laforge
/
openbts-osmo
Archived
1
0
Fork 0
This repository has been archived on 2022-03-30. You can view files and clone it, but cannot push or open issues or pull requests.
openbts-osmo/public-trunk/Transceiver52M/Transceiver.cpp

805 lines
22 KiB
C++

/*
* Copyright 2008, 2009, 2010 Free Software Foundation, Inc.
*
* This software is distributed under the terms of the GNU Affero Public License.
* See the COPYING file in the main directory for details.
*
* This use of this software may be subject to additional restrictions.
* See the LEGAL file in the main directory for details.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
Compilation switches
TRANSMIT_LOGGING write every burst on the given slot to a log
*/
#include <stdio.h>
#include "Transceiver.h"
#include <Logger.h>
Transceiver::Transceiver(int wBasePort,
const char *TRXAddress,
int wSamplesPerSymbol,
GSM::Time wTransmitLatency,
RadioInterface *wRadioInterface)
:mDataSocket(wBasePort+2,TRXAddress,wBasePort+102),
mControlSocket(wBasePort+1,TRXAddress,wBasePort+101),
mClockSocket(wBasePort,TRXAddress,wBasePort+100)
{
//GSM::Time startTime(0,0);
//GSM::Time startTime(gHyperframe/2 - 4*216*60,0);
GSM::Time startTime(random() % gHyperframe,0);
mFIFOServiceLoopThread = new Thread(32768); ///< thread to push bursts into transmit FIFO
mControlServiceLoopThread = new Thread(32768); ///< thread to process control messages from GSM core
mTransmitPriorityQueueServiceLoopThread = new Thread(32768);///< thread to process transmit bursts from GSM core
mSamplesPerSymbol = wSamplesPerSymbol;
mRadioInterface = wRadioInterface;
mTransmitLatency = wTransmitLatency;
mTransmitDeadlineClock = startTime;
mLastClockUpdateTime = startTime;
mLatencyUpdateTime = startTime;
mRadioInterface->getClock()->set(startTime);
mMaxExpectedDelay = 0;
// generate pulse and setup up signal processing library
gsmPulse = generateGSMPulse(2,mSamplesPerSymbol);
LOG(DEBUG) << "gsmPulse: " << *gsmPulse;
sigProcLibSetup(mSamplesPerSymbol);
txFullScale = mRadioInterface->fullScaleInputValue();
rxFullScale = mRadioInterface->fullScaleOutputValue();
// initialize filler tables with dummy bursts, initialize other per-timeslot variables
for (int i = 0; i < 8; i++) {
signalVector* modBurst = modulateBurst(gDummyBurst,*gsmPulse,
8 + (i % 4 == 0),
mSamplesPerSymbol);
scaleVector(*modBurst,txFullScale);
fillerModulus[i]=26;
for (int j = 0; j < 102; j++) {
fillerTable[j][i] = new signalVector(*modBurst);
}
delete modBurst;
mChanType[i] = NONE;
channelResponse[i] = NULL;
DFEForward[i] = NULL;
DFEFeedback[i] = NULL;
channelEstimateTime[i] = startTime;
}
mOn = false;
mTxFreq = 0.0;
mRxFreq = 0.0;
mPower = -10;
mEnergyThreshold = 5.0; // based on empirical data
prevFalseDetectionTime = startTime;
}
Transceiver::~Transceiver()
{
delete gsmPulse;
sigProcLibDestroy();
mTransmitPriorityQueue.clear();
}
void Transceiver::addRadioVector(BitVector &burst,
int RSSI,
GSM::Time &wTime)
{
// modulate and stick into queue
signalVector* modBurst = modulateBurst(burst,*gsmPulse,
8 + (wTime.TN() % 4 == 0),
mSamplesPerSymbol);
scaleVector(*modBurst,txFullScale * pow(10,-RSSI/10));
radioVector *newVec = new radioVector(*modBurst,wTime);
mTransmitPriorityQueue.write(newVec);
delete modBurst;
}
#ifdef TRANSMIT_LOGGING
void Transceiver::unModulateVector(signalVector wVector)
{
SoftVector *burst = demodulateBurst(wVector,
*gsmPulse,
mSamplesPerSymbol,
1.0,0.0);
LOG(DEEPDEBUG) << "LOGGED BURST: " << *burst;
/*
unsigned char burstStr[gSlotLen+1];
SoftVector::iterator burstItr = burst->begin();
for (int i = 0; i < gSlotLen; i++) {
// FIXME: Demod bits are inverted!
burstStr[i] = (unsigned char) ((*burstItr++)*255.0);
}
burstStr[gSlotLen]='\0';
LOG(DEEPDEBUG) << "LOGGED BURST: " << burstStr;
*/
delete burst;
}
#endif
void Transceiver::pushRadioVector(GSM::Time &nowTime)
{
// dump stale bursts, if any
while (radioVector* staleBurst = mTransmitPriorityQueue.getStaleBurst(nowTime)) {
// Even if the burst is stale, put it in the fillter table.
// (It might be an idle pattern.)
LOG(NOTICE) << "dumping STALE burst in TRX->USRP interface";
const GSM::Time& nextTime = staleBurst->getTime();
int TN = nextTime.TN();
int modFN = nextTime.FN() % fillerModulus[TN];
delete fillerTable[modFN][TN];
fillerTable[modFN][TN] = staleBurst;
}
int TN = nowTime.TN();
int modFN = nowTime.FN() % fillerModulus[nowTime.TN()];
// if queue contains data at the desired timestamp, stick it into FIFO
if (radioVector *next = (radioVector*) mTransmitPriorityQueue.getCurrentBurst(nowTime)) {
LOG(DEBUG) << "transmitFIFO: wrote burst " << next << " at time: " << nowTime;
delete fillerTable[modFN][TN];
fillerTable[modFN][TN] = new signalVector(*(next));
mRadioInterface->driveTransmitRadio(*(next),(mChanType[TN]==NONE)); //fillerTable[modFN][TN]));
delete next;
#ifdef TRANSMIT_LOGGING
if (nowTime.TN()==TRANSMIT_LOGGING) {
unModulateVector(*(fillerTable[modFN][TN]));
}
#endif
return;
}
// otherwise, pull filler data, and push to radio FIFO
mRadioInterface->driveTransmitRadio(*(fillerTable[modFN][TN]),(mChanType[TN]==NONE));
#ifdef TRANSMIT_LOGGING
if (nowTime.TN()==TRANSMIT_LOGGING)
unModulateVector(*fillerTable[modFN][TN]);
#endif
}
void Transceiver::setModulus(int timeslot)
{
switch (mChanType[timeslot]) {
case NONE:
case I:
case II:
case III:
case FILL:
fillerModulus[timeslot] = 26;
break;
case IV:
case VI:
case V:
fillerModulus[timeslot] = 51;
break;
//case V:
case VII:
fillerModulus[timeslot] = 102;
break;
default:
break;
}
}
Transceiver::CorrType Transceiver::expectedCorrType(GSM::Time currTime)
{
unsigned burstTN = currTime.TN();
unsigned burstFN = currTime.FN();
switch (mChanType[burstTN]) {
case NONE:
return OFF;
break;
case FILL:
return IDLE;
break;
case I:
return TSC;
/*if (burstFN % 26 == 25)
return IDLE;
else
return TSC;*/
break;
case II:
if (burstFN % 2 == 1)
return IDLE;
else
return TSC;
break;
case III:
return TSC;
break;
case IV:
case VI:
return RACH;
break;
case V: {
int mod51 = burstFN % 51;
if ((mod51 <= 36) && (mod51 >= 14))
return RACH;
else if ((mod51 == 4) || (mod51 == 5))
return RACH;
else if ((mod51 == 45) || (mod51 == 46))
return RACH;
else
return TSC;
break;
}
case VII:
if ((burstFN % 51 <= 14) && (burstFN % 51 >= 12))
return IDLE;
else
return TSC;
break;
case LOOPBACK:
if ((burstFN % 51 <= 50) && (burstFN % 51 >=48))
return IDLE;
else
return TSC;
break;
default:
return OFF;
break;
}
}
SoftVector *Transceiver::pullRadioVector(GSM::Time &wTime,
int &RSSI,
int &timingOffset)
{
bool needDFE = (mMaxExpectedDelay > 1);
radioVector *rxBurst = (radioVector *) mReceiveFIFO->get();
if (!rxBurst) return NULL;
LOG(DEBUG) << "receiveFIFO: read radio vector at time: " << rxBurst->getTime() << ", new size: " << mReceiveFIFO->size();
int timeslot = rxBurst->getTime().TN();
CorrType corrType = expectedCorrType(rxBurst->getTime());
if ((corrType==OFF) || (corrType==IDLE)) {
delete rxBurst;
return NULL;
}
// check to see if received burst has sufficient
signalVector *vectorBurst = rxBurst;
complex amplitude = 0.0;
float TOA = 0.0;
float avgPwr = 0.0;
if (!energyDetect(*vectorBurst,20*mSamplesPerSymbol,mEnergyThreshold,&avgPwr)) {
LOG(DEBUG) << "Estimated Energy: " << sqrt(avgPwr) << ", at time " << rxBurst->getTime();
double framesElapsed = rxBurst->getTime()-prevFalseDetectionTime;
if (framesElapsed > 50) { // if we haven't had any false detections for a while, lower threshold
mEnergyThreshold -= 10.0/10.0;
if (mEnergyThreshold < 0.0)
mEnergyThreshold = 0.0;
prevFalseDetectionTime = rxBurst->getTime();
}
delete rxBurst;
return NULL;
}
LOG(DEBUG) << "Estimated Energy: " << sqrt(avgPwr) << ", at time " << rxBurst->getTime();
// run the proper correlator
bool success = false;
if (corrType==TSC) {
LOG(DEBUG) << "looking for TSC at time: " << rxBurst->getTime();
signalVector *channelResp;
double framesElapsed = rxBurst->getTime()-channelEstimateTime[timeslot];
bool estimateChannel = false;
if ((framesElapsed > 50) || (channelResponse[timeslot]==NULL)) {
if (channelResponse[timeslot]) delete channelResponse[timeslot];
if (DFEForward[timeslot]) delete DFEForward[timeslot];
if (DFEFeedback[timeslot]) delete DFEFeedback[timeslot];
channelResponse[timeslot] = NULL;
DFEForward[timeslot] = NULL;
DFEFeedback[timeslot] = NULL;
estimateChannel = true;
}
if (!needDFE) estimateChannel = false;
float chanOffset;
success = analyzeTrafficBurst(*vectorBurst,
mTSC,
3.0,
mSamplesPerSymbol,
&amplitude,
&TOA,
mMaxExpectedDelay,
estimateChannel,
&channelResp,
&chanOffset);
if (success) {
LOG(DEBUG) << "FOUND TSC!!!!!! " << amplitude << " " << TOA;
mEnergyThreshold -= 1.0F/10.0F;
if (mEnergyThreshold < 0.0) mEnergyThreshold = 0.0;
SNRestimate[timeslot] = amplitude.norm2()/(mEnergyThreshold*mEnergyThreshold+1.0); // this is not highly accurate
if (estimateChannel) {
LOG(DEBUG) << "estimating channel...";
channelResponse[timeslot] = channelResp;
chanRespOffset[timeslot] = chanOffset;
chanRespAmplitude[timeslot] = amplitude;
scaleVector(*channelResp, complex(1.0,0.0)/amplitude);
designDFE(*channelResp, SNRestimate[timeslot], 7, &DFEForward[timeslot], &DFEFeedback[timeslot]);
channelEstimateTime[timeslot] = rxBurst->getTime();
LOG(DEBUG) << "SNR: " << SNRestimate[timeslot] << ", DFE forward: " << *DFEForward[timeslot] << ", DFE backward: " << *DFEFeedback[timeslot];
}
}
else {
double framesElapsed = rxBurst->getTime()-prevFalseDetectionTime;
LOG(DEBUG) << "wTime: " << rxBurst->getTime() << ", pTime: " << prevFalseDetectionTime << ", fElapsed: " << framesElapsed;
mEnergyThreshold += 10.0F/10.0F*exp(-framesElapsed);
prevFalseDetectionTime = rxBurst->getTime();
channelResponse[timeslot] = NULL;
}
}
else {
// RACH burst
success = detectRACHBurst(*vectorBurst,
5.0, // detection threshold
mSamplesPerSymbol,
&amplitude,
&TOA);
if (success) {
LOG(DEBUG) << "FOUND RACH!!!!!! " << amplitude << " " << TOA;
mEnergyThreshold -= (1.0F/10.0F);
if (mEnergyThreshold < 0.0) mEnergyThreshold = 0.0;
channelResponse[timeslot] = NULL;
}
else {
double framesElapsed = rxBurst->getTime()-prevFalseDetectionTime;
mEnergyThreshold += (1.0F/10.0F)*exp(-framesElapsed);
prevFalseDetectionTime = rxBurst->getTime();
}
}
LOG(DEBUG) << "energy Threshold = " << mEnergyThreshold;
// demodulate burst
SoftVector *burst = NULL;
if ((rxBurst) && (success)) {
if ((corrType==RACH) || (!needDFE)) {
burst = demodulateBurst(*vectorBurst,
*gsmPulse,
mSamplesPerSymbol,
amplitude,TOA);
}
else { // TSC
scaleVector(*vectorBurst,complex(1.0,0.0)/amplitude);
burst = equalizeBurst(*vectorBurst,
TOA-chanRespOffset[timeslot],
mSamplesPerSymbol,
*DFEForward[timeslot],
*DFEFeedback[timeslot]);
}
wTime = rxBurst->getTime();
RSSI = (int) floor(20.0*log10(rxFullScale/amplitude.abs()));
LOG(DEBUG) << "RSSI: " << RSSI;
timingOffset = (int) round(TOA*256.0/mSamplesPerSymbol);
}
//if (burst) LOG(DEEPDEBUG) << "burst: " << *burst << '\n';
delete rxBurst;
return burst;
}
void Transceiver::start()
{
mControlServiceLoopThread->start((void * (*)(void*))ControlServiceLoopAdapter,(void*) this);
}
void Transceiver::reset()
{
mTransmitPriorityQueue.clear();
//mTransmitFIFO->clear();
//mReceiveFIFO->clear();
}
void Transceiver::driveControl()
{
int MAX_PACKET_LENGTH = 100;
// check control socket
char buffer[MAX_PACKET_LENGTH];
int msgLen = -1;
buffer[0] = '\0';
msgLen = mControlSocket.read(buffer);
if (msgLen < 1) {
return;
}
char cmdcheck[4];
char command[MAX_PACKET_LENGTH];
char response[MAX_PACKET_LENGTH];
sscanf(buffer,"%3s %s",cmdcheck,command);
writeClockInterface();
if (strcmp(cmdcheck,"CMD")!=0) {
LOG(WARN) << "bogus message on control interface";
return;
}
LOG(INFO) << "command is " << buffer;
if (strcmp(command,"POWEROFF")==0) {
// turn off transmitter/demod
sprintf(response,"RSP POWEROFF 0");
}
else if (strcmp(command,"POWERON")==0) {
// turn on transmitter/demod
if (!mTxFreq || !mRxFreq)
sprintf(response,"RSP POWERON 1");
else {
sprintf(response,"RSP POWERON 0");
if (!mOn) {
// Prepare for thread start
mPower = -20;
mRadioInterface->start();
generateRACHSequence(*gsmPulse,mSamplesPerSymbol);
// Start radio interface threads.
mFIFOServiceLoopThread->start((void * (*)(void*))FIFOServiceLoopAdapter,(void*) this);
mTransmitPriorityQueueServiceLoopThread->start((void * (*)(void*))TransmitPriorityQueueServiceLoopAdapter,(void*) this);
writeClockInterface();
mOn = true;
}
}
}
else if (strcmp(command,"SETMAXDLY")==0) {
//set expected maximum time-of-arrival
int maxDelay;
sscanf(buffer,"%3s %s %d",cmdcheck,command,&maxDelay);
mMaxExpectedDelay = maxDelay; // 1 GSM symbol is approx. 1 km
sprintf(response,"RSP SETMAXDLY 0 %d",maxDelay);
}
else if (strcmp(command,"SETRXGAIN")==0) {
//set expected maximum time-of-arrival
int newGain;
sscanf(buffer,"%3s %s %d",cmdcheck,command,&newGain);
newGain = mRadioInterface->setRxGain(newGain);
sprintf(response,"RSP SETRXGAIN 0 %d",newGain);
}
else if (strcmp(command,"NOISELEV")==0) {
if (mOn) {
sprintf(response,"RSP NOISELEV 0 %d",
(int) round(20.0*log10(rxFullScale/mEnergyThreshold)));
}
else {
sprintf(response,"RSP NOISELEV 1 0");
}
}
else if (strcmp(command,"SETPOWER")==0) {
// set output power in dB
int dbPwr;
sscanf(buffer,"%3s %s %d",cmdcheck,command,&dbPwr);
if (!mOn)
sprintf(response,"RSP SETPOWER 1 %d",dbPwr);
else {
mPower = dbPwr;
mRadioInterface->setPowerAttenuation(dbPwr);
sprintf(response,"RSP SETPOWER 0 %d",dbPwr);
}
}
else if (strcmp(command,"ADJPOWER")==0) {
// adjust power in dB steps
int dbStep;
sscanf(buffer,"%3s %s %d",cmdcheck,command,&dbStep);
if (!mOn)
sprintf(response,"RSP ADJPOWER 1 %d",mPower);
else {
mPower += dbStep;
sprintf(response,"RSP ADJPOWER 0 %d",mPower);
}
}
#define FREQOFFSET 0//11.2e3
else if (strcmp(command,"RXTUNE")==0) {
// tune receiver
int freqKhz;
sscanf(buffer,"%3s %s %d",cmdcheck,command,&freqKhz);
mRxFreq = freqKhz*1.0e3+FREQOFFSET;
if (!mRadioInterface->tuneRx(mRxFreq)) {
LOG(ALARM) << "RX failed to tune";
sprintf(response,"RSP RXTUNE 1 %d",freqKhz);
}
else
sprintf(response,"RSP RXTUNE 0 %d",freqKhz);
}
else if (strcmp(command,"TXTUNE")==0) {
// tune txmtr
int freqKhz;
sscanf(buffer,"%3s %s %d",cmdcheck,command,&freqKhz);
//freqKhz = 890e3;
mTxFreq = freqKhz*1.0e3+FREQOFFSET;
if (!mRadioInterface->tuneTx(mTxFreq)) {
LOG(ALARM) << "TX failed to tune";
sprintf(response,"RSP TXTUNE 1 %d",freqKhz);
}
else
sprintf(response,"RSP TXTUNE 0 %d",freqKhz);
}
else if (strcmp(command,"SETTSC")==0) {
// set TSC
int TSC;
sscanf(buffer,"%3s %s %d",cmdcheck,command,&TSC);
if (mOn)
sprintf(response,"RSP SETTSC 1 %d",TSC);
else {
mTSC = TSC;
generateMidamble(*gsmPulse,mSamplesPerSymbol,TSC);
sprintf(response,"RSP SETTSC 0 %d",TSC);
}
}
else if (strcmp(command,"SETSLOT")==0) {
// set TSC
int corrCode;
int timeslot;
sscanf(buffer,"%3s %s %d %d",cmdcheck,command,&timeslot,&corrCode);
if ((timeslot < 0) || (timeslot > 7)) {
LOG(WARN) << "bogus message on control interface";
sprintf(response,"RSP SETSLOT 1 %d %d",timeslot,corrCode);
return;
}
mChanType[timeslot] = (ChannelCombination) corrCode;
setModulus(timeslot);
sprintf(response,"RSP SETSLOT 0 %d %d",timeslot,corrCode);
}
else {
LOG(WARN) << "bogus command " << command << " on control interface.";
}
mControlSocket.write(response,strlen(response)+1);
}
bool Transceiver::driveTransmitPriorityQueue()
{
char buffer[gSlotLen+50];
// check data socket
size_t msgLen = mDataSocket.read(buffer);
if (msgLen!=gSlotLen+1+4+1) {
LOG(ERROR) << "badly formatted packet on GSM->TRX interface";
return false;
}
int timeSlot = (int) buffer[0];
uint64_t frameNum = 0;
for (int i = 0; i < 4; i++)
frameNum = (frameNum << 8) | (0x0ff & buffer[i+1]);
/*
if (GSM::Time(frameNum,timeSlot) > mTransmitDeadlineClock + GSM::Time(51,0)) {
// stale burst
//LOG(DEBUG) << "FAST! "<< GSM::Time(frameNum,timeSlot);
//writeClockInterface();
}*/
/*
DAB -- Just let these go through the demod.
if (GSM::Time(frameNum,timeSlot) < mTransmitDeadlineClock) {
// stale burst from GSM core
LOG(NOTICE) << "STALE packet on GSM->TRX interface at time "<< GSM::Time(frameNum,timeSlot);
return false;
}
*/
// periodically update GSM core clock
LOG(DEEPDEBUG) << "mTransmitDeadlineClock " << mTransmitDeadlineClock
<< " mLastClockUpdateTime " << mLastClockUpdateTime;
if (mTransmitDeadlineClock > mLastClockUpdateTime + GSM::Time(216,0))
writeClockInterface();
LOG(DEEPDEBUG) << "rcvd. burst at: " << GSM::Time(frameNum,timeSlot);
int RSSI = (int) buffer[5];
static BitVector newBurst(gSlotLen);
BitVector::iterator itr = newBurst.begin();
char *bufferItr = buffer+6;
while (itr < newBurst.end())
*itr++ = *bufferItr++;
GSM::Time currTime = GSM::Time(frameNum,timeSlot);
addRadioVector(newBurst,RSSI,currTime);
LOG(DEEPDEBUG) "added burst - time: " << currTime << ", RSSI: " << RSSI; // << ", data: " << newBurst;
return true;
}
void Transceiver::driveReceiveFIFO()
{
SoftVector *rxBurst = NULL;
int RSSI;
int TOA; // in 1/256 of a symbol
GSM::Time burstTime;
mRadioInterface->driveReceiveRadio();
rxBurst = pullRadioVector(burstTime,RSSI,TOA);
if (rxBurst) {
LOG(DEBUG) << "burst parameters: "
<< " time: " << burstTime
<< " RSSI: " << RSSI
<< " TOA: " << TOA
<< " bits: " << *rxBurst;
char burstString[gSlotLen+10];
burstString[0] = burstTime.TN();
for (int i = 0; i < 4; i++)
burstString[1+i] = (burstTime.FN() >> ((3-i)*8)) & 0x0ff;
burstString[5] = RSSI;
burstString[6] = (TOA >> 8) & 0x0ff;
burstString[7] = TOA & 0x0ff;
SoftVector::iterator burstItr = rxBurst->begin();
for (unsigned int i = 0; i < gSlotLen; i++) {
burstString[8+i] =(char) round((*burstItr++)*255.0);
}
burstString[gSlotLen+9] = '\0';
delete rxBurst;
mDataSocket.write(burstString,gSlotLen+10);
}
}
void Transceiver::driveTransmitFIFO()
{
/**
Features a carefully controlled latency mechanism, to
assure that transmit packets arrive at the radio/USRP
before they need to be transmitted.
Deadline clock indicates the burst that needs to be
pushed into the FIFO right NOW. If transmit queue does
not have a burst, stick in filler data.
*/
RadioClock *radioClock = (mRadioInterface->getClock());
if (mOn) {
//radioClock->wait(); // wait until clock updates
LOG(DEBUG) << "radio clock " << radioClock->get();
while (radioClock->get() + mTransmitLatency > mTransmitDeadlineClock) {
// if underrun, then we're not providing bursts to radio/USRP fast
// enough. Need to increase latency by one GSM frame.
#ifndef USE_UHD
if (mRadioInterface->isUnderrun()) {
// only do latency update every 10 frames, so we don't over update
if (radioClock->get() > mLatencyUpdateTime + GSM::Time(10,0)) {
mTransmitLatency = mTransmitLatency + GSM::Time(1,0);
LOG(INFO) << "new latency: " << mTransmitLatency;
mLatencyUpdateTime = radioClock->get();
}
}
else {
// if underrun hasn't occurred in the last sec (216 frames) drop
// transmit latency by a timeslot
if (mTransmitLatency > GSM::Time(1,1)) {
if (radioClock->get() > mLatencyUpdateTime + GSM::Time(216,0)) {
mTransmitLatency.decTN();
LOG(INFO) << "reduced latency: " << mTransmitLatency;
mLatencyUpdateTime = radioClock->get();
}
}
}
#endif
// time to push burst to transmit FIFO
pushRadioVector(mTransmitDeadlineClock);
mTransmitDeadlineClock.incTN();
}
}
// FIXME -- This should not be a hard spin.
// But any delay here causes us to throw omni_thread_fatal.
//else radioClock->wait();
}
void Transceiver::writeClockInterface()
{
char command[50];
// FIXME -- This should be adaptive.
sprintf(command,"IND CLOCK %llu",(unsigned long long) (mTransmitDeadlineClock.FN()+2));
LOG(INFO) << "ClockInterface: sending " << command;
mClockSocket.write(command,strlen(command)+1);
mLastClockUpdateTime = mTransmitDeadlineClock;
}
void *FIFOServiceLoopAdapter(Transceiver *transceiver)
{
transceiver->setPriority();
while (1) {
transceiver->driveReceiveFIFO();
transceiver->driveTransmitFIFO();
pthread_testcancel();
}
return NULL;
}
void *ControlServiceLoopAdapter(Transceiver *transceiver)
{
while (1) {
transceiver->driveControl();
pthread_testcancel();
}
return NULL;
}
void *TransmitPriorityQueueServiceLoopAdapter(Transceiver *transceiver)
{
while (1) {
bool stale = false;
// Flush the UDP packets until a successful transfer.
while (!transceiver->driveTransmitPriorityQueue()) {
stale = true;
}
if (stale) {
// If a packet was stale, remind the GSM stack of the clock.
transceiver->writeClockInterface();
}
pthread_testcancel();
}
return NULL;
}