DATEX-L, the German CSPDN

(Circuit Switched Public Data Network)

Harald Welte

Osmocom project

RetroNetCall

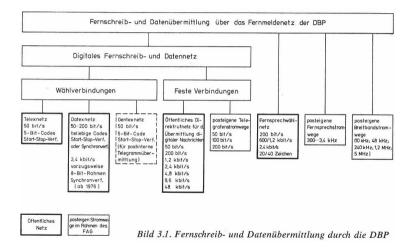
Disclaimer

- I never used Datex-L back in the day
- All information presented is from historical books / specs / articles
- My understanding might be incorrect; Corrections welcome!

CSPDN? WTF?

- Circuit Switched
 - dedicated circuits, dialled and released
 - just like the good old telephony (PSTN) network
- Public Data Network
 - available to the general public (like PSTN)
 - used for data, not speech (unlike PSTN)

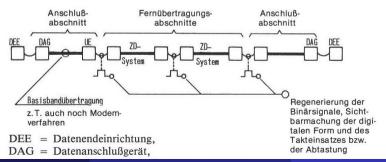
CSPDNs were separate networks, independent of telephony networks

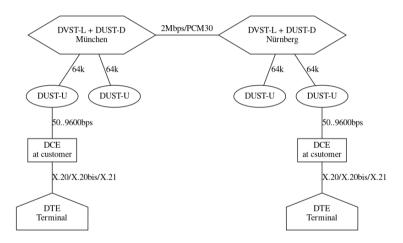

Before CSPDNs

- Public switched Telephony network (PSTN)
 - analog 3.4 kHz circuit, end-to-end
 - initially manually switched, later electromechanical switching
- Public switched Telex network (Telex)
 - 50 bit per second, asynchronous, analog
 - initially manually switched, later electromechanical switching
- direct point-to-point links (Standleitung, HfD)
 - no switching involved; dedicated permanent leased circuit
 - HfD: Hauptanschluß für Direktruf: leased line with DCE/modem provided by operator
 - Überlassung posteigener Stromwege: just the bare coper, no DCE/modem provided by operator

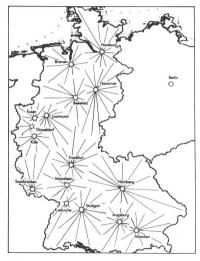
Some basic terminology

- DBP Deutsche Bundespost; German postal services
- CSPDN Circuit Switched Packet Data Network; describes abstract concept (CCITT/ITU-T)
- DATEX DATa EXchange; Data services provided by Deutsche Bundespost
- DATEX-L DATa EXchange Leitungsorientiert; CSPDN by Deutsche Bundespost
- DATEX-P DATa EXchange Paketorientiert; PSPDN by Deutsche Bundespost (off-topic here)
 - IDN Integriertes Text- und Datennetz; German network used to provide Telex, Gentex and Datex services
 - EDS Elektronisches Datenvermittlungs-System; Switching technology used to implement IDN


Different Services/Networks in 1980


Why DATEX-L or a CSPDN?

Why have a separate data network, indepedent of the telephony network?


- it's difficult to transmit digital data over hundreds or even thousands of kilometers of analog telephone lines
- Modems for the PSTN were very expensive and slow in the 60s and 70s
- Very long connection establishment time (pulse dialing, electromechanics)
- a network with digital switching enables re-generating the signal hop-by-hop

DATEX-L Network Architecture

DATEX-L points of presence

- 18 Datex-L Switches (DVST) all over Germany
- 18 switch co-located mulitplexers (DUST-D)
- 400 remote Multiplexers (DUST-U)

DATEX-L Terminology

- DVST Datenvermittlungsstelle; Data Switch
- DUST-D Datenumsetzerstelle am Standort der Datenvermittlungsstelle; subscriber line multiplexers co-located with DVST
- DUST-U Datenumsetzerstelle der unteren Netzebene; subscriber line multiplexers located remote from switches; typically in PSTN central offices that had no DVST
 - DEE Datenendeinrichtung; DTE (Data Terminal Equipment)
 - DÜE Datenübertragungseinrichtung; DCE (Data Communications Equipment)
 - UEB Übertragungseinheiten; line transmission interface at DUST
 - DFG Datenfernschaltgerät: Siemens implementation of DÜE (DCE)

DEE-DÜE (DTE-DCE) Interfaces

- interface to network was not the subscriber line, but a serial port
- DATEX-L was a synchronous network, so synchronous interfaces preferred
 - sync interfaces: X.20 (300 bps) or X.21 (2400/4800/9600 bps)
 - async interfaces: X.20bis (300 bps), X.21bis (2400/4800/9600 bps)
- asynchronous interfaces were more expensive, as
 - additional circuitry needed in DEE (DCE)
 - lower net throughput due to bits wasted for start/stop bits

DATEX-L Services

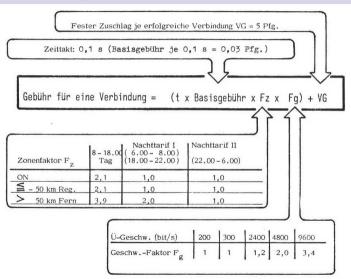
Name	bps	Inaugurated	Subscriber Interface	
DATEX-L200	50-200	1967	X.20bis	
DATEX-L300	300	1976	X.20 or X.20bis	
DATEX-L2400	2400	1978	X.21 or X.21bis	
DATEX-L4800	4800	1979	X.21 or X.21bis	
DATEX-L9600	9600	1970	X.21 or X.21bis	

DATEX-L DÜE/DCE/DFG: DFG 300 / DFG 2400

DATEX-L DÜE/DCE/DFG: DFG 9600UE-1 / DFG9600UE-2

Bild 3-20a: DFG 9600UE-1 mit der Schnittstelle X.21bis

Bild 3-20b: DFG 9600UE-2 mit der Schnittstelle X.21


Subcriber Line in DATEX-L

- remember: subscriber line was not the public interface
- depending on distance, different technologies used
- predominantly pseudo-ternary coded base band transmission (UEB)
- occasionally (long distance to DUST) modem 2DPSK/4DPSK (UEM)
- 2-bit envelope added to every 8 user bits
 - 1 bit for synchronization purpose
 - 1 bit to differentiate user payload from signaling traffic
 - result: data rate on subscriber line 25% higher than at user interface

DATEX-L Charges: Monthly subscription

Service	Interface	Fee per month (DM)
DATEX-L300	X.20	100
DATEX-L300	X.20bis	120
DATEX-L2400	X.21	170
DATEX-L2400	X.21bis	200
DATEX-L4800	X.21	270
DATEX-L4800	X.21bis	300
DATEX-L9600	X.21	370
DATEX-L9600	X.21bis	400

DATEX-L Charges: Per connection/duration

- Pfg = Pfennig (1/100 DM)
- fixed 5 Pfg for connection setup
- distance and speed dependent charges for ever 0.1 s duration

DATEX-L Charges: What did it cost per MB?

Inflation-corrected (1980->2022) charges in EUR per Megabyte:

Service	> 50km (day)	> 50km (night I)	> 50km (night II)
DATEX-L300	50.29	25.79	25.79
DATEX-L2400	7.52	3.87	1.93
DATEX-L4800	6.28	3.22	1.61
DATEX-L9600	5.35	2.74	1.36

DATEX-L International CSPDN interconnect

• 1970: France

• 1973: Belgium

• 1981: Denmark, Finland, Norway, Sweden (NPDN)

Datex-L DVST + DUST-D Floorplan

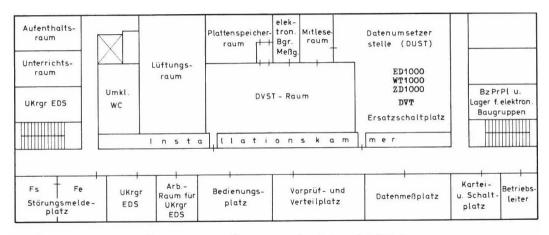
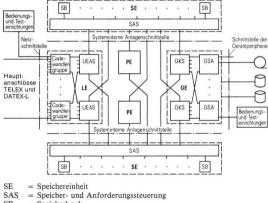


Bild 25.1. Muster für die Raumanordnung von DVST und DUST

Datex-L DVST + DUST Technical data


Maximum capacity
Maximum subscriber lines
Maximum memory capacity
Maximum call setup rate
Power consumption
net floor space (just racks)
gross floor space

16384 connections 10880 .. 11500 1 MByte (core memory) 30 per second / 60 per second 80 kW @ 60 VDC + 15kW @ 220 VAC + air conditioning 200 m² 1200 m²

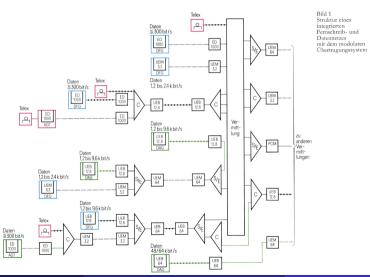
EDS History

- need for higher bit rate (than 50 bps Telex) wide area data transmission
- conceptual development from 1965 onwards triggered by DBP
- cooperation between Siemens and SEL (Standard Elektronik Lorenz)
- production deployments as IDN at Deutsche Bundespost from 1975 onwards
- more than 60% of all Telex and Datex subscribers migrated to EDS in 1978
- de-commissioned in 1996 when Datex-L was switched off

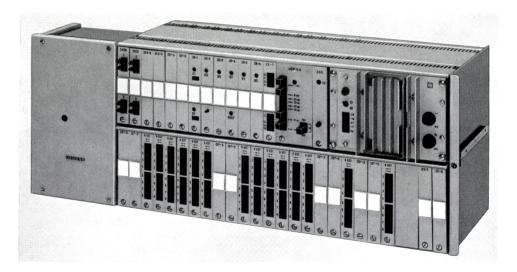
EDS System Structure

SB = Speicherbank

LE = Leitungsanschlußeinheit


UEAS = Übertragungsablaufsteuerung

PE = Programmsteuerungseinheit GE = Geräteanschlußeinheit


KS = Gerätekanalsteuerung

GSA = Geräteschnittstellenanpassung

DUST using Siemens ZD1000

DUST using Siemens ZD1000

DVST Hard Disk Storage

Bild 16.3. Plattenspeicher geöffnet

The End

EOF