ULONGLONG lcn, ULONG count, PVOID buffer)
{

ReadSector(lcn * bootb.SectorsPerCluster,
count * bootb.SectorsPerCluster, buffer);

}

VOID ReadExternalAttribute(PNONRESIDENT_ATTRIBUTE attr,
ULONGLONG vcn, ULONG count, PVOID buffer)

{
ULONGLONG lcn, runcount;
ULONG readcount, left;
PUCHAR bytes = PUCHAR(buffer);

for (left = count; left > 0; left -= readcount) {
FindRun(attr, vcn, &lcn, &runcount);

readcount = ULONG(min(runcount, left));

ULONG n = readcount * bootb.BytesPerSector * bootb.SectorsPerCluster;

if (lcn == 0)
memset(bytes, 0, n);

else
ReadLCN(lcn, readcount, bytes);

vcn += readcount;
bytes += n;

}
}

ULONG AttributeLength(PATTRIBUTE attr)
{

return attr->Nonresident == FALSE
? PRESIDENT_ATTRIBUTE(attr)->ValueLength
: ULONG(PNONRESIDENT_ATTRIBUTE(attr)->DataSize);

}

ULONG AttributeLengthAllocated(PATTRIBUTE attr)
{

return attr->Nonresident == FALSE
? PRESIDENT_ATTRIBUTE(attr)->ValueLength
: ULONG(PNONRESIDENT_ATTRIBUTE(attr)->AllocatedSize);

}

1996 AppE 12/1/99 12:33 PM Page 477

NTFS On-Disk Structure: Example E.1478

VOID ReadAttribute(PATTRIBUTE attr, PVOID buffer)
{

if (attr->Nonresident == FALSE) {
PRESIDENT_ATTRIBUTE rattr = PRESIDENT_ATTRIBUTE(attr);
memcpy(buffer, Padd(rattr, rattr->ValueOffset), rattr->ValueLength);

}
else {

PNONRESIDENT_ATTRIBUTE nattr = PNONRESIDENT_ATTRIBUTE(attr);
ReadExternalAttribute(nattr, 0, ULONG(nattr->HighVcn) + 1, buffer);

}
}

VOID ReadVCN(PFILE_RECORD_HEADER file, ATTRIBUTE_TYPE type,
ULONGLONG vcn, ULONG count, PVOID buffer)

{
PNONRESIDENT_ATTRIBUTE attr

= PNONRESIDENT_ATTRIBUTE(FindAttribute(file, type, 0));

if (attr == 0 || (vcn < attr->LowVcn || vcn > attr->HighVcn)) {
// Support for huge files

PATTRIBUTE attrlist = FindAttribute(file, AttributeAttributeList, 0);

DebugBreak();
}

ReadExternalAttribute(attr, vcn, count, buffer);
}

VOID ReadFileRecord(ULONG index, PFILE_RECORD_HEADER file)
{

ULONG clusters = bootb.ClustersPerFileRecord;
if (clusters > 0x80) clusters = 1;

PUCHAR p = new UCHAR[bootb.BytesPerSector
* bootb.SectorsPerCluster * clusters];

ULONGLONG vcn = ULONGLONG(index) * BytesPerFileRecord
/ bootb.BytesPerSector / bootb.SectorsPerCluster;

ReadVCN(MFT, AttributeData, vcn, clusters, p);

LONG m = (bootb.SectorsPerCluster * bootb.BytesPerSector
/ BytesPerFileRecord) - 1;

ULONG n = m > 0 ? (index & m) : 0;

memcpy(file, p + n * BytesPerFileRecord, BytesPerFileRecord);

delete [] p;

FixupUpdateSequenceArray(file);
}

VOID LoadMFT()
{

BytesPerFileRecord = bootb.ClustersPerFileRecord < 0x80
? bootb.ClustersPerFileRecord

* bootb.SectorsPerCluster
* bootb.BytesPerSector

: 1 << (0x100 - bootb.ClustersPerFileRecord);

1996 AppE 12/1/99 12:33 PM Page 478

NTFS On-Disk Structure: Example E.1 479

MFT = PFILE_RECORD_HEADER(new UCHAR[BytesPerFileRecord]);

ReadSector(bootb.MftStartLcn * bootb.SectorsPerCluster,
BytesPerFileRecord / bootb.BytesPerSector, MFT);

FixupUpdateSequenceArray(MFT);
}

BOOL bitset(PUCHAR bitmap, ULONG i)
{

return (bitmap[i >> 3] & (1 << (i & 7))) != 0;
}

VOID FindDeleted()
{

PATTRIBUTE attr = FindAttribute(MFT, AttributeBitmap, 0);
PUCHAR bitmap = new UCHAR[AttributeLengthAllocated(attr)];

ReadAttribute(attr, bitmap);

ULONG n = AttributeLength(FindAttribute(MFT, AttributeData, 0))
/ BytesPerFileRecord;

PFILE_RECORD_HEADER file
= PFILE_RECORD_HEADER(new UCHAR[BytesPerFileRecord]);

for (ULONG i = 0; i < n; i++) {
if (bitset(bitmap, i)) continue;

ReadFileRecord(i, file);

if (file->Ntfs.Type == ‘ELIF’ && (file->Flags & 1) == 0) {
attr = FindAttribute(file, AttributeFileName, 0);
if (attr == 0) continue;

PFILENAME_ATTRIBUTE name
= PFILENAME_ATTRIBUTE(Padd(attr,

PRESIDENT_ATTRIBUTE(attr)->ValueOffset));

printf(“%8lu %.*ws\n”, i, int(name->NameLength), name->Name);
}

}
}

VOID DumpData(ULONG index, PCSTR filename)
{

PFILE_RECORD_HEADER file
= PFILE_RECORD_HEADER(new UCHAR[BytesPerFileRecord]);

ULONG n;

ReadFileRecord(index, file);

if (file->Ntfs.Type != ‘ELIF’) return;

PATTRIBUTE attr = FindAttribute(file, AttributeData, 0);
if (attr == 0) return;

PUCHAR buf = new UCHAR[AttributeLengthAllocated(attr)];

ReadAttribute(attr, buf);

HANDLE hFile = CreateFile(filename, GENERIC_WRITE, 0, 0,
CREATE_ALWAYS, 0, 0);

1996 AppE 12/1/99 12:33 PM Page 479

NTFS On-Disk Structure: Example 21.1: Recovering Data from a File480

WriteFile(hFile, buf, AttributeLength(attr), &n, 0);

CloseHandle(hFile);

delete [] buf;
}

int main(int argc, char *argv[])
{

CHAR drive[] = “\\\\.\\C:”;
ULONG n;

if (argc < 2) return 0;

drive[4] = argv[1][0];

hVolume = CreateFile(drive, GENERIC_READ,
FILE_SHARE_READ | FILE_SHARE_WRITE, 0,
OPEN_EXISTING, 0, 0);

ReadFile(hVolume, &bootb, sizeof bootb, &n, 0);

LoadMFT();

if (argc == 2) FindDeleted();
if (argc == 4) DumpData(strtoul(argv[2], 0, 0), argv[3]);

CloseHandle(hVolume);

return 0;
}

Example E.2: Decompressing Recovered Data
#include <windows.h>

typedef ULONG NTSTATUS;

extern “C”
NTSTATUS
NTAPI
RtlDecompressBuffer(

USHORT CompressionFormat,
PVOID OutputBuffer,
ULONG OutputBufferLength,
PVOID InputBuffer,
ULONG InputBufferLength,
PULONG ReturnLength
);

int main(int argc, char *argv[])
{

if (argc != 3) return 0;

HANDLE hFile1 = CreateFile(argv[1], GENERIC_READ,
FILE_SHARE_READ, 0, OPEN_EXISTING, 0, 0);

HANDLE hFile2 = CreateFile(argv[2], GENERIC_READ | GENERIC_WRITE,
FILE_SHARE_READ, 0, CREATE_ALWAYS, 0, 0);

1996 AppE 12/1/99 12:33 PM Page 480

NTFS On-Disk Structure: Example E.2 481

ULONG n = GetFileSize(hFile1, 0);

HANDLE hMapping1 = CreateFileMapping(hFile1, 0, PAGE_READONLY, 0, 0, 0);
HANDLE hMapping2 = CreateFileMapping(hFile2, 0, PAGE_READWRITE, 0, n, 0);

PCHAR p = PCHAR(MapViewOfFileEx(hMapping1, FILE_MAP_READ, 0, 0, 0, 0));
PCHAR q = PCHAR(MapViewOfFileEx(hMapping2, FILE_MAP_WRITE, 0, 0, 0, 0));

for (ULONG m, i = 0; i < n; i += m)
RtlDecompressBuffer(COMPRESSION_FORMAT_LZNT1,

q + i, n - i, p + i, n - i, &m);

return 0;
}

1996 AppE 12/1/99 12:33 PM Page 481

1996 AppE 12/1/99 12:33 PM Page 482

	www:
	apnilife:
	com:

