1996 CHO1 11/19/99 12:24 PM Page 1 CF

System Information
and Control

The system services described in this chapter operate on the system as a whole rather
than on individual objects within the system. They mostly gather information about
the performance and operation of the system and set system parameters.

ZwQuerySystemInformation

ZwQuerySystemInformation queries information about the system.

NTSYSAPI
NTSTATUS
NTAPI
ZwQuerySystemInformation(
IN SYSTEM_INFORMATION_CLASS SystemInformationClass,
IN OUT PVOID SystemInformation,
IN ULONG SystemInformationLength,
OUT PULONG ReturnLength OPTIONAL
)3

Parameters

SystemInformationClass
The type of system information to be queried. The permitted values are a subset of
the enumeration SYSTEM_INFORMATION_CLASS, described in the following section.

SystemInformation
Points to a caller-allocated bufter or variable that receives the requested system
information.

SystemInformationLength
The size in bytes of SystemInformation, which the caller should set according to the
given SystemInformationClass.

1996 CHO1 11/19/99 12:24 PM Page 2

2

System Information and Control: ZwQuerySystem Information

ReturnLength
Optionally points to a variable that receives the number of bytes actually returned to
SystemInformation;if SystemInformationLength is too small to contain the available
information, the variable is normally set to zero except for two information classes
(6 and 11) when it is set to the number of bytes required for the available information.
If this information is not needed, ReturnLength may be a null pointer.

Return Value

Returns STATUS_SUCCESS or an error status, such as STATUS_INVALID_INFO_CLASS,
STATUS_NOT_IMPLEMENTED or STATUS_INFO_LENGTH_MISMATCH.

Related Win32 Functions

GetSystemInfo, GetTimeZoneInformation, GetSystemTimeAdjustment, PSAPI functions,
and performance counters.

Remarks

ZwQuerySystemInformation is the source of much of the information displayed by
“Performance Monitor” for the classes Cache, Memory, Objects, Paging File, Process,
Processor, System, and Thread. It is also frequently used by resource kit utilities that
display information about the system.

The ReturnLength information is not always valid (depending on the information
class), even when the routine returns STATUS_SUCCESS. When the return value indicates
STATUS_INFO_LENGTH_MISMATCH, only some of the information classes return an estimate
of the required length.

Some information classes are implemented only in the “checked” version of the
kernel. Some, such as SystemCallCounts, return useful information only in “checked”
versions of the kernel.

Some information classes require certain flags to have been set in NtGlobalFlags at
boot time. For example, SystemObjectInformation requires that
FLG_MAINTAIN_OBJECT TYPELIST be set at boot time.

Information class SystemNotImplementedi (4) would return STATUS_NOT_IMPLEMENTED

if it were not for the fact that it uses DobgPrint to print the text “EX:
SystemPathInformation now available via SharedUserData.’’ and then calls
DbgBreakPoint. The breakpoint exception is caught by a frame based exception handler
(in the absence of intervention by a debugger) and causes zwQuerySystemInformation
to return with STATUS_BREAKPOINT.

ZwSetSystemInformation

ZwSetSystemInformation sets information that aftects the operation of the system.

NTSYSAPI

NTSTATUS

NTAPI

ZwSetSystemInformation(
IN SYSTEM_INFORMATION_CLASS SystemInformationClass,
IN OUT PVOID SystemInformation,

1996 CHO1 11/19/99 12:24 PM Page 3 $

System Information and Control: SYSTEM_INFORMATION_CLASS

IN ULONG SystemInformationLength
)5

Parameters

SystemInformationClass
The type of system information to be set. The permitted values are a subset of the
enumeration SYSTEM_INFORMATION_CLASS, described in the following section.

SystemInformation
Points to a caller-allocated buffer or variable that contains the system information to
be set.

SystemInformationLength
The size in bytes of SystemInformation, which the caller should set according to the
given SystemInformationClass.

Return Value

Returns STATUS_SUCCESS or an error status, such as STATUS_INVALID INFO_CLASS,
STATUS_NOT_IMPLEMENTED or STATUS_INFO_LENGTH_MISMATCH.

Related Win32 Functions

SetSystemTimeAdjustment.

Remarks

At least one of the information classes uses the SystemInformation parameter for both
input and output.

SYSTEM _INFORMATION_CLASS

The system information classes available in the “free” (retail) build of the system are
listed below along with a remark as to whether the information class can be queried,
set, or both. Some of the information classes labeled “SystemNotImplementedXxx” are
implemented in the “checked” build, and a few of these classes are briefly described

later.
Query Set
typedef enum _SYSTEM_INFORMATION_CLASS {
SystemBasicInformation, /1@ Y N
SystemProcessorInformation, /11 Y N
SystemPerformanceInformation, /1l 2 Y N
SystemTimeOfDayInformation, /13 Y N
SystemNotImplementedd, /] 4 Y N
SystemProcessesAndThreadsInformation, // 5 Y N
SystemCallCounts, /1 6 Y N
SystemConfigurationInformation, /117 Y N
SystemProcessorTimes, /1 8 Y N
SystemGlobalFlag, /19 Y Y
SystemNotImplemented2, /1 10 Y N
SystemModuleInformation, /] 11 Y N

?

1996 CHO1 11/19/99 12:24 PM Page 4

4 System Information and Control: SYSTEM_INFORMATION_CLASS

SystemLockInformation, /] 12 Y N
SystemNotImplemented3, /] 13 Y N
SystemNotImplemented4, /1 14 Y N
SystemNotImplemented5, /1 15 Y N
SystemHandleInformation, /] 16 Y N
SystemObjectInformation, /117 Y N
SystemPagefileInformation, /] 18 Y N
SystemInstructionEmulationCounts, /1 19 Y N
SystemInvalidInfoClasst, /] 20
SystemCacheInformation, /] 21 Y Y
SystemPoolTagInformation, /] 22 Y N
SystemProcessorStatistics, /] 23 Y N
SystemDpcInformation, /] 24 Y Y
SystemNotImplemented6, /] 25 Y N
SystemLoadImage, /] 26 N Y
SystemUnloadImage, /] 27 N Y
SystemTimeAdjustment, /] 28 Y Y
SystemNotImplemented7, /] 29 Y N
SystemNotImplemented8, /] 30 Y N
SystemNotImplemented9, /1 31 Y N
SystemCrashDumpInformation, /] 32 Y N
SystemExceptionInformation, /] 33 Y N
SystemCrashDumpStateInformation, /] 34 Y Y/N
SystemKernelDebuggerInformation, /]l 35 Y N
SystemContextSwitchInformation, /1 36 Y N
SystemRegistryQuotaInformation, /] 37 Y Y
SystemLoadAndCallImage, /] 38 N Y
SystemPrioritySeparation, /1 39 N Y
SystemNotImplementedio, /] 40 Y N
SystemNotImplementedit, /] 41 Y N
SystemInvalidInfoClass2, /] 42
SystemInvalidInfoClass3, /] 43
SystemTimeZoneInformation, /] 44 Y N
SystemLookasideInformation, /] 45 Y N
SystemSetTimeSlipEvent, /] 46 N Y
SystemCreateSession, /] 47 N Y
SystemDeleteSession, /] 48 N Y
SystemInvalidInfoClass4, /] 49
SystemRangeStartInformation, /1 50 Y N
SystemVerifierInformation, /1 51 Y Y
SystemAddverifier, /] 52 N Y
SystemSessionProcessesInformation /] 53 Y N

} SYSTEM_INFORMATION_CLASS;

SystemBasicInformation

typedef struct _SYSTEM_BASIC_INFORMATION { // Information Class 0
ULONG Unknown;
ULONG MaximumIncrement;
ULONG PhysicalPageSize;
ULONG NumberOfPhysicalPages;
ULONG LowestPhysicalPage;
ULONG HighestPhysicalPage;
ULONG AllocationGranularity;
ULONG LowestUserAddress;
ULONG HighestUserAddress;
ULONG ActiveProcessors;
UCHAR NumberProcessors;
} SYSTEM_BASIC_INFORMATION, *PSYSTEM_BASIC_INFORMATION;

1996 CHO1 11/19/99 12:24 PM Page 5 $

System Information and Control: SystemBasicInformation

Members

Unknown
Always contains zero; interpretation unknown.

MaximumlIncrement
The maximum number of 100-nanosecond units between clock ticks. Also the
number of 100-nanosecond units per clock tick for kernel intervals measured in clock
ticks.

PhysicalPageSize
The size in bytes of a physical page.

NumberOfPhysical Pages
The number of physical pages managed by the operating system.

LowestPhysicalPage
The number of the lowest physical page managed by the operating system (numbered
from zero).

HighestPhysical Page
The number of the highest physical page managed by the operating system (numbered
from zero).

Allocation Granularity
The granularity to which the base address of virtual memory reservations is rounded.

LowestUserAddress

The lowest virtual address potentially available to user mode applications.

HighestUserAddress

The highest virtual address potentially available to user mode applications.

ActiveProcessors
A bit mask representing the set of active processors in the system. Bit 0 is processor 0;
bit 31 is processor 31.

NumberProcessors
The number of processors in the system.

Remarks

Much of the data in this information class can be obtained by calling the Win32 func-
tion GetSystemInfo.

1996 CHO1 11/19/99 12:24 PM Page 6

6 System Information and Control: SystemProcessorInformation

SystemProcessorInformation

typedef struct _SYSTEM_PROCESSOR_INFORMATION { // Information Class 1

USHORT ProcessorArchitecture;

USHORT ProcessorLevel;
USHORT ProcessorRevision;

USHORT Unknown;
ULONG FeatureBits;

} SYSTEM_PROCESSOR_INFORMATION, *PSYSTEM_PROCESSOR_INFORMATION;

Members

ProcessorArchitecture

The system’s processor architecture. Some of the possible values are defined in winnt.h

with identifiers of the form PROCESSOR_ARCHITECTURE_* (where ‘*’is a wildcard).

ProcessorLevel

The system’s architecture-dependent processor level. Some of the possible values are

defined in the Win32 documentation for the SYSTEM_INFO structure.

ProcessorRevision

The system’s architecture-dependent processor revision. Some of the possible values are

defined in the Win32 documentation for the SYSTEM_INFO structure.

Unknown

Always contains zero; interpretation unknown.

FeatureBits

A bit mask representing any special features of the system’s processor (for example,
whether the Intel MMX instruction set is available). The flags for the Intel platform

include:

Intel Mnemonic

VME
TCS

CMov
PGE
PSE
MTRR
(6]
MMX
PAT
FXSR
SIMD

Remarks

Value

0x0001
0x0002
0x0004
0x0008
0x0010
0x0020
0x0040
0x0080
0x0100
0x0400
0x0800
0x2000

Description

Virtual-8086 Mode Enhancements
Time Stamp Counter

CR4 Register

Conditional Mov/Cmp Instruction
PTE Global Bit

Page Size Extensions

Memory Type Range Registers
CMPXCHGB8 Instruction

MMX Technology

Page Attribute Table

Fast Floating Point Save and Restore
Streaming SIMD Extension

Much of the data in this information class can be obtained by calling the Win32

function GetSystemInfo.

1996 CHO1 11/19/99 12:24 PM Page 7

System Information and Control: SystemPerformancelnformation

SystemPerformanceInformation

typedef struct _SYSTEM_PERFORMANCE_INFORMATION { // Information Class 2
LARGE_INTEGER IdleTime;
LARGE_INTEGER ReadTransferCount;
LARGE_INTEGER WriteTransferCount;
LARGE_INTEGER OtherTransferCount;
ULONG ReadOperationCount;

ULONG WriteOperationCount;
ULONG OtherOperationCount;
ULONG AvailablePages;

ULONG TotalCommittedPages;
ULONG TotalCommitLimit;

ULONG PeakCommitment;

ULONG PageFaults;

ULONG WriteCopyFaults;

ULONG TransitionFaults;

ULONG Reservedi;

ULONG DemandZeroFaults;

ULONG PagesRead;

ULONG PageReadlIos;

ULONG Reserved2[2];

ULONG PagefilePagesWritten;
ULONG PagefilePageWriteIos;
ULONG MappedFilePagesWritten;
ULONG MappedFilePageWriteIos;
ULONG PagedPoolUsage;

ULONG NonPagedPoolUsage;
ULONG PagedPoolAllocs;

ULONG PagedPoolFrees;

ULONG NonPagedPoolAllocs;
ULONG NonPagedPoolFrees;
ULONG TotalFreeSystemPtes;
ULONG SystemCodePage;

ULONG TotalSystemDriverPages;
ULONG TotalSystemCodePages;
ULONG SmallNonPagedLookasideListAllocateHits;
ULONG SmallPagedLookasidelListAllocateHits;
ULONG Reserved3;

ULONG MmSystemCachePage;
ULONG PagedPoolPage;

ULONG SystemDriverPage;

ULONG FastReadNoWait;

ULONG FastReadWait;

ULONG FastReadResourceMiss;
ULONG FastReadNotPossible;
ULONG FastMdlReadNoWait;
ULONG FastMdlReadWait;

ULONG FastMdlReadResourceMiss;
ULONG FastMdlReadNotPossible;
ULONG MapDataNoWait;

ULONG MapDataWait;

ULONG MapDataNoWaitMiss;
ULONG MapDataWaitMiss;

ULONG PinMappedDataCount;
ULONG PinReadNoWait;

ULONG PinReadWait;

ULONG PinReadNoWaitMiss;
ULONG PinReadWaitMiss;

ULONG CopyReadNoWait;

ULONG CopyReadWait;

ULONG CopyReadNoWaitMiss;

1996 CHO1 11/19/99 12:24 PM Page 8 (i:

8 System Information and Control: SystemPerformancelnformation

ULONG CopyReadWaitMiss;
ULONG Md1lReadNoWait;
ULONG MdlReadWait;
ULONG Md1lReadNoWaitMiss;
ULONG MdlReadWaitMiss;
ULONG ReadAheadIos;
ULONG LazyWritelIos;
ULONG LazyWritePages;
ULONG DataFlushes;
ULONG DataPages;
ULONG ContextSwitches;
ULONG FirstLevelTbFills;
ULONG SecondLevelTbFills;
ULONG SystemCalls;

} SYSTEM_PERFORMANCE_INFORMATION, *PSYSTEM_PERFORMANCE_INFORMATION;

Members

IdleTime
The total idle time, measured in units of 100-nanoseconds, of all the processors in the
system.

Read TiansferCount
The number of bytes read by all calls to ZwReadFile.

Write TransferCount
The number of bytes written by all calls to zwWriteFile.

OtherTiansferCount
The number of bytes transferred to satisfy all other I/O operations, such as
ZwDeviceIoControlFile.

ReadOperationCount

The number of calls to zwReadFile.

WriteOperationCount
The number of calls to zwWriteFile.

OtherOperationCount
The number of calls to all other I/O system services such as ZwbeviceIoControlFile.

AvailablePages
The number of pages of physical memory available to processes running on the
system.

Total Committed Pages
The number of pages of committed virtual memory.

Total CommitLimit

The number of pages of virtual memory that could be committed without
extending the system’s pagefiles.

o

1996 CHO1 11/19/99 12:24 PM Page 9 $

System Information and Control: SystemPerformancelnformation

PeakCommitment
The peak number of pages of committed virtual memory.

PageFaults
The number of page faults (both soft and hard).

WriteCopyFaults

The number of page faults arising from attempts to write to copy-on-write pages.

TiansitionFaults
The number of soft page faults (excluding demand zero faults).

Demand ZeroFaults

The number of demand zero faults.

PagesRead

The number of pages read from disk to resolve page faults.

PageReadlos

The number of read operations initiated to resolve page faults.

PagefilePages Written

The number of pages written to the system’s pagefiles.

PagefilePageWritelos

The number of write operations performed on the system’s pagefiles.

MappedFilePagesWritten

The number of pages written to mapped files.

MappedFilePageWritelos

The number of write operations performed on mapped files.

PagedPoolUsage
The number of pages of virtual memory used by the paged pool.

NonPagedPoolUsage

The number of pages of virtual memory used by the nonpaged pool.

PagedPoolAllocs

The number of allocations made from the paged pool.

PagedPoolFrees
The number of allocations returned to the paged pool.

NonPagedPoolAllocs

The number of allocations made from the nonpaged pool.

o

1996 CHO1 11/19/99 12:24 PM Page 10 $

10 System Information and Control: SystemPerformancelnformation

NonPagedPoolFrees

The number of allocations returned to the nonpaged pool.

TotalFreeSystemPtes
The number of available System Page Table Entries.

SystemCodePage
The number of pages of pageable operating system code and static data in physical
memory. The meaning of “operating system code and static data” is defined by address
range (lowest system address to start of system cache) and includes a contribution from
win32k.sys.

TotalSystemDriverPages

The number of pages of pageable device driver code and static data.

TotalSystem CodePages
The number of pages of pageable operating system code and static data. The meaning
of “operating system code and static data” is defined by load time (SERVICE_BOOT_START
driver or earlier) and does not include a contribution from win32k.sys.

SmallNonPagedLookasideListAllocateHits
The number of times an allocation could be satisfied by one of the small nonpaged
lookaside lists.

SmallPagedLookasideListAllocateHits
The number of times an allocation could be satistied by one of the small-paged
lookaside lists.

MmSystemCachePage

The number of pages of the system cache in physical memory.

PagedPool Page
The number of pages of paged pool in physical memory.

SystemDriverPage
The number of pages of pageable device driver code and static data in physical
memory.

FastReadNoWait

The number of asynchronous fast read operations.

FastRead Wait

The number of synchronous fast read operations.

FastReadResourceMiss

The number of fast read operations not possible because of resource conflicts.

o

1996 CHO1 11/19/99 12:24 PM Page 11 $

System Information and Control: SystemPerformancelnformation

FastReadNotPossible
The number of fast read operations not possible because file system intervention
required.

FastMdIReadNoWait
The number of asynchronous fast read operations requesting a Memory Descriptor
List (MDL) for the data.

FastMdIRead Wait

The number of synchronous fast read operations requesting an MDL for the data.

FastMdIReadR esourceMiss
The number of synchronous fast read operations requesting an MDL for the data not
possible because of resource conflicts.

FastMdIReadNotPossible
The number of synchronous fast read operations requesting an MDL for the data not
possible because file system intervention required.

MapDataNoWait

The number of asynchronous data map operations.

MapDataWait

The number of synchronous data map operations.

MapDataNoWaitMiss

The number of asynchronous data map operations that incurred page faults.

MapDataWaitMiss

The number of synchronous data map operations that incurred page faults.

PinMappedDataCount

The number of requests to pin mapped data.

PinReadNoWait

The number of asynchronous requests to pin mapped data.

PinReadWait

The number of synchronous requests to pin mapped data.

PinReadNoWaitMiss
The number of asynchronous requests to pin mapped data that incurred page faults
when pinning the data.

PinRead WaitMiss
The number of synchronous requests to pin mapped data that incurred page faults
when pinning the data.

o

11

1996 CHO1 11/19/99 12:24 PM Page 12 $

12 System Information and Control: SystemPerformancelnformation

CopyReadNoWait

The number of asynchronous copy read operations.

CopyReadWait

The number of synchronous copy read operations.

CopyReadNoWaitMiss

The number of asynchronous copy read operations that incurred page faults when
reading from the cache.

CopyRead WaitMiss
The number of synchronous copy read operations that incurred page faults when
reading from the cache.

MdIReadNo Wait

The number of synchronous read operations requesting an MDL for the cached data.

MdIRead Wait

The number of synchronous read operations requesting an MDL for the cached data.

MdIReadNoWaitMiss
The number of synchronous read operations requesting an MDL for the cached data
that incurred page faults.

MdIRead WaitMiss

The number of synchronous read operations requesting an MDL for the cached data
that incurred page faults.

ReadAheadlos

The number of read ahead operations performed in anticipation of sequential access.

LazyWritelos

The number of write operations initiated by the Lazy Writer.

LazyWritePages
The number of pages written by the Lazy Writer.

DataFlushes

The number of cache flushes in response to flush requests.

DataPages

The number of cache pages flushed in response to flush requests.

ContextSwitches
The number of context switches.

FirstLevel TbFills

The number of first level translation buffer fills.

o

1996 CHO1 11/19/99 12:24 PM Page 13 :F

System Information and Control: SystemProcessesAndThreadsInformation 13

SecondLevel TbFills

The number of second level translation buffer fills.

SystemCalls

The number of system calls executed.

Remarks

Slightly longer descriptions of many of the members of this structure can be found in
the Win32 documentation for the NT Performance Counters.

SystemTimeOfDayInformation

typedef struct _SYSTEM_TIME_OF_DAY_INFORMATION { // Information Class 3
LARGE_INTEGER BootTime;
LARGE_INTEGER CurrentTime;
LARGE_INTEGER TimeZoneBias;
ULONG CurrentTimeZoneld;
} SYSTEM_TIME_OF_DAY_INFORMATION, *PSYSTEM_TIME_OF_DAY_INFORMATION;

Members

BootTime
The time when the system was booted in the standard time format (that is, the num-
ber of 100-nanosecond intervals since January 1, 1601).

Current Time
The current time of day in the standard time format.

TimeZoneBias
The difference, in 100-nanosecond units, between Coordinated Universal Time (UTC)
and local time.

Current Time Zoneld

A numeric identifier for the current time zone.

Remarks

None.

SystemProcessesAndThreadsInformation

typedef struct _SYSTEM_PROCESSES { // Information Class 5
ULONG NextEntryDelta;
ULONG ThreadCount;
ULONG Reservedi[6];
LARGE_INTEGER CreateTime;
LARGE_INTEGER UserTime;
LARGE_INTEGER KernelTime;
UNICODE_STRING ProcessName;
KPRIORITY BasePriority;
ULONG ProcessId;

1996 CHO1 11/19/99 12:24 PM Page 14

14 System Information and Control: SystemProcessesAndThreadsInformation

ULONG InheritedFromProcessId;
ULONG HandleCount;
ULONG Reserved2[2];
VM_COUNTERS VmCounters;
I0_COUNTERS IoCounters; // Windows 2000 only
SYSTEM_THREADS Threads[1];
} SYSTEM_PROCESSES, *PSYSTEM_PROCESSES;

typedef struct _SYSTEM_THREADS {
LARGE_INTEGER KernelTime;
LARGE_INTEGER UserTime;
LARGE_INTEGER CreateTime;
ULONG WaitTime;
PVOID StartAddress;
CLIENT_ID ClientId;
KPRIORITY Priority;
KPRIORITY BasePriority;
ULONG ContextSwitchCount;
THREAD_STATE State;
KWAIT_REASON WaitReason;

} SYSTEM_THREADS, *PSYSTEM_THREADS;

Members

NextEntryDelta
The offset, from the start of this structure, to the next entry. A NextEntryDelta of zero
indicates that this is the last structure in the returned data.

Thread Count

The number of threads in the process.

CreateTime
The creation time of the process in the standard time format (that is, the number of
100-nanosecond intervals since January 1, 1601).

User'Time
The sum of the time spent executing in user mode by the threads of the process,
measured in units of 100-nanoseconds.

Kernel Time
The sum of the time spent executing in kernel mode by the threads of the process,
measured in units of 100-nanoseconds.

ProcessName
The name of the process, normally derived from the name of the executable file used
to create the process.

BasePriority
The default base priority for the threads of the process.

ProcessId

The process identifier of the process.

1996 CHO1 11/19/99 12:24 PM Page 15 (i:

System Information and Control: SystemProcessesAndThreadsInformation

Inherited FromProcessId
The process id of the process from which handles and/or address space was inherited.

HandleCount

The number of handles opened by the process.

VmCounters

Statistics on the virtual memory usage of the process. VM_COUNTERS is defined thus in

ntddk.h:

typedef struct _VM_COUNTERS {

ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG
ULONG

PeakVirtualSize;
VirtualSize;
PageFaultCount;
PeakWorkingSetSize;
WorkingSetSize;
QuotaPeakPagedPoolUsage;
QuotaPagedPoolUsage;
QuotaPeakNonPagedPoolUsage;
QuotaNonPagedPoolUsage;
PagefileUsage;
PeakPagefileUsage;

} VM_COUNTERS, *PVM_COUNTERS;

ToCounters
Statistics on the I/O operations of the process. This information is only present in
Windows 2000. 10_COUNTERS is defined thus:

typedef struct _IO_COUNTERS {
LARGE_INTEGER ReadOperationCount;
LARGE_INTEGER WriteOperationCount;
LARGE_INTEGER OtherOperationCount;
LARGE_INTEGER ReadTransferCount;
LARGE_INTEGER WriteTransferCount;
LARGE_INTEGER OtherTransferCount;

} IO_COUNTERS, *PIO_COUNTERS;

Threads
An array of SYSTEM_THREADS structures describing the threads of the process. The num-
ber of elements in the array is available in the ThreadCount member.

The members of SYSTEM_THREADS aredescribed in the following secctions.

KernelTime

The time spent executing in kernel mode, measured in units of 100-nanoseconds.

UserTime
The time spent executing in user mode, measured in units of 100-nanoseconds.

CreateTime

The creation time of the thread in the standard time format (that is, the number of
100-nanosecond intervals since January 1, 1601).

o

15

1996 CHO1 11/19/99 12:24 PM Page 16

16 System Information and Control: SystemProcessesAndThreadsInformation

Wait Time
The time at which the thread last entered a wait state, measured in clock ticks since

system boot.

StartAddress
The start address of the thread.

Clientld
The client identifier of the thread, comprising a process identifier and a thread
identifier.

Priority
The priority of the thread.

BasePriority
The base priority of the thread.

ContextSwitchCount
The number of context switches incurred by the thread.

State
The execution state of the thread. Permitted values are drawn from the enumeration
THREAD_STATE.

typedef enum {
StateInitialized,
StateReady,
StateRunning,
StateStandby,
StateTerminated,
StateWait,
StateTransition,
StateUnknown

} THREAD_STATE;

WaitReason
An indication of the reason for a wait. Some possible values are defined in the
enumeration KWAIT_REASON, but other values may also be used.

typedef enum _KWAIT_REASON {
Executive,
FreePage,
Pageln,
PoolAllocation,
DelayExecution,
Suspended,
UserRequest,
WrExecutive,
WrFreePage,
WrPagelIn,
WrPoolAllocation,
WrDelayExecution,
WrSuspended,
WrUserRequest,
WrEventPair,

1996 CHO1 11/19/99 12:24 PM Page 17 (i:

System Information and Control: SystemCallCounts 17

WrQueue,
WrLpcReceive,
WrLpcReply,
WrVirtualMemory,
WrPageOut,
WrRendezvous,
Spare2,
Spare3,
Spare4,
Spare5,
Spareé,
WrKernel

} KWAIT_REASON;

Remarks

The format of the data returned to the SystemlInformation bufter is a sequence of
SYSTEM_PROCESSES structures, chained together via the NextEntryDelta member.

The Threads member of each SYSTEM_PROCESSES structure is an array of ThreadCount
SYSTEM_THREADS structures. The end of the process chain is marked by a NextEntryDelta
value of zero.

The Process Status API (PSAPI) function EnumProcesses uses this information class to
obtain a list of the process identifier in the system.

An demonstration of the use of this information class to implement a subset of the
Tool Help Library appears in Example 1.1.

The addition of the IoCounters member to SYSTEM_PROCESSES structure in Windows
2000 has the consequence that Windows NT 4.0 applications that access the Threads
member fail when run under Windows 2000; for example the pstat.exe resource kit
utility sufters from this problem.

SystemCallCounts

typedef struct _SYSTEM_CALLS_INFORMATION { // Information Class 6
ULONG Size;
ULONG NumberOfDescriptorTables;
ULONG NumberOfRoutinesInTable[1];
// ULONG CallCounts[];
} SYSTEM_CALLS_INFORMATION, *PSYSTEM_CALLS_INFORMATION;

Members

Size
The size in bytes of the returned information.

NumberOfDescriptor Tables
The number of system service dispatch descriptor tables for which information is
available.

NumberOfRoutinesInTable

An array of the count of routines in each table.

o

1996 CHO1 11/19/99 12:24 PM Page 18 :F

18

System Information and Control: SystemCallCounts

Remarks

Information on the number of calls to each system service is only gathered if the
“checked” version of the kernel is used and memory is allocated by the creator of the
table to hold the counts.

The counts of calls to each system service follow the array NumberOfRoutinesInTable.

SystemConfigurationInformation

typedef struct _SYSTEM_CONFIGURATION_INFORMATION { // Information Class 7
ULONG DiskCount;
ULONG FloppyCount;
ULONG CdRomCount;
ULONG TapeCount;
ULONG SerialCount;
ULONG ParallelCount;
} SYSTEM_CONFIGURATION_INFORMATION, *PSYSTEM_CONFIGURATION_INFORMATION;

Members

DiskCount
The number of hard disk drives in the system.

Floppy Count
The number of floppy disk drives in the system.

CdRomCount
The number of CD-ROM drives in the system.

TapeCount

The number of tape drives in the system.

Serial Count
The number of serial ports in the system.

Parallel Count

The number of parallel ports in the system.

Remarks

This information is a subset of the information available to device drivers by calling
IoGetConfigurationInformation.

SystemProcessorTimes

typedef struct _SYSTEM_PROCESSOR_TIMES { // Information Class 8
LARGE_INTEGER IdleTime;
LARGE_INTEGER KernelTime;
LARGE_INTEGER UserTime;
LARGE_INTEGER DpcTime;

1996 CHO1 11/19/99 12:24 PM Page 19 (i:

System Information and Control: SystemGlobalFlag 19

LARGE_INTEGER InterruptTime;
ULONG InterruptCount;
} SYSTEM_PROCESSOR_TIMES, *PSYSTEM_PROCESSOR_TIMES;

Members

IdleTime

The idle time, measured in units of 100-nanoseconds, of the processor.

Kernel Time
The time the processor spent executing in kernel mode, measured in units of 100-
nanoseconds.

User'Time
The time the processor spent executing in user mode, measured in units of 100-
nanoseconds.

DpcTime
The time the processor spent executing deferred procedure calls, measured in units of
100-nanoseconds.

Interrupt Time
The time the processor spent executing interrupt routines, measured in units of 100-
nanoseconds.

Interrupt Count
The number of interrupts serviced by the processor.

Remarks

An array of structures is returned, one per processor.

SystemGlobalFlag

typedef struct _SYSTEM_GLOBAL_FLAG { // Information Class 9
ULONG GlobalFlag;
} SYSTEM_GLOBAL_FLAG, *PSYSTEM_GLOBAL_FLAG;

Members

GlobalFlag

A bit array of flags that control various aspects of the behavior of the kernel.

Remarks

This information class can be both queried and set. SeDebugPrivilege is required to set
the flags. Some flags are used only at boot time and subsequent changes have no effect.
Some flags have an effect only when using a “checked” kernel.

o

1996 CHO1 11/19/99 12:24 PM Page 20 (i:

20 System Information and Control: SystemGlobalFlag

The flags recognized by the “gflags” resource kit utility are:

FLG_STOP_ON_EXCEPTION 0x00000001
FLG_SHOW_LDR_SNAPS 0x00000002
FLG_DEBUG_INITIAL_COMMAND 0x00000004
FLG_STOP_ON_HUNG_GUI 0x00000008
FLG_HEAP_ENABLE_TAIL_CHECK 0x00000010
FLG_HEAP_ENABLE_FREE_CHECK 0x00000020
FLG_HEAP_VALIDATE_PARAMETERS 0x00000040
FLG_HEAP_VALIDATE_ALL 0x00000080
FLG_POOL_ENABLE_TAIL_CHECK 0x00000100
FLG_POOL_ENABLE_FREE_CHECK 0x00000200
FLG_POOL_ENABLE_TAGGING 0x00000400
FLG_HEAP_ENABLE_TAGGING 0x00000800
FLG_USER_STACK_TRACE_DB 0x00001000
FLG_KERNEL_STACK_TRACE_DB 0x00002000
FLG_MAINTAIN_OBJECT TYPELIST 0x00004000
FLG_HEAP_ENABLE_TAG_BY DLL 0x00008000
FLG_IGNORE_DEBUG_PRIV 0x00010000
FLG_ENABLE_CSRDEBUG 0x00020000

FLG_ENABLE_KDEBUG_SYMBOL_LOAD 0x00040000
FLG_DISABLE_PAGE_KERNEL_STACKS 0x00080000
FLG_HEAP_ENABLE_CALL_TRACING 0x00100000
FLG_HEAP_DISABLE_COALESCING 000200000
FLG_ENABLE_CLOSE_EXCEPTIONS 000400000
FLG_ENABLE_EXCEPTION_LOGGING 0x00800000
FLG_ENABLE_DBGPRINT_BUFFERING 0x08000000

SystemModuleInformation

typedef struct _SYSTEM_MODULE_INFORMATION { // Information Class 11
ULONG Reserved[2];
PVOID Base;
ULONG Size;
ULONG Flags;
USHORT Index;
USHORT Unknown;
USHORT LoadCount;
USHORT ModuleNameOffset;
CHAR ImageName[256];
} SYSTEM_MODULE_INFORMATION, *PSYSTEM_MODULE_INFORMATION;

Members

Base
The base address of the module.

Size
The size of the module.

Flags
A bit array of flags describing the state of the module.

Index

The index of the module in the array of modules.

o

1996 CHO1 11/19/99 12:24 PM Page 21 (i:

System Information and Control: SystemLockinformation

Unknown
Normally contains zero; interpretation unknown.

LoadCount

The number of references to the module.

ModuleNameOffset

The offset to the final filename component of the image name.

ImageName
The filepath of the module.

Remarks

The data returned to the SystemInformation buffer is a ULONG count of the number of
modules followed immediately by an array of SYSTEM_MODULE_INFORMATION.

The system modules are the Portable Executable (PE) format files loaded into the
kernel address space (ntoskrnl.exe, hal.dll, device drivers, and so on) and ntdll.dll.

The PSAPI function EnumDeviceDrivers uses this information class to obtain a list of
the device drivers in the system. It is also used by the PSAPI functions
GetDeviceDriverFileName and GetDeviceDriverBaseName.

The code in Example 1.3 uses this information class.

SystemLockInformation

typedef struct _SYSTEM_LOCK_INFORMATION { // Information Class 12
PVOID Address;
USHORT Type;
USHORT Reserved1;
ULONG ExclusiveOwnerThreadId;
ULONG ActiveCount;
ULONG ContentionCount;
ULONG Reserved2[2];
ULONG NumberOfSharedWaiters;
ULONG NumberOfExclusiveWaiters;
} SYSTEM_LOCK_INFORMATION, *PSYSTEM_LOCK_INFORMATION;

Members

Address
The address of the ERESOURCE structure.

Type
The type of the lock. This is always RTL_RESOURCE_TYPE (1).

ExclusiveOwnerThreadld
The thread ID of the owner of the resource if the resource is owned exclusively, oth-
erwise zero.

o

21

1996 CHO1 11/19/99 12:24 PM Page 22 (i:

22

System Information and Control: SystemLockinformation

ActiveCount
The number of threads granted access to the resource.

ContentionCount
The number of times a thread had to wait for the resource.

NumberOfShared Waiters

The number of threads waiting for shared access to the resource.

NumberOfExclusive Waiters

The number of threads waiting for exclusive access to the resource.

Remarks

The data returned to the SystemInformation buffer is a ULONG count of the number of
locks followed immediately by an array of SYSTEM_LOCK_INFORMATION.

The locks reported on by this information class are only available to kernel mode
code. The locks support multiple reader single writer functionality and are known as
“resources.” They are initialized by the routine ExInitializeResourceLite and are doc-
umented in the DDK.

SystemHandleInformation

typedef struct _SYSTEM_HANDLE_INFORMATION { // Information Class 16
ULONG ProcessId;
UCHAR ObjectTypeNumber;
UCHAR Flags; // 0x@01 = PROTECT_FROM_CLOSE, 0x02 = INHERIT
USHORT Handle;
PVOID Object;
ACCESS_MASK GrantedAccess;

} SYSTEM_HANDLE_INFORMATION, *PSYSTEM_HANDLE_INFORMATION;

Members

ProcessId

The process identifier of the owner of the handle.

Object TypeNumber
A number which identifies the type of object to which the handle refers. The number
can be translated to a name by using the information returned by ZwQueryObject.

Flags
A bit array of flags that specify properties of the handle.

Handle

The numeric value of the handle.

Object
The address of the kernel object to which the handle refers.

o

1996 CHO1 11/19/99 12:24 PM Page 23 (i:

System Information and Control: SystemObjectInformation

GrantedAccess
The access to the object granted when the handle was created.

Remarks

The data returned to the SystemInformation buffer is a ULONG count of the number of
handles followed immediately by an array of SYSTEM_HANDLE_INFORMATION.

Examples of the use of this information class to implement utilities that list the open
handles of processes appear in Example 1.2 and Example 2.1 in Chapter 2, “Object
Directories, and Symbolic Links.”

SystemObjectInformation

typedef struct _SYSTEM_OBJECT_TYPE_INFORMATION { // Information Class 17
ULONG NextEntryOffset;
ULONG ObjectCount;
ULONG HandleCount;
ULONG TypeNumber;
ULONG InvalidAttributes;
GENERIC_MAPPING GenericMapping;
ACCESS_MASK ValidAccessMask;
POOL_TYPE PoolType;
UCHAR Unknown;
UNICODE_STRING Name;
} SYSTEM_OBJECT_TYPE_INFORMATION, *PSYSTEM_OBJECT_ TYPE_INFORMATION;

typedef struct _SYSTEM_OBJECT_INFORMATION {
ULONG NextEntryOffset;
PVOID Object;
ULONG CreatorProcessId;
USHORT Unknownj;
USHORT Flags;
ULONG PointerCount;
ULONG HandleCount;
ULONG PagedPoolUsage;
ULONG NonPagedPoolUsage;
ULONG ExclusiveProcessId;
PSECURITY_DESCRIPTOR SecurityDescriptor
UNICODE_STRING Name;
} SYSTEM_OBJECT_INFORMATION, *PSYSTEM_OBJECT_INFORMATION;

Members

NextEntry Offset
The offset from the start of the SystemInformation buffer to the next entry.

ObjectCount
The number of objects of this type in the system.

HandleCount
The number of handles to objects of this type in the system.

TypeNumber
A number that identifies this object type.

o

23

1996 CHO1 11/19/99 12:24 PM Page 24 (i:

24 System Information and Control: SystemObjectInformation

Invalid Attributes
A bit mask of the 0BJ_Xxx attributes that are not valid for objects of this type. The
defined attributes are:

OBJ_INHERIT

O0BJ_PERMANENT

0BJ_EXCLUSIVE

OBJ_CASE_INSENSITIVE

0BJ_OPENIF

OBJ_OPENLINK

O0BJ_KERNEL_HANDLE /] Windows 2000 only

GenericMapping
The mapping of generic access rights to specific access rights for this object type.

Valid AccessMask
The valid specific access rights for this object type.

Pool Type
The type of pool from which this object type is allocated (paged or nonpaged).

Unknown
Interpretation unknown.

Name
A name that identifies this object type.

The members of SYSTEM_OBJECT_INFORMATION are described in the following sections.

NextEntry Offset
The offset from the start of the SystemInformation bufter to the next entry.

Object
The address of the object.

CreatorProcessId
The process identifier of the creator of the object.

Unknown
Normally contains zero; interpretation unknown.

Flags
A bit array of flags that specify properties of the object. Observed values include:

SINGLE_HANDLE_ENTRY 0x40
DEFAULT_SECURITY_QUOTA 0x20
PERMANENT 0x10
EXCLUSIVE 0x08
CREATOR_INFO 0x04
KERNEL_MODE 0x02

PointerCount

The number of pointer references to the object.

o

1996 CHO1 11/19/99 12:24 PM Page 25 (i:

System Information and Control: SystemPagefilelnformation

HandleCount

The number of handle references to the object.

PagedPoolUsage
The amount of paged pool used by the object.

NonPagedPoolUsage
The amount of nonpaged pool used by the object.

ExclusiveProcessld
The process identifier of the owner of the object if it was created for exclusive use
(by specifying 0BJ_EXCLUSIVE).

SecurityDescriptor
The security descriptor for the object.

Name
The name of the object.

Remarks

This information class is only available if FLG_MAINTAIN_OBJECT_TYPELIST was set in
NtGlobalFlags at boot time.

The format of the data returned to the SystemInformation buffer is a sequence of
SYSTEM_OBJECT_TYPE_INFORMATION structures, chained together via the NextEntryOffset
member. Immediately following the name of the object type is a sequence of
SYSTEM_OBJECT_INFORMATION structures, which are chained together via the
NextEntryoffset member. The ends of both the object type chain and the object chain
are marked by a NextEntryOffset value of zero.

The use of this information class to implement a utility that lists the open handles of
processes appears in Example 1.2.

SystemPagefileInformation

typedef struct _SYSTEM_PAGEFILE_INFORMATION { // Information Class 18
ULONG NextEntryOffset;
ULONG CurrentSize;
ULONG TotalUsed;
ULONG PeakUsed;
UNICODE_STRING FileName;
} SYSTEM_PAGEFILE_INFORMATION, *PSYSTEM_PAGEFILE_INFORMATION;

Members

NextEntry Offset
The offset from the start of the SystemInformation buffer to the next entry.

CurrentSize
The current size in pages of the page file.

o

25

1996 CHO1 11/19/99 12:24 PM Page 26 (i:

26 System Information and Control: SystemPagefileInformation

TotalUsed

The number of pages in the page file that are in use.

PeakUsed
The peak number of pages in the page file that have been in use.

FileName
The filepath of the page file.

Remarks

None.

SystemlInstructionEmulationCounts

typedef struct _SYSTEM_INSTRUCTION_EMULATION_INFORMATION { // Info Class 19
ULONG SegmentNotPresent;
ULONG TwoByteOpcode;

ULONG ESprefix;
ULONG CSprefix;
ULONG SSprefix;
ULONG DSprefix;
ULONG FSPrefix;
ULONG GSprefix;
ULONG OPER32prefix;
ULONG ADDR32prefix;
ULONG INSB;

ULONG INSW;

ULONG OUTSB;

ULONG OUTSW;

ULONG PUSHFD;
ULONG POPFD;

ULONG INTnn;

ULONG INTO;

ULONG IRETD;

ULONG INBimmj;
ULONG INWimm;
ULONG OUTBimm;
ULONG OUTWimm;
ULONG INB;

ULONG INW;

ULONG OUTB;

ULONG OUTW;

ULONG LOCKprefix;
ULONG REPNEprefix;
ULONG REPprefix;
ULONG HLT;

ULONG CLI;

ULONG STI;

ULONG GenericInvalidOpcode;

} SYSTEM_INSTRUCTION_EMULATION_INFORMATION,

*PSYSTEM_INSTRUCTION_EMULATION_INFORMATION;

Remarks

The members of this structure are the number of times that particular instructions had
to be emulated for virtual DOS machines. The prefix opcodes do not themselves
require emulation, but they may prefix an opcode that does require emulation.

o

1996 CHO1 11/19/99 12:24 PM Page 27 :F

System Information and Control: SystemPoolTagInformation

SystemCacheInformation

typedef struct _SYSTEM_CACHE_INFORMATION { // Information Class 21
ULONG SystemCacheWsSize;
ULONG SystemCacheWsPeakSize;
ULONG SystemCacheWsFaults;
ULONG SystemCacheWsMinimum;
ULONG SystemCacheWsMaximum;
ULONG TransitionSharedPages;
ULONG TransitionSharedPagesPeak;
ULONG Reserved[2];
} SYSTEM_CACHE_INFORMATION, *PSYSTEM_CACHE_INFORMATION;

Members

SystemCacheWsSize

The size in bytes of the system working set.

System CacheWsPeakSize
The peak size in bytes of the system working set.

System Cache WsFaults

The number of page faults incurred by the system working set.

System Cache WsMinimum

The minimum desirable size in pages of the system working set.

System CacheWsMaximum

The maximum desirable size in pages of the system working set.

TransitionShared Pages
The sum of the number of pages in the system working set and the number of shared
pages on the Standby list. This value is only valid in Windows 2000.

TiansitionShared PagesPeak
The peak number of shared pages on the Standby list. This value is only valid in
Windows 2000.

Remarks

This information class can be both queried and set. When setting, only the
SystemCacheWsMinimum and SystemCacheWsMaximum values are used.

SystemPoolTagInformation

typedef struct _SYSTEM_POOL_TAG_INFORMATION { // Information Class 22
CHAR Tag[4];
ULONG PagedPoolAllocs;
ULONG PagedPoolFrees;
ULONG PagedPoolUsage;
ULONG NonPagedPoolAllocs;

27

1996 CHO1 11/19/99 12:24 PM Page 28 (i:

28

System Information and Control: SystemPoolTagInformation

ULONG NonPagedPoolFrees;
ULONG NonPagedPoolUsage;
} SYSTEM_POOL_TAG_INFORMATION, *PSYSTEM_POOL_TAG_INFORMATION;

Members

Tag

The four character tag string identifying the contents of the pool allocation.

PagedPool Allocs

The number of times a block was allocated from paged pool with this tag.

PagedPoolFrees
The number of times a block was deallocated to paged pool with this tag.

PagedPoolUsage
The number of bytes of paged pool used by blocks with this tag.

NonPagedPool Allocs

The number of times a block was allocated from nonpaged pool with this tag.

NonPagedPoolFrees

The number of times a block was deallocated to nonpaged pool with this tag.

NonPagedPoolUsage
The number of bytes of nonpaged pool used by blocks with this tag.

Remarks

This information class is only available if FLG_POOL_ENABLE_TAGGING was set in
NtGlobalFlags at boot time.

The data returned to the SystemInformation buffer is a ULONG count of the number of
tags followed immediately by an array of SYSTEM_POOL_TAG_INFORMATION.

The data returned by this information class is displayed by the “poolmon” utility.

SystemProcessorStatistics

typedef struct _SYSTEM_PROCESSOR_STATISTICS { // Information Class 23
ULONG ContextSwitches;
ULONG DpcCount;
ULONG DpcRequestRate;
ULONG TimeIncrement;
ULONG DpcBypassCount;
ULONG ApcBypassCount;
} SYSTEM_PROCESSOR_STATISTICS, *PSYSTEM_PROCESSOR_STATISTICS;

Members

ContextSwitches
The number of context switches performed by the processor.

o

1996 CHO1 11/19/99 12:24 PM Page 29 (i:

System Information and Control: SystemDpcInformation

DpcCount
The number of deferred procedure calls (DPC) that have been added to the processor’s
DPC queue.

DpcRequestRate
The number of DPCs that have been added to the processor’s DPC queue since the
last clock tick.

Timelncrement
The number of 100-nanosecond units between ticks of the system clock.

DpcBypassCount
The number of DPC interrupts that have been avoided.

ApcBypassCount
The number of kernel APC interrupts that have been avoided.

Remarks
An array of structures is returned, one per processor.

The ReturnLength information is not set correctly (always contains zero).

SystemDpcInformation

typedef struct _SYSTEM_DPC_INFORMATION { // Information Class 24
ULONG Reserved;
ULONG MaximumDpcQueueDepth;
ULONG MinimumDpcRate;
ULONG AdjustDpcThreshold;
ULONG IdealDpcRate;
} SYSTEM_DPC_INFORMATION, *PSYSTEM_DPC_INFORMATION;

Members

MaximumDpcQueueDepth
The maximum depth that the DPC queue should attain. If this depth is exceeded and
no DPCs are active, a DPC interrupt is requested.

MinimumDpcRate
The minimum rate at which DPCs should be requested. If the current request rate is
lower and no DPCs are active, a DPC interrupt is requested.

AdjustDpcThreshold

A parameter that affects the interval between retuning of the DPC parameters.

IdealDpcRate
The ideal rate at which DPCs should be requested. If the current rate is higher, mea-
sures are taken to tune the DPC parameters (for example, by adjusting the maximum
DPC queue depth).

o

29

1996 CHO1 11/19/99 12:24 PM Page 30 :F

30

System Information and Control: SystemDpcInformation

Remarks
This information class can be both queried and set. SeLoadDriverPrivilege is required
to set the values.

These parameters only affect MediumInportance and HighImportance DPCs.

The ReturnLength information is not set correctly (always contains zero).

SystemLoadImage

typedef struct _SYSTEM_LOAD_IMAGE { // Information Class 26
UNICODE_STRING ModuleName;
PVOID ModuleBase;
PVOID Unknown;
PVOID EntryPoint;
PVOID ExportDirectory;
} SYSTEM_LOAD_IMAGE, *PSYSTEM_LOAD_IMAGE;

Members

ModuleName
The full path in the native NT format of the module to load. Required on input.

ModuleBase
The base address of the module.Valid on output.

Unknown
Pointer to a data structure describing the loaded module.Valid on output.

EntryPoint
The address of the entry point of the module.Valid on output.

ExportDirectory
The address of the export directory of the module.Valid on output.

Remarks

This information class can only be set. Rather than setting any information (in a nar-
row sense of “setting”), it performs the operation of loading a module into the kernel
address space and returns information on the loaded module.

After loading the module, MmPageEntireDriver (documented in the DDK) is called to
make the entire module pageable. The module entry point is not called.

This information class is valid only when zwSetSystemInformation is invoked from
kernel mode.

SystemUnloadImage

typedef struct _SYSTEM_UNLOAD_IMAGE { // Information Class 27
PVOID ModuleBase;
} SYSTEM_UNLOAD_IMAGE, *PSYSTEM_UNLOAD_IMAGE;

o

1996 CHO1 11/19/99 12:24 PM Page 31 (i:

System Information and Control: SystemTimeAdjustment

Members

ModuleBase

The base of a module.

Remarks

This information class can only be set. Rather than setting any information (in a nar-
row sense of “setting”), it performs the operation of unloading a module from the
kernel address space.

Even if the module is a device driver, the DriverUnload routine is not called.

This information class is only valid when zwSetSystemInformation is invoked from
kernel mode.

SystemTimeAdjustment

typedef struct _SYSTEM_QUERY_TIME_ADJUSTMENT { // Information Class 28
ULONG TimeAdjustment;
ULONG MaximumIncrement;
BOOLEAN TimeSynchronization;

} SYSTEM_QUERY_TIME_ADJUSTMENT, *PSYSTEM_QUERY_TIME_ADJUSTMENT;

typedef struct _SYSTEM_SET_TIME_ADJUSTMENT { // Information Class 28
ULONG TimeAdjustment;
BOOLEAN TimeSynchronization;

} SYSTEM_SET_TIME_ADJUSTMENT, *PSYSTEM_SET_TIME_ADJUSTMENT;

Members

TimeAdjustment
The number of 100-nanosecond units added to the time-of-day clock at each clock
tick, if time adjustment is enabled.

MaximumIncrement
The maximum number of 100-nanosecond units between clock ticks. Also the num-
ber of 100-nanosecond units per clock tick for kernel intervals measured in clock
ticks.

TimeSynchronization
A boolean specifying that time adjustment is enabled when true.

Remarks

This information class can be both queried and set. SeSystemtimePrivilege is required
to set the values. The structures for querying and setting values are difterent.

The ReturnLength information is not set correctly (always contains zero).

31

1996 CHO1 11/19/99 12:24 PM Page 32 :F

32 System Information and Control: SystemCrashDumplnformation

SystemCrashDumplInformation

typedef struct _SYSTEM_CRASH_DUMP_INFORMATION { // Information Class 32
HANDLE CrashDumpSectionHandle;
HANDLE Unknown; // Windows 2000 only

} SYSTEM_CRASH_DUMP_INFORMATION, *PSYSTEM_CRASH_DUMP_INFORMATION;

Members

CrashDumpSectionHandle
A handle to the crash dump section.

Unknown
A handle to an unknown object. This information is only present in Windows 2000.

Remarks

If a crash dump section exists, a new handle to the section is created for the current
process and returned in CrashDumpSectionHandle; otherwise, CrashDumpSectionHandle
contains zero.

In Windows 2000, SeCreatePagefilePrivilege is required to query the values.

SystemExceptionInformation

typedef struct _SYSTEM_EXCEPTION_INFORMATION { // Information Class 33
ULONG AlignmentFixupCount;
ULONG ExceptionDispatchCount;
ULONG FloatingEmulationCount;
ULONG Reserved;
} SYSTEM_EXCEPTION_INFORMATION, *PSYSTEM_EXCEPTION_INFORMATION;

Members

AlignmentFixup Count
The numbers of times data alignment had to be fixed up since the system booted.

ExceptionDispatchCount
The number of exceptions dispatched since the system booted.

FloatingEmulationCount
The number of times floating point instructions had to be emulated since the system
booted.

Remarks

None.

1996 CHO1 11/19/99 12:24 PM Page 33 :F

System Information and Control: SystemContextSwitchInformation

SystemCrashDumpStateInformation

typedef struct _SYSTEM_CRASH_DUMP_STATE_INFORMATION { // Information Class 34
ULONG CrashDumpSectionExists;
ULONG Unknown; // Windows 2000 only

} SYSTEM_CRASH_DUMP_STATE_INFORMATION, *PSYSTEM_CRASH_DUMP_STATE_INFORMATION;

Members

CrashDump Section Exists

A boolean indicating whether a crash dump section exists.

Unknown
Interpretation unknown. This information is only present in Windows 2000.

Remarks

In Windows 2000, this information class can also be set if SeCreatePagefilePrivilege
is enabled.

SystemKernelDebuggerInformation

typedef struct _SYSTEM_KERNEL_DEBUGGER_INFORMATION { // Information Class 35
BOOLEAN DebuggerEnabled;
BOOLEAN DebuggerNotPresent;

} SYSTEM_KERNEL_DEBUGGER_INFORMATION, *PSYSTEM_KERNEL_DEBUGGER_INFORMATION;

Members

DebuggerEnabled

A boolean indicating whether kernel debugging has been enabled or not.

DebuggerNotPresent
A boolean indicating whether contact with a remote debugger has been established
or not.

Remarks

None.

SystemContextSwitchInformation

typedef struct _SYSTEM_CONTEXT_SWITCH_INFORMATION { // Information Class 36
ULONG ContextSwitches;
ULONG ContextSwitchCounters[11];

} SYSTEM_CONTEXT_SWITCH_INFORMATION, *PSYSTEM_CONTEXT_SWITCH_INFORMATION;

Members

ContextSwitches
The number of context switches.

o

33

1996 CHO1 11/19/99 12:24 PM Page 34 :F

34 System Information and Control: SystemContextSwitchInformation

ContextSwitchCounters
Normally contains zeroes; interpretation unknown.

Remarks

The resource kit utility “kernprof™ claims to display the context switch counters (if the
“-x” option is specified), but it only expects nine ContextSwitchCounters rather than
eleven. It displays the information thus:

Context Switch Information
Find any processor
Find last processor
Idle any processor
Idle current processor
Idle last processor
Preempt any processor
Preempt current processor
Preempt last processor
Switch to idle

SystemRegistryQuotalnformation

typedef struct _SYSTEM_REGISTRY_QUOTA_INFORMATION { // Information Class 37
ULONG RegistryQuota;
ULONG RegistryQuotaInUse;
ULONG PagedPoolSize;

} SYSTEM_REGISTRY_QUOTA_INFORMATION, *PSYSTEM_REGISTRY_QUOTA_INFORMATION;

[SASISESISESSECE

Members

RegistryQuota
The number of bytes of paged pool that the registry may use.

RegistryQuotalnUse
The number of bytes of paged pool that the registry is using.

PagedPoolSize
The size in bytes of the paged pool.

Remarks

This information class can be both queried and set. SeIncreaseQuotaPrivilege is
required to set the values. When setting, only the RegistryQuota value is used.

SystemLoadAndCalllmage

typedef struct _SYSTEM_LOAD_AND_CALL_IMAGE { // Information Class 38
UNICODE_STRING ModuleName;
} SYSTEM_LOAD_AND_CALL_IMAGE, *PSYSTEM_LOAD AND_CALL_IMAGE;

Members

ModuleName
The full path in the native NT format of the module to load.

o

1996 CHO1 11/19/99 12:24 PM Page 35 :F

System Information and Control: SystemTimeZonelnformation

Remarks

This information class can only be set. Rather than setting any information (in a nar-
row sense of “setting”), it performs the operation of loading a module into the kernel
address space and calling its entry point.

The entry point routine is expected to be a __stdcall routine taking two parameters
(consistent with the DriverEntry routine of device drivers); the call arguments are two
zeroes.

If the entry point routine returns a failure code, the module is unloaded.

Unlike zwLoadDriver, which loads the module in the context of the system process,
ZwSetSystemInformation loads the module and invokes the entry point in the context
of the current process.

SystemPrioritySeparation

typedef struct _SYSTEM_PRIORITY_SEPARATION { // Information Class 39
ULONG PrioritySeparation;
} SYSTEM_PRIORITY_SEPARATION, *PSYSTEM_PRIORITY_SEPARATION;

Members

PrioritySeparation
A value that affects the scheduling quantum period of the foreground application. In
Windows NT 4.0, PrioritySeparation takes a value between zero and two (the higher
the value, the longer the quantum period). In Windows 2000, the low order six bits of
PrioritySeparation are used to configure the scheduling quantum.

Remarks

None.

SystemTimeZonelnformation

typedef struct _SYSTEM_TIME_ZONE_INFORMATION { // Information Class 44
LONG Bias;
WCHAR StandardName[32];
SYSTEMTIME StandardDate;
LONG StandardBias;
WCHAR DaylightName[32];
SYSTEMTIME DaylightDate;
LONG DaylightBias;
} SYSTEM_TIME_ZONE_INFORMATION, *PSYSTEM_TIME_ZONE_INFORMATION;

Members
Bias

The difference, in minutes, between Coordinated Universal Time (UTC) and local
time.

o

1996 CHO1 11/19/99 12:24 PM Page 36 (i:

36 System Information and Control: SystemTimeZonelnformation

Standard Name

The name of the timezone when daylight saving time is not in effect.

StandardDate
A SYSTEMTIME structure specifying when daylight saving time ends.

StandardBias
The difterence, in minutes, between UTC and local time when daylight saving time is
not in effect.

DaylightName

The name of the timezone when daylight saving time is in effect.

DaylightDate
A SYSTEMTIME structure specifying when daylight saving time starts.

DaylightBias
The difterence, in minutes, between UTC and local time when daylight saving time is
in eftect.

Remarks

This structure is identical to the TIME_ZONE_INFORMATION structure returned by the
‘Win32 function GetTimeZoneInformation.

SystemLookasideInformation

typedef struct _SYSTEM_LOOKASIDE_INFORMATION { // Information Class 45
USHORT Depth;
USHORT MaximumDepth;
ULONG TotalAllocates;
ULONG AllocateMisses;
ULONG TotalFrees;
ULONG FreeMisses;
POOL_TYPE Type;
ULONG Tag;
ULONG Size;
} SYSTEM_LOOKASIDE_INFORMATION, *PSYSTEM_LOOKASIDE_INFORMATION;

Members

Depth
The current depth of the lookaside list.

MaximumDepth
The maximum depth of the lookaside list.

TotalAllocates

The total number of allocations made from the list.

o

1996 CHO1 11/19/99 12:24 PM Page 37 (i:

System Information and Control: SystemLookasidelnformation

AllocateMisses
The number of times the lookaside list was empty and a normal allocation was
needed.

TotalFrees
The total number of allocations made from the list.

FreeMisses
The number of times the lookaside list was full and a normal deallocation was needed.

Type
The type of pool from which the memory for the lookaside list is allocated. Possible
values are drawn from the enumeration POOL_TYPE:

typedef enum _POOL_TYPE {
NonPagedPool,
PagedPool,
NonPagedPoolMustSucceed,
DontUseThisType,
NonPagedPoolCacheAligned,
PagedPoolCacheAligned,
NonPagedPoolCacheAlignedMustsS,
MaxPoolType
NonPagedPoolSession = 32,
PagedPoolSession,
NonPagedPoolMustSucceedSession,
DontUseThisTypeSession,
NonPagedPoolCacheAlignedSession,
PagedPoolCacheAlignedSession,
NonPagedPoolCacheAlignedMustSSession

} POOL_TYPE;

Tag
The tag identifying allocations from the lookaside list

Size
The size of the blocks on the lookaside list.

Remarks

An array of structures are returned, one per lookaside list. The number of structures
can be obtained by dividing the ReturnLength by the size of the structure.

The lookaside lists reported on by this information class are only available to kernel
mode code. Their purpose is to speed the allocation and deallocation of blocks of
memory from paged and nonpaged pool. A nonpaged lookaside list is initialized by the
routine ExInitializeNPagedLookasideList.

Lookaside lists are documented in the DDK.

37

1996 CHO1 11/19/99 12:24 PM Page 38 :F

38

System Information and Control: SystemSetTimeSlipEvent

SystemSetTimeSlipEvent

typedef struct _SYSTEM_SET_TIME_SLIP_EVENT { // Information Class 46
HANDLE TimeSlipEvent;
} SYSTEM_SET_TIME_SLIP_EVENT, *PSYSTEM_SET_TIME_SLIP_EVENT;

Members

TimeSlipEvent
A handle to an event object. The handle must grant EVENT_MODIFY_STATE access.

Remarks

This information class can only be set. SeSystemtimePrivilege is required to set the
value. The TimeSlipEvent will be signalled when the kernel debugger has caused time
to slip by blocking the system clock interrupt.

SystemCreateSession

typedef struct _SYSTEM_CREATE_SESSION { // Information Class 47
ULONG SessionlId;
} SYSTEM_CREATE_SESSION, *PSYSTEM_CREATE_SESSION;

Members

Sessionld

An identifier for the session.Valid on output.

Remarks

This information class can only be set. It creates a Windows Terminal Server session
and assigns the session an identifier. This information class is valid only when
‘Windows Terminal Server is running. In all other cases the return status is
STATUS_INVALID_SYSTEM_SERVICE.

SystemDeleteSession

typedef struct _SYSTEM_DELETE_SESSION { // Information Class 48
ULONG SessionId;
} SYSTEM_DELETE_SESSION, *PSYSTEM_DELETE_SESSION;

Members

Sessionld

An identifier for the session

Remarks

This information class can only be set. This information class is valid only when
Windows Terminal Server is running. In all other cases the return status is
STATUS_INVALID_SYSTEM_SERVICE.

o

1996 CHO1 11/19/99 12:24 PM Page 39 :F

System Information and Control: SystemSessionProcessesInformation

SystemRangeStartInformation

typedef struct _SYSTEM_RANGE_START_INFORMATION { // Information Class 50
PVOID SystemRangeStart;
} SYSTEM_RANGE_START_INFORMATION, *PSYSTEM_RANGE_START_INFORMATION;

Members

SystemRangeStart
The base address of the system (kernel) portion of the virtual address space.

Remarks

None.

SystemVerifierInformation

Format unknown.

Remarks

This information class can be both queried and set. SeDebugPrivilege is required to set
the values.

This information class queries and sets information maintained by the device driver
verifier. The “Driver Verifier” is described in the DDK documentation.

SystemAddVerifier

Format unknown.

Remarks

This information class is only valid when ZwSetSystemInformation is invoked from
kernel mode.

This information class configures the device driver verifier. The “Driver Verifier” is
described in the DDK documentation.

SystemSessionProcessesInformation

typedef struct _SYSTEM_SESSION_PROCESSES_INFORMATION { // Information Class 53
ULONG Sessionld;
ULONG BufferSize;
PVOID Buffer;

} SYSTEM_SESSION_PROCESSES_INFORMATION, *PSYSTEM_SESSION_PROCESSES_INFORMATION;

39

1996 CHO1 11/19/99 12:24 PM Page 40 (i:

40 System Information and Control: SystemSessionProcessesInformation

Members

Sessionld

The Sessionld for which to retrieve a list of processes and threads.

BufferSize

The size in bytes of the buffer in which to return the list of processes and threads.

Buffer
Points to a caller-allocated bufter or variable that receives the list of processes and
threads.

Remarks

Unlike other information classes, this information class uses the SystemInformation
argument of ZwQuerySystemInformation as an input buffer.

The information returned is in the same format as that returned by
SystemProcessesAndThreadsInformation, but contains information only on the
processes in the specified session.

The following information classes are only available in “checked” versions of the
kernel.

SystemPoolBlocksInformation

typedef struct _SYSTEM_POOL_BLOCKS_INFORMATION { // Info Classes 14 and 15
ULONG PoolSize;
PVOID PoolBase;
USHORT Unknownj;
ULONG NumberOfBlocks;
SYSTEM_POOL_BLOCK PoolBlocks[1];
} SYSTEM_POOL_BLOCKS_INFORMATION, *PSYSTEM_POOL_BLOCKS_INFORMATION;

typedef struct _SYSTEM_POOL_BLOCK {
BOOLEAN Allocated;
USHORT Unknownj;
ULONG Size;
CHAR Tag[4];
} SYSTEM_POOL_BLOCK, *PSYSTEM_POOL_BLOCK;

Members

PoolSize
The size in bytes of the pool.

PoolBase
The base address of the pool.

Unknown
The alignment of the pool; interpretation uncertain.

o

1996 CHO1 11/19/99 12:24 PM Page 41 (i:

System Information and Control: SystemMemoryUsagelnformation 41

NumberOfBlocks
The number of blocks in the pool.

PoolBlocks
An array of SYSTEM_POOL_BLOCK structures describing the blocks in the pool. The num-
ber of elements in the array is available in the NumberofBlocks member.

The members of SYSTEM_POOL_BLOCK aredescribed in the following section.

Allocated

A boolean indicating whether this is an allocated or free block.

Unknown
Interpretation unknown.

Size
The size in bytes of the block.

Tag
The four character tag string identifying the contents of the pool allocation.

Remarks

Information class 14 returns data on the paged pool and information class 15 returns
data on the nonpaged pool.

The paged and nonpaged pools reported on by these information classes are only
available to kernel mode code. Blocks are allocated from paged and nonpaged pool by
the routines ExAllocatePoolXxx. The use of pool memory is documented in the DDK.

SystemMemoryUsageInformation

typedef struct _SYSTEM_MEMORY_USAGE_INFORMATION { // Info Classes 25 and 29
ULONG Reserved;
PVOID EndOfData;
SYSTEM_MEMORY_USAGE MemoryUsage[1];

} SYSTEM_MEMORY_USAGE_INFORMATION, *PSYSTEM_MEMORY_USAGE_INFORMATION;

typedef struct _SYSTEM_MEMORY_USAGE {
PVOID Name;
USHORT Valid;
USHORT Standby;
USHORT Modified;
USHORT PageTables;
} SYSTEM_MEMORY_USAGE, *PSYSTEM_MEMORY_USAGE;

1996 CHO1 11/19/99 12:24 PM Page 42 (i:

42

System Information and Control: SystemMemoryUsagelnformation

Members

EndOfData
A pointer to the end of the valid data in the SystemInformation buffer.

MemoryUsage
An array of SYSTEM_MEMORY_USAGE structures describing the usage of physical memory.
The number of elements in the array is deducible from the EndofData member.

The members of SYSTEM_MEMORY_USAGE are described in the following sections.

Name
The name of the object using the memory. This can be either a Unicode or ANSI
string.

Valid
The number of valid pages used by the object. If the object is a process, this is the
number of valid private pages.

Standby
The number of pages recently used by the object, that are now on the Standby list.

Modified
The number of pages recently used by the object which are now on the Modified list.

PageTables
The number of pagetable pages used by the object. The only objects that use pageta-
bles are processes. On an Intel platform using large (4-MByte) pages, the pagetables are
charged against nonpaged pool rather than processes.

Remarks

Information class 29 does not provide the information on the pages in the Standby
and Modified lists.

There is no indication of whether the name is a Unicode or ANSI string other than
the string data itself (for example, if every second byte is zero, the string must be
Unicode).

Information class 25 is able to account for the use of almost all the physical memory
in the system. The difference between sum of the valid, Standby and Modified pages
and the NumberOfPhysicalPages (returned by the SystemBasicInformation class) is nor-
mally close to the number of pages on the Free and Zeroed memory lists.

Example 1.1: A Partial ToolHelp Library Implementation

#include "ntdll.h"
#include <tlhelp32.h>
#include <stdio.h>

struct ENTRIES {
ULONG Offset;

1996 CHO1 11/19/99 12:24 PM Page 43 (i:

System Information and Control: Example 1.1: A Partial ToolHelp Library Implementation

ULONG Count;

ULONG Index;

ENTRIES() : Offset(@), Count(@), Index(Q) {}

ENTRIES(ULONG m, ULONG n) : Offset(m), Count(n), Index(@) {}

s

enum EntryType {
ProcessType,
ThreadType,
MaxType

b

NT: :PSYSTEM_PROCESSES GetProcessesAndThreads()

{
ULONG n = 0x100;
NT::PSYSTEM_PROCESSES sp = new NT::SYSTEM_PROCESSES[n];
while (NT::ZwQuerySystemInformation(
NT::SystemProcessesAndThreadsInformation,
sp, n * sizeof *sp, 0)
== STATUS_INFO_LENGTH_MISMATCH)
delete [] sp, sp = new NT::SYSTEM_PROCESSES[n = n * 2];
return sp;
}
ULONG ProcessCount (NT::PSYSTEM_PROCESSES sp)
{
ULONG n = 0;
bool done = false;
for (NT::PSYSTEM_PROCESSES p = sp; !done;
p = NT::PSYSTEM_PROCESSES (PCHAR(p) + p->NextEntryDelta))
n++, done = p->NextEntryDelta == 0;
return n;
}
ULONG ThreadCount (NT::PSYSTEM_PROCESSES sp)
{
ULONG n = 0;
bool done = false;
for (NT::PSYSTEM_PROCESSES p = sp; !done;
p = NT::PSYSTEM_PROCESSES (PCHAR(p) + p->NextEntryDelta))
n += p->ThreadCount, done = p->NextEntryDelta == 0;
return n;
}

VOID AddProcesses(PPROCESSENTRY32 pe, NT::PSYSTEM_PROCESSES sp)
bool done = false;

for (NT::PSYSTEM_PROCESSES p = sp; !done;
p = NT::PSYSTEM_PROCESSES(PCHAR(p) + p->NextEntryDelta)) {

pe->dwSize = sizeof *pe;

pe->cntUsage = 0;
pe->th32ProcessID = p->ProcessId;

o

43

1996 CHO1 11/19/99 12:24 PM Page 44

44 System Information and Control: Example 1.1: A Partial ToolHelp Library Implementation

pe->th32DefaultHeapID = 0;
pe->th32ModuleID = 0;
pe->cntThreads = p->ThreadCount;
pe->th32ParentProcessID = p->InheritedFromProcessId;
pe->pcPriClassBase = p->BasePriority;
pe->dwFlags = 0;
sprintf(pe->szExeFile, "%.*1s",
p->ProcessName.Length / 2, p->ProcessName.Buffer)

pe++;
done = p->NextEntryDelta == 0;

}

VOID AddThreads (PTHREADENTRY32 te, NT::PSYSTEM_PROCESSES sp)
{

bool done = false;

for (NT::PSYSTEM_PROCESSES p = sp; !done;
p = NT::PSYSTEM_PROCESSES(PCHAR(p) + p->NextEntryDelta)) {

for (ULONG i = @; i < p->ThreadCount; i++) {

te->dwSize = sizeof *te;
te->cntUsage = 0;
te->th32ThreadID = DWORD(p->Threads[i].ClientId.UniqueThread);
te->th320wnerProcessID = p->Processld;
te->tpBasePri = p->Threads[i].BasePriority;
te->tpDeltaPri = p->Threads[i].Priority
- p->Threads[i].BasePriority;
te->dwFlags = 0;

tet+t;

}
done = p->NextEntryDelta == 0;
}

template<class T>
BOOL GetEntry(HANDLE hSnapshot, T entry, bool first, EntryType type)
{

ENTRIES *entries = (ENTRIES*)MapViewOfFile(hSnapshot, FILE_MAP_WRITE,
0, 0, 0);

if (entries == 0) return FALSE;

BOOL rv = TRUE;

entries[type].Index = first ? @ : entries[type].Index + 1;

if (entries[type].Index >= entries[type].Count)
SetLastError (ERROR_NO_MORE_FILES), rv = FALSE;

if (entry->dwSize < sizeof *entry)
SetLastError(ERROR_INSUFFICIENT_BUFFER), rv = FALSE;

if (rv)
*entry = T(PCHAR(entries)+entries[type].Offset)[entries[type].Index];

UnmapViewOfFile (entries);

return rv;

1996 CHO1 11/19/99 12:24 PM Page 45 (i:

System Information and Control: Example 1.1: A Partial ToolHelp Library Implementation 45

HANDLE
WINAPI
CreateToolhelp32Snapshot (DWORD flags, DWORD)

NT: :PSYSTEM_PROCESSES sp =
(flags & (TH32CS_SNAPPROCESS | TH32CS_SNAPTHREAD))
? GetProcessesAndThreads() : 0;

ENTRIES entries[MaxType];
ULONG n = sizeof entries;

if (flags & TH32CS_SNAPPROCESS) {
entries[ProcessType] = ENTRIES(n, ProcessCount(sp));
n += entries[ProcessType].Count * sizeof (PROCESSENTRY32);

}
if (flags & TH32CS_SNAPTHREAD) {

entries[ThreadType] = ENTRIES(n, ThreadCount(sp));

n += entries[ThreadType].Count * sizeof (THREADENTRY32);
}

SECURITY_ATTRIBUTES sa = {sizeof sa, 0, (flags & TH32CS_INHERIT) != 0};

HANDLE hMap = CreateFileMapping (HANDLE (OXFFFFFFFF), &sa,
PAGE_READWRITE ; SEC_COMMIT, @, n, 0);

ENTRIES *p = (ENTRIES*)MapViewOfFile(hMap, FILE_MAP_WRITE, 0, 0, 0);
for (int i = 0; i < MaxType; i++) p[i] = entries[i]

if (flags & TH32CS_SNAPPROCESS)
AddProcesses (PPROCESSENTRY32(PCHAR(p) + entries[ProcessType].O0ffset),
sp);
if (flags & TH32CS_SNAPTHREAD)
AddThreads (PTHREADENTRY32 (PCHAR(p) + entries[ThreadType].Offset),

sp);
UnmapViewOfFile(p)
if (sp) delete [] sp;

return hMap;

}

BOOL
WINAPI
Thread32First (HANDLE hSnapshot, PTHREADENTRY32 te)
{
return GetEntry(hSnapshot, te, true, ThreadType);
}

BOOL
WINAPI
Thread32Next (HANDLE hSnapshot, PTHREADENTRY32 te)
{
return GetEntry(hSnapshot, te, false, ThreadType);
}

BOOL
WINAPI
Process32First (HANDLE hSnapshot, PPROCESSENTRY32 pe)
{
return GetEntry(hSnapshot, pe, true, ProcessType);
}

o

1996 CHO1 11/19/99 12:24 PM Page 46 (i:

46 System Information and Control: Example 1.1: A Partial ToolHelp Library Implementation

BOOL
WINAPI
Process32Next (HANDLE hSnapshot, PPROCESSENTRY32 pe)

{
return GetEntry(hSnapshot, pe, false, ProcessType);

}

ZwQuerySystemInformation with an information class of
SystemProcessesAndThreadsInformation returns a superset of the information
concerning processes and threads that is available via the ToolHelp library (if it were
implemented in Windows NT 4.0). Example 1.1 uses this information class to imple-
ment a subset of the ToolHelp library; the remaining functions of the ToolHelp library
are addressed in later chapters.

The Win32 function CreateToolhelp32Snapshot returns a handle to a snapshot of the
processes and threads (and modules and heaps) in the system. The Win32 documenta-
tion states that this handle (and the snapshot itself) is freed by calling CloseHand1le.
ZwQuerySystemInformation also returns a “snapshot,” but this snapshot is just data in a
caller-supplied buffer. To implement the documented behavior of
CreateToolhelp32Snapshot, it is necessary to encapsulate the information returned by
ZwQuerySystemInformation in a kernel object so that CloseHandle can free it.

The only suitable kernel object is a section object (known as a file mapping object by
Win32).The idea is to create a paging-file backed section object and then map a view
of this section into the address space so that the information returned from
ZwQuerySystemInformation can be copied to it. The view is then unmapped so that
closing the section handle will free the snapshot (mapped views prevent the section
object from being deleted).

The routines that return information from the snapshot must then just map the sec-
tion, copy the relevant data to the caller-supplied buffer, and unmap the section.

Example 1.2: Listing Open Handles of a Process

#include "ntdll.h"
#include <stdlib.h>
#include <stdio.h>
#include <vector>
#include <map>

#pragma warning(disable:4786) // identifier was truncated in the debug info

struct OBJECTS_AND_TYPES {
std: :map<ULONG, NT::PSYSTEM_ OBJECT TYPE_INFORMATION, std::less<ULONG> >
types;
std: :map<PVOID, NT::PSYSTEM OBJECT INFORMATION, std::less<PVOID> >
objects;
};

std::vector<NT::SYSTEM_HANDLE_INFORMATION> GetHandles()

{
ULONG n;
PULONG p = new ULONG[n = 0x100];

while (NT::ZwQuerySystemInformation(NT::SystemHandleInformation,
p, n * sizeof *p, 0)

o

1996 CHO1 11/19/99 12:24 PM Page 47 (i:

System Information and Control: Example 1.2: Listing Open Handles of a Process

== STATUS_INFO_LENGTH_MISMATCH)
delete [] p, p = new ULONG[n *= 2];
NT: :PSYSTEM_HANDLE_INFORMATION h = NT::PSYSTEM_HANDLE_INFORMATION(p + 1);

return std::vector<NT::SYSTEM_HANDLE_INFORMATION>(h, h + *p);

}
OBJECTS_AND_TYPES GetObjectsAndTypes()
{
ULONG n;
PCHAR p = new CHAR[n = 0x1000];
while (NT::ZwQuerySystemInformation(NT::SystemObjectInformation,
p, n * sizeof *p, 0)
== STATUS_INFO_LENGTH_MISMATCH)
delete [] p, p = new CHAR[n *= 2];
OBJECTS_AND_TYPES oats;
for (NT::PSYSTEM_OBJECT_TYPE_INFORMATION
t = NT::PSYSTEM_OBJECT_TYPE_INFORMATION(p); ;
t = NT::PSYSTEM_OBJECT_TYPE_INFORMATION(p + t->NextEntryOffset)) {
oats.types[t->TypeNumber] = t;
for (NT::PSYSTEM_OBJECT_INFORMATION
0 = NT::PSYSTEM_OBJECT_INFORMATION(PCHAR(t->Name.Buffer)
+ t->Name.MaximumLength); ;
0 = NT::PSYSTEM_OBJECT_INFORMATION(p + o->NextEntryOffset)) {
oats.objects[o->0Object] = o;
if (o->NextEntryOffset == 0) break;
}
if (t->NextEntryOffset == 0) break;
}
return oats;
}

int main(int argc, char *argv[])
if (argc == 1) return 0;
ULONG pid = strtoul(argv[1], 0, 0);
OBJECTS_AND_TYPES oats = GetObjectsAndTypes();
std::vector<NT::SYSTEM_HANDLE_INFORMATION> handles = GetHandles();
NT::SYSTEM_OBJECT INFORMATION defobj = {0};
printf("Object Hnd Access F1 Atr #H #P Type Name\n");

for (std::vector<NT::SYSTEM_HANDLE_INFORMATION>::iterator
h = handles.begin(); h != handles.end(); h++) {

if (h->ProcessId == pid) {

NT::PSYSTEM_OBJECT_TYPE_INFORMATION

o

47

1996 CHO1 11/19/99 12:24 PM Page 48 (i:

48 System Information and Control: Example 1.2: Listing Open Handles of a Process

t = oats.types[h->0ObjectTypeNumber];
NT::PSYSTEM_OBJECT_INFORMATION
o = oats.objects[h->0Object];

if (0 == 0) o = &defobj;

printf("%sp %04hx %61x %2x %3hx %31ld %41ld %-14.*S %.*S\n",
h->0bject, h->Handle, h->GrantedAccess, int(h->Flags),
o0->Flags, o->HandleCount, o->PointerCount,
t->Name.Length, t->Name.Buffer,
o->Name.Length, o->Name.Buffer);
}
}

return 0;

}

Example 1.2 assumes that the NtGlobalFlag FLG_MAINTAIN_OBJECT_TYPELIST was set at
boot time. An alternative method of obtaining a list of open handles using a combina-
tion of ZwQuerySystemInformation and ZwQueryObject appearsin Chapter 2, “Objects,
Object Directories, and Symbolic Links,” in Example 2.1.

The program uses the address of the kernel object to which a handle refers to corre-
late the information returned by the information classes SystemHandleInformation and
SystemObjectInformation; a Standard Template Library (STL)map is used for this
purpose.

The list of handles in the system is scanned for handles owned by a particular process
id, and then information about the handle and the object to which it refers is dis-

played.

ZwQuerySystemEnvironmentValue

ZwQuerySystemEnvironmentValue queries the value of a system environment variable
stored in the non-volatile (CMOS) memory of the system.

NTSYSAPI
NTSTATUS
NTAPI
ZwQuerySystemEnvironmentValue (
IN PUNICODE_STRING Name,
OUT PVOID Value,
IN ULONG ValuelLength,
OUT PULONG ReturnLength OPTIONAL
)3

Parameters

Name
The name of system environment value to be queried.

Value
Points to a caller-allocated buffer or variable that receives the requested system
environment value.

ValueLength
The size in bytes of value.

o

1996 CHO1 11/19/99 12:24 PM Page 49 (i:

System Information and Control: ZwSetSystemEnvironmentValue

ReturnLength
Optionally points to a variable that receives the number of bytes actually returned to
Value. If valueLength is too small to contain the available data, the variable is set to the
number of bytes required for the available data. If this information is not needed by
the caller, ReturnLength may be specified as a null pointer.

Return Value

Returns STATUS_SUCCESS or an error status, such as STATUS_PRIVILEGE_NOT_HELD,
STATUS_BUFFER_OVERFLOW, or STATUS_UNSUCCESSFUL

Related Win32 Functions

None.

Remarks
SeSystemEnvironmentPrivilege is required to query system environment values.

The information returned in Buffer is an array of WCHAR. The ReturnLength value con-
tains the length of the string in bytes.

ZwQuerySystemEnvironmentValue queries environment values stored in CMOS. The
standard Hardware Abstraction Layer (HAL) for the Intel platform only supports one
environment value, “LastKnownGood,” which takes the values “TRUE” and “FALSE.” It is
queried by writing Oxb to port 0x70 and reading from port 0x71. A value of zero is
interpreted as “FALSE,” other values as “TRUE.”

ZwSetSystemEnvironmentValue

ZwSetSystemEnvironmentValue sets the value of a system environment variable stored in
the non-volatile (CMOS) memory of the system.

NTSYSAPI

NTSTATUS

NTAPI

ZwSetSystemEnvironmentValue (
IN PUNICODE_STRING Name,
IN PUNICODE_STRING Value
)3

Parameters

Name
The name of system environment value to be set.

Value

The value to be set.

Return Value

Returns STATUS_SUCCESS or an error status, such as STATUS_PRIVILEGE_NOT_HELD or
STATUS_UNSUCCESSFUL.

o

49

1996 CHO1 11/19/99 12:24 PM Page 50 $

50

System Information and Control: ZwSetSystemEnvironmentValue

Related Win32 Functions

None.

Remarks
SeSystemEnvironmentPrivilege is required to set system environment values.

ZwSetSystemEnvironmentValue sets environment values stored in CMOS. The standard
HAL for the Intel platform only supports one environment value, “LastKnownGood,”
which takes the values “TRUE” and “FALSE.” It is set by writing Oxb to port 0x70 and
writing 0 (for “FALSE”) or 1 (for “TRUE”) to port 0x71.

ZwShutdownSystem

ZwShutdownSystem shuts down the system.

NTSYSAPI

NTSTATUS

NTAPI

ZwShutdownSystem(
IN SHUTDOWN_ACTION Action
)3

Parameters

Action
The action to be performed after shutdown. Permitted values are drawn from the
enumeration SHUTDOWN_ACTION.

typedef enum _SHUTDOWN_ACTION {
ShutdownNoReboot,
ShutdownReboot,
ShutdownPowerOff

} SHUTDOWN_ACTION;

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_PRIVILEGE_NOT_HELD.

Related Win32 Functions

ExitWindows (Ex), InitiateSystemShutdown.

Remarks
SeShutdownPrivilege is required to shut down the system.

User-mode applications and services are not informed of the shutdown (drivers of
devices that have registered for shutdown notification by calling
IoRegisterShutdownNotification are informed).

The system must have hardware support for power-off if the power-off action is to be
used successfully.

1996 CHO1 11/19/99 12:24 PM Page 51 CF

System Information and Control: ZwSystemDebugControl 51

ZwSystemDebugControl

ZwSystemDebugControl performs a subset of the operations available to a kernel mode
debugger.
NTSYSAPI
NTSTATUS
NTAPI
ZwSystemDebugControl(
IN DEBUG_CONTROL_CODE ControlCode,
IN PVOID InputBuffer OPTIONAL,
IN ULONG InputBufferLength,
OUT PVOID OutputBuffer OPTIONAL,
IN ULONG OutputBufferLength,
OUT PULONG ReturnLength OPTIONAL
)3

Parameters

ControlCode
The control code for operation to be performed. Permitted values are drawn from the
enumeration DEBUG_CONTROL_CODE.

typedef enum _DEBUG_CONTROL_CODE {
DebugGetTraceInformation = 1,
DebugSetInternalBreakpoint,
DebugSetSpecialCall,
DebugClearSpecialCalls,
DebugQuerySpecialCalls,
DebugDbgBreakPoint

} DEBUG_CONTROL_CODE;

InputBuffer
Points to a caller-allocated buffer or variable that contains the data required to perform
the operation. This parameter can be null if the ControlCode parameter specifies an
operation that does not require input data.

InputBufferLength
The size in bytes of InputBuffer.

OutputBuffer
Points to a caller-allocated buffer or variable that receives the operation’s output data.
This parameter can be null if the ControlCode parameter specifies an operation that
does not produce output data.

OutputBufferLength
The size in bytes of OutputBuffer.

ReturnLength

Optionally points to a variable that receives the number of bytes actually returned to
OutputBuffer. If this information is not needed, ReturnLength may be a null pointer.

o

1996 CHO1 11/19/99 12:24 PM Page 52

52

System Information and Control: ZwSystemDebugControl

Return Value

Returns STATUS_SUCCESS or an error status, such as STATUS_PRIVILEGE_NOT_HELD,
STATUS_INVALID_INFO_CLASS or STATUS_INFO_LENGTH_MISMATCH.

Related Win32 Functions

None.

Remarks
SeDebugPrivilege is required to use ZwSystemDebugControl in Windows 2000.

ZwSystemDebugControl allows a process to perform a subset of the functions available to
a kernel mode debugger.

The system should be booted from a configuration that has the boot.ini *“/DEBUG” (or
equivalent) option enabled; otherwise a kernel debugger variable needed for the cor-
rect operation of internal breakpoints is not initialized.

The data structures used by zwSystembDebugControl are defined in windbgkd.h (includ-
ed with the Platform SDK). An up-to-date copy of this file is needed to compile the
code in Examples 1.3 and 1.4. One of the structures used by zwSystemDebugControl
includes a union that has grown over time, and ZwSystembDebugControl checks that the
input/output buffers are large enough to hold the largest member of the union.

DebugGetTraceInformation

typedef struct _DBGKD_GET_INTERNAL_BREAKPOINT { // DebugGetTraceInformation
DWORD_PTR BreakpointAddress;
DWORD Flags;
DWORD Calls;
DWORD MaxCallsPerPeriod;
DWORD MinInstructions;
DWORD MaxInstructions;
DWORD TotalInstructions;
} DBGKD_GET_INTERNAL_BREAKPOINT, *PDBGKD_GET_INTERNAL_BREAKPOINT;

#define DBGKD_INTERNAL_BP_FLAG_COUNTONLY @x@1 // don't count instructions
#define DBGKD_INTERNAL_BP_FLAG_INVALID 0x02 // disabled BP

#define DBGKD_INTERNAL_BP_FLAG_SUSPENDED 0x04 // temporarily suspended
#define DBGKD_INTERNAL_BP_FLAG_DYING 0x08 // kill on exit

DebugGetTraceInformation does not require an InputBuffer and returns an array of
DBGKD_GET_INTERNAL_BREAKPOINT structures in the output buffer, one for each of the
internal breakpoints set.

Instruction counting counts the instructions from the breakpoint until the return from
the routine containing the breakpoint. Ideally, the breakpoint should be placed at the
beginning of a routine. The user mode debugger (windbg, cdb, ntsd) command “wt”
performs user mode instruction counting.

If instruction counting is enabled, MinInstructions contains the minimum number of
instructions encountered when executing the routine, MaxInstructions contains the
maximum, and TotalInstructions contains the total number of instructions executed
by all invocations of the routine (since the breakpoint was inserted).

Calls is the number of times the breakpoint has been encountered.

1996 CHO1 11/19/99 12:24 PM Page 53

System Information and Control: ZwSystemDebugControl 53

Flags indicates whether instruction counting is enabled and whether the breakpoint
has been suspended.

DebugSetInternalBreakpoint

typedef struct _DBGKD_MANIPULATE_STATE {

DWORD ApiNumber;

WORD ProcessorLevel;

WORD Processor;

DWORD ReturnStatus;

union {
DBGKD_READ_MEMORY ReadMemory;
DBGKD_WRITE_MEMORY WriteMemory;
DBGKD_READ_MEMORY64 ReadMemory64;
DBGKD_WRITE_MEMORY64 WriteMemory64;
DBGKD_GET_CONTEXT GetContext;
DBGKD_SET_CONTEXT SetContext;
DBGKD_WRITE_BREAKPOINT WriteBreakPoint;
DBGKD_RESTORE_BREAKPOINT RestoreBreakPoint;
DBGKD_CONTINUE Continue;
DBGKD_CONTINUE2 Continue2;
DBGKD_READ_WRITE_IO ReadWritelo;
DBGKD_READ_WRITE_IO_EXTENDED ReadWriteIoExtended;
DBGKD_QUERY_SPECIAL_CALLS QuerySpecialCalls;
DBGKD_SET_SPECIAL_CALL SetSpecialCall;
DBGKD_SET_INTERNAL_BREAKPOINT SetInternalBreakpoint;
DBGKD_GET_INTERNAL_BREAKPOINT GetInternalBreakpoint;
DBGKD_GET_VERSION GetVersion;
DBGKD_BREAKPOINTEX BreakPointEx;
DBGKD_PAGEIN Pageln;
DBGKD_READ_WRITE_MSR ReadWriteMsr;

Pug

} DBGKD_MANIPULATE_STATE, *PDBGKD_MANIPULATE_STATE;

typedef struct _DBGKD_SET_INTERNAL_BREAKPOINT { // DebugSetInternalBreakpoint
DWORD_PTR BreakpointAddress;
DWORD Flags;

} DBGKD_SET_INTERNAL_BREAKPOINT, *PDBGKD_SET_ INTERNAL_BREAKPOINT;

DebugSetInternalBreakpoint does not require an OutputBuffer and expects the
InputBuffer to point to a DBGKD_MANIPULATE_STATE structure. The only values in this
structure that are required are the two values in the DBGKD_SET_INTERNAL_BREAKPOINT
structure. InputBufferLength is the size of the DBGKD_MANIPULATE_STATE structure.

BreakpointAddress is the address of the breakpoint. If a breakpoint already exists at this
address, the Flags are used to manipulate the breakpoint, otherwise a new breakpoint
is established. Breakpoints are deleted by setting the DBGKD_INTERNAL_BP_FLAG_INVALID
flag and are temporarily suspended by setting the DBGKD_INTERNAL_BP_FLAG_SUSPENDED
flag. The counting or non-counting nature of the breakpoint can be controlled by
setting or clearing the DBGKD_INTERNAL_BP_FLAG_COUNTONLY flag.

Breakpoints can be set at any address, but if the address is not at the start of an instruc-
tion then an STATUS_ILLEGAL_INSTRUCTION exception may be raised resulting in a sys-
tem crash. The intention is that breakpoints should be set at the start of routines but,
particularly if instruction counting is disabled, this is not essential.

1996 CHO1 11/19/99 12:24 PM Page 54 (i:

54 System Information and Control: ZwSystemDebugControl

DebugSetSpecialCall

typedef struct _DBGKD_SET_SPECIAL_CALL { // DebugSetSpecialCall
DWORD SpecialCall;
} DBGKD_SET SPECIAL CALL, *PDBGKD SET_SPECIAL CALL;

DebugSetSpecialCall does not require an OutputBuffer and expects the InputBuffer
to point to a DBGKD_MANIPULATE_STATE structure. The only value in this structure that is
required is the value in the DBGKD_SET_SPECIAL_CALL structure. InputBufferLength must
be four rather than the size of the DBGKD_MANIPULATE_STATE structure—this is a bug.

“Special Calls” are routines that should be treated specially when counting the instruc-
tions executed by some routine. The special calls set by the kernel debugger are:
HAL!@KfLowerIrqle4

HAL!@KfReleaseSpinLock@8

HAL!@HalRequestSoftwareInterrupt@4

NTOSKRNL ! SwapContext

NTOSKRNL!@KiUnlockDispatcherDatabase@4

Whether the members of this list are necessary or sufficient to ensure correct opera-
tion of the instruction counting feature is difficult to say.

DebugClearSpecialCalls

DebugClearSpecialCalls requires neither an InputBuffer nor an OutputBuffer. It clears
the list of special calls.

DebugQuerySpecialCalls

typedef struct _DBGKD_QUERY_SPECIAL_CALLS { // DebugQuerySpecialCalls
DWORD NumberOfSpecialCalls;
// DWORD SpecialCalls[];

} DBGKD_QUERY_SPECIAL_CALLS, *PDBGKD_QUERY_SPECIAL_CALLS;

DebugQuerySpecialCalls does not require an InputBuffer and expects the OutputBuffer
to point to a bufter large enough to hold a DBGKD_MANIPULATE_STATE structure and an
array of DWORDs, one per special call. It returns a list of the special calls.

DebugDbgBreakPoint

DebugDbgBreakPoint requires neither an InputBuffer nor an OutputBuffer. If the kernel
debugger is enabled it causes a kernel mode debug break point to be executed. This
debug control code is only valid in Windows 2000.

The code in Examples 1.3 and 1.4 demonstrates how to set internal breakpoints and
get trace information.

Example 1.3: Setting an Internal Breakpoint

#include "ntdll.h"
#include "windbgkd.h"
#include <imagehlp.h>
#include <stdlib.h>

void LoadModules()
{
ULONG n;
NT::ZwQuerySystemInformation(NT::SystemModuleInformation,
&n, 0, &n);

o

1996 CHO1 11/19/99 12:24 PM Page 55 (i:

}

System Information and Control: Example 1.3: Setting an Internal Breakpoint

PULONG p = new ULONG[n];
NT::ZwQuerySystemInformation(NT::SystemModuleInformation,
p, n * sizeof *p, 0);

NT: :PSYSTEM_MODULE_INFORMATION module
= NT::PSYSTEM_MODULE_INFORMATION(p + 1);

for (ULONG i = 0; i < *p; it++)
SymLoadModule (@, 0, module[i].ImageName,
module[i].ImageName + module[i].ModuleNameOffset,
ULONG (module[i].Base), module[i].Size);

delete [] p;

DWORD GetAddress(PSTR expr)

{

}

PCHAR s;
ULONG n = strtoul(expr, &s, 16);

if (*s == 0) return n;
IMAGEHLP_SYMBOL symbol;

symbol.SizeOfStruct = sizeof symbol;
symbol.MaxNameLength = sizeof symbol.Name;

return SymGetSymFromName (@, expr, &symbol) == TRUE ? symbol.Address : 0;

void SetSpecialCall(DWORD addr)

{

}

DBGKD_MANIPULATE_STATE op = {0};
op.u.SetSpecialCall.SpecialCall = addr;

NT::ZwSystemDebugControl (NT::DebugSetSpecialCall, &op, 4, 0, 0, 0);

void SetSpecialCalls()

{

}

DBGKD_MANIPULATE_STATE op[4];

NT::ZwSystemDebugControl (NT: :DebugQuerySpecialCalls,
0, 0, op, sizeof op, 0);

if (op[@].u.QuerySpecialCalls.NumberOfSpecialCalls == 0) {
SetSpecialCall(GetAddress("HAL!KfLowerIrql"));
SetSpecialCall(GetAddress("HAL!KfReleaseSpinLock"));
SetSpecialCall(GetAddress("HAL!HalRequestSoftwareInterrupt"));
SetSpecialCall(GetAddress("NTOSKRNL!SwapContext"));
SetSpecialCall(GetAddress("NTOSKRNL!KiUnlockDispatcherDatabase"));

int main(int argc, char *argv[])

{

if (argc < 2) return 0;
NT:: SYSTEM_KERNEL_DEBUGGER_INFORMATION kd;
NT::ZwQuerySystemInformation(NT::SystemKernelDebuggerInformation,

&kd, sizeof kd, 0);
if (kd.DebuggerEnabled == FALSE) return 0;

o

55

1996 CHO1 11/19/99 12:24 PM Page 56 (i:

56 System Information and Control: Example 1.3: Setting an Internal Breakpoint

EnablePrivilege (SE_DEBUG_NAME) ;

SymInitialize(@, @, FALSE);
SymSetOptions(SymGetOptions() | SYMOPT_DEFERRED_LOADS);

LoadModules();
SetSpecialCalls();

DBGKD_MANIPULATE_STATE op = {0};
op.u.SetInternalBreakpoint.BreakpointAddress = GetAddress(argv[1]);
op.u.SetInternalBreakpoint.Flags = argc < 3 ? 0 : strtoul(argv[2], 0, 16);

NT::ZwSystemDebugControl (NT: :DebugSetInternalBreakpoint,
&op, sizeof op, 0, 0, 0);

return 0;

}

If the kernel debugger is not enabled, an important debugger variable is not initialized.
Therefore, Example 1.3 first uses zwQuerySystemInformation to check the debugger
status and if it is enabled, the program then sets the special calls and creates or updates
a breakpoint.

The program also demonstrates how to obtain a list of the kernel modules and their
base addresses. This information is needed by the Imagehlp API routines, which are
used to translate symbolic names into addresses.

The program assumes that SymLoadModule will find the correct symbol files; if this rou-
tine finds the wrong symbol files (for example, symbols for a checked rather than free
build), a system crash is almost guaranteed.

Example 1.4: Getting Trace Information

#include "ntdll.h"
#include "windbgkd.h"
#include <stdio.h>

int main()

{
DBGKD_GET_INTERNAL_BREAKPOINT bp[20];
ULONG n;

EnablePrivilege (SE_DEBUG_NAME) ;

NT::ZwSystemDebugControl (NT: :DebugGetTraceInformation,
0, 0, bp, sizeof bp, &n);

for (int i = 0; i * sizeof (DBGKD_GET_INTERNAL_BREAKPOINT) < n; i++)
printf("%slx %1x %ld %1d %ld %1d Sld\n",
bp[i].BreakpointAddress, bp[i].Flags,
bp[i].Calls, bp[i].MaxCallsPerPeriod,
bp[i].MinInstructions, bp[i].MaxInstructions,
bp[i].TotalInstructions);

return 0;

o

1996 CHO1 11/19/99 12:24 PM Page 57 (i:

System Information and Control: Example 1.4: Getting Trace Information

The output produced by Example 1.4 after an internal breakpoint had been set at
NTOSKRNL INtCreateProcess was:

80193206 0 6 0 19700 21010 121149

Therefore, the minimum number of instructions executed by NtCreateProcess was
19,700, the maximum number was 21,010, and the average number was about 20191.

57

1996 CHO1 11/19/99 12:24 PM Page 58 $

1996 Ch02 11/19/99 12:25 PM Page 59 :i:

Objects, Object
Directories, and
Symbolic Links

The system services described in this chapter either operate on objects without regard
to their type or manage the object namespace.

OBJECT_ATTRIBUTES

Almost all of the ZwCreateXxx and ZwOpenXxx routines require a pointer to an
OBJECT_ATTRIBUTES structure as one of their parameters.

typedef struct _OBJECT_ATTRIBUTES {

ULONG Length;

HANDLE RootDirectory;

PUNICODE_STRING ObjectName;

ULONG Attributes;

PSECURITY_DESCRIPTOR SecurityDescriptor;

PSECURITY_QUALITY_OF_SERVICE SecurityQualityOfService;
} OBJECT_ATTRIBUTES, *POBJECT_ATTRIBUTES;

Members

Length
The size in bytes of the OBJECT_ATTRIBUTES structure.

RootDirectory
Optionally specifies a handle to a “container” object. The ObjectName will be inter-
preted as a name relative to this container. Possible “container” object types include
Object Directories, File Directories, and Registry Keys.

ObjectName

Optionally specifies a name for the object to be created or opened.

1996 Ch02 11/19/99 12:25 PM Page 60 (i:

60 Objects, Object Directories, and Symbolic Links: OBJECT_ATTRIBUTES

Attributes
A bit mask specifying attributes. This member can be zero, or a combination of the
following flags:

OBJ_INHERIT 0x00000002
O0BJ_PERMANENT 0x00000010
0BJ_EXCLUSIVE 0x00000020
OBJ_CASE_INSENSITIVE 0x00000040
0BJ_OPENIF 0x00000080
OBJ_OPENLINK 0x00000100
O0BJ_KERNEL_HANDLE 0x00000200

The meanings of the individual flags are discussed in “Remarks.” Depending on the
type of object to be created or opened, some of the flags are not valid and their
presence will result in the routine returning STATUS_INVALID_PARAMETER.

SecurityDescriptor
Optionally specifies a security descriptor to be applied to the object. Only meaningful
when creating a new object.

Security Quality OfService
Optionally specifies a security Quality of Service to be applied to the object. Only
meaningful when creating new Token or inter-process communication objects (such
as named pipes).

Remarks

The kernel does not maintain information about the current directory of a process.
(This information is maintained in user mode by ntd11.d1l.). Therefore, when the
Win32 function CreateFile is called to open a file with a relative (to the current
directory) pathname, the RootDirectory member is used to convey the current direc-
tory information to the kernel. The Win32 registry functions always create or open
subkeys of existing key objects; when these functions call the appropriate native system
service, they store the existing key in the RootDirectory member and the subkey
name in the ObjectName member.

The 0BJ_INHERIT flag specifies whether the handle can be inherited. Even if the
handle can be inherited, whether it is actually inherited depends on the arguments
to the ZwCreateProcess routine.

If an object has a name and is created with OBJ_PERMANENT, it will continue to exist,
even after the last handle reference to it has been closed.
SeCreatePermanentPrivilege is needed when specifying 0BJ_PERMANENT. To delete a
permanent object, it is necessary to first obtain a handle to the object and then to
make the object temporary by calling ZwMakeTemporaryObject.

Directory and SymbolicLink objects are normally created as permanent objects, but
other objects such as Sections and Events can also be made permanent.
(“Permanent” means until next reboot.)

The 0BJ_EXCLUSIVE flag specifies whether an object is exclusive to one process. If an
object is created with this flag, the attempts by other processes to access the object (by
opening it by name or duplicating its handle) will fail with STATUS_ACCESS_DENIED.

o

1996 Ch02 11/19/99 12:25 PM Page 61 (i:

Objects, Object Directories, and Symbolic Links: ZwQueryObject

The 0BJ_CASE_INSENSITIVE flag controls how names are compared. If
OBJ_CASE_INSENSITIVE is set, subsequent name-lookup requests will ignore
the case of ObjectName rather than performing an exact-match search.

The 0BJ_OPENIF flag specifies how the ZwCreateXxx routines should behave if an
object with the specified name already exists. If 0BJ_OPENIF is set, the routines return
the information status STATUS_OBJECT_NAME_EXISTS and also return a handle to the
existing object. If 0BJ_OPENIF is clear, the routines return the error status
STATUS_OBJECT_NAME_COLLISION and do not return a valid handle.

The 0BJ_OPENLINK flag specifies whether the object itself or the object to which it is
linked should be opened. This flag is normally only used with Registry Keys. For
example, “\Registry\Machine\Security\Sam” is a registry link to
“\Registry\Machine\Sam,” and if it is opened with OBJ_OPENLINK then the returned
handle will refer to “\Registry\Machine\Sam.” These links are distinct from the
Symbolic Link objects created by ZwCreateSymbolicLinkObject.

The 0BJ_KERNEL_HANDLE flag is only valid in Windows 2000. If a handle to an object is
created in kernel mode and 0BJ_KERNEL_HANDLE is specified, the handle is created in
the “System” process rather than the current process.

ZwQueryObject

ZwQueryObject queries generic information about any object.

NTSYSAPI
NTSTATUS
NTAPI
ZwQueryObject(
IN HANDLE ObjectHandle,
IN OBJECT_INFORMATION_CLASS ObjectInformationClass,
OUT PVOID ObjectInformation,
IN ULONG ObjectInformationLength,
OUT PULONG ReturnLength OPTIONAL
)3

Parameters

ObjectHandle
A handle to an object. The handle need not grant any specific access. If the informa-
tion class requested does not return information which is specific to a particular object
or handle, this parameter may be zero.

ObjectInformationClass
The type of object information to be queried. The permitted values are drawn from
the enumeration OBJECT_INFORMATION_CLASS, described in the following section.

ObjectInformation

Points to a caller-allocated buffer or variable that receives the requested object
information.

o

1996 Ch02 11/19/99 12:25 PM Page 62 (i:

62 Objects, Object Directories, and Symbolic Links: Links: ZwQueryObject

ObjectInformationLength
Specifies the size in bytes of ObjectInformation, that the caller should set according
to the given ObjectInformationClass.

ReturnLength
Optionally points to a variable that receives the number of bytes actually returned to
ObjectInformation. If ObjectInformationLength is too small to contain the available
data, the variable is set to the number of bytes required for the available data. If this
information is not needed, ReturnLength may be a null pointer.

Return Value

Returns STATUS_SUCCESS or an error status, such as STATUS_INVALID_ HANDLE,
STATUS_INVALID_INFO_CLASS, or STATUS_INFO_LENGTH_MISMATCH

Related Win32 Functions

GetHandleInformation.

Remarks

ZwQueryObject returns generic information about objects. For most object types there
is a native API routine that returns object type specific information. For example,
ZwQueryInformationProcess returns information specific to process objects.

ZwSetInformationObject

ZwSetInformationObject sets attributes on a handle to an object.

NTSYSAPI
NTSTATUS
NTAPI
ZwSetInformationObject(
IN HANDLE ObjectHandle,
IN OBJECT_INFORMATION_CLASS ObjectInformationClass,
IN PVOID ObjectInformation,
IN ULONG ObjectInformationLength
)3

Parameters

ObjectHandle

A handle to an object. The handle need not grant any specific access.

ObjectInformationClass
The type of object information to be set. The permitted values are a subset of the
enumeration OBJECT_INFORMATION_CLASS, described in the following section.

ObjectInformation

Points to a caller-allocated buffer or variable that contains the object information to
be set.

o

1996 Ch02 11/19/99 12:25 PM Page 63 :i:

Objects, Object Directories, and Symbolic Links: ObjectBasedInfromation 63

ObjectInformationLength
Specifies the size in bytes of ObjectInformation, which the caller should set according
to the given ObjectInformationClass.

Return Value

Returns STATUS_SUCCESS or an error status, such as STATUS_INVALID_ HANDLE,
STATUS_INVALID_INFO_CLASS, or STATUS_INFO_LENGTH_MISMATCH

Related Win32 Functions

SetHandleInformation.

Remarks

The Win32 function SetHandleInformation exposes the full functionality of
ZwSetInformationObject.

OBJECT_INFORMATION_CLASS

Query Set
typedef enum _OBJECT_INFORMATION_CLASS {
ObjectBasicInformation, /] @ Y N
ObjectNameInformation, /1A Y N
ObjectTypeInformation, /12 Y N
ObjectAllTypesInformation, // 3 Y N
ObjectHandleInformation /1 4 Y Y

} OBJECT_INFORMATION_CLASS;

ObjectBasicInformation

typedef struct _OBJECT_BASIC_INFORMATION { // Information Class 0
ULONG Attributes;
ACCESS_MASK GrantedAccess;
ULONG HandleCount;
ULONG PointerCount;
ULONG PagedPoolUsage;
ULONG NonPagedPoolUsage;
ULONG Reserved[3];
ULONG NameInformationLength;
ULONG TypeInformationLength;
ULONG SecurityDescriptorLength;
LARGE_INTEGER CreateTime;
} OBJECT_BASIC_INFORMATION, *POBJECT_BASIC_INFORMATION;

Members
Attributes

A bit array of flags that specify properties of the object and the handle referring to it
that was used in the call to ZwQueryObject. Observed values include:

HANDLE_FLAG_INHERIT 0x01
HANDLE_FLAG_PROTECT_FROM_CLOSE 0x02
PERMANENT 0x10
EXCLUSIVE 0x20 (different encoding than in

SYSTEM_OBJECT_INFORMATION)

o

1996 Ch02 11/19/99 12:25 PM Page 64 $

64 Objects, Object Directories, and Symbolic Links: ObjectBasedInfromation

GrantedAccess
The access to the object granted when the handle was created.

HandleCount

The number of handle references to the object.

PointerCount
The number of pointer references to the object.

PagedPoolUsage
The amount of paged pool used by the object if different from the default for the
object type.

NonPagedPoolUsage
The amount of nonpaged pool used by the object if different from the default for the
object type.

NamelnformationLength
The size in bytes of the buffer that would be needed to hold the information returned
by the ObjectNameInformation class for the handle if this information is available. For
object types that manage their own namespace, such as Files and Keys, this value is
normally zero, meaning just that the value is unknown.

TypelnformationLength
The size in bytes of the buffer that would theoretically be needed to hold the infor-
mation returned by the ObjectTypeInformation class for the handle. In practice, if this
length is not a multiple of four, the required length is the lowest multiple of four that
is greater than TypeInformationLength.

Security DescriptorLength
The size in bytes of the buffer that would be needed to hold the information returned
by a call to ZwQuerySecurityObject for the handle. This information is only available
if the ObjectHandle parameter grants READ_CONTROL access, otherwise zero is returned.

Create'Time
If the object is a Symbolic Link, the creation time of the object in the standard time
format (that is, the number of 100-nanosecond intervals since January 1, 1601), other-
wise zero.

Remarks

The code in Example 2.1 uses this information class.

1996 Ch02 11/19/99 12:25 PM Page 65 :i:

Objects, Object Directories, and Symbolic Links: ObjectTypelnformation

ObjectNamelnformation

typedef struct _OBJECT_NAME_INFORMATION { // Information Class 1
UNICODE_STRING Name;
} OBJECT_NAME_INFORMATION, *POBJECT_NAME_INFORMATION;

Members

Name
The name of the object.

Remarks

The ObjectInformation buffer should be large enough to hold a UNICODE_STRING
structure and the associated Buffer, which holds the characters of the string.

If the object to which the handle refers is a file object and the handle was opened

for synchronous access (by specifying FILE_SYNCHRONOUS_IO_ALERT or FILE_
SYNCHRONOUS_IO_NONALERT as CreateOptions), queries of this information class will be
synchronized with other file operations on the handle.

The code in Example 2.1 uses this information class.

ObjectTypelnformation

typedef struct _OBJECT_TYPE_INFORMATION { // Information Class 2
UNICODE_STRING Name;
ULONG ObjectCount;
ULONG HandleCount;
ULONG Reservedi[4];
ULONG PeakObjectCount;
ULONG PeakHandleCount;
ULONG Reserved2[4];
ULONG InvalidAttributes;
GENERIC_MAPPING GenericMapping;
ULONG ValidAccess;
UCHAR Unknown;
BOOLEAN MaintainHandleDatabase;
POOL_TYPE PoolType;
ULONG PagedPoolUsage;
ULONG NonPagedPoolUsage;
} OBJECT_TYPE_INFORMATION, *POBJECT_TYPE_INFORMATION;

Members

Name
A name that identifies this object type.

ObjectCount
The number of objects of this type in the system.

HandleCount
The number of handles to objects of this type in the system.

o

65

1996 Ch02 11/19/99 12:25 PM Page 66 (i:

66 Objects, Object Directories, and Symbolic Links: ObjectAllTypesinformation

Peak Object Count
The peak number of objects of this type in the system.

PeakHandleCount
The peak number of handles to objects of this type in the system.

Invalid Attributes
A bit mask of the 0BJ_Xxxx attributes that are not valid for objects of this type.

GenericMapping
The mapping of generic access rights to specific access rights for this object type.

Valid AccessMask
The valid specific access rights for this object type.

Unknown
Interpretation unknown. Same as SYSTEM_OBJECT_TYPE_INFORMATION.Unknown.

MaintainHandleDatabase
Specifies whether the handles to objects of this type should be recorded in the objects
to which they refer.

Pool Type
The type of pool from which this object type is allocated (paged or nonpaged).

PagedPoolUsage
The amount of paged pool used by objects of this type.

NonPagedPoolUsage
The amount of nonpaged pool used by objects of this type.

Remarks

The ObjectInformation buffer should be large enough to hold the Buffer associated
with the Name UNICODE_STRING.

This information is similar to that returned by ZwQuerySystemInformation with an
information class of SystemObjectInformation (17).

The code in Example 2.1 uses this information class.

ObjectAllTypesInformation

typedef struct _OBJECT_ALL_TYPES_INFORMATION { // Information Class 3
ULONG NumberOfTypes;
OBJECT_TYPE_INFORMATION TypeInformation;

} OBJECT_ALL_TYPES_INFORMATION, *POBJECT_ALL_TYPES_INFORMATION;

o

1996 Ch02 11/19/99 12:25 PM Page 67 :i:

Objects, Object Directories, and Symbolic Links: ZwDuplicateObject

Members

NumberOf Types

The number of types known to the object manager.

Typelnformation
A sequence of OBJECT_TYPE_INFORMATION structures, one per type.

Remarks

The ObjectHandle parameter need not contain a valid handle to query this
information class.

The Buffer associated with the type name immediately follows each
OBJECT_TYPE_INFORMATION structure. The next OBJECT_TYPE_INFORMATION structure
follows this Buffer, starting on the first four-byte boundary.

This information is similar to that returned by ZwQuerySystemInformation with an
information class of SystemObjectInformation (17).

ObjectHandleInformation

typedef struct _OBJECT_HANDLE_ATTRIBUTE_INFORMATION { // Information Class 4
BOOLEAN Inherit;
BOOLEAN ProtectFromClose;

} OBJECT_HANDLE_ATTRIBUTE_INFORMATION, *POBJECT_HANDLE_ATTRIBUTE_INFORMATION;

Members

Inherit
Specifies whether the handle should be inherited by child processes.

ProtectFromClose
Specifies whether the handle should be protected from being closed.

Remarks

This information class can be both queried and set.

The Win32 functions GetHandleInformation and SetHandleInformation query and
set this information.

ZwDuplicateObject

ZwDuplicateObject duplicates the handle to an object.

NTSYSAPI

NTSTATUS

NTAPI

ZwDuplicateObject(
IN HANDLE SourceProcessHandle,
IN HANDLE SourceHandle,

o

67

1996 Ch02 11/19/99 12:25 PM Page 68 (i:

68 Objects, Object Directories, and Symbolic Links: ZwDuplicateObject

IN HANDLE TargetProcessHandle,
OUT PHANDLE TargetHandle OPTIONAL,
IN ACCESS_MASK DesiredAccess,

IN ULONG Attributes,

IN ULONG Options

)5

Parameters

SourceProcessHandle
Identifies the process containing the handle to duplicate. The handle must grant
PROCESS_DUP_HANDLE access.

SourceHandle
Identifies the handle to duplicate. The handle need not grant any specific access.

Target ProcessHandle
Identifies the process that is to receive the duplicated handle. The handle must grant
PROCESS_DUP_HANDLE access.

TargetHandle
Points to a caller-allocated buffer or variable that receives the value of the duplicate
handle. If TargetHandle is a null pointer, the handle is duplicated, but its value is not
returned to the caller.

Desired Access
Specifies the access requested for the new handle. This parameter is ignored if the
Options parameter specifies the DUPLICATE_SAME_ACCESS flag.

Attributes
Specifies the set of attributes for the new handle. The valid values include
HANDLE_FLAG_INHERIT and HANDLE_FLAG_PROTECT_FROM_CLOSE. This parameter is
ignored if the Options parameter specifies the DUPLICATE_SAME_ATTRIBUTES flag.

Options
Specifies optional actions. This parameter can be zero, or any combination of the
following flags:

DUPLICATE_CLOSE_SOURCE Closes the source handle. This occurs
regardless of any error status returned.
DUPLICATE_SAME_ACCESS Ignores the DesiredAccess parameter. The

duplicate handle has the same access as the
source handle.

DUPLICATE_SAME_ATTRIBUTES Ignores the Attributes parameter. The
duplicate handle has the same attributes as
the source handle.

Return Value

Returns STATUS_SUCCESS or an error status, such as STATUS_INVALID_ HANDLE,
STATUS_ACCESS_DENIED, or STATUS_PROCESS_IS_TERMINATING.

o

1996 Ch02 11/19/99 12:25 PM Page 69 :i:

Objects, Object Directories, and Symbolic Links: ZwClose

Related Win32 Functions

DuplicateHandle.

Remarks

The Win32 function DuplicateHandle exposes the full functionality of
ZwDuplicateObject.

ZwMakeTemporaryObject

ZwMakeTemporaryObject removes the permanent attribute of an object if it was

present.

NTSYSAPI

NTSTATUS

NTAPI

ZwMakeTemporaryObject (
IN HANDLE Handle
)3

Parameters

Handle

A handle to an object. The handle need not grant any specific access.

Return Value

Returns STATUS_SUCCESS or an error status, such as STATUS_INVALID_HANDLE or
STATUS_ACCESS_DENIED.

Related Win32 Functions

None.

Remarks

ZwMakeTemporaryObject is documented in the DDK.

ZwClose closes a handle to an object.

NTSYSAPI

NTSTATUS

NTAPI

ZwClose(
IN HANDLE Handle
)3

69

1996 Ch02 11/19/99 12:25 PM Page 70 (i:

70 Objects, Object Directories, and Symbolic Links: ZwClose

Parameters

Handle
A handle to an object. The handle need not grant any specific access.
Return Value

Returns STATUS_SUCCESS or an error status, such as STATUS_INVALID_HANDLE, or
STATUS_HANDLE_NOT_CLOSABLE.

Related Win32 Functions

CloseHandle.

Remarks

ZwClose is documented in the DDK.

Example 2.1: Listing Open Handles of a Process

#include "ntdll.h"
#include <stdlib.h>
#include <stdio.h>

int main(int argc, char *argv[])

{ if (argc == 1) return 0;
ULONG pid = strtoul(argv[1], 0, 0);
EnablePrivilege (SE_DEBUG_NAME);

HANDLE hProcess = OpenProcess(PROCESS_DUP_HANDLE, FALSE, pid);

ULONG n = 0x1000;
PULONG p = new ULONG[n];

while (NT::ZwQuerySystemInformation(NT::SystemHandleInformation,
p, n * sizeof *p, 0)
= STATUS_INFO_LENGTH_MISMATCH)

delete [] p, p = new ULONG[n *= 2];
NT::PSYSTEM_HANDLE_INFORMATION h = NT::PSYSTEM_HANDLE_INFORMATION(p + 1);
for (ULONG i = 0; i < *p; it++) {

if (h[i].ProcessId == pid) {
HANDLE hObject;
if (NT::ZwDuplicateObject(hProcess, HANDLE(h[i].Handle),
NtCurrentProcess(), &hObject,
0, 0, DUPLICATE_SAME_ATTRIBUTES)
!= STATUS_SUCCESS) continue;

NT::0BJECT_BASIC_INFORMATION obij;

o

1996 Ch02 11/19/99 12:25 PM Page 71 (i:

}

}
}

Objects, Object Directories, and Symbolic Links: ZwQuerySecurityObject

NT::ZwQueryObject (hObject, NT::ObjectBasicInformation,
&obi, sizeof obi, &n);

printf("sp %04hx %61x %2x %31x %31d %41d ",
h[i].Object, h[i].Handle, h[i].GrantedAccess,
int(h[i].Flags), obi.Attributes,
obi.HandleCount - 1, obi.PointerCount - 2);

>
n

obi.TypeInformationLength + 2;

NT::POBJECT_TYPE_INFORMATION oti
= NT::POBJECT_TYPE_INFORMATION(new CHAR[N]);

NT::ZwQueryObject (hObject, NT::0ObjectTypeInformation,
oti, n, &n);

printf("%-14.*ws ", oti[@].Name.Length / 2, oti[@].Name.Buffer);

n = obi.NameInformationLength ==
? MAX_PATH * sizeof (WCHAR) : obi.NameInformationLength;

NT: :POBJECT_NAME_INFORMATION oni
= NT::POBJECT_NAME_INFORMATION(new CHAR[N]);

NTSTATUS rv = NT::ZwQueryObject(hObject,
NT::0ObjectNameInformation,
oni, n, &n);
if (NT_SUCCESS(rv))
printf("%.*ws", oni[@].Name.Length / 2, oni[@].Name.Buffer);

printf("\n");

CloseHandle(hObject);

delete [] p;

CloseHandle(hProcess);

return 0;

Unlike Example 1.2, Example 2.1 does not require any particular setting of
NtGlobalFlag. However, it has the drawback of hanging when querying the names

of pipes that have been opened for synchronous access and that have a pending read or

write operation. All services have such a handle (used for communication with the

Service Control Manager).

‘When displaying the HandleCount and PointerCount values, Example 1.2 subtracts

the contribution to the counts arising from its own references to the object.

ZwQuerySecurityObject

ZwQuerySecurityObject retrieves a copy of the security descriptor protecting an
object.
NTSYSAPI
NTSTATUS
NTAPI
ZwQuerySecurityObject(

71

1996 Ch02 11/19/99 12:25 PM Page 72 $

72 Objects, Object Directories, and Symbolic Links: ZwQuerySecurityObject

IN HANDLE Handle,

IN SECURITY_INFORMATION SecurityInformation,
OUT PSECURITY_DESCRIPTOR SecurityDescriptor,
IN ULONG SecurityDescriptorLength,

OUT PULONG ReturnLength

)3

Parameters

Handle
A handle to an object. The handle must either grant READ_CONTROL access to the object
or the caller must be the owner of the object. To access the system ACL of the object,
the handle must grant ACCESS_SYSTEM_SECURITY.

SecurityInformation
A bit mask specifying the type of information being requested. The defined values are:
OWNER_SECURITY_INFORMATION 0x01
GROUP_SECURITY_INFORMATION 0x02
DACL_SECURITY_INFORMATION 0x04
SACL_SECURITY_INFORMATION 0x08
SecurityDescriptor

Points to a caller-allocated buffer or variable that receives the requested security infor-
mation in the form of a SECURITY_DESCRIPTOR. The SECURITY_DESCRIPTOR structure is
returned in self-relative format.

SecurityDescriptorLength
The size in bytes of SecurityDescriptor.

ReturnLength
Points to a variable that receives the number of bytes actually returned to
SecurityDescriptor. If SecurityDescriptorLength is too small to contain the avail-
able data, the variable is set to the number of bytes required for the available data.
Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED or
STATUS_BUFFER_TOO_SMALL.

Related Win32 Functions

GetKernelObjectSecurity, GetUserObjectSecurity.

Remarks
GetKernelObjectSecurity and GetUserObjectSecurity both expose the full
functionality of ZwQuerySecurityObject.

SeSecurityPrivilege is needed to open an object for ACCESS_SYSTEM_SECURITY
access. This privilege need not be enabled at the time of calling
ZwQuerySecurityObject.

o

1996 Ch02 11/19/99 12:25 PM Page 73 :i:

Objects, Object Directories, and Symbolic Links: ZwCreateDirectoryObject

ZwSetSecurityObject

ZwSetSecurityObject sets the security descriptor protecting an object.

NTSYSAPI

NTSTATUS

NTAPI

ZwSetSecurityObject(
IN HANDLE Handle,
IN SECURITY_INFORMATION SecurityInformation,
IN PSECURITY_DESCRIPTOR SecurityDescriptor
|H

Parameters

Handle
A handle to an object. The handle must either grant WRITE_OWNER and/or WRITE_DAC
access to the object as appropriate, or the caller must be the owner of the object. To
access the system ACL of the object, the handle must grant ACCESS_SYSTEM_SECURITY.

SecurityInformation
A bit mask specifying the type of information being set. The defined values are:
OWNER_SECURITY_INFORMATION 0x01
GROUP_SECURITY_INFORMATION 0x02
DACL_SECURITY_INFORMATION 0x04
SACL_SECURITY_INFORMATION 0x08
Security Descriptor

Points to a SECURITY_DESCRIPTOR structure containing the new security information.
The SECURITY_DESCRIPTOR structure must be in self-relative format.

Return Value

Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED.

Related Win32 Functions

SetKernelObjectSecurity, SetUserObjectSecurity.

Remarks

SetKernelObjectSecurity and SetUserObjectSecurity both expose the full func-
tionality of ZwSetSecurityObject.

SeSecurityPrivilege is needed to open an object for ACCESS_SYSTEM_SECURITY
access. This privilege need not be enabled at the time of calling ZwSetSecurityObject.

ZwCreateDirectoryObject

ZwCreateDirectoryObject creates or opens an object directory.

NTSYSAPI
NTSTATUS
NTAPI

o

73

1996 Ch02 11/19/99 12:25 PM Page 74 (i:

74 Objects, Object Directories, and Symbolic Links: ZwCreateDirectoryObject

ZwCreateDirectoryObject(
OUT PHANDLE DirectoryHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes
)3

Parameters

DirectoryHandle
Points to a caller-allocated bufter or variable that receives the value of the directory
object handle if the call is successtul.

Desired Access
The type of access that the caller requires to the directory object. This parameter can
be zero, or any combination of the following flags:

DIRECTORY_QUERY Query access
DIRECTORY_TRAVERSE Name lookup access
DIRECTORY_CREATE_OBJECT Name creation access
DIRECTORY_CREATE_SUBDIRECTORY Subdirectory creation access
DIRECTORY_ALL_ACCESS All of the preceding +

STANDARD_RIGHTS_REQUIRED

Object Attributes
Points to a structure that specifies the object’s attributes, including the name for the
new directory object. 0BJ_OPENLINK is not a valid attribute for a directory object.

Return Value

Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_OBJECT_NAME_EXISTS, or STATUS_OBJECT_NAME_COLLISION

Related Win32 Functions

None.

Remarks

ZwCreateDirectoryObject is documented in the DDK.

ZwOpenDirectoryObject

ZwOpenDirectoryObject opens an object directory.

NTSYSAPI
NTSTATUS
NTAPI
ZwOpenDirectoryObject(
OUT PHANDLE DirectoryHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes
)5

o

1996 Ch02 11/19/99 12:25 PM Page 75 (i:

Objects, Object Directories, and Symbolic Links: ZwQueryDirectoryObject

Parameters

DirectoryHandle
Points to a caller-allocated buffer or variable that receives the value of the directory
object handle if the call is successful.

Desired Access
Specifies the type of access that the caller requires to the directory object. This
parameter can be zero, or any combination of the following flags:

DIRECTORY_QUERY Query access
DIRECTORY_TRAVERSE Name lookup access
DIRECTORY_CREATE_OBJECT Name creation access
DIRECTORY_CREATE_SUBDIRECTORY Subdirectory creation access
DIRECTORY_ALL_ACCESS All of the preceding +

STANDARD_RIGHTS_REQUIRED

ObjectAttributes
Points to a structure that specifies the object’s attributes, including the name of the
directory object. 0BJ_OPENLINK is not a valid attribute for a directory object.

Return Value

Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED, or
STATUS_OBJECT_NAME_NOT_FOUND.

Related Win32 Functions

None.

Remarks

None.

ZwQueryDirectoryObject

ZwQueryDirectoryObject retrieves information about the contents of an object
directory.

NTSYSAPI

NTSTATUS

NTAPI

ZwQueryDirectoryObject(
IN HANDLE DirectoryHandle,
OUT PVOID Buffer,
IN ULONG BufferLength,
IN BOOLEAN ReturnSingleEntry,
IN BOOLEAN RestartScan,
IN OUT PULONG Context,
OUT PULONG ReturnLength OPTIONAL
)3

75

1996 Ch02 11/19/99 12:25 PM Page 76 $

76 Objects, Object Directories, and Symbolic Links: ZwQueryDirectoryObject

Parameters

DirectoryHandle
A handle to a directory object. The handle must grant DIRECTORY_QUERY access.

Buffer
Points to a caller-allocated buffer or variable that receives the names of entries in the
directory.

BufferLength
Specifies the size in bytes of Buffer.

ReturnSingleEntry
Specifies whether a single entry should be returned; if false, as many entries as will fit
in the buffer are returned.

RestartScan
Specifies whether the scan of the directory should be restarted; if true, the input value
of the Context parameter is ignored.

Context
Points to a caller-allocated buffer or variable that maintains the position of a directory
scan.

ReturnLength
Optionally points to number of bytes actually returned to Buffer. If this information is
not needed, ReturnLength may be a null pointer.

Return Value

Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_MORE_ENTRIES, STATUS_NO_MORE_ENTRIES, or STATUS_BUFFER_TOO_SMALL.

Related Win32 Functions

QueryDosDevice.

Remarks

The information returned to Buffer is an array of DIRECTORY_BASIC_INFORMATION
structures, terminated by a DIRECTORY_BASIC_INFORMATION structure containing all
zeroes. The strings pointed to by the UNICODE_STRING members follow this data, and
the Buffer must be large enough to contain them.

typedef struct DIRECTORY_ BASIC_INFORMATION {
UNICODE_STRING ObjectName;
UNICODE_STRING ObjectTypeName;

} DIRECTORY_BASIC_INFORMATION, *PDIRECTORY BASIC_INFORMATION;

QueryDosDevice can only scan one fixed directory, namely “\??” (ignoring complica-
tions arising from multi-user support under Windows Terminal Server). This directory
was formerly named “\DosDevices” and is conventionally used to store symbolic links
to device objects.

o

1996 Ch02 11/19/99 12:25 PM Page 77 $

Objects, Object Directories, and Symbolic Links: ZwCreateSymbolicLinkObject

ZwCreateSymbolicLinkObject

ZwCreateSymbolicLinkObject creates or opens a symbolic link object.

NTSYSAPI
NTSTATUS
NTAPI
ZwCreateSymbolicLinkObject(
OUT PHANDLE SymbolicLinkHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes,
IN PUNICODE_STRING TargetName
)3

Parameters

SymbolicLinkHandle
Points to a caller-allocated bufter or variable that receives the value of the symbolic
link object handle if the call is successful.

Desired Access
Specifies the type of access that the caller requires to the symbolic link object. This
parameter can be zero, or any combination of the following flags:

SYMBOLIC_LINK_QUERY Query access
SYMBOLIC_LINK_ ALL_ACCESS All of the preceding +
STANDARD_RIGHTS_REQUIRED

ObjectAttributes
Points to a structure that specifies the object’s attributes, including the name of the
symbolic link object. 0BJ_OPENLINK is not a valid attribute for a symbolic link object.

TargetName
Specifies the name of the object for which the symbolic link will be an alias.

Return Value

Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_OBJECT_NAME_EXISTS, or STATUS_OBJECT_NAME_COLLISION.

Related Win32 Functions

DefineDosDevice.

Remarks

DefineDosDevice can only create symbolic links in one fixed directory, namely “\??2”
(ignoring complications arising from multi-user support under Windows Terminal
Server).

77

1996 Ch02 11/19/99 12:25 PM Page 78 :i:

78 Objects, Object Directories, and Symbolic Links: ZwOpenSymbolicLinkObject

ZwOpenSymbolicLinkObject

ZwOpenSymbolicLinkObject opens a symbolic link object.

NTSYSAPI
NTSTATUS
NTAPI
ZwOpenSymbolicLinkObject(
OUT PHANDLE SymboliclLinkHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes
|H

Parameters

SymbolicLinkHandle
Points to a caller-allocated buffer or variable that receives the value of the symbolic
link object handle if the call is successful.

Desired Access
Specifies the type of access that the caller requires to the symbolic link object. This
parameter can be zero, or any combination of the following flags:

SYMBOLIC_LINK_QUERY Query access
SYMBOLIC_LINK_ALL_ACCESS All of the preceding +
STANDARD_RIGHTS_REQUIRED

Object Attributes
Points to a structure that specifies the object’s attributes, including the name of the
symbolic link object. 0BJ_OPENLINK is not a valid attribute for a symbolic link object.

Return Value

Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED, or
STATUS_OBJECT_NAME_NOT_FOUND.

Related Win32 Functions

None.

Remarks

None.

ZwQuerySymbolicLinkObject

ZwQuerySymbolicLinkObject retrieves the name of the target of a symbolic link.

NTSYSAPI

NTSTATUS

NTAPI

ZwQuerySymbolicLinkObject (
IN HANDLE SymbolicLinkHandle,
IN OUT PUNICODE_STRING TargetName,
OUT PULONG ReturnLength OPTIONAL
)3

o

1996 Ch02 11/19/99 12:25 PM Page 79 $

Objects, Object Directories, and Symbolic Links: ZwQuerySymbolicLinkObject

Parameters

SymbolicLinkHandle
A handle to a symbolic link object. The handle must grant SYMBOLIC_LINK_QUERY
access.

TargetName
Points to a caller-allocated bufter or variable containing an initialised UNICODE_STRING
with valid Buffer and MaximumLength members. If the call is successful, the Length
member is updated.

ReturnLength
Optionally points to number of bytes actually returned to TargetName.Buffer. If this
information is not needed, ReturnLength may be a null pointer. This length includes
the trailing UNICODE null character.

Return Value

Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED or
STATUS_BUFFER_TOO_SMALL.

Related Win32 Functions

QueryDosDevice.

Remarks

QueryDosDevice can only query symbolic links in one fixed directory, namely
“\??”(ignoring complications arising from multi-user support under Windows
Terminal Server).

79

1996 Ch02 11/19/99 12:25 PM Page 80 $

1996 Ch03 11/19/99 12:25 PM Page 81 (i:

Virtual Memory

The system services described in this chapter manipulate virtual memory.

ZwAllocateVirtualMemory

ZwAllocateVirtualMemory allocates virtual memory in the user mode address range.

NTSYSAPI

NTSTATUS

NTAPI

ZwAllocateVirtualMemory (
IN HANDLE ProcessHandle,
IN OUT PVOID *BaseAddress,
IN ULONG ZeroBits,
IN OUT PULONG AllocationSize,
IN ULONG AllocationType,
IN ULONG Protect
)5

Parameters

ProcessHandle
A handle of a process object, representing the process for which the virtual memory
should be allocated. The handle must grant PROCESS_VM_OPERATION access.

BaseAddress
Points to a variable that will receive the base address of the allocated virtual memory.
If the initial value of this variable is not null, the virtual memory is allocated starting at
the specified address and rounded down to the nearest allocation granularity boundary
if necessary.

ZeroBits
Specifies the number of high-order address bits that must be zero in the base address
of the virtual memory. The value of this parameter must be less than 21; it is used only
when the operating system determines where to allocate the virtual memory,such as
when BaseAddress is null.

o

1996 Ch03 11/19/99 12:25 PM Page 82 (i:

82 Virtual Memory: ZwAllocateVirtualMemory

AllocationSize
It points to a variable that specifies the size, in bytes, of the virtual memory to allocate,
and receives the size of virtual memory actually allocated. If BaseAddress is null, this
value is rounded up to the next page size boundary; otherwise, it is adjusted to the size
of all the pages that contain one or more bytes in the range from BaseAddress to
(BaseAddress+AllocationSize).

AllocationType
A set of flags that describes the type of allocation to be performed for the specified
region of pages. The permitted values are selected combinations of the flags:

MEM_COMMIT 0x001000 Commit memory

MEM_RESERVE 0x002000 Reserve but do not commit memory
MEM_RESET 0x080000 Mark data in memory as obsolete
MEM_TOP_DOWN 0x100000 Allocate at highest possible address
MEM_WRITE_WATCH 0x200000 Track writes to memory

MEM_PHYSICAL 0x400000 Create a physical view

Protect
Specifies the protection for the pages in the region. Permitted values are drawn from
the following list, possibly combined with PAGE_GUARD or PAGE_NOCACHE:

PAGE_NOACCESS
PAGE_READONLY
PAGE_READWRITE
PAGE_EXECUTE
PAGE_EXECUTE_READ
PAGE_EXECUTE_READWRITE

Return Value

Returns STATUS_SUCCESS or an error status, such as STATUS_NO_MEMORY, STATUS _
CONFLICTING_ADDRESSES, STATUS_ALREADY_COMMITTED, STATUS_ INVALID PAGE_
PROTECTION, or STATUS_PROCESS_IS_ TERMINATING.

Related Win32 Functions
VirtualAlloc, VirtualAllocEx.

Remarks
VirtualAllocEx exposes almost all of the functionality of ZwAllocateVirtualMemory.
To commit virtual memory, it must either first be reserved, or both MEM_COMMIT and

MEM_RESERVE must be specified as the AllocationType (optionally combined with
MEM_TOP_DOWN).

The flag MEM_RESET is documented in the Knowledge Base article Q162104 and in
newer versions of the Platform SDK.

The flag MEM_WRITE_WATCH is only valid in Windows 2000. If the system does not
support write watching and this flag is specified, ZwAllocateVirtualMemory fails with
status STATUS_NOT_SUPPORTED.

1996 Ch03

11/19/99 12:25 PM Page 83 :i:

Virtual Memory: ZwFreeVirtualMemory 83

The flag MEM_PHYSICAL is only valid in Windows 2000; it can only and must be com-
bined with the flag MEM_RESERVE. It reserves a range of virtual addresses to be used to
map views of physical memory allocated with ZwAllocateUserPhysicalPages.

ZwFreeVirtualMemory

ZwFreeVirtualMemory frees virtual memory in the user mode address range.

NTSYSAPI

NTSTATUS

NTAPI

ZwFreeVirtualMemory (
IN HANDLE ProcessHandle,
IN OUT PVOID *BaseAddress,
IN OUT PULONG FreeSize,
IN ULONG FreeType
)3

Parameters

ProcessHandle
A handle of a process object, representing the process from which the virtual memory
should be freed. The handle must grant PROCESS_VM_OPERATION access.

BaseAddress

Points to a variable that specifies the base address of the virtual memory to be freed.

FreeSize
Points to a variable that specifies the size, in bytes, of the virtual memory to free and
receives the size of virtual memory actually freed. If FreeType is MEM_RELEASE, this
value must be zero.

Free'Type
A set of flags that describes the type of de-allocation to be performed for the specified
region of pages. The permitted values are:

MEM_DECOMMIT Decommit but maintain reservation
MEM_RELEASE Decommit and free reservation

Return Value

Returns STATUS_SUCCESS or an error status, such as STATUS_UNABLE_TO_FREE_VM,
STATUS_UNABLE_TO_DELETE_SECTION, STATUS_FREE_VM_NOT_AT_BASE,
STATUS_MEMORY_NOT_ALLOCATED, or STATUS_PROCESS_IS_TERMINATING.

Related Win32 Functions

VirtualFree, VirtualFreeEx.

Remarks

VirtualFreeEx exposes almost all of the functionality of ZwFreeVirtualMemory.

o

1996 Ch03 11/19/99 12:25 PM Page 84 :i:

84 Virtual Memory: ZwQueryVirtualMemory

ZwQueryVirtualMemory

ZwQueryVirtualMemory retrieves information about virtual memory in the user mode
address range.

NTSYSAPI

NTSTATUS

NTAPI

ZwQueryVirtualMemory (
IN HANDLE ProcessHandle,
IN PVOID BaseAddress,
IN MEMORY_INFORMATION_CLASS MemoryInformationClass,
OUT PVOID MemoryInformation,
IN ULONG MemoryInformationLength,
OUT PULONG ReturnLength OPTIONAL
)5

Parameters

ProcessHandle
A handle of a process object, representing the process whose virtual memory informa-
tion is queried. The handle must grant PROCESS_QUERY_INFORMATION access.

BaseAddress
The base address of the region of pages to be queried. This value is rounded down to
the next page boundary. If the information class requested does not return information
that is specific to a particular address, this parameter may be zero.

MemorylInformationClass
The type of virtual memory information to be queried. The permitted values are
drawn from the enumeration MEMORY_INFORMATION_CLASS, described in the following
section.

MemoryInformation
Points to a caller-allocated bufter or variable that receives the requested virtual
memory information.

MemoryInformationLength
Specifies the size in bytes of MemoryInformation, which the caller should set according
to the given MemoryInformationClass.

ReturnLength
Optionally points to a variable that receives the number of bytes actually returned to
MemoryInformation if the call was successful. If this information is not needed,
ReturnLength may be a null pointer.

Return Value

Returns STATUS_SUCCESS or an error status, such as STATUS_INVALID_INFO_CLASS,
STATUS_INFO_LENGTH_MISMATCH, STATUS_INVALID_ADDRESS, STATUS_FILE_INVALID, or
STATUS_PROCESS_IS_TERMINATING.

o

1996 Ch03 11/19/99 12:25 PM Page 85 :i:

Virtual Memory: MemoryBasiclnformation

Related Win32 Functions
VirtualQuery, VirtualQueryEx.

Remarks

None.

MEMORY_INFORMATION_CLASS

typedef enum _MEMORY_INFORMATION_CLASS {
MemoryBasicInformation,
MemoryWorkingSetList,
MemorySectionName,
MemoryBasicVimInformation

} MEMORY_INFORMATION_CLASS;

MemoryBasicInformation

typedef struct _MEMORY_BASIC_INFORMATION { // Information Class @
PVOID BaseAddress;
PVOID AllocationBase;
ULONG AllocationProtect;
ULONG RegionSize;
ULONG State;
ULONG Protect;
ULONG Type;
} MEMORY_BASIC_INFORMATION, *PMEMORY_BASIC_INFORMATION;

Members

BaseAddress
The virtual base address of the region of pages.

AllocationBase
The virtual base address of the initial allocation region that contains this region.

AllocationProtect

The access protection of the pages specified when the region was initially allocated.
Possible values are drawn from the following list, possibly combined with PAGE_GUARD
or PAGE_NOCACHE:

PAGE_NOACCESS

PAGE_READONLY

PAGE_READWRITE

PAGE_EXECUTE

PAGE_EXECUTE_READ
PAGE_EXECUTE_READWRITE

RegionSize
The size, in bytes, of the region beginning at the base address in which all pages
belong to the same initial allocation region and have identical protection and state
attributes.

o

85

1996 Ch03 11/19/99 12:25 PM Page 86 (i:

86 Virtual Memory: MemoryBasicInformation

State
The state of the pages in the region. Possible values include:
MEM_COMMIT Memory is reserved and committed
MEM_RESERVE Memory is reserved but not committed
MEM_FREE Memory is free

Protect
The current access protection of the pages in the region.

Type
The type of the pages in the region. Possible values include zero if the state is
MEM_FREE, or:
MEM_PRIVATE Memory is private
MEM_MAPPED Memory is shareable and mapped from a data section
MEM_IMAGE Memory is shareable and mapped from an image section
Remarks

MEMORY_BASIC_INFORMATION is identical to the structure of the same name returned by
the Win32 function VirtualQueryEx.

MemoryWorkingSetList

typedef struct _MEMORY_WORKING_SET_LIST { // Information Class 1
ULONG NumberOfPages;
ULONG WorkingSetList[1];

} MEMORY_WORKING_SET_LIST, *PMEMORY_WORKING_SET_LIST;

Members

NumberOfPages

The number of pages in the working set list.

WorkingSetList
An array of working set list entries. The high 20 bits of an entry represent the high 20
bits of the virtual address of the working set list entry, and the low 12 bits are a bit
array of flags. The following flag interpretations are defined:

WSLE_PAGE_READONLY 0x001 // Page is read only
WSLE_PAGE_EXECUTE 0x002 // Page is executable
WSLE_PAGE_READWRITE 0x004 // Page is writeable
WSLE_PAGE_EXECUTE_READ 0x003

WSLE_PAGE_WRITECOPY 0x005 // Page should be copied on write

WSLE_PAGE_EXECUTE_READWRITE 0x006
WSLE_PAGE_EXECUTE_WRITECOPY 0x007 // Page should be copied on write
WSLE_PAGE_SHARE_COUNT MASK @XQEQ

WSLE_PAGE_SHAREABLE 0x100 // Page is shareable

Remarks

ZwQueryVirtualMemory with an information class of MemoryWorkingSetList always
returns STATUS_SUCCESS. To test for success, verify that MemoryInformationLength is
greater than the ReturnLength.

o

1996 Ch03 11/19/99 12:25 PM Page 87 :i:

Virtual Memory: ZwLockVirtualMemory 87

Flag bits that are not defined are neither set nor cleared, and so it is advisable to zero
the MemoryInformation bufter before calling ZwQueryVirtualMemory.

An indication of whether a page is locked (in memory or in the working set) is not
returned although this information is stored in the working set list of the process.

The PSAPI function QueryWorkingSet uses this information class.

The share count for shareable pages is only available in Windows 2000. A share count
of seven means that at least seven processes are sharing the page.

MemorySectionName

typedef struct _MEMORY_SECTION_NAME { // Information Class 2
UNICODE_STRING SectionFileName;
} MEMORY_SECTION_NAME, *PMEMORY SECTION_NAME;

Members

SectionFileName
The name of the file backing the section.

Remarks

The BaseAddress parameter must point to the base address of a mapped data section;
the name of the file backing an image section is not returned (this seems to be an
arbitrary restriction in the implementation of ZwQueryVirtualMemory).

MemoryInformationLength must be large enough to accommodate the
UNICODE_STRING structure and the actual Unicode string name itself.

The PSAPI function GetMappedFileName uses this information class.

ZwLockVirtualMemory

ZwLockVirtualMemory locks virtual memory in the user mode address range, ensuring
that subsequent accesses to the locked region of virtual memory will not incur page
faults.
NTSYSAPI
NTSTATUS
NTAPI
ZwLockVirtualMemory (
IN HANDLE ProcessHandle,
IN OUT PVOID *BaseAddress,
IN OUT PULONG LockSize,
IN ULONG LockType
)5

Parameters
ProcessHandle

A handle of a process object, representing the process for which the virtual memory
should be locked. The handle must grant PROCESS_VM_OPERATION access.

o

1996 Ch03 11/19/99 12:25 PM Page 88 (i:

88 Virtual Memory: ZwLockVirtualMemory

BaseAddress
Points to a variable that specifies the base address of the virtual memory to be locked,
and receives the base address of the virtual memory actually locked.

LockSize
Points to a variable that specifies the size, in bytes, of the virtual memory to lock, and
receives the size of virtual memory actually locked.

LockType
A set of flags that describes the type of locking to be performed for the specified
region of pages. The permitted values are combinations of the flags:

LOCK_VM_IN_WSL 0x01 /| Lock page in working set list
LOCK_VM_IN_RAM 0x02 /| Lock page in physical memory

Return Value
Returns STATUS_SUCCESS, STATUS_WAS_LOCKED or an error status, such as

STATUS_PRIVILEGE_NOT_HELD, STATUS_WORKING_ SET_QUOTA, or
STATUS_PROCESS_IS_TERMINATING.

Related Win32 Functions
VirtuallLock.

Remarks
SeLockMemoryPrivilege is required to lock pages in physical memory.

All of the pages that contain one or more bytes in the range from BaseAddress to
(BaseAddress+LockSize) are locked.

ZwUnlockVirtualMemory

ZwUnlockVirtualMemory unlocks virtual memory in the user mode address range.

NTSYSAPI

NTSTATUS

NTAPI

ZwUnlockVirtualMemory (
IN HANDLE ProcessHandle,
IN OUT PVOID *BaseAddress,
IN OUT PULONG LockSize,
IN ULONG LockType
)3

Parameters
ProcessHandle

A handle of a process object, representing the process for which the virtual memory
should be unlocked. The handle must grant PROCESS_VM_OPERATION access.

o

1996 Ch03 11/19/99 12:25 PM Page 89 (i:

Virtual Memory: ZwReadVirtualMemory 89

BaseAddress
Points to a variable that specifies the base address of the virtual memory to be
unlocked, and receives the size of virtual memory actually unlocked.

LockSize
Points to a variable that specifies the size, in bytes, of the virtual memory to unlock,
and receives the size of virtual memory actually unlocked.

LockType
A set of flags that describes the type of unlocking to be performed for the specified
region of pages. The permitted values are combinations of the flags:

LOCK_VM_IN_WSL 0x01 // Unlock page from working set list
LOCK_VM_IN_RAM 0x02 /1 Unlock page from physical memory

Return Value

Returns STATUS_SUCCESS or an error status, such as STATUS_PRIVILEGE_NOT_HELD,
STATUS_NOT_LOCKED, or STATUS_PROCESS_IS_TERMINATING.

Related Win32 Functions
VirtualUnlock.

Remarks
SeLockMemoryPrivilege is required to unlock pages from physical memory.

All of the pages that contain one or more bytes in the range from BaseAddress to
(BaseAddress+LockSize) are unlocked. They must all have been previously locked.

ZwReadVirtualMemory

ZwReadVirtualMemory reads virtual memory in the user mode address range of
another process.

NTSYSAPI
NTSTATUS
NTAPI
ZwReadVirtualMemory (
IN HANDLE ProcessHandle,
IN PVOID BaseAddress,
OUT PVOID Buffer,
IN ULONG BufferLength,
OUT PULONG ReturnLength OPTIONAL
)3

Parameters
ProcessHandle

A handle of a process object, representing the process from which the virtual memory
should be read. The handle must grant PROCESS_VM_READ access.

o

1996 Ch03 11/19/99 12:25 PM Page 90 (i:

90 Virtual Memory: ZwReadVirtualMemory

BaseAddress

The base address of the virtual memory to read.

Buffer
Points to a caller-allocated buffer or variable that receives the contents of the virtual
memory.

BufferLength
Specifies the size in bytes of Buffer and the number of bytes of virtual memory to
read.

ReturnLength
Optionally points to a variable that receives the number of bytes actually returned to
Buffer if the call was successful. If this information is not needed, ReturnLength may
be a null pointer.

Return Value

Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_VIOLATION or
STATUS_PROCESS_IS_TERMINATING

Related Win32 Functions

ReadProcessMemory.

Remarks

ReadProcessMemory exposes the full functionality of ZwReadVirtualMemory.

ZwWriteVirtualMemory

ZwWriteVirtualMemory writes virtual memory in the user mode address range of
another process.
NTSYSAPI
NTSTATUS
NTAPI
ZwWriteVirtualWemory (
IN HANDLE ProcessHandle,
IN PVOID BaseAddress,
IN PVOID Buffer,
IN ULONG BufferLength,
OUT PULONG ReturnLength OPTIONAL
)3

Parameters
ProcessHandle
A handle of a process object, representing the process to which the virtual memory

should be written. The handle must grant PROCESS_VM_WRITE access.

BaseAddress

The base address of the virtual memory to write.

o

1996 Ch03 11/19/99 12:25 PM Page 91 (i:

Virtual Memory: ZwProtectVirtualMemory 91

Buffer

Points to a caller-allocated bufter or variable that specifies the contents of the virtual
memory.

BufferLength
Specifies the size in bytes of Buffer and the number of bytes of virtual memory to
write.

ReturnLength
Optionally points to a variable that receives the number of bytes actually read from
Buffer if the call was successful. If this information is not needed, ReturnLength may
be a null pointer.

Return Value

Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_VIOLATION or
STATUS_PROCESS_IS_TERMINATING.

Related Win32 Functions

WriteProcessMemory.

Remarks

WriteProcessMemory exposes the full functionality of ZwWriteVirtualMemory.
WriteProcessMemory tries to modify the protection on the virtual memory to ensure
that write access is granted and flushes the instruction cache after the write (by calling
ZwFlushInstructionCache).

ZwProtectVirtualMemory

ZwProtectVirtualMemory changes the protection on virtual memory in the user mode
address range.

NTSYSAPI

NTSTATUS

NTAPI

ZwProtectVirtualMemory (
IN HANDLE ProcessHandle,
IN OUT PVOID *BaseAddress,
IN OUT PULONG ProtectSize,
IN ULONG NewProtect,
OUT PULONG OldProtect

)5
Parameters
ProcessHandle

A handle of a process object, representing the process for which the virtual memory
protection is to be changed. The handle must grant PROCESS_VM_OPERATION access.

o

1996 Ch03 11/19/99 12:25 PM Page 92 (i:

92 Virtual Memory: ZwProtectVirtualMemory

BaseAddress
Points to a variable that specifies the base address of the virtual memory to protect,
and receives the size of virtual memory actually protected.

ProtectSize
Points to a variable that specifies the size, in bytes, of the virtual memory to protect,
and receives the size of virtual memory actually protected.

NewProtect

The new access protection. Permitted values are drawn from the following list, possibly

combined with PAGE_GUARD or PAGE_NOCACHE.
PAGE_NOACCESS
PAGE_READONLY
PAGE_READWRITE
PAGE_WRITECOPY
PAGE_EXECUTE
PAGE_EXECUTE_READ
PAGE_EXECUTE_READWRITE
PAGE_EXECUTE_WRITECOPY

OldProtect

Points to a variable that receives the previous access protection of the first page in the
specified region of pages.

Return Value

Returns STATUS_SUCCESS or an error status, such as STATUS_NOT_COMMITTED or
STATUS_PROCESS_IS_TERMINATING

Related Win32 Functions

VirtualProtect, VirtualProtectEx.

Remarks

VirtualProtectEx exposes almost all of the functionality of
ZwProtectVirtualMemory.

ZwFlushVirtualMemory

ZwFlushVirtualMemory flushes virtual memory in the user mode address range that is
mapped to a file.

NTSYSAPI
NTSTATUS
NTAPI
ZwFlushVirtualMemory (
IN HANDLE ProcessHandle,
IN OUT PVOID *BaseAddress,
IN OUT PULONG FlushSize,
OUT PIO_STATUS_BLOCK IoStatusBlock
)5

o

1996 Ch03 11/19/99 12:25 PM Page 93 (i:

Virtual Memory: ZwAllocateUserPhysicalPages

Parameters

ProcessHandle
A handle of a process object, representing the process for which the virtual memory
should be flushed. The handle must grant PROCESS_VM_OPERATION access.

BaseAddress
Points to a variable that specifies the base address of the virtual memory to flush, and
receives the size of virtual memory actually flushed. The address should refer to a
region backed by a file data section.

FlushSize
Points to a variable that specifies the size, in bytes, of the virtual memory to flush, and
receives the size of virtual memory actually flushed. If the initial value of FlushSize is
zero, the virtual memory is flushed from the BaseAddress to the end of the section.

ToStatusBlock
Points to a variable that receives the status of the I/O operation (if any) needed to
flush the virtual memory to its backing file.

Return Value

Returns STATUS_SUCCESS or an error status, such as STATUS_NOT_MAPPED_DATA or
STATUS_PROCESS_IS_TERMINATING

Related Win32 Functions
FlushViewOfFile.

Remarks

None.

ZwAllocateUserPhysicalPages

ZwAllocateUserPhysicalPages allocates pages of physical memory.

NTSYSAPI
NTSTATUS
NTAPI
ZwAllocateUserPhysicalPages (
IN HANDLE ProcessHandle,
IN PULONG NumberOfPages,
OUT PULONG PageFrameNumbers
)3

Parameters
ProcessHandle

A handle of a process object, representing the process for which the pages of physical
memory should be allocated. The handle must grant PROCESS_VM_OPERATION access.

o

93

1996 Ch03 11/19/99 12:25 PM Page 94 (i:

94 Virtual Memory: ZwAllocateUserPhysicalPages

NumberOfPages

Points to a variable that specifies the number of pages of physical memory to allocate.

PageFrameNumbers
Points to a caller-allocated bufter or variable that receives the page frame numbers of
the allocated pages.

Return Value

Returns STATUS_SUCCESS or an error status, such as STATUS_PRIVILEGE_NOT_HELD or
STATUS_PROCESS_IS_TERMINATING

Related Win32 Functions
AllocateUserPhysicalPages.

Remarks
SeLockMemoryPrivilege is required to allocate pages of physical memory.

AllocateUserPhysicalPages exposes the full functionality of
ZwAllocateUserPhysicalPages.

AllocateUserPhysicalPages is part of the “Address Windowing Extensions” (AWE)
API, which allows applications to use up to 64GB of physical non-paged memory in a
32-bit virtual address space. On the Intel platform, the Physical Address Extension
(PAE) flag in the CR4 register is set (at boot time) to enable 36-bit physical addressing
if the system has more than 4GB of physical memory.

The routine ZwAllocateUserPhysicalPages is only present in Windows 2000.

ZwFreeUserPhysicalPages

ZwFreeUserPhysicalPages frees pages of physical memory.

NTSYSAPI

NTSTATUS

NTAPI

ZwFreeUserPhysicalPages (
IN HANDLE ProcessHandle,
IN OUT PULONG NumberOfPages,
IN PULONG PageFrameNumbers
)3

Parameters

ProcessHandle
A handle of a process object, representing the process for which the pages of physical
memory should be freed. The handle must grant PROCESS_VM_OPERATION access.

NumberOfPages
Points to a variable that specifies the number of pages of physical memory to free, and
receives the number of pages actually freed.

o

1996 Ch03 11/19/99 12:25 PM Page 95 (i:

Virtual Memory: ZwMapUserPhysicalPages

PageFrameNumbers
Points to a caller-allocated bufter or variable that contains the page frame numbers of
the pages to be freed.

Return Value

Returns STATUS_SUCCESS or an error status, such as STATUS_CONFLICTING_ADDRESSES
or STATUS_PROCESS_IS_TERMINATING

Related Win32 Functions

FreeUserPhysicalPages.

Remarks
FreeUserPhysicalPages exposes the full functionality of ZwFreeUserPhysicalPages.

The routine ZwFreeUserPhysicalPages is only present in Windows 2000.

ZwMapUserPhysicalPages

ZwMapUserPhysicalPages maps pages of physical memory into a physical memory
view.

NTSYSAPI

NTSTATUS

NTAPI

ZwMapUserPhysicalPages(
IN PVOID BaseAddress,
IN PULONG NumberOfPages,
IN PULONG PageFrameNumbers
)3

Parameters

BaseAddress
The address within a physical memory view at which to map the physical mem-
ory. The address is rounded down to the nearest page boundary if necessary. A physical
memory view is created by calling ZwAllocateVirtualMemory with an
AllocationType of MEM_PHYSICAL | MEM_RESERVE.

NumberOfPages

Points to a variable that specifies the number of pages of physical memory to map.

PageFrameNumbers
Points to a caller-allocated bufter or variable that contains the page frame numbers of
the pages to be mapped. If PageFrameNumbers is a null pointer, the physical memory
mapped at BaseAddresses is unmapped.

Return Value

Returns STATUS_SUCCESS or an error status, such as STATUS_CONFLICTING_ADDRESSES
or STATUS_PROCESS_IS_TERMINATING.

o

95

1996 Ch03 11/19/99 12:25 PM Page 96 (i:

96 Virtual Memory: ZwMapUserPhysicalPages

Related Win32 Functions
MapUserPhysicalPages.

Remarks
MapUserPhysicalPages exposes the full functionality of ZwMapUserPhysicalPages.
The routine ZwMapUserPhysicalPages is only present in Windows 2000.

The physical pages must have been previously allocated by
ZwAllocateUserPhysicalPages.

For unknown reasons, ZwMapUserPhysicalPages does not provide for specifying the
process for which the mapping is to be performed; this is in contrast to all the other
related routines, which do allow a process to be specified.

ZwMapUserPhysicalPagesScatter

ZwMapUserPhysicalPagesScatter maps pages of physical memory into a physical mem-
ory view.
NTSYSAPI
NTSTATUS
NTAPI
ZwMapUserPhysicalPagesScatter(
IN PVOID *BaseAddresses,
IN PULONG NumberOfPages,
IN PULONG PageFrameNumbers
)3

Parameters

BaseAddress
Points to a caller-allocated bufter or variable that contains an array of the virtual
addresses (within a physical memory view) at which to map the physical memory.
The virtual addresses are rounded down to the nearest page boundary if necessary.
A physical memory view is created by calling ZwAllocateVirtualMemory with an
AllocationType of MEM_PHYSICAL ; MEM_RESERVE.

NumberOfPages

Points to a variable that specifies the number of pages of physical memory to map.

PageFrameNumbers
Points to a caller-allocated bufter or variable that contains the page frame numbers of
the pages to be mapped. If PageFrameNumbers is a null pointer, the physical memory
mapped at BaseAddresses is unmapped.

Return Value

Returns STATUS_SUCCESS or an error status, such as STATUS_CONFLICTING_ADDRESSES
or STATUS_PROCESS_IS_TERMINATING.

o

1996 Ch03 11/19/99 12:25 PM Page 97 :i:

Virtual Memory: ZwGetWriteWatch 97

Related Win32 Functions
MapUserPhysicalPagesScatter.

Remarks

MapUserPhysicalPagesScatter exposes the full functionality of
ZwMapUserPhysicalPagesScatter.

The routine ZwMapUserPhysicalPagesScatter is only present in Windows 2000.

The physical pages must have been previously allocated by
ZwAllocateUserPhysicalPages.

ZwGetWriteWatch

ZwGetWriteWatch retrieves the addresses of pages that have been written to in a region
of virtual memory.
NTSYSAPI
NTSTATUS
NTAPI
ZwGetWriteWatch(
IN HANDLE ProcessHandle,
IN ULONG Flags,
IN PVOID BaseAddress,
IN ULONG RegionSize,
OUT PULONG Buffer,
IN OUT PULONG BufferEntries,
OUT PULONG Granularity
)3

Parameters

ProcessHandle
A handle of a process object, representing the process from which the virtual memory
write watch information should be retrieved. The handle must grant
PROCESS_VM_OPERATION access.

Flags
A bit array of flags. The defined values include:
WRITE_WATCH_RESET_FLAG 0x01 // Reset the write watch information

BaseAddress
The base address of the region of memory for which the write watch information is
to be retrieved.

RegionSize
The size, in bytes, of the region of memory for which the write watch information is
to be retrieved.

1996 Ch03 11/19/99 12:25 PM Page 98 $

98 Virtual Memory: ZwGetWriteWatch

Buffer
Points to a caller-allocated bufter or variable that receives an array of page addresses in
the region of memory that have been written to since the region was allocated or the
write watch information was reset.

BufferEntries
Points to a variable that specifies the maximum number of page addresses to return
and receives the actual number of page addresses returned.

Granularity
Points to a variable that receives the granularity, in bytes, of the write detection. This is
normally the size of a physical page.

Return Value
Returns STATUS_SUCCESS or an error status, such as STATUS_PROCESS_IS_TERMINATING,

STATUS_INVALID_PARAMETER_1, STATUS_INVALID PARAMETER_2
STATUS_INVALID_PARAMETER_3, or STATUS_INVALID_PARAMETER_5

Related Win32 Functions
GetWriteWatch.

Remarks
GetWriteWatch most of the functionality of ZwGetWriteWatch.

The routine ZwGetWriteWatch is only present in Windows 2000.

ZwResetWriteWatch

ZwResetWriteWatch resets the virtual memory write watch information for a region of
virtual memory.
NTSYSAPI
NTSTATUS
NTAPI
ZwResetWriteWatch(
IN HANDLE ProcessHandle,
IN PVOID BaseAddress,
IN ULONG RegionSize
)3

Parameters

ProcessHandle
A handle of a process object, representing the process for which the virtual
memory write watch information should be reset. The handle must grant
PROCESS_VM_OPERATION access.

BaseAddress

The base address of the region of memory for which the write watch information is
to be reset.

o

1996 Ch03 11/19/99 12:25 PM Page 99 $

Virtual Memory: ZwResetWriteWatch 99

RegionSize

The size, in bytes, of the region of memory for which the write watch information is

to be reset.

Return Value

Returns STATUS_SUCCESS or an error status, such as
STATUS_PROCESS_IS_TERMINATING, STATUS_INVALID_PARAMETER_1,
STATUS_INVALID_PARAMETER_2, or STATUS_INVALID_PARAMETER_3

Related Win32 Functions
ResetWriteWatch.

Remarks
ResetWriteWatch most of the functionality of ZwResetWriteWatch.

The routine ZwResetWriteWatch is only present in Windows 2000.

1996 Ch03 11/19/99 12:25 PM Page 100 $

1996 Ch04 11/19/99 12:26 PM Page 101 (i:

Sections

The system services described in this chapter create and manipulate section objects.
Section objects are objects that can be mapped into the virtual address space of a process.
The Win32 API refers to section objects as file-mapping objects.

ZwCreateSection

ZwCreateSection creates a section object.

NTSYSAPI
NTSTATUS
NTAPI
ZwCreateSection(
OUT PHANDLE SectionHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes,
IN PLARGE_INTEGER SectionSize OPTIONAL,
IN ULONG Protect,
IN ULONG Attributes,
IN HANDLE FileHandle

Parameters

SectionHandle

Points to a variable that will receive the section object handle if the call is successtul.

Desired Access
Specifies the type of access that the caller requires to the section object. This parame-
ter can be zero, or any combination of the following flags:

SECTION_QUERY Query access
SECTION_MAP_WRITE Can be written when mapped
SECTION_MAP_READ Can be read when mapped
SECTION_MAP_EXECUTE Can be executed when mapped
SECTION_EXTEND_SIZE Extend access
SECTION_ALL_ACCESS All of the preceding +

STANDARD_RIGHTS_REQUIRED

o

1996 Ch04 11/19/99 12:26 PM Page 102 (i:

102

Sections: ZwCreateSection

ObjectAttributes

Points to a structure that specifies the object’s attributes. 0BJ_OPENLINK is not a valid

attribute for a section object.

SectionSize

Optionally points to a variable that specifies the size, in bytes, of the section. If
FileHandle is zero, the size must be specified; otherwise, it can be defaulted from the
size of the file referred to by FileHandle.

Protect

The protection desired for the pages of the section when the section is mapped.
This parameter can take one of the following values:

PAGE_READONLY
PAGE_READWRITE
PAGE_WRITECOPY
PAGE_EXECUTE
PAGE_EXECUTE_READ
PAGE_EXECUTE_READWRITE
PAGE_EXECUTE_WRITECOPY

Attributes

The attributes for the section. This parameter be a combination of the following

values:

SEC_BASED 0x00200000 |/
SEC_NO_CHANGE 0x00400000 //
SEC_IMAGE 0x01000000 //
SEC_VLM 0x02000000 |/
SEC_RESERVE 0x04000000 //
SEC_COMMIT 0x08000000 //
SEC_NOCACHE ~ 0x10000000 //

FileHandle

Map section at same address in each process
Disable changes to protection of pages

Map section as an image

Map section in VLM region

Reserve without allocating pagefile storage
Commit pages; the default behavior

Mark pages as non-cacheable

Identifies the file from which to create the section object. The file must be opened
with an access mode compatible with the protection flags specified by the Protect
parameter. If FileHandle is zero, the function creates a section object of the specified

size backed by the paging file rather than by a named file in the file system.

Return Value

Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_INVALID FILE_FOR_SECTION, STATUS FILE_LOCK_ CONFLICT,
STATUS_MAPPED_FILE_SIZE_ZERO, STATUS_INVALID_PAGE_PROTECTION
STATUS_INVALID_ IMAGE_FORMAT, STATUS_INCOMPATIBLE_FILE_MAP
STATUS_OBJECT_NAME_EXISTS, or STATUS_OBJECT_NAME_COLLISION.

Related Win32 Functions
CreateFileMapping.

1996 Ch04 11/19/99 12:26 PM Page 103 $

Sections: ZwOpenSection 103

Remarks

CreateFileMapping exposes almost all of the functionality of ZwCreateSection. The
main missing features are the ability to specify the attributes SEC_BASED and
SEC_NO_CHANGE, and the access SECTION_EXTEND. It is also not possible to specify the
access SECTION_EXECUTE and the related PAGE_EXECUTE_Xxx protections.

SEC_VLM is only valid in Windows 2000 and is not implemented on the Intel platform.

ZwOpenSection

ZwOpenSection opens a section object.

NTSYSAPI
NTSTATUS
NTAPI
ZwOpenSection(
OUT PHANDLE SectionHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes
)5

Parameters

SectionHandle

Points to a variable that will receive the section object handle if the call is successtul.

Desired Access
The type of access that the caller requires to the section object. This parameter can be
zero, or any combination of the following flags:

SECTION_QUERY Query access
SECTION_MAP_WRITE Can be written when mapped
SECTION_MAP_READ Can be read when mapped
SECTION_MAP_EXECUTE Can be executed when mapped
SECTION_EXTEND_SIZE Extend access
SECTION_ALL_ACCESS All of the preceding +

STANDARD_RIGHTS_REQUIRED

ObjectAttributes
Points to a structure that specifies the object’s attributes. 0BJ_OPENLINK is not a valid
attribute for a section object.

Return Value

Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED or
STATUS_OBJECT_NAME_NOT_FOUND.

Related Win32 Functions
OpenFileMapping.

Remarks

ZwOpenSection is documented in the DDK.

o

1996 Ch04 11/19/99 12:26 PM Page 104 CF

104 Sections: ZwOpenSection

The DDK does not define all the access types listed above.
OpenFileMapping exposes almost all of the functionality of ZwOpenSection.

In addition to opening sections created by ZwCreateSection, ZwOpenSection can also
open the section named “\Device\PhysicalMemory,” which is backed by the physical
memory of the system.

ZwQuerySection

ZwQuerySection retrieves information about a section object.

NTSYSAPI
NTSTATUS
NTAPI
ZwQuerySection(
IN HANDLE SectionHandle,
IN SECTION_INFORMATION_CLASS SectionInformationClass,
OUT PVOID SectionInformation,
IN ULONG SectionInformationLength,
OUT PULONG ResultLength OPTIONAL
)3

Parameters

SectionHandle
A handle to a section object. The handle must grant SECTION_QUERY access.

SectionInformationClass
Specifies the type of section object information to be queried. The permitted values
are drawn from the enumeration SECTION_INFORMATION_CLASS, described in the
following section.

SectionInformation
Points to a caller-allocated bufter or variable that receives the requested section object
information.

SectionInformationLength
Specifies the size in bytes of SectionInformation, which the caller should set accord-
ing to the given SectionInformationClass.

ReturnLength
Optionally points to a variable that receives the number of bytes actually returned to
SectionInformation if the call was successful. If this information is not needed,
ReturnLength may be a null pointer.

Return Value

Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_INVALID_HANDLE, STATUS_INVALID_INFO_CLASS,
STATUS_INFO_LENGTH_MISMATCH, or STATUS_SECTION_NOT_IMAGE

o

1996 Ch04 11/19/99 12:26 PM Page 105 :F

Sections: SectionBasicInformation 105

Related Win32 Functions

None.

Remarks

None.

SECTION_INFORMATION_CLASS

typedef enum _SECTION_INFORMATION_CLASS {
SectionBasicInformation,
SectionImageInformation

} SECTION_INFORMATION_CLASS;

SectionBasicInformation

typedef struct _SECTION_BASIC_INFORMATION { // Information Class @
PVOID BaseAddress;
ULONG Attributes;
LARGE_INTEGER Size;

} SECTION_BASIC_INFORMATION, *PSECTION_BASIC_INFORMATION;

Members

BaseAddress
If the section is a based section, BaseAddress contains the base address of the
section; otherwise, it contains zero.

Attributes
A bit array of flags that specify properties of the section object. The possible flags are:

SEC_BASED 0x00200000 // Section should be mapped at same address in each
process

SEC_NO_CHANGE 0x00400000 // Changes to protection of section pages are
disabled

SEC_FILE 0x00800000 // Section is backed by a file

SEC_IMAGE 0x01000000 // Section is mapped as an image

SEC_VLM 0x02000000 // Section maps VLM

SEC_RESERVE 0x04000000 // Section pages are reserved

SEC_COMMIT 0x08000000 // Section pages are committed

SEC_NOCACHE 0x10000000 // Section pages are non-cacheable

Size
The size in bytes of the section.

Remarks

None.

1996 Ch04 11/19/99 12:26 PM Page 106 CF

106 Sections: Sectionlmagelnformation

SectionlmageInformation

typedef struct _SECTION_IMAGE_INFORMATION { // Information Class 1
PVOID EntryPoint;
ULONG Unknownit;
ULONG StackReserve;
ULONG StackCommit;
ULONG Subsystem;
USHORT MinorSubsystemVersion;
USHORT MajorSubsystemVersion;
ULONG Unknown2;
ULONG Characteristics;
USHORT ImageNumber;
BOOLEAN Executable;
UCHAR Unknown3;
ULONG Unknown4[3];
} SECTION_IMAGE_INFORMATION, *PSECTION_IMAGE_INFORMATION;

Members

EntryPoint
The entry point of the image.

Unknown1

Normally contains zero; interpretation unknown.

StackReserve
The default amount of stack to reserve when creating the initial thread to execute
this image section. The value is copied from the image header (IMAGE_OPTIONAL_
HEADER.SizeOfStackReserve).

StackCommit
The default amount of stack to commit when creating the initial thread to execute
this image section. The value is copied from the image header (IMAGE_OPTIONAL_
HEADER.SizeOfStackCommit).

Subsystem
The subsystem under which the process created from this image section should run.
The value is copied from the image header (IMAGE_OPTIONAL_HEADER.Subsystem).

MinorSubsystem Version
The minor version number of the subsystem for which the image was built. The value
is copied from the image header (IMAGE_OPTIONAL_HEADER.MinorSubsystemVersion).

MajorSubsystem Version
The major version number of the subsystem for which the image was built. The value

is copied from the image header (IMAGE_OPTIONAL_HEADER.MinorSubsystemversion).

Unknown?2

Normally contains zero; interpretation unknown.

o

1996 Ch04 11/19/99 12:26 PM Page 107 (i:

Sections: ZwExtendSection 107

Characteristics
A bit array of flags that specify properties of the image file. The value is copied from
the image header (IMAGE_FILE_HEADER.Characteristics).

ImageNumber
The type of target machine on which the image will run. The value is copied from the
image header (IMAGE_FILE_HEADER.Machine).

Executable
A boolean indicating whether the image file contains any executable code. The value is
derived from the image header (IMAGE_OPTIONAL_HEADER.SizeOfCode != 0).

Unknown3

Normally contains zero; interpretation unknown.

Unknown4

Normally contains zero; interpretation unknown.

Remarks

The information class SectionImageInformation is valid only for image sections
(sections for which SEC_IMAGE was specified as an attribute to ZwCreateSection).

ZwExtendSection

ZwExtendSection extends a file backed data section.
NTSYSAPI
NTSTATUS
NTAPI
ZwExtendSection(
IN HANDLE SectionHandle,
IN PLARGE_INTEGER SectionSize
)3

Parameters

SectionHandle
A handle to a section object. The handle must grant SECTION_EXTEND_SIZE access.

SectionSize
Points to a variable that contains the new size, in bytes, of the section.

Return Value

Returns STATUS_SUCCESS or an error status, such as STATUS_INVALID_ HANDLE,
STATUS_ACCESS_DENIED, or STATUS_SECTION_NOT_EXTENDED.

Related Win32 Functions

None.

1996 Ch04 11/19/99 12:26 PM Page 108 CF

108

Sections: ZwMapViewOfSection

Remarks

ZwExtendSection only extends data sections backed by a file.

ZwMapViewOfSection

ZwMapViewOfSection maps a view of a section to a range of virtual addresses.

NTSYSAPI
NTSTATUS
NTAPI
ZwMapViewOfSection(
IN HANDLE SectionHandle,
IN HANDLE ProcessHandle,
IN OUT PVOID *BaseAddress,
IN ULONG ZeroBits,
IN ULONG CommitSize,
IN OUT PLARGE_INTEGER SectionOffset OPTIONAL,
IN OUT PULONG ViewSize,
IN SECTION_INHERIT InheritDisposition,
IN ULONG AllocationType,
IN ULONG Protect
)5

Parameters

SectionHandle
A handle to the section object that is to be mapped. The handle must grant access
compatible with the Protect parameter, which specifies the protection on the pages
that map the section.

ProcessHandle

A handle of an process object, representing the process for which the view should be
mapped. The handle must grant PROCESS_VM_OPERATION access.

BaseAddress
Points to a variable that will receive the base address of the view. If the initial value of
this variable is not null, the view is allocated starting at the specified address, possibly
rounded down.

ZeroBits
Specifies the number of high-order address bits that must be zero in the base address
of the section view. The value of this parameter must be less than 21 and is used only
when the operating system determines where to allocate the view, such as when
BaseAddress is null.

CommitSize
Specifies the size, in bytes, of the initially committed region of the view. CommitSize is
only meaningful for page-file backed sections; file backed sections, both data and
image, are effectively committed at section creation time. This value is rounded up to
the next page size boundary.

o

1996 Ch04 11/19/99 12:26 PM Page 109 (i:

Sections: ZwMapViewOfSection 109

SectionOffset
Optionally points to a variable that contains the offset, in bytes, from the beginning of
the section to the view, possibly rounded down.

ViewSize
Points to a variable that will receive the actual size, in bytes, of the view. If the initial
value of this variable is zero, a view of the section will be mapped starting at the speci-
fied section offset and continuing to the end of the section. Otherwise, the initial value
of this parameter specifies the size of the view, in bytes, and is rounded up to the next
page size boundary.

InheritDispostion
Specifies how the view is to be shared by a child process created with a create process
operation. Permitted values are drawn from the enumeration SECTION_INHERIT.

typedef enum _SECTION_INHERIT {
ViewShare = 1,
ViewUnmap = 2

} SECTION_INHERIT;

AllocationType
A set of flags that describes the type of allocation to be performed for the specified
region of pages. The permitted values include:

AT_EXTENDABLE_FILE 0x00002000 // Allow view to exceed section size

MEM_TOP_DOWN 0x00100000 // Allocate at highest possible address
SEC_NO_CHANGE 0x00400000 // Disable changes to protection of pages
AT_RESERVED 0x20000000 // Valid but ignored

AT_ROUND_TO_PAGE 0x40000000 // Adjust address and size if necessary

Protect
Specifies the protection for the region of initially committed pages. The protection
must be compatible with the protection specified when the section was created. (The
protection can be more but not less restrictive.)

Return Value

Returns STATUS_SUCCESS, STATUS_IMAGE_NOT_AT_BASE,
STATUS_IMAGE_MACHINE_TYPE_MISMATCH or an error status, such as
STATUS_INVALID_HANDLE, STATUS_ACCESS_DENIED, STATUS_CONFLICTING_ADDRESSES,
STATUS_INVALID_VIEW_SIZE, STATUS_MAPPED_ALIGNMENT, or STATUS_PROCESS_IS_
TERMINATING.

Related Win32 Functions
MapViewOfFile, MapViewOfFileEx.

Remarks
ZwMapView0fSection is documented in the DDK.
When mapping “\Device\PhysicalMemory”, the BaseAddress and SectionOffset are
rounded down to the next page boundary. When mapping pagefile and data sections,
BaseAddress and SectionOffset must be aligned with the system’s allocation granu-
larity unless the AllocationType flags include AT_ROUND_TO_PAGE. In which case, they
are rounded down to the next page boundary.

o

1996 Ch04 11/19/99 12:26 PM Page 110 :F

110

Sections: ZwMapViewOfSection

The AllocationType flag AT_EXTENDABLE_FILE is only present in Windows 2000 and
is only valid for data sections backed by a file mapped with PAGE_READWRITE or
PAGE_EXECUTE_READWRITE protection. Changes to data within the view but beyond the
size of the backing file are not permanently stored unless the section (and implicitly
the backing file) is extended with ZwExtendSection to encompass the changes.

ZwUnmapViewOfSection

ZwUnmapViewOfSection unmaps a view of a section.

NTSYSAPI

NTSTATUS

NTAPI

ZwUnmapViewOfSection(
IN HANDLE ProcessHandle,
IN PVOID BaseAddress

)5
Parameters

ProcessHandle

A handle of an process object, representing the process for which the view should be
unmapped. The handle must grant PROCESS_VM_OPERATION access.

BaseAddress
The base address of the view that is to be unmapped.

Return Value

Returns STATUS_SUCCESS or an error status, such as STATUS_NOT_MAPPED_VIEW, or
STATUS_PROCESS_IS_TERMINATING

Related Win32 Functions
UnmapViewOfFile.

Remarks

ZwUnmapViewOfSection is documented in the DDK.

ZwAreMappedFilesTheSame

ZwAreMappedFilesTheSame tests whether two pointers refer to image sections backed
by the same file.

NTSYSAPI

NTSTATUS

NTAPI

ZwAreMappedFilesTheSame (
IN PVOID Addressi,
IN PVOID Address2
)3

1996 Ch04 11/19/99 12:26 PM Page 111 $

Sections: ZwAreMappedFilesTheSame 111

Parameters

Address1

A virtual address mapped to an image section.

Address2

A virtual address mapped to an image section.

Return Value

Returns STATUS_SUCCESS or an error status, such as STATUS_INVALID_ADDRESS,
STATUS_CONFLICTING_ADDRESSES, or STATUS_NOT_SAME_DEVICE.

Related Win32 Functions

None.

Remarks
The routine ZwAreMappedFilesTheSame is only present in Windows 2000.

If the two pointers refer to image sections backed by the same file then
ZwAreMappedFilesTheSame returns STATUS_SUCCESS; otherwise, it returns an error status.

1996 Ch04 11/19/99 12:26 PM Page 112 $

1996 Ch05 11.24.99 09:53 Page 113 $

Threads

The system services described in this chapter create and manipulate thread objects.

ZwCreateThread

ZwCreateThread creates a thread in a process.

NTSYSAPI
NTSTATUS
NTAPI
ZwCreateThread(
OUT PHANDLE ThreadHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes,
IN HANDLE ProcessHandle,
OUT PCLIENT_ID ClientId,
IN PCONTEXT ThreadContext,
IN PUSER_STACK UserStack,
IN BOOLEAN CreateSuspended
)5

Parameters

ThreadHandle

Points to a variable that will receive the thread object handle if the call is successful.

Desired Access
Specifies the type of access that the caller requires to the thread object. This parameter
can be zero or any combination of the following flags:

THREAD_TERMINATE Terminate thread
THREAD_SUSPEND_RESUME Suspend or resume thread
THREAD_ALERT Alert thread
THREAD_GET_CONTEXT Get thread context
THREAD_SET_CONTEXT Set thread context
THREAD_SET_INFORMATION Set thread information
THREAD_QUERY_INFORMATION Get thread information
THREAD_SET_THREAD_TOKEN Set thread token
THREAD_IMPERSONATE Allow thread to impersonate
THREAD_DIRECT_IMPERSONATION Allow thread token to be impersonated
THREAD_ALL_ACCESS All of the preceding +

STANDARD_RIGHTS_ALL

e

1996 Ch05 11.24.99 09:53 Page 114 $

114

Threads: ZwCreateThread

ObjectAttributes
Points to a structure that specifies the object’s attributes. 0BJ_PERMANENT,
OBJ_EXCLUSIVE and OBJ_OPENIF are not valid attributes for a thread object.

ProcessHandle
A handle to the process in which the thread is to be created. The handle must
grant PROCESS_CREATE_THREAD access.

Clientld
Points to a variable that will receive the thread and process identifiers if the call is suc-
cessful.

Thread Context
Points to a structure that specifies the initial values of the processor registers for the

thread.

UserStack

Points to a structure that specifies the user mode stack of the thread.

CreateSuspended
A boolean specifying whether the thread should be created suspended or should be
immediately allowed to begin execution.

Return Value

Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_INVALID_ HANDLE, or STATUS_PROCESS_ IS TERMINATING

Related Win32 Functions

CreateThread, CreateRemoteThread.

Remarks

Practical examples of creating a thread using ZwCreateThread appear in Chapter 6.1,
“Processes,” in Examples 6.1 and 6.2.

The USER_STACK structure is defined as follows:

typedef struct _USER_STACK {
PVOID FixedStackBase;
PVOID FixedStackLimit;
PVOID ExpandableStackBase;
PVOID ExpandableStackLimit;
PVOID ExpandableStackBottom;
} USER_STACK, *PUSER_STACK;

Members

FixedStackBase

A pointer to the base of a fixed-size stack.

1996 Ch05 11.24.99 09:53 Page 115 $

Threads: ZwOpenThread

FixedStack Limit
A pointer to the limit (that is, top) of a fixed-size stack.

ExpandableStack Base

A pointer to the base of the committed memory of an expandable stack.

ExpandableStackLimit

A pointer to the limit (that is, top) of the committed memory of an expandable stack.

ExpandableStack Bottom

A pointer to the bottom of the reserved memory of an expandable stack.

Remarks

If FixedStackBase or FixedStackLimit are not null, they are used to delimit the ini-
tial stack of the thread; otherwise ExpandableStackBase and ExpandableStackLimit
are used. Example 6.2 in Chapter 6 demonstrates how to initialize this structure.

ZwOpenThread

ZwOpenThread opens a thread object.

NTSYSAPI
NTSTATUS
NTAPI
ZwOpenThread(
OUT PHANDLE ThreadHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes,
IN PCLIENT_ID ClientId
)

Parameters

ThreadHandle

Points to a variable that will receive the thread object handle if the call is successful.

Desired Access
Specifies the type of access that the caller requires to the thread object. This parameter
can be zero, or any combination of the following flags:

THREAD_TERMINATE Terminate thread
THREAD_SUSPEND_RESUME Suspend or resume thread
THREAD_ALERT Alert thread
THREAD_GET_CONTEXT Get thread context
THREAD_SET_CONTEXT Set thread context
THREAD_SET_INFORMATION Set thread information
THREAD_QUERY_INFORMATION Get thread information
THREAD_SET_THREAD_TOKEN Set thread token
THREAD_IMPERSONATE Allow thread to impersonate
THREAD_DIRECT_IMPERSONATION Allow thread token to be impersonated
THREAD_ALL_ACCESS All of the preceding +

STANDARD_RIGHTS_ALL

e

115

1996 Ch05 11.24.99 09:53 Page 116 $

116 Threads: ZwOpenThread

ObjectAttributes
Points to a structure that specifies the object’s attributes. 0BJ_PERMANENT,
OBJ_EXCLUSIVE and OBJ_OPENIF are not valid attributes for a thread object.

Clientld
Optionally points to a structure that contains optionally the process identifier
(UniqueProcess) and the identifier of a thread in the process (UniqueThread).

Return Value

Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_OBJECT_NAME_NOT_FOUND, STATUS_INVALID_PARAMETER_MIX, or
STATUS_INVALID_PARAMETER

Related Win32 Functions
OpenThread.

Remarks
Thread objects can be given names in the same way as other objects.

The thread to be opened is identified either by ObjectAttributes, ObjectName, or
ClientlId;it is an error to specify both.

If ClientId.UniqueProcess is not zero, it must be the identifier of the process in
which the thread resides.

If the caller has SeDebugPrivilege, the check of whether the caller is granted access
to the thread by its ACL is bypassed, (This behavior can be disabled under Windows
NT 4.0 by setting the NtGlobalFlag FLG_IGNORE_DEBUG_PRIV.)

ZwTerminateThread

ZwTerminateThread terminates a thread.

NTSYSAPI

NTSTATUS

NTAPI

ZwTerminateThread(
IN HANDLE ThreadHandle OPTIONAL,
IN NTSTATUS ExitStatus
)5

Parameters

ThreadHandle
A handle to a thread object. The handle must grant THREAD_TERMINATE access. If this
value is zero, the current thread is terminated.

ExitStatus
Specifies the exit status for the thread.

1996 Ch05 11.24.99 09:53 Page 117 $

Threads: ZwQueryInformationThread

Return Value

Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED or
STATUS_CANT_TERMINATE_SELF.

Related Win32 Functions

TerminateThread, ExitThread.

Remarks
TerminateThread exposes the full functionality of ZwTerminateThread.

The current thread can be terminated by calling ZwTerminateThread with a thread
handle of either zero or NtCurrentThread(). If the thread is the last thread in the
process and ThreadHandle is zero, the error status STATUS_CANT_TERMINATE_SELF is
returned.

ZwTerminateThread does not deallocate the initial stack of the thread because
ZwCreateThread did not allocate it. The initial stack can be explicitly de-allocated (by
calling ZwFreeVirtualMemory) after the thread has been terminated (when the thread
object becomes signalled).

ZwQueryInformationThread

ZwQueryInformationThread retrieves information about a thread object.

NTSYSAPI
NTSTATUS
NTAPI
ZwQueryInformationThread(
IN HANDLE ThreadHandle,
IN THREADINFOCLASS ThreadInformationClass,
OUT PVOID ThreadInformation,
IN ULONG ThreadInformationLength,
OUT PULONG ReturnLength OPTIONAL
)3

Parameters

ThreadHandle
A handle to a thread object. The handle must grant THREAD_QUERY_INFORMATION
access.

ThreadInformationClass
Specifies the type of thread information to be queried. The permitted values are drawn
from the enumeration THREADINFOCLASS, described in the section
“THREADINFOCLASS”.

ThreadInformation
Points to a caller-allocated bufter or variable that receives the requested thread
information.

117

1996 Ch05 11.24.99 09:53 Page 118 $

118 Threads: ZwQuerylnformationThread

ThreadInformationLength
Specifies the size in bytes of ThreadInformation, which the caller should set according
to the given ThreadInformationClass.

ReturnLength
Optionally points to a variable, which receives the number of bytes actually returned
to ThreadInformation if the call was successful. If this information is not needed,
ReturnLength may be a null pointer.

Return Value

Returns STATUS_SUCCESS or an error status, such as STATUS_ACCESS_DENIED,
STATUS_INVALID_HANDLE, STATUS_INVALID_INFO_CLASS, or
STATUS_INFO_LENGTH_MISMATCH.

Related Win32 Functions

GetThreadPriority, GetThreadPriorityBoost, GetThreadTimes, GetExitCodeThread,
GetThreadSelectorEntry.

Remarks

None.

ZwSetInformationThread

ZwSetInformationThread sets information affecting a thread object.

NTSYSAPI
NTSTATUS
NTAPI
ZwSetInformationThread(
IN HANDLE ThreadHandle,
IN T