/* * Copyright 2008 Free Software Foundation, Inc. * * This software is distributed under the terms of the GNU Affero Public License. * See the COPYING file in the main directory for details. * * This use of this software may be subject to additional restrictions. * See the LEGAL file in the main directory for details. This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more details. You should have received a copy of the GNU Affero General Public License along with this program. If not, see . */ #ifndef GSMTRANSFER_H #define GSMTRANSFER_H #include "Interthread.h" #include "BitVector.h" #include "GSMCommon.h" /* Data transfer objects for the GSM core. */ namespace GSM { // Forward references. class TxBurst; class RxBurst; class L3Message; /**@name Positions of stealing bits within a normal burst, GSM 05.03 3.1.4. */ //@{ static const unsigned gHlIndex = 60; ///< index of first stealing bit, GSM 05.03 3.1.4 static const unsigned gHuIndex = 87; ///< index of second stealing bit, GSM 05.03 3.1.4 //@} static const unsigned gSlotLen = 148; ///< number of symbols per slot, not counting guard periods /** Interlayer primitives, GSM 04.04 4, GSM 04.06 4, GSM 04.07 10. PH, DL, MDL, etc. is implied by context. - L1-L2: PH - L2-L3: DL, MDL We don't provide the full req-conf-ind-ack handshake because we don't always need it in such a tighly integrated system, so our primitive set is simple. */ enum Primitive { ESTABLISH, ///< channel establihsment RELEASE, ///< normal channel release DATA, ///< multiframe data transfer UNIT_DATA, ///< datagram-type data transfer ERROR, ///< channel error HARDRELEASE ///< forced release after an assignment }; std::ostream& operator<<(std::ostream& os, Primitive); /** Class to represent one timeslot of channel bits with hard encoding. */ class TxBurst : public BitVector { private: Time mTime; ///< GSM frame number public: /** Create an empty TxBurst. */ TxBurst(const Time& wTime = Time(0)) :BitVector(gSlotLen),mTime(wTime) { // Zero out the tail bits now. mStart[0]=0; mStart[1]=0; mStart[2]=0; mStart[145]=0; mStart[146]=0; mStart[147]=0; } /** Create a TxBurst by copying from an existing BitVector. */ TxBurst(const BitVector& wSig, const Time& wTime = Time(0)) :BitVector(wSig),mTime(wTime) { assert(wSig.size()==gSlotLen); } /** Create a TxBurst from an RxBurst (for testing). */ TxBurst(const RxBurst& rx); /**@name Basic accessors. */ //@{ Time time() const { return mTime; } void time(const Time& wTime) { mTime = wTime; } //@} bool operator>(const TxBurst& other) const { return mTime > other.mTime; } /** Set upper stealing bit. */ void Hu(bool HuVal) { mData[gHuIndex] = HuVal; } /** Set lower stealing bit. */ void Hl(bool HlVal) { mData[gHlIndex] = HlVal; } friend std::ostream& operator<<(std::ostream& os, const TxBurst& ts); }; std::ostream& operator<<(std::ostream& os, const TxBurst& ts); typedef InterthreadQueue TxBurstFIFO; /** The InterthreadPriorityQueue accepts Timeslots and sorts them by Timestamp. */ class TxBurstQueue : public InterthreadPriorityQueue { public: /** Get the framenumber of the next outgoing burst. Blocks if queue is empty. */ Time nextTime() const; }; /** Class to represent one timeslot of channel bits with soft encoding. */ class RxBurst : public SoftVector { private: Time mTime; ///< timeslot and frame on which this was received float mTimingError; ///< Timing error in symbol steps, <0 means early. float mRSSI; ///< RSSI estimate associated with the slot, dB wrt full scale. public: /** Initialize an RxBurst from a hard Timeslot. Note the funny cast. */ RxBurst(const TxBurst& source, float wTimingError=0, int wRSSI=0); /** Wrap an RxBurst around an existing float array. */ RxBurst(float* wData, const Time &wTime, float wTimingError, int wRSSI) :SoftVector(wData,gSlotLen),mTime(wTime), mTimingError(wTimingError),mRSSI(wRSSI) { } Time time() const { return mTime; } void time(const Time& wTime) { mTime = wTime; } float RSSI() const { return mRSSI; } float timingError() const { return mTimingError; } /** Return a SoftVector alias to the first data field. */ const SoftVector data1() const { return segment(3, 57); } /** Return a SoftVector alias to the second data field. */ const SoftVector data2() const { return segment(88, 57); } /** Return upper stealing bit. */ bool Hu() const { return bit(gHuIndex); } /** Return lower stealing bit. */ bool Hl() const { return bit(gHlIndex); } /** Mark even bits as unkmnown. */ void clearEven(); /** Mark odd bits as unknown. */ void clearOdd(); friend std::ostream& operator<<(std::ostream& os, const RxBurst& ts); }; std::ostream& operator<<(std::ostream& os, const RxBurst& ts); typedef InterthreadQueue RxBurstFIFO; class L2Frame; class L3Frame; /** L2 Address as per GSM 04.06 3.2 */ class L2Address { private: unsigned mSAPI; ///< service access point indicator unsigned mCR; ///< command/response flag unsigned mLPD; ///< link protocol discriminator public: L2Address(unsigned wCR=0, unsigned wSAPI=0, unsigned wLPD=0) :mSAPI(wSAPI),mCR(wCR),mLPD(wLPD) { assert(wSAPI<4); } /**@name Obvious accessors. */ //@{ unsigned SAPI() const { return mSAPI; } unsigned CR() const { return mCR; } unsigned LPD() const { return mLPD; } //@} /** Write attributes to an L2 frame. */ void write(L2Frame& target, size_t& writeIndex) const; }; std::ostream& operator<<(std::ostream& os, const L2Address& address); /** The L2 header control field, as per GSM 04.06 3.4 */ class L2Control { public: /** Control field format types, GSM 04.06 3.4. */ enum ControlFormat { IFormat, SFormat, UFormat }; /** LAPDm frame types, GSM 04.06 3.8.1. */ enum FrameType { UIFrame, SABMFrame, UAFrame, DMFrame, DISCFrame, RRFrame, RNRFrame, REJFrame, IFrame, BogusFrame ///< a return code used when parsing fails }; private: ControlFormat mFormat; ///< control field format unsigned mNR; ///< receive sequence number unsigned mNS; ///< transmit sequence number unsigned mPF; ///< poll/final bit unsigned mSBits; ///< supervisory bits unsigned mUBits; ///< unnumbered function bits public: /** Initialize a U or S frame. */ L2Control(ControlFormat wFormat=UFormat, unsigned wPF=0, unsigned bits=0) :mFormat(wFormat),mPF(wPF),mSBits(bits),mUBits(bits) { assert(mFormat!=IFormat); assert(mPF<2); if (mFormat==UFormat) assert(mUBits<0x20); if (mFormat==SFormat) assert(mSBits<0x04); } /** Initialize an I frame. */ L2Control(unsigned wNR, unsigned wNS, unsigned wPF) :mFormat(IFormat),mNR(wNR),mNS(wNS),mPF(wPF) { assert(mNR<8); assert(mNS<8); assert(mPF<2); } /**@name Obvious accessors. */ //@{ ControlFormat format() const { return mFormat; } unsigned NR() const { assert(mFormat!=UFormat); return mNR; } void NR(unsigned wNR) { assert(mFormat!=UFormat); mNR=wNR; } unsigned NS() const { assert(mFormat==IFormat); return mNS; } void NS(unsigned wNS) { assert(mFormat==IFormat); mNS=wNS; } unsigned PF() const { assert(mFormat!=IFormat); return mPF; } unsigned P() const { assert(mFormat==IFormat); return mPF; } unsigned SBits() const { assert(mFormat==SFormat); return mSBits; } unsigned UBits() const { assert(mFormat==UFormat); return mUBits; } //@} void write(L2Frame& target, size_t& writeIndex) const; /** decode frame type */ FrameType decodeFrameType() const; }; std::ostream& operator<<(std::ostream& os, L2Control::ControlFormat fmt); std::ostream& operator<<(std::ostream& os, L2Control::FrameType cmd); std::ostream& operator<<(std::ostream& os, const L2Control& control); /** L2 frame length field, GSM 04.06 3.6 */ class L2Length { private: unsigned mL; ///< payload length in the frame unsigned mM; ///< more data flag ("1" indicates segmentation) public: L2Length(unsigned wL=0, bool wM=0) :mL(wL),mM(wM) { } /**@name Obvious accessors. */ //@{ unsigned L() const { return mL; } void L(unsigned wL) { mL=wL; } unsigned M() const { return mM; } void M(unsigned wM) { mM=wM; } //@} void write(L2Frame& target, size_t &writeIndex) const; }; std::ostream& operator<<(std::ostream&, const L2Length&); /** The total L2 header, as per GSM 04.06 3 */ class L2Header { public: /** LAPDm frame format types, GSM 04.06 2.1 */ enum FrameFormat { FmtA, ///< full header (just use B instead) FmtB, ///< full header FmtBbis, ///< no header (actually, a pseudolength header) FmtBter, ///< "short header" (which we don't use) FmtB4, ///< addesss and control only, implied length FmtC, ///< RACH (which we don't use) }; private: FrameFormat mFormat; ///< format to use in the L2 frame L2Address mAddress; ///< GSM 04.06 2.3 L2Control mControl; ///< GSM 04.06 2.4 L2Length mLength; ///< GSM 04.06 2.5 public: /** Parse the header from an L2Frame, assuming DCCH uplink. */ L2Header(FrameFormat wFormat, const L2Frame& source); /** Format A or B. */ L2Header(const L2Address& wAddress, const L2Control& wControl, const L2Length& wLength, FrameFormat wFormat=FmtB) :mFormat(wFormat), mAddress(wAddress), mControl(wControl), mLength(wLength) { } /** Format B4. */ L2Header(const L2Address& wAddress, const L2Control& wControl) :mFormat(FmtB4), mAddress(wAddress), mControl(wControl) { } /** Pseudolength case, used on non-dedicated control channels. */ L2Header(const L2Length& wLength) :mFormat(FmtBbis), mLength(wLength) { } /** Write the header into an L2Frame at a given offset. @param frame The frame to write to. @return number of bits written. */ size_t write(L2Frame& target) const; /** Determine the header's LAPDm operation. */ L2Control::FrameType decodeFrameType() const { return mControl.decodeFrameType(); } /**@name Obvious accessors. */ //@{ FrameFormat format() const { return mFormat; } void format(FrameFormat wFormat) { mFormat=wFormat; } const L2Address& address() const { return mAddress; } L2Address& address() { return mAddress; } void address(const L2Address& wAddress) { mAddress=wAddress; } const L2Control& control() const { return mControl; } L2Control& control() { return mControl; } void control(const L2Control& wControl) { mControl=wControl; } const L2Length& length() const { return mLength; } L2Length& length() { return mLength; } void length(const L2Length& wLength) { mLength=wLength; } //@} /** Return the number of bits needed to encode the header. */ size_t bitsNeeded() const; }; std::ostream& operator<<(std::ostream& os, const L2Header& header); std::ostream& operator<<(std::ostream& os, const L2Header::FrameFormat val); /** N201, the maximum payload size of an L2 frame in bytes, GSM 04.06 5.8.3. */ unsigned N201(ChannelType, L2Header::FrameFormat); /** The bits of an L2Frame Bit ordering is MSB-first in each octet. */ class L2Frame : public BitVector { private: GSM::Primitive mPrimitive; public: /** Fill the frame with the GSM idle pattern, GSM 04.06 2.2. */ void idleFill(); /** Build an empty frame with a given primitive. */ L2Frame(GSM::Primitive wPrimitive=UNIT_DATA) :BitVector(23*8), mPrimitive(wPrimitive) { idleFill(); } /** Make a new L2 frame by copying an existing one. */ L2Frame(const L2Frame& other) :BitVector((const BitVector&)other), mPrimitive(other.mPrimitive) { } /** Make an L2Frame from a block of bits. BitVector must fit in the L2Frame. */ L2Frame(const BitVector&, GSM::Primitive); /** Make an L2Frame from a payload using a given header. The L3Frame must fit in the L2Frame. The primitive is DATA. */ L2Frame(const L2Header&, const BitVector&); /** Make an L2Frame from a header with no payload. The primitive is DATA. */ L2Frame(const L2Header&); /** Look into the LAPDm header and get the SAPI, see GSM 04.06 2 and 3.2. This method assumes frame format A or B, GSM 04.06 2.1. */ unsigned SAPI() const; /**@name Decoding methods that assume A/B header format. */ //@{ /** Look into the LAPDm header and get the control format. */ L2Control::ControlFormat controlFormat() const; /** Look into the LAPDm header and decode the U-frame type. */ L2Control::FrameType UFrameType() const; /** Look into the LAPDm header and decode the S-frame type. */ L2Control::FrameType SFrameType() const; /** Look into the LAPDm header and get the P/F bit. */ bool PF() const { return mStart[8+3] & 0x01; } /** Set/clear the PF bit. */ void PF(bool wPF) { mStart[8+3]=wPF; } /** Look into the header and get the length of the payload. */ unsigned L() const { return peekField(8*2,6); } /** Get the "more data" bit (M). */ bool M() const { return mStart[8*2+6] & 0x01; } /** Return the L3 payload part. Assumes A or B header format. */ BitVector L3Part() const { return segment(8*3,8*L()); } /** Return NR sequence number, GSM 04.06 3.5.2.4. Assumes A or B header. */ unsigned NR() const { return peekField(8*1+0,3); } /** Return NS sequence number, GSM 04.06 3.5.2.5. Assumes A or B header. */ unsigned NS() const { return peekField(8*1+4,3); } /** Return the CR bit, GSM 04.06 3.3.2. Assumes A or B header. */ bool CR() const { return mStart[6] & 0x01; } /** Return truw if this a DCCH idle frame. */ bool DCCHIdle() const { return peekField(0,32)==0x0103012B; } //@} Primitive primitive() const { return mPrimitive; } /** This is used only for testing. */ void primitive(Primitive wPrimitive) { mPrimitive=wPrimitive; } }; std::ostream& operator<<(std::ostream& os, const L2Frame& msg); typedef InterthreadQueueWithWait L2FrameFIFO; /** Representation of a GSM L3 message in a bit vector. Bit ordering is MSB-first in each octet. NOTE: This is for the GSM message bits, not the message content. See L3Message. */ class L3Frame : public BitVector { private: Primitive mPrimitive; public: /** Empty frame with a primitive. */ L3Frame(Primitive wPrimitive=DATA, size_t len=0) :BitVector(len),mPrimitive(wPrimitive) { } /** Put raw bits into the frame. */ L3Frame(const BitVector& source, Primitive wPrimitive=DATA) :BitVector(source),mPrimitive(wPrimitive) { } L3Frame(const L3Frame& f1, const L3Frame& f2) :BitVector(f1,f2),mPrimitive(DATA) {} /** Build from an L2Frame. */ L3Frame(const L2Frame& source) :BitVector(source.L3Part()),mPrimitive(DATA) { } /** Serialize a message into the frame. */ L3Frame(const L3Message& msg, Primitive wPrimitive=DATA); /** Get a frame from a hex string. */ L3Frame(const char*); /** Get a frame from raw binary. */ L3Frame(const char*, size_t len); /** Protocol Discriminator, GSM 04.08 10.2. */ L3PD PD() const { return (L3PD)peekField(4,4); } /** Message Type Indicator, GSM 04.08 10.4. */ unsigned MTI() const { return peekField(8,8); } /** TI value, GSM 04.07 11.2.3.1.3. */ unsigned TIValue() const { return peekField(1,3); } /** TI flag, GSM 04.07 11.2.3.1.3. */ unsigned TIFlag() const { return peekField(0,1); } /** Return the associated primitive. */ GSM::Primitive primitive() const { return mPrimitive; } /** Return frame length in BYTES. */ size_t length() const { return size()/8; } }; std::ostream& operator<<(std::ostream& os, const L3Frame&); typedef InterthreadQueue L3FrameFIFO; /** A vocoder frame for use in GSM/SIP contexts. */ class VocoderFrame : public BitVector { public: VocoderFrame() :BitVector(264) { fillField(0,0x0d,4); } /** Construct by unpacking a char[33]. */ VocoderFrame(const unsigned char *src) :BitVector(264) { unpack(src); } BitVector payload() { return tail(4); } const BitVector payload() const { return tail(4); } }; typedef InterthreadQueue VocoderFrameFIFO; }; // namespace GSM #endif // vim: ts=4 sw=4