librfid/src/rfid_layer2_iso15693.c

493 lines
12 KiB
C
Raw Normal View History

/* ISO 15693 anticollision implementation
*
* (C) 2005-2008 by Harald Welte <laforge@gnumonks.org>
* (C) 2007 by Bjoern Riemer <bjoern.riemer@web.de>
*/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2
* as published by the Free Software Foundation
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <errno.h>
#include <librfid/rfid.h>
#include <librfid/rfid_layer2.h>
#include <librfid/rfid_reader.h>
#include <librfid/rfid_layer2_iso15693.h>
struct iso15693_request_read {
struct iso15693_request req;
u_int64_t uid;
u_int8_t blocknum;
} __attribute__ ((packed));
struct iso15693_request_adressed {
struct iso15693_request head;
u_int64_t uid;
} __attribute__ ((packed));
#define ISO15693_BLOCK_SIZE_MAX (256/8)
#define ISO15693_RESP_SIZE_MAX (4+ISO15693_BLOCK_SIZE_MAX)
const unsigned int iso15693_timing[2][5] = {
[ISO15693_T_SLOW] = {
[ISO15693_T1] = 1216, /* max time after VCD EOF before VICC SOF */
[ISO15693_T2] = 1200, /* min time before VCD EOF after VICC response */
[ISO15693_T3] = 1502, /* min time after VCD EOF before next EOF if no VICC response */
[ISO15693_T4] = 1216, /* time after wich VICC transmits after VCD EOF */
[ISO15693_T4_WRITE]=20000, /* time after wich VICC transmits after VCD EOF */
},
[ISO15693_T_FAST] = {
[ISO15693_T1] = 304, /* max time after VCD EOF before VICC SOF */
[ISO15693_T2] = 300, /* min time before VCD EOF after VICC response */
[ISO15693_T3] = 602, /* min time after VCD EOF before next EOF if no VICC response */
[ISO15693_T4] = 304, /* time after wich VICC transmits after VCD EOF */
[ISO15693_T4_WRITE]=20000, /* time after wich VICC transmits after VCD EOF */
},
};
static int iso15693_transceive(struct rfid_layer2_handle *handle,
enum rfid_frametype frametype,
const unsigned char *tx_buf, unsigned int tx_len,
unsigned char *rx_buf, unsigned int *rx_len,
u_int64_t timeout, unsigned int flags)
{
return handle->rh->reader->transceive(handle->rh, frametype, tx_buf,
tx_len, rx_buf, rx_len, timeout, flags);
}
/* Transmit an anticollission frame */
static int
iso15693_transceive_acf(struct rfid_layer2_handle *handle,
const struct iso15693_anticol_cmd *acf,
unsigned int acf_len,
struct iso15693_anticol_resp *resp,
unsigned int *rx_len, char *bit_of_col)
{
const struct rfid_reader *rdr = handle->rh->reader;
if (!rdr->iso15693.transceive_ac)
return -1;
return rdr->iso15693.transceive_ac(handle->rh, acf, acf_len, resp, rx_len, bit_of_col);
}
#if 0
static int
iso15693_read_block(struct rfid_layer2_handle *handle,
u_int8_t blocknr, u_int32_t *data)
{
int rc;
struct iso15693_request_read req;
u_int8_t resp[ISO15693_RESP_SIZE_MAX];
req.req.flags = 0;
req.command = ISO15693_CMD_READ_BLOCK_SINGLE;
memcpy(&req.uid, handle->..., ISO15693_UID_LEN);
req.blocknum = blocknr;
/* FIXME: fill CRC if required */
rc = iso15693_transceive(... &req, ..., );
if (rc < 0)
return rc;
memcpy(data, resp+1, rc-1); /* FIXME rc-3 in case of CRC */
return rc-1;
}
static int
iso15693_write_block()
{
struct iso16593_request_read *rreq;
u_int32_t buf[sizeof(req)+ISO15693_BLOCK_SIZE_MAX];
rreq = (struct iso15693_request_read *) req;
rreq->req.flags = ;
rreq->req.command = ISO15693_CMD_WRITE_BLOCK_SINGLE;
memcpy(rreq->uid, handle->, ISO15693_UID_LEN);
rreq->blocknum = blocknr;
memcpy(rreq->);
}
static int
iso15693_lock_block()
{
}
#endif
/* Helper function to build an ISO 15693 anti collision frame */
static int
iso15693_build_acf(u_int8_t *target, u_int8_t flags, u_int8_t afi,
u_int8_t mask_len, u_int8_t *mask)
{
struct iso15693_request *req = (struct iso15693_request *) target;
int i = 0, j;
req->flags = flags;
req->command = ISO15693_CMD_INVENTORY;
if (flags & RFID_15693_F5_AFI_PRES)
req->data[i++] = afi;
req->data[i++] = mask_len;
for (j = 0; j < mask_len; j++)
req->data[i++] = mask[j];
return i + sizeof(*req);
}
static int
iso15693_anticol(struct rfid_layer2_handle *handle)
{
int i, ret;
int tx_len, rx_len;
int num_valid = 0;
union {
struct iso15693_anticol_cmd_afi w_afi;
struct iso15693_anticol_cmd no_afi;
} acf;
struct iso15693_anticol_resp resp;
char boc;
#define MAX_SLOTS 16
int num_slots = MAX_SLOTS;
u_int8_t uuid_list[MAX_SLOTS][ISO15693_UID_LEN];
int uuid_list_valid[MAX_SLOTS];
u_int8_t flags;
#define MY_NONE 0
#define MY_COLL 1
#define MY_UUID 2
memset(uuid_list_valid, MY_NONE, sizeof(uuid_list_valid));
memset(uuid_list, 0, sizeof(uuid_list));
//memset(&acf, 0, sizeof(acf));
/* FIXME: we can't use multiple slots at this point, since the RC632
* with librfid on the host PC has too much latency between 'EOF pulse
* to mark start of next slot' and 'receive data' commands :( */
flags = RFID_15693_F_INV_TABLE_5;
if (handle->priv.iso15693.vicc_fast)
flags |= RFID_15693_F_RATE_HIGH;
if (handle->priv.iso15693.vicc_two_subc)
flags |= RFID_15693_F_SUBC_TWO;
if (handle->priv.iso15693.single_slot) {
flags |= RFID_15693_F5_NSLOTS_1;
num_slots = 1;
}
if (handle->priv.iso15693.use_afi)
flags |= RFID_15693_F5_AFI_PRES;
tx_len = iso15693_build_acf((u_int8_t *)&acf, flags,
handle->priv.iso15693.afi, 0, NULL);
for (i = 0; i < num_slots; i++) {
rx_len = sizeof(resp);
ret = iso15693_transceive_acf(handle, (u_int8_t *) &acf, tx_len, &resp, &rx_len, &boc);
if (ret == -ETIMEDOUT) {
DEBUGP("no answer from vicc in slot %d\n", i);
uuid_list_valid[i] = MY_NONE;
} else if (ret < 0) {
DEBUGP("ERROR ret: %d, slot %d\n", ret, i);
uuid_list_valid[i] = MY_NONE;
} else {
if (boc) {
DEBUGP("Collision during anticol. slot %d bit %d\n",
i, boc);
uuid_list_valid[i] = -boc;
memcpy(uuid_list[i], resp.uuid, ISO15693_UID_LEN);
} else {
DEBUGP("Slot %d ret: %d UUID: %s\n", i, ret,
rfid_hexdump(resp.uuid, ISO15693_UID_LEN));
uuid_list_valid[i] = MY_UUID;
memcpy(&uuid_list[i][0], resp.uuid, ISO15693_UID_LEN);
}
}
}
for (i = 0; i < num_slots; i++) {
if (uuid_list_valid[i] == MY_NONE) {
DEBUGP("slot[%d]: timeout\n",i);
} else if (uuid_list_valid[i] == MY_UUID) {
DEBUGP("slot[%d]: VALID uuid: %s\n", i,
rfid_hexdump(uuid_list[i], ISO15693_UID_LEN));
num_valid++;
} else if (uuid_list_valid[i] < 0) {
DEBUGP("slot[%d]: collision(%d %d,%d) uuid: %s\n",
i,uuid_list_valid[i]*-1,
(uuid_list_valid[i]*-1)/8,
(uuid_list_valid[i]*-1)%8,
rfid_hexdump(uuid_list[i], ISO15693_UID_LEN));
}
}
if (num_valid == 0)
return -1;
return num_valid;
}
static int
iso15693_select(struct rfid_layer2_handle *handle)
{
struct iso15693_request_adressed tx_req;
int ret;
unsigned int rx_len, tx_len;
struct {
struct iso15693_response head;
u_int8_t error;
unsigned char crc[2];
} rx_buf;
rx_len = sizeof(rx_buf);
tx_req.head.command = ISO15693_CMD_SELECT;
tx_req.head.flags = RFID_15693_F4_ADDRESS | RFID_15693_F_SUBC_TWO ;
tx_req.uid = 0xE0070000020C1F18;
//req.uid = 0x181F0C02000007E0;
//req.uid = 0xe004010001950837;
//req.uid = 0x37089501000104e0;
tx_len = sizeof(tx_req);
DEBUGP("tx_len=%u", tx_len); DEBUGPC(" rx_len=%u\n",rx_len);
ret = iso15693_transceive(handle, RFID_15693_FRAME, (u_int8_t*)&tx_req,
tx_len, (u_int8_t*)&rx_buf, &rx_len, 50,0);
DEBUGP("ret: %d, error_flag: %d error: %d\n", ret,
rx_buf.head.flags&RFID_15693_RF_ERROR, 0);
return -1;
}
static int
iso15693_getopt(struct rfid_layer2_handle *handle,
int optname, void *optval, unsigned int *optlen)
{
unsigned int *val = optval;
u_int8_t *val_u8 = optval;
if (!optlen || !optval || *optlen < sizeof(unsigned int))
return -EINVAL;
*optlen = sizeof(unsigned int);
switch (optname) {
case RFID_OPT_15693_MOD_DEPTH:
if (handle->priv.iso15693.vcd_ask100)
*val = RFID_15693_MOD_100ASK;
else
*val = RFID_15693_MOD_10ASK;
break;
case RFID_OPT_15693_VCD_CODING:
if (handle->priv.iso15693.vcd_out256)
*val = RFID_15693_VCD_CODING_1OUT256;
else
*val = RFID_15693_VCD_CODING_1OUT4;
break;
case RFID_OPT_15693_VICC_SUBC:
if (handle->priv.iso15693.vicc_two_subc)
*val = RFID_15693_VICC_SUBC_DUAL;
else
*val = RFID_15693_VICC_SUBC_SINGLE;
break;
case RFID_OPT_15693_VICC_SPEED:
if (handle->priv.iso15693.vicc_fast)
*val = RFID_15693_VICC_SPEED_FAST;
else
*val = RFID_15693_VICC_SPEED_SLOW;
break;
case RFID_OPT_15693_VCD_SLOTS:
if (handle->priv.iso15693.single_slot)
*val = 1;
else
*val = 16;
break;
case RFID_OPT_15693_USE_AFI:
if (handle->priv.iso15693.use_afi)
*val = 1;
else
*val = 0;
break;
case RFID_OPT_15693_AFI:
*val_u8 = handle->priv.iso15693.afi;
*optlen = sizeof(u_int8_t);
break;
default:
return -EINVAL;
break;
}
return 0;
}
static int
iso15693_setopt(struct rfid_layer2_handle *handle, int optname,
const void *optval, unsigned int optlen)
{
unsigned int val;
if (optlen < sizeof(u_int8_t) || !optval)
return -EINVAL;
if (optlen == sizeof(u_int8_t))
val = *((u_int8_t *) optval);
if (optlen == sizeof(u_int16_t))
val = *((u_int16_t *) optval);
if (optlen == sizeof(unsigned int))
val = *((unsigned int *) optval);
switch (optname) {
case RFID_OPT_15693_MOD_DEPTH:
switch (val) {
case RFID_15693_MOD_10ASK:
handle->priv.iso15693.vcd_ask100 = 0;
break;
case RFID_15693_MOD_100ASK:
handle->priv.iso15693.vcd_ask100 = 1;
break;
default:
return -EINVAL;
}
break;
case RFID_OPT_15693_VCD_CODING:
switch (val) {
case RFID_15693_VCD_CODING_1OUT256:
handle->priv.iso15693.vcd_out256 = 1;
break;
case RFID_15693_VCD_CODING_1OUT4:
handle->priv.iso15693.vcd_out256 = 0;
break;
default:
return -EINVAL;
}
break;
case RFID_OPT_15693_VICC_SUBC:
switch (val) {
case RFID_15693_VICC_SUBC_SINGLE:
handle->priv.iso15693.vicc_two_subc = 0;
break;
case RFID_15693_VICC_SUBC_DUAL:
handle->priv.iso15693.vicc_two_subc = 1;
break;
default:
return -EINVAL;
}
break;
case RFID_OPT_15693_VICC_SPEED:
switch (val) {
case RFID_15693_VICC_SPEED_SLOW:
handle->priv.iso15693.vicc_fast = 0;
break;
case RFID_15693_VICC_SPEED_FAST:
handle->priv.iso15693.vicc_fast = 1;
break;
default:
return -EINVAL;
}
case RFID_OPT_15693_VCD_SLOTS:
switch (val) {
case 16:
handle->priv.iso15693.single_slot = 0;
break;
case 1:
handle->priv.iso15693.single_slot = 1;
break;
default:
return -EINVAL;
}
break;
case RFID_OPT_15693_USE_AFI:
if (val)
handle->priv.iso15693.use_afi = 1;
else
handle->priv.iso15693.use_afi = 0;
break;
case RFID_OPT_15693_AFI:
if (val > 0xff)
return -EINVAL;
handle->priv.iso15693.afi = val;
break;
default:
return -EINVAL;
}
return 0;
}
static int transceive_inventory(struct rfid_layer2_handle *l2h)
{
return -1;
}
static struct rfid_layer2_handle *
iso15693_init(struct rfid_reader_handle *rh)
{
int ret;
struct rfid_layer2_handle *h = malloc_layer2_handle(sizeof(*h));
if (!h)
return NULL;
h->l2 = &rfid_layer2_iso15693;
h->rh = rh;
h->priv.iso15693.state = ISO15693_STATE_NONE;
h->priv.iso15693.vcd_ask100 = 1; /* 100ASK is easier to generate */
h->priv.iso15693.vicc_two_subc = 0;
h->priv.iso15693.vicc_fast = 1;
h->priv.iso15693.single_slot = 1;
h->priv.iso15693.vcd_out256 = 0;
h->priv.iso15693.use_afi = 0; /* not all VICC support AFI */
h->priv.iso15693.afi = 0;
ret = h->rh->reader->init(h->rh, RFID_LAYER2_ISO15693);
if (ret < 0) {
free_layer2_handle(h);
return NULL;
}
return h;
}
static int
iso15693_fini(struct rfid_layer2_handle *handle)
{
free_layer2_handle(handle);
return 0;
}
const struct rfid_layer2 rfid_layer2_iso15693 = {
.id = RFID_LAYER2_ISO15693,
.name = "ISO 15693",
.fn = {
.init = &iso15693_init,
.open = &iso15693_anticol,
//.open = &iso15693_select,
//.transceive = &iso15693_transceive,
//.close = &iso14443a_hlta,
.fini = &iso15693_fini,
.setopt = &iso15693_setopt,
.getopt = &iso15693_getopt,
},
};