Osmocom SIMtrace2 Tutorial
SIM card protocol tracing - why and how

Harald Welte
sysmocom - s.f.m.c. GmbH

OsmoDevCall 2022-10-19
Terminology

SIM Subscriber Identity Module

USIM Universal Subscriber Identity Module

UICC Universal Integrated Chip Card

MS GSM Mobile Station (phone, modem)

UE UMTS User Equipment

ME GSM Mobile Equipment (MS + SIM)

OTA Over The Air

SAT SIM Application Toolkit

CAT Card (UICC) Application Toolkit

USAT USIM Application Toolkit

TAR Toolkit Application Reference
Relevant Specification Bodies

- ISO (ISO 7816) smart cards
- ETSI (European Telecommunications Standardisation Institute)
 - Classic GSM SIM
 - UICC card as basis for various telecom ID purposes
 - Card Application Toolkit (CAT)
- 3GPP (3rd Generation Partnership Project)
 - USIM Application
 - USIM Application Toolkit (USAT)
 - API based applet interworking
- Global Platform
 - Overall spec for SIM/USIM with Java
- Sun Microsystems (now Oracle)
 - Java Card Virtual Machine
 - Java Card Runtime Environment
The Subscriber Identity Module (SIM)

- Basic idea was to store cryptographic identity of subscriber inside smart card
- User can thus migrate identity from one device to another
- User can furthermore use different SIM in same device (e.g. local prepaid SIM while travelling)
- Original SIM card design mostly ISO 7816-4 filesystem and single command to execute A3/A8 algorithm inside card
 - This could even be done in logic, no processor required
The modern SIM

The modern SIM is an entirely different beast

- Cryptographic processor smart card
 - Symmetric cryptography such as DES, 3DES, AES
 - Public key cryptography such as RSA, ECC
- Java Card including a small Java VM and Java RE
- Multiple application support
- Ability to download applications (Applets) into card
Smart Card Basics

- Microprocessor with RAM, Flash and Operating System
- Interface: Electrical + Logical Protocol (ISO7816-3, ISO7816-4)
- File System based representation of information
- Protocol describes remote operations on the file system
- Few non-filesystem related commands for e.g. authentication
Smart Card Filesystem

- Hierarchical file system like on PC
 - MF (master file): root directory
 - DF (dedicated file): subdirectory
 - EF (entry file): actual file
 - transparent or record oriented
 - record linear fixed/variable or record cyclic
- File names don’t exist on card. 16bit FID (File ID) or 8bit SFID used instead
Smart Card Filesystem Permissions

- similar to ‘permission bits’ on Linux or other PC OS
- each file can define separate read/write permissions
- some cards are permanently read-only
- other files can be written to after regular PIN verification
- yet another set of files e.g. needs one of the ADM PINs
SIM Card APDU Commands

Classic SIM card commands include the following:

- **SELECT** (change directory / open file)
- **READ BINARY, UPDATE BINARY** (read/write transparent EF)
- **READ RECORD, UPDATE RECORD** (read/write record EF)
- **ENABLE CHV, DISABLE CHV, CHANGE CHV** (enable, disable or change PIN)
- **VERIFY CHV, UNBLOCK CHV** (verify or unblock PIN)
- **RUN GSM ALGORITHM** (A3/A8 authentication)
Smart Card Filesystem

Typical operations of the phone include

- navigating inside filesystem by SELECT on DF/EF
- authenticating the user PIN
- reading/updating files
 - reading IMSI
 - old-school SMS and contact storage
 - storing session keys (Kc/KcGPRS, ...)
 - storing last cell on power-off
The level of access to the filesystem and other card features is determined by authentication using a shared secret, called 'PIN'.

- Regular PIN for normal use of the card by the end user
- PUK for resetting the pin after too many retries
- ADM1..n PIN for access by the operator only
Multi-Application Smart Cards

- Classic SIM cards are single application, accessing the GSM related files works by entering the known DF.GSM directory with its well-known FID.
- Later the idea of multi-application smart cards entered the market.
- A multi-application smart card contains an EF.DIR in the MF.
- EF.DIR contains records with the AIDs of all applications on the card.
- AID prefix is well-known to the application, AID suffix is manufacturer specific. Applications use prefix-match.
- Application specific directory can be entered by SELECT on the AID.
USIM Application Dedicated File (ADF.USIM)
Evolution of the SIM

- **Classic GSM SIM cards**
 - initial GSM / ETSI TS 11.11 for classic GSM SIM, based on ISO 7816-2/3/4
 - small changes for GPRS support by introducing a few new optional files
 - Class byte 0xA0 used in GSM SIM

- **USIM cards**
 - Completely new approach based on ETSI UICC spec, multi-application capable
 - Selection of ADF.USIM by AID
 - Many new files
 - Backwards compatibility achieved by placing DF.GSM in MF and linking (think of symlink/hardlink) of relevant files
 - Authentication for GSM and UMTS can be completely different (algorithm, secret key used, ...)

- **Additional application profiles exist for GSM-R, TETRA and other ETSI related communications systems.**
Evolution of Specifications

- Classic SIM: ETSI TS 11.11 / 3GPP TS 51.011
- UICC Card: 3GPP TS 31.101, 31.900, ETSI TS 102 221, 102 222
- USIM application: 3GPP TS 31.102
- ISIM application for IMS (VoIP for LTE): 3GPP TS 31.103
ISIM Application Dedicated File (ADF.ISIM)

- ADF_ISIM
 - EF_{IST} '6F07'
 - EF_{IMPI} '6F02'
 - EF_{DOMAIN} '6F03'
 - EF_{IMPU} '6F04'
 - EF_{AD} '6FAD'
 - EF_{ARR} '6F06'
 - EF_{P-CSCF} '6F09'
 - EF_{GBAP} '6FD5'
 - EF_{GBANL} '6FD7'
 - EF_{NAFKCA} '6FDD'
 - EF_{UICC1ARI} '6FE7'
 - EF_{SMS} '6F3C'
 - EF_{SMSSS} '6F43'
 - EF_{SMSR} '6F47'
 - EF_{SMSP} '6F42'
Analyzing SIM problems

- Regular end-user phone does not give much debugging
- SIM card itself has no debug interface for printing error messages, warnings, etc.
- However, as SIM-ME interface is unencrypted, sniffing / tracing is possible
- Commercial / proprietary solutions exist, but are expensive (USD 5,000 and up)
- Technically, sniffing smart card interfaces is actually very simple
Introducing Osmocom SIMtrace2

- Osmocom SIMtrace2 is primarily a passive (U)SIM-ME communication sniffer
- Insert SIM adapter cable into actual phone
- Insert (U)SIM into SIMtrace2 hardware
- SIMtrace2 hardware provides USB interface to host PC
- simtrace2-sniff host PC program encapsulates APDU in GSMTAP
- GSMTAP is sent via UDP to localhost
- wireshark dissector for GSM TS 11.11 decodes APDUs
- NEW: pySim-trace for higher-level decoding
Osmocom SIMtrace2 Principle

Phone

Flexi-PCB cable

SIMtrace hardware

USB cable

SIM

PC
Osmocom SIMtrace2 Hardware
before 2015, there was a SIMtrace hardware, now called SIMtrace1
based on much older AT91SAM7S controller (ARM7TDMI)
firmware was a crude extension of an earlier RFID project (OpenPCD)
SIMtrace1 is unsupported; it uses different firmware and host tools
if somebody really cared, SIMtrace2 firmware could in theory be ported to support SIMtrace1 hardware
in case of doubt, check marking of TQFP chip on the device. If it’s SAM3S you’re good.
Osmocom SIMtrace2 Hardware

- Hardware is based around AT91SAM3S controller
- SAM3S Offers two ISO 7816-3 compatible USARTs
- USARTs can be clock master (SIM reader) or slave (SIM card)
- Open Source Firmware available
- Auto-bauding depending CLK signal, PPS supported
- Schematics / layout is open source (CC-BY-SA)
- **Source at** https://gitea.osmocom.org/sim-card/simtrace2 in the hardware directory
- Assembled + tested kits can be bought from https://shop.sysmocom.de/
Open Source (GPLv2) Firmware on SAM3S implementing
- dfu DFU bootloader for easy (and standardized) firmware flashing
- cardem card physical layer emulation / remote SIM
- trace passive protocol tracing

Source at https://gitea.osmocom.org/sim-card/simtrace2 in the firmware directory

Binaries at
https://downloads.osmocom.org/binaries/simtrace2/firmware/

not only for SIMtrace2, but other boards like ngff-cardem, sysmoQMOD
Osmocom SIMtrace2 Host Software

- Open Source (GPLv2) Host Software (for Linux), implementing
 implementing the following parts:
 - `libosmo-simtrace2` library encapsulating bulk of the functionality
 - `simtrace2-sniff` for protocol tracing with `trace` firmware
 - `simtrace2-list` to list all compatible devices connected via USB
 - `simtrace2-tool` for some miscellaneous features (ngff-cardem/QMOD)

- Source at https://gitea.osmocom.org/sim-card/simtrace2 in the host directory

- Packages (dpkg, rpm) at https://osmocom.org/projects/cellular-infrastructure/wiki/Binary_Packages

- not only for SIMtrace2, but other boards like ngff-cardem, sysmoQMOD
wireshark decoding
New in 2022: **pySim-trace decoding**

- basic APDU level decode in wireshark is all fine, but rather limited
- interesting bits are actually happening at application layer above
- every file has different content/format/encoding
- if we have code to decode the file contents, we can provide higher-level decode
- this led to **pySim-trace**
- **pySim** is the Osmocom *swiss army knife* for SIM/USIM/ISIM card reading/writing
 - It already has encoders/decoders for most of the files
 - **pySim-trace** consumes GSMTAP and maintains state (which file is currently selected, ...) to then use those decoders
New in 2022: \texttt{pySim-trace} decoding - DEMO
The SIMtrace2 hardware can emulate the physical SIM card interface

This means that SIMtrace2 is connected to SIM instead of a SIM

The communication is picked up and passed via USB to the host

Host can now, for example, forward this communication to a (remote) smart card reader with the actual SIM

- `simtrace2-cardem-pcsc` is a simplistic implementation of that: Pass communication to a locally connected PC/SC compatible reader
- The `osmo-remsim` software suite is a comprehensive software package for managing a fleet of phones/modems and SIM cards, allowing dynamic assignment of remote SIMS to phones/modems.
- See a previous OsmoDevCall (https://media.ccc.de/v/osmodevcall-20210827-laforge-osmo-remsim) for a talk on that
sysmoQMOD board

- a proprietary board hosting two SAM3S with SIMtrace2 *cardem* firmware
- each SAM3S serves two cellular modems in mPCIe form-factor
- can pick up SIM signalling of four modems and pass it to remote SIMs

Product page:

https://sysmocom.de/products/lab/sysmoqmod/index.html
ngff-cardem board

- a NGFF (M.2) cellular modem carrier board with on-board SIMtrace2
- allows SIM tracing and card emulation/forwarding without any flex cables
- an open source hardware project, just like SIMtrace2
- Homepage: https://osmocom.org/projects/ngff-cardem/wiki
SIMtrace2 TODO

SIMtrace2 hardware is capable, but no software yet for:

- Use board as CCID / PC/SC compatible smart card reader
- perform MITM (APDU filtering)
- T=1 protocol support (tracing of crypto smart cards, banking cards)
- autonomous tracing operation (No PC / USB), store APDU logs *in the field* on integrated SPI flash

Firmware and host software all FOSS, anyone can extend and innovate!