SIM Cards

Smart Card Basics

Terminology

SIM Subscriber Identity Module

USIM Universal Subscriber Identity Module

UICC Universal Integrated Chip Card

MS GSM Mobile Station (phone, modem)

UE UMTS User Equipment

ME GSM Mobile Equipment (MS + SIM)

OTA Over The Air

SAT SIM Application Toolkit

CAT Card (UICC) Application Toolkit

USAT USIM Application Toolkit

TAR Toolkit Application Reference
Relevant Specification Bodies

- ISO (ISO 7816) smart cards
- ETSI (European Telecommunications Standardisation Institute)
 - Classic GSM SIM
 - UICC card as basis for various telecom ID purposes
 - Card Application Toolkit (CAT)
- 3GPP (3rd Generation Partnership Project)
 - USIM Application
 - USIM Application Toolkit (USAT)
 - API based applet interworking
- Global Platform
 - Overall spec for SIM/USIM with Java
- Sun Microsystems (now Oracle)
 - Java Card Virtual Machine
 - Java Card Runtime Environment
The Subscriber Identity Module (SIM)

- Basic idea was to store cryptographic identity of subscriber inside smart card
- User can thus migrate identity from one device to another
- User can furthermore use different SIM in same device (e.g. local prepaid SIM while travelling)
- Original SIM card design mostly ISO 7816-4 filesystem and single command to execute A3/A8 algorithm inside card
 - This could even be done in logic, no processor required
The modern SIM

The modern SIM is an entirely different beast

- Cryptographic processor smart card
 - Symmetric cryptography such as DES, 3DES, AES
 - Public key cryptography such as RSA, ECC
- Java Card including a small Java VM and Java RE
- Multiple application support
- Ability to download applications (Applets) into card
Smart Card Basics

- Microprocessor with RAM, Flash and Operating System
- Interface: Electrical + Logical Protocol (ISO7816-3, ISO7816-4)
- File System based representation of information
- Protocol describes remote operations on the file system
- Few non-filesystem related commands for e.g. authentication
Smart Card Filesystem

- Hierarchical file system like on PC
 - MF (master file): root directory
 - DF (dedicated file): subdirectory
 - EF (entry file): actual file
 - transparent or record oriented
 - record linear fixed/variable or record cyclic
- File names don’t exist on card. 16bit FID (File ID) or 8bit SFID used instead
Smart Card Filesystem Hierarchy

- **MF** ('3F00')
 - **DF$_{GSM}$** ('7F20')
 - **DF$_{GSLECTCOM}$** ('7F10')
 - **DF$_{IS-41}$** ('7F22')
 - **DF$_{FP-CTS}$** ('7F23')
 - **EF$_{ADN}$** ('6F3A')
 - **EF$_{FDN}$** ('6F3B')
 - **EF$_{SMS}$** ('6F3C')
 - **EF$_{CCP}$** ('6F3D')
 - **EF$_{MSCSidan}$** ('6F40')
 - **EF$_{IME}$** ('4F20')
 - **DF$_{GRAPHICS}$** ('5F50')
 - **DF$_{GLOBIST}$** ('5F31')
 - **DF$_{IHO}$** ('5F32')
 - **DF$_{ACCSD}$** ('5F33')
 - **EF$_{BCP}$** ('6F4F')
 - **EF$_{CM1}$** ('6F58')
 - **EF$_{BDM}$** ('6F4D')
 - **EF$_{EXT2}$** ('6F4B')
 - **EF$_{EXT3}$** ('6F4C')
 - **EF$_{EXT4}$** ('6F4E')
 - **EF$_{MSCSIDN}$** ('6F49')
 - **EF$_{L24D}$** ('6F44')
 - **EF$_{SMSS}$** ('6F43')
 - **EF$_{SMSP}$** ('5F42')
 - **EF$_{IP}$** ('4F20')
 - **EF$_{ICCID}$** ('2F2E')
 - **EF$_{ELP}$** ('2F05')

See GSM 11.19
SIM Card APDU Commands

Classic SIM card commands include the following:

- SELECT (change directory / open file)
- READ BINARY, UPDATE BINARY (read/write transparent EF)
- READ RECORD, UPDATE RECORD (read/write record EF)
- ENABLE CHV, DISABLE CHV, CHANGE CHV (enable, disable or change PIN)
- VERIFY CHV, UNBLOCK CHV (verify or unblock PIN)
- RUN GSM ALGORITHM (A3/A8 authentication)
Typical operations of the phone include

- navigating inside filesystem by `SELECT` on DF/EF
- authenticating the user PIN
- reading/updating files
 - reading IMSI
 - old-school SMS and contact storage
 - storing session keys (Kc/KcGPRS, ...)
 - storing last cell on power-off
Smart Card PINs

The level of access to the filesystem and other card features is determined by authentication using a shared secret, called 'PIN'.

- Regular PIN for normal use of the card by the end user
- PUK for resetting the pin after too many retries
- ADM1..n PIN for access by the operator only
SIM Application Toolkit (SAT)

- Ability for card to run applications that have UI on the phone
 - Display menu items on-screen
 - Get user input from keypad/touch-screen
- Original Version Described in TS 11.14 and 11.11
SAT – Proactive SIM

The *Proactive SIM* features

- Sending a short message
- Setting up a voice call
- Playback of a tone in earpiece
- Providing location information from ME to SIM
- Have ME execute timers on behalf of SIM
- Sending DTMF to network
- Running an AT command received from SIM, sending result back to SIM
- Ask ME to launch browser to SIM-provided URL
SAT – Call and SMS Control

- ME passes MO call setup attempts to SIM for approval
- SIM can then
 - approve or decline the MO call
 - modify the call details such as phone number
 - replace the call with USSD message
- ME passes USSD requests similar to Call Control
- Similar mechanism exists for all MO SMS
The SIM can inquire the ME about:

- MCC / MNC / LAC / Cell ID
- IMEI of ME
- Network Measurement Results
- BCCH channel list
- Date, Time, Timezone
- ME language setting
- Timing Advance
SAT – Event download

The SIM is notified by ME about certain events such as:
- Call Connected / Disconnected
- Location Status (Location Area change)
- User activity (keyboard input)
- Idle screen available
- Browser termination
SAT - Data download

- Enables Operator to exchange arbitrary data with the SIM
- Could be RFM (Remote File Management)
 - Read or modify phone book entries
 - Even change the IMSI of the SIM (!)
- In case of Java Card, can be download of card applets
 - Applets are stored permanently on SIM
 - Can later use SAT procedures to interact with ME
 - TS 03.19 specifies Java API to access SAT from Java RE
SAT - Data download

SAT Data Download can happen via
- via SMS or Cell Broadcast
 - Uses TS 03.40 TP-PID *SIM DATA Download*
 - ME forwards such SMS to the SIM in **ENVELOPE APDU**
 - Response from SIM is sent back as MO-SMS or DELIVERY REPORT
- via BIP (Bearer Independent Protocol)
 - Dedicated CSD call between network and SIM
 - GPRS session between network and SIM
SAT - Data download
Data download security

- GSM TS 03.48 specifies secure messaging for data download
- Includes replay protection
- Supports DES and 3DES
- SMS chaining for long commands / large data
SIM card abuse by hostile operator

- Even if the phone might be considered trusted, the SIM card is owned and controlled by the operator.
- Using SAT features, the operator can control many aspects of the phone.
- Examples:
 - Remotely reading address book / stored SMS
 - Monitor user behavior (browser termination, idle screen, ...)
 - Ask phone to establish packet data session
SIM card re-programming by attacker

- If the SIM is not properly secured (auth + encryption keys, ...) a third party attacker can send SAT envelope SMS to the card and install resident Java applets.
- The attacker can then:
 - Obtain detailed location information and send it via SMS.
 - Intercept/log outgoing calls.
 - Sending copies of incoming + outgoing SMS elsewhere.
- Even using SIM card channel to exploit baseband stack is feasible.
SIM card proxy / MITM by attacker

As soon as an attacker has temporary physical access to a phone, he can

- Insert a proxy-SIM between real SIM and phone
- Do everything a Java applet could do, but even with a securely configured SIM as he does not modify the existing SIM
- Sniff current Kc and send it out e.g. via SMS or even UDP/TCP packets over GPRS
- ... by only using standard interfaces that are common among all phones (as opposed to baseband software hacking which is very model-specific)

Most users would never notice this as they rarely check their SIM slot
Defending against SIM based attacks

- SIM cards are Operator issued, Ki is on the SIM
 - SIM card can thus not be replaced, but original SIM must be used
- Configure telephone to not store contacts or SMS on SIM
- Communication between SIM and ME is not encrypted/authenticated
- Solution: Proxy SIM between SIM and ME to break STK / OTA
 - Filter all STK/OTA/Proactive commands like ENVELOPE
 - Indicate lack of STK support to ME (EF.Phase)
Proxy SIM with firewall

- There are no known commercial products that implement STK/OTA filtering
- But there are a number of shim SIM cards that are plugged between SIM and SIM slot
- Most of them are used for SIM unlocking modern phones
- Some vendors produce freely (re)programmable proxy SIMs:

Figure: Bladox TurboSIM (AVR) and RebelSIM II (8051)
Analyzing SIM toolkit applications is hard

- Regular end-user phone does not give much debugging
- SIM card itself has no debug interface for printing error messages, warnings, etc.
- However, as SIM-ME interface is unencrypted, sniffing / tracing is possible
- Commercial / proprietary solutions exist, but are expensive (USD 5,000 and up)
- Technically, sniffing smard card interfaces is actually very simple
Introducing Osmocom SIMtrace

- Osmocom SIMtrace is a passive (U)SIM-ME communication sniffer
- Insert SIM adapter cable into actual phone
- Insert (U)SIM into SIMtrace hardware
- SIMtrace hardware provides USB interface to host PC
- simtrace host PC program encapsulates APDU in GSMTAP
- GSMTAP is sent via UDP to localhost
- wireshark dissector for GSM TS 11.11 decodes APDUs
Osmocom SIMtrace Principle

Phone

Flexi-PCB cable

SIMtrace hardware

USB cable

SIM

PC
Osmocom SIMtrace Hardware
Osmocom SIMtrace Hardware

- Hardware is based around AT91SAM7S controller
- SAM7S Offers two ISO 7816-3 compatible USARTs
- USARTs can be clock master (SIM reader) or slave (SIM card)
- Open Source Firmware on SAM7S implementing APDU sniffing
- Auto-bauding depending CLK signal, PPS supported
- Schematics / layout is open source (CC-BY-SA)
- Assembled + tested kits can be bought from http://shop.sysmocom.de/
wireshark decoding

User Datagram Protocol, Src Port: 52294 (52294), Dst Port: gsmtap (4729)

<table>
<thead>
<tr>
<th>No.</th>
<th>Time</th>
<th>Source</th>
<th>Destination</th>
<th>Protocol</th>
<th>Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>1.788053</td>
<td>127.0.0.1</td>
<td>127.0.0.1</td>
<td>GSMTAP</td>
<td>GSM SELECT EF.IMSI</td>
</tr>
<tr>
<td>13</td>
<td>1.788078</td>
<td>127.0.0.1</td>
<td>127.0.0.1</td>
<td>GSMTAP</td>
<td>GSM GET RESPONSE</td>
</tr>
<tr>
<td>14</td>
<td>1.788099</td>
<td>127.0.0.1</td>
<td>127.0.0.1</td>
<td>GSMTAP</td>
<td>GSM SELECT EF.SST</td>
</tr>
<tr>
<td>15</td>
<td>2.063939</td>
<td>127.0.0.1</td>
<td>127.0.0.1</td>
<td>GSMTAP</td>
<td>GSM GET RESPONSE</td>
</tr>
<tr>
<td>16</td>
<td>2.063982</td>
<td>127.0.0.1</td>
<td>127.0.0.1</td>
<td>GSMTAP</td>
<td>GSM READ BINARY Offset=0</td>
</tr>
</tbody>
</table>

GSM SIM 11.11

- **Class:** GSM (0xc0)
- **Instruction:** GET RESPONSE (0xc0)
- **Parameter 1:** 0x00
- **Parameter 2:** 0x00
- **Length (Parameter 3):** 0x00

APDU Payload: 000000000f0704000150015010200000

Status Word: Normal ending of command with info from proactive SIM

ISO 7816-4 APDU Data Payload (iso...)

- Packets: 445 Displayed: 445 Marked: 0 Loa... Profile: Default
SIMtrace TODO

SIMtrace hardware is capable, but no software yet for:

- perform MITM (APDU filtering)
- full software SIM card emulation
- PC/SC compatible smart card reader
- autonomous tracing operation (No PC / USB), store APDU logs *in the field* on integrated SPI flash

Firmware and host software all FOSS, anyone can extend and innovate!