import string, binascii, sys, re, inspect def represent_binary_fancy(len, value, mask = 0): result = [] for i in range(len): if i%4 == 0: result.append( " " ) if i%8 == 0: result.append( " " ) if mask & 0x01: result.append( str(value & 0x01) ) else: result.append( "." ) mask = mask >> 1 value = value >> 1 result.reverse() return "".join(result).strip() def parse_binary(value, bytemasks, verbose = False, value_len = 8): ## Parses a binary structure and gives information back ## bytemasks is a sequence of (mask, value, string_if_no_match, string_if_match) tuples result = [] for mask, byte, nonmatch, match in bytemasks: if verbose: prefix = represent_binary_fancy(value_len, value, mask) + ": " else: prefix = "" if (value & mask) == (byte & mask): if match is not None: result.append(prefix + match) else: if nonmatch is not None: result.append(prefix + nonmatch) return result _myprintable = " " + string.letters + string.digits + string.punctuation def hexdump(data, indent = 0, short = False, linelen = 16, offset = 0): r"""Generates a nice hexdump of data and returns it. Consecutive lines will be indented with indent spaces. When short is true, will instead generate hexdump without adresses and on one line. Examples: hexdump('\x00\x41') -> \ '0000: 00 41 .A ' hexdump('\x00\x41', short=True) -> '00 41 (.A)'""" def hexable(data): return " ".join([binascii.b2a_hex(a) for a in data]) def printable(data): return "".join([e in _myprintable and e or "." for e in data]) if short: return "%s (%s)" % (hexable(data), printable(data)) FORMATSTRING = "%04x: %-"+ str(linelen*3) +"s %-"+ str(linelen) +"s" result = "" (head, tail) = (data[:linelen], data[linelen:]) pos = 0 while len(head) > 0: if pos > 0: result = result + "\n%s" % (' ' * indent) result = result + FORMATSTRING % (pos+offset, hexable(head), printable(head)) pos = pos + len(head) (head, tail) = (tail[:linelen], tail[linelen:]) return result LIFE_CYCLES = {0x01: "Load file = loaded", 0x03: "Applet instance / security domain = Installed", 0x07: "Card manager = Initialized; Applet instance / security domain = Selectable", 0x0F: "Card manager = Secured; Applet instance / security domain = Personalized", 0x7F: "Card manager = Locked; Applet instance / security domain = Blocked", 0xFF: "Applet instance = Locked"} def parse_status(data): """Parses the Response APDU of a GetStatus command.""" def parse_segment(segment): def parse_privileges(privileges): if privileges == 0x0: return "N/A" else: privs = [] if privileges & (1<<7): privs.append("security domain") if privileges & (1<<6): privs.append("DAP DES verification") if privileges & (1<<5): privs.append("delegated management") if privileges & (1<<4): privs.append("card locking") if privileges & (1<<3): privs.append("card termination") if privileges & (1<<2): privs.append("default selected") if privileges & (1<<1): privs.append("global PIN modification") if privileges & (1<<0): privs.append("mandated DAP verification") return ", ".join(privs) lgth = ord(segment[0]) aid = segment[1:1+lgth] lifecycle = ord(segment[1+lgth]) privileges = ord(segment[1+lgth+1]) print "aid length: %i (%x)" % (lgth, lgth) print "aid: %s" % hexdump(aid, indent = 18, short=True) print "life cycle state: %x (%s)" % (lifecycle, LIFE_CYCLES.get(lifecycle, "unknown or invalid state")) print "privileges: %x (%s)\n" % (privileges, parse_privileges(privileges)) pos = 0 while pos < len(data): lgth = ord(data[pos])+3 segment = data[pos:pos+lgth] parse_segment(segment) pos = pos + lgth def _unformat_hexdump(dump): hexdump = " ".join([line[7:54] for line in dump.splitlines()]) return binascii.a2b_hex("".join([e != " " and e or "" for e in hexdump])) def _make_byte_property(prop): "Make a byte property(). This is meta code." return property(lambda self: getattr(self, "_"+prop, getattr(self, "_DEFAULT_"+prop, 0)), lambda self, value: self._setbyte(prop, value), lambda self: delattr(self, "_"+prop), "The %s attribute of the APDU" % prop) class APDU(object): "Base class for an APDU" def __init__(self, *args, **kwargs): """Creates a new APDU instance. Can be given positional parameters which must be sequences of either strings (or strings themselves) or integers specifying byte values that will be concatenated in order. Alternatively you may give exactly one positional argument that is an APDU instance. After all the positional arguments have been concatenated they must form a valid APDU! The keyword arguments can then be used to override those values. Keywords recognized are: C_APDU: cla, ins, p1, p2, lc, le, data R_APDU: sw, sw1, sw2, data """ initbuff = list() if len(args) == 1 and isinstance(args[0], self.__class__): self.parse( args[0].render() ) else: for arg in args: if type(arg) == str: initbuff.extend(arg) elif hasattr(arg, "__iter__"): for elem in arg: if hasattr(elem, "__iter__"): initbuff.extend(elem) else: initbuff.append(elem) else: initbuff.append(arg) for (index, value) in enumerate(initbuff): t = type(value) if t == str: initbuff[index] = ord(value) elif t != int: raise TypeError, "APDU must consist of ints or one-byte strings, not %s (index %s)" % (t, index) self.parse( initbuff ) for (name, value) in kwargs.items(): if value is not None: setattr(self, name, value) def _getdata(self): return getattr(self, "_data", []) def _setdata(self, value): if isinstance(value, str): self._data = "".join([e for e in value]) elif isinstance(value, list): self._data = "".join([chr(int(e)) for e in value]) else: raise ValueError, "'data' attribute can only be a str or a list of int, not %s" % type(value) self.Lc = len(value) def _deldata(self): del self._data; self.data = "" data = property(_getdata, _setdata, None, "The data contents of this APDU") def _setbyte(self, name, value): #print "setbyte(%r, %r)" % (name, value) if isinstance(value, int): setattr(self, "_"+name, value) elif isinstance(value, str): setattr(self, "_"+name, ord(value)) else: raise ValueError, "'%s' attribute can only be a byte, that is: int or str, not %s" % (namelower, type(value)) def _format_parts(self, fields): "utility function to be used in __str__ and __repr__" parts = [] for i in fields: parts.append( "%s=0x%02X" % (i, getattr(self, i)) ) return parts def __str__(self): result = "%s(%s)" % (self.__class__.__name__, ", ".join(self._format_fields())) if len(self.data) > 0: result = result + " with %i (0x%02x) bytes of data" % ( len(self.data), len(self.data) ) return result + ":\n" + hexdump(self.data) else: return result def __repr__(self): parts = self._format_fields() if len(self.data) > 0: parts.append("data=%r" % self.data) return "%s(%s)" % (self.__class__.__name__, ", ".join(parts)) class C_APDU(APDU): "Class for a command APDU" def parse(self, apdu): "Parse a full command APDU and assign the values to our object, overwriting whatever there was." apdu = map( lambda a: (isinstance(a, str) and (ord(a),) or (a,))[0], apdu) apdu = apdu + [0] * max(4-len(apdu), 0) self.CLA, self.INS, self.P1, self.P2 = apdu[:4] # case 1, 2, 3, 4 if len(apdu) == 5: # case 2 self.Le = apdu[-1] self.data = "" elif len(apdu) > 5: # case 3, 4 self.Lc = apdu[4] if len(apdu) == 5 + self.Lc: # case 3 self.data = apdu[5:] elif len(apdu) == 5 + self.Lc + 1: # case 4 self.data = apdu[5:-1] self.Le = apdu[-1] else: raise ValueError, "Invalid Lc value. Is %s, should be %s or %s" % (self.Lc, 5 + self.Lc, 5 + self.Lc + 1) else: # case 1 self.data = "" CLA = _make_byte_property("CLA"); cla = CLA INS = _make_byte_property("INS"); ins = INS P1 = _make_byte_property("P1"); p1 = P1 P2 = _make_byte_property("P2"); p2 = P2 Lc = _make_byte_property("Lc"); lc = Lc Le = _make_byte_property("Le"); le = Le def _format_fields(self): fields = ["CLA", "INS", "P1", "P2"] if self.Lc > 0: fields.append("Lc") if hasattr(self, "_Le"): ## There's a difference between "Le = 0" and "no Le" fields.append("Le") return self._format_parts(fields) def render(self): "Return this APDU as a binary string" buffer = [] for i in self.CLA, self.INS, self.P1, self.P2: buffer.append(chr(i)) if len(self.data) > 0: buffer.append(chr(self.Lc)) buffer.append(self.data) if hasattr(self, "_Le"): buffer.append(chr(self.Le)) return "".join(buffer) def case(self): "Return 1, 2, 3 or 4, depending on which ISO case we represent." if self.Lc == 0: if not hasattr(self, "_Le"): return 1 else: return 2 else: if not hasattr(self, "_Le"): return 3 else: return 4 _apduregex = re.compile(r'^\s*([0-9a-f]{2}\s*){4,}$', re.I) _fancyapduregex = re.compile(r'^\s*([0-9a-f]{2}\s*){4,}\s*((xx|yy)\s*)?(([0-9a-f]{2}|:|\)|\(|\[|\])\s*)*$', re.I) @staticmethod def parse_fancy_apdu(*args): apdu_string = " ".join(args) if not C_APDU._fancyapduregex.match(apdu_string): raise ValueError apdu_string = apdu_string.lower() have_le = False pos = apdu_string.find("xx") if pos == -1: pos = apdu_string.find("yy") have_le = True apdu_head = "" apdu_tail = apdu_string if pos != -1: apdu_head = apdu_string[:pos] apdu_tail = apdu_string[pos+2:] if apdu_head.strip() != "" and not C_APDU._apduregex.match(apdu_head): raise ValueError class Node(list): def __init__(self, parent = None, type = None): list.__init__(self) self.parent = parent self.type = type def make_binary(self): "Recursively transform hex strings to binary" for index, child in enumerate(self): if isinstance(child,str): child = "".join( ("".join(child.split())).split(":") ) assert len(child) % 2 == 0 self[index] = binascii.a2b_hex(child) else: child.make_binary() def calculate_lengths(self): "Recursively calculate lengths and insert length counts" self.length = 0 index = 0 while index < len(self): ## Can't use enumerate() due to the insert() below child = self[index] if isinstance(child,str): self.length = self.length + len(child) else: child.calculate_lengths() formatted_len = binascii.a2b_hex("%02x" % child.length) ## FIXME len > 255? self.length = self.length + len(formatted_len) + child.length self.insert(index, formatted_len) index = index + 1 index = index + 1 def flatten(self, offset = 0, ignore_types=["("]): "Recursively flatten, gather list of marks" string_result = [] mark_result = [] for child in self: if isinstance(child,str): string_result.append(child) offset = offset + len(child) else: start = offset child_string, child_mark = child.flatten(offset, ignore_types) string_result.append(child_string) offset = end = offset + len(child_string) if not child.type in ignore_types: mark_result.append( (child.type, start, end) ) mark_result.extend(child_mark) return "".join(string_result), mark_result tree = Node() current = tree allowed_parens = {"(": ")", "[":"]"} for pos,char in enumerate(apdu_tail): if char in (" ", "a", "b", "c", "d", "e", "f",":") or char.isdigit(): if len(current) > 0 and isinstance(current[-1],str): current[-1] = current[-1] + char else: current.append(str(char)) elif char in allowed_parens.values(): if current.parent is None: raise ValueError if allowed_parens[current.type] != char: raise ValueError current = current.parent elif char in allowed_parens.keys(): current.append( Node(current, char) ) current = current[-1] else: raise ValueError if current != tree: raise ValueError tree.make_binary() tree.calculate_lengths() apdu_head = apdu_head.strip() if apdu_head != "": l = tree.length if have_le: l = l - 1 ## FIXME Le > 255? formatted_len = "%02x" % l ## FIXME len > 255? apdu_head = binascii.a2b_hex("".join( (apdu_head + formatted_len).split() )) apdu_tail, marks = tree.flatten(offset=0) apdu = C_APDU(apdu_head + apdu_tail, marks = marks) return apdu class R_APDU(APDU): "Class for a response APDU" def _getsw(self): return chr(self.SW1) + chr(self.SW2) def _setsw(self, value): if len(value) != 2: raise ValueError, "SW must be exactly two bytes" self.SW1 = value[0] self.SW2 = value[1] SW = property(_getsw, _setsw, None, "The Status Word of this response APDU") sw = SW SW1 = _make_byte_property("SW1"); sw1 = SW1 SW2 = _make_byte_property("SW2"); sw2 = SW2 def parse(self, apdu): "Parse a full response APDU and assign the values to our object, overwriting whatever there was." self.SW = apdu[-2:] self.data = apdu[:-2] def _format_fields(self): fields = ["SW1", "SW2"] return self._format_parts(fields) def render(self): "Return this APDU as a binary string" return self.data + self.sw class PN532_Frame(APDU): """This is not really an ISO 7816 APDU, but close enough to use the same class infrastructure.""" def __init__(self, *args, **kwargs): """If applicable: redirect instance creation to a subclass""" super(PN532_Frame, self).__init__(*args, **kwargs) self._autosubclass() def _autosubclass(self): """If a more appropriate subclass is known about, change __class__ to point to that class.""" # Find all global classes that are a (possibly indirect) subclass of the current class candidates = [ e for e in globals().values() if inspect.isclass(e) and issubclass(e, self.__class__) and not e == self.__class__ ] # For each candidate: Find if it specifies any matching rules # through class variables called MATCH_BY_* where * may be any field # and if so, remove those classes that don't match. Also count the number # of matches, to determine the best match matches = {} for candidate in candidates: m = 0 for var in dir(candidate): if var.startswith("MATCH_BY_"): fieldname = var[len("MATCH_BY_"):] if getattr(self, fieldname) == getattr(candidate, var): m = m + 1 else: m = -1 break if m != -1: matches[candidate] = m if len(matches) > 0: # Remove all candidates that don't have maximal score max_score = max(matches.values()) candidates = [ k for k,v in matches.items() if v == max_score ] # If there is still more than one candidate remaining, randomly choose # the first one. if len(candidates) > 0: c = candidates[0] if c != self.__class__: self.__class__ = c DIR = _make_byte_property("DIR"); dir = DIR CMD = _make_byte_property("CMD"); cmd = CMD def parse(self, data): if len(data) > 0: self.dir = data[0] if len(data) > 1: self.cmd = data[1] if len(data) > 2: self.data = data[2:] def _format_fields(self): fields = ["DIR", "CMD"] return self._format_parts(fields) def render(self): return chr(self.cmd) + chr(self.dir) + self.data class PN532_Command(PN532_Frame): MATCH_BY_dir = _DEFAULT_DIR = 0xd4 class PN532_Response(PN532_Frame): MATCH_BY_dir = _DEFAULT_DIR = 0xd5 class PN532_Target(object): TYPE_ISO14443A = "ISO 14443-A" def __init__(self, type): self.type = type class PN532_Response_InListPassiveTarget(PN532_Response): MATCH_BY_cmd = _DEFAULT_CMD = 0x4b def parse_result(self, baudrate_polled): response = map(ord, self.data) self.targets = {} pos = 1 last_pos = pos while pos < len(response): if baudrate_polled == 0: target = PN532_Target(PN532_Target.TYPE_ISO14443A) self.targets[response[pos]] = target target.sens_res = response[(pos+1):(pos+3)] target.sel_res = response[pos+3] pos = pos + 4 if response[pos] > 0: target.nfcid = response[pos+1:(pos+1+response[pos])] pos = pos + response[pos] else: target.nfcid = [] pos = pos + 1 # NFCID length does not count length byte if len(response) > pos and response[pos] > 0: target.ats = response[pos:(pos+response[pos])] pos = pos + response[pos] else: target.ats = [] # ATS length does count length byte if last_pos == pos: return False return True if __name__ == "__main__": response = """ 0000: 07 A0 00 00 00 03 00 00 07 00 07 A0 00 00 00 62 ...............b 0010: 00 01 01 00 07 A0 00 00 00 62 01 01 01 00 07 A0 .........b...... 0020: 00 00 00 62 01 02 01 00 07 A0 00 00 00 62 02 01 ...b.........b.. 0030: 01 00 07 A0 00 00 00 03 00 00 01 00 0E A0 00 00 ................ 0040: 00 30 00 00 90 07 81 32 10 00 00 01 00 0E A0 00 .0.....2........ 0050: 00 00 30 00 00 90 07 81 42 10 00 00 01 00 0E A0 ..0.....B....... 0060: 00 00 00 30 00 00 90 07 81 41 10 00 00 07 00 0E ...0.....A...... 0070: A0 00 00 00 30 00 00 90 07 81 12 10 00 00 01 00 ....0........... 0080: 09 53 4C 42 43 52 59 50 54 4F 07 00 90 00 .SLBCRYPTO.... """ # 64kv1 vorher response = """ 0000: 07 A0 00 00 00 03 00 00 0F 00 07 A0 00 00 00 62 ...............b 0010: 00 01 01 00 07 A0 00 00 00 62 01 01 01 00 07 A0 .........b...... 0020: 00 00 00 62 01 02 01 00 07 A0 00 00 00 62 02 01 ...b.........b.. 0030: 01 00 07 A0 00 00 00 03 00 00 01 00 08 A0 00 00 ................ 0040: 00 30 00 CA 10 01 00 0E A0 00 00 00 30 00 00 90 .0..........0... 0050: 07 81 32 10 00 00 01 00 0E A0 00 00 00 30 00 00 ..2..........0.. 0060: 90 07 81 42 10 00 00 01 00 0E A0 00 00 00 30 00 ...B..........0. 0070: 00 90 07 81 41 10 00 00 07 00 0E A0 00 00 00 30 ....A..........0 0080: 00 00 90 07 81 12 10 00 00 01 00 09 53 4C 42 43 ............SLBC 0090: 52 59 50 54 4F 07 00 90 00 RYPTO.... """ # komische Karte response = """ 0000: 07 A0 00 00 00 03 00 00 07 00 07 A0 00 00 00 62 ...............b 0010: 00 01 01 00 07 A0 00 00 00 62 01 01 01 00 07 A0 .........b...... 0020: 00 00 00 62 01 02 01 00 07 A0 00 00 00 62 02 01 ...b.........b.. 0030: 01 00 07 A0 00 00 00 03 00 00 01 00 0E A0 00 00 ................ 0040: 00 30 00 00 90 07 81 32 10 00 00 01 00 0E A0 00 .0.....2........ 0050: 00 00 30 00 00 90 07 81 42 10 00 00 01 00 0E A0 ..0.....B....... 0060: 00 00 00 30 00 00 90 07 81 41 10 00 00 07 00 0E ...0.....A...... 0070: A0 00 00 00 30 00 00 90 07 81 12 10 00 00 01 00 ....0........... 0080: 09 53 4C 42 43 52 59 50 54 4F 07 00 05 A0 00 00 .SLBCRYPTO...... 0090: 00 01 01 00 90 00 ...... """ # 64kv1 nachher response = """ 0000: 07 A0 00 00 00 03 00 00 07 00 07 A0 00 00 00 62 ...............b 0010: 00 01 01 00 07 A0 00 00 00 62 01 01 01 00 07 A0 .........b...... 0020: 00 00 00 62 01 02 01 00 07 A0 00 00 00 62 02 01 ...b.........b.. 0030: 01 00 07 A0 00 00 00 03 00 00 01 00 0E A0 00 00 ................ 0040: 00 30 00 00 90 07 81 32 10 00 00 01 00 0E A0 00 .0.....2........ 0050: 00 00 30 00 00 90 07 81 42 10 00 00 01 00 0E A0 ..0.....B....... 0060: 00 00 00 30 00 00 90 07 81 41 10 00 00 07 00 0E ...0.....A...... 0070: A0 00 00 00 30 00 00 90 07 81 12 10 00 00 01 00 ....0........... 0080: 09 53 4C 42 43 52 59 50 54 4F 07 00 05 A0 00 00 .SLBCRYPTO...... 0090: 00 01 01 00 06 A0 00 00 00 01 01 07 02 90 00 ............... """ # 64k1 nach setup #response = sys.stdin.read() #parse_status(_unformat_hexdump(response)[:-2]) a = C_APDU(1,2,3,4) # case 1 b = C_APDU(1,2,3,4,5) # case 2 c = C_APDU((1,2,3), cla=0x23, data="hallo") # case 3 d = C_APDU(1,2,3,4,2,4,6,0) # case 4 print print a print b print c print d print print repr(a) print repr(b) print repr(c) print repr(d) print for i in a, b, c, d: print hexdump(i.render()) print e = R_APDU(0x90,0) f = R_APDU("foo\x67\x00") print print e print f print print repr(e) print repr(f) print for i in e, f: print hexdump(i.render())