at91lib/utility/hamming.c

336 lines
12 KiB
C

/* ----------------------------------------------------------------------------
* ATMEL Microcontroller Software Support
* ----------------------------------------------------------------------------
* Copyright (c) 2008, Atmel Corporation
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the disclaimer below.
*
* Atmel's name may not be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* DISCLAIMER: THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
* OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
* ----------------------------------------------------------------------------
*/
//------------------------------------------------------------------------------
// Headers
//------------------------------------------------------------------------------
#include "hamming.h"
#include <utility/trace.h>
#include <utility/assert.h>
//------------------------------------------------------------------------------
// Internal function
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
/// Counts and return the number of bits set to '1' in the given byte.
/// \param byte Byte to count.
//------------------------------------------------------------------------------
static unsigned char CountBitsInByte(unsigned char byte)
{
unsigned char count = 0;
while (byte > 0) {
if (byte & 1) {
count++;
}
byte >>= 1;
}
return count;
}
//------------------------------------------------------------------------------
/// Counts and return the number of bits set to '1' in the given hamming code.
/// \param code Hamming code.
//------------------------------------------------------------------------------
static unsigned char CountBitsInCode256(unsigned char *code)
{
return CountBitsInByte(code[0])
+ CountBitsInByte(code[1])
+ CountBitsInByte(code[2]);
}
//------------------------------------------------------------------------------
/// Calculates the 22-bit hamming code for a 256-bytes block of data.
/// \param data Data buffer to calculate code for.
/// \param code Pointer to a buffer where the code should be stored.
//------------------------------------------------------------------------------
static void Compute256(const unsigned char *data, unsigned char *code)
{
unsigned int i;
unsigned char columnSum = 0;
unsigned char evenLineCode = 0;
unsigned char oddLineCode = 0;
unsigned char evenColumnCode = 0;
unsigned char oddColumnCode = 0;
// Xor all bytes together to get the column sum;
// At the same time, calculate the even and odd line codes
for (i=0; i < 256; i++) {
columnSum ^= data[i];
// If the xor sum of the byte is 0, then this byte has no incidence on
// the computed code; so check if the sum is 1.
if ((CountBitsInByte(data[i]) & 1) == 1) {
// Parity groups are formed by forcing a particular index bit to 0
// (even) or 1 (odd).
// Example on one byte:
//
// bits (dec) 7 6 5 4 3 2 1 0
// (bin) 111 110 101 100 011 010 001 000
// '---'---'---'----------.
// |
// groups P4' ooooooooooooooo eeeeeeeeeeeeeee P4 |
// P2' ooooooo eeeeeee ooooooo eeeeeee P2 |
// P1' ooo eee ooo eee ooo eee ooo eee P1 |
// |
// We can see that: |
// - P4 -> bit 2 of index is 0 --------------------'
// - P4' -> bit 2 of index is 1.
// - P2 -> bit 1 of index if 0.
// - etc...
// We deduce that a bit position has an impact on all even Px if
// the log2(x)nth bit of its index is 0
// ex: log2(4) = 2, bit2 of the index must be 0 (-> 0 1 2 3)
// and on all odd Px' if the log2(x)nth bit of its index is 1
// ex: log2(2) = 1, bit1 of the index must be 1 (-> 0 1 4 5)
//
// As such, we calculate all the possible Px and Px' values at the
// same time in two variables, evenLineCode and oddLineCode, such as
// evenLineCode bits: P128 P64 P32 P16 P8 P4 P2 P1
// oddLineCode bits: P128' P64' P32' P16' P8' P4' P2' P1'
//
evenLineCode ^= (255 - i);
oddLineCode ^= i;
}
}
// At this point, we have the line parities, and the column sum. First, We
// must caculate the parity group values on the column sum.
for (i=0; i < 8; i++) {
if (columnSum & 1) {
evenColumnCode ^= (7 - i);
oddColumnCode ^= i;
}
columnSum >>= 1;
}
// Now, we must interleave the parity values, to obtain the following layout:
// Code[0] = Line1
// Code[1] = Line2
// Code[2] = Column
// Line = Px' Px P(x-1)- P(x-1) ...
// Column = P4' P4 P2' P2 P1' P1 PadBit PadBit
code[0] = 0;
code[1] = 0;
code[2] = 0;
for (i=0; i < 4; i++) {
code[0] <<= 2;
code[1] <<= 2;
code[2] <<= 2;
// Line 1
if ((oddLineCode & 0x80) != 0) {
code[0] |= 2;
}
if ((evenLineCode & 0x80) != 0) {
code[0] |= 1;
}
// Line 2
if ((oddLineCode & 0x08) != 0) {
code[1] |= 2;
}
if ((evenLineCode & 0x08) != 0) {
code[1] |= 1;
}
// Column
if ((oddColumnCode & 0x04) != 0) {
code[2] |= 2;
}
if ((evenColumnCode & 0x04) != 0) {
code[2] |= 1;
}
oddLineCode <<= 1;
evenLineCode <<= 1;
oddColumnCode <<= 1;
evenColumnCode <<= 1;
}
// Invert codes (linux compatibility)
code[0] = ~code[0];
code[1] = ~code[1];
code[2] = ~code[2];
TRACE_DEBUG("Computed code = %02X %02X %02X\n\r",
code[0], code[1], code[2]);
}
//------------------------------------------------------------------------------
/// Verifies and corrects a 256-bytes block of data using the given 22-bits
/// hamming code.
/// Returns 0 if there is no error, otherwise returns a HAMMING_ERROR code.
/// \param data Data buffer to check.
/// \param originalCode Hamming code to use for verifying the data.
//------------------------------------------------------------------------------
static unsigned char Verify256(
unsigned char *data,
const unsigned char *originalCode)
{
// Calculate new code
unsigned char computedCode[3];
unsigned char correctionCode[3];
Compute256(data, computedCode);
// Xor both codes together
correctionCode[0] = computedCode[0] ^ originalCode[0];
correctionCode[1] = computedCode[1] ^ originalCode[1];
correctionCode[2] = computedCode[2] ^ originalCode[2];
TRACE_DEBUG("Correction code = %02X %02X %02X\n\r",
correctionCode[0], correctionCode[1], correctionCode[2]);
// If all bytes are 0, there is no error
if ((correctionCode[0] == 0)
&& (correctionCode[1] == 0)
&& (correctionCode[2] == 0)) {
return 0;
}
// If there is a single bit error, there are 11 bits set to 1
if (CountBitsInCode256(correctionCode) == 11) {
// Get byte and bit indexes
unsigned char byte = correctionCode[0] & 0x80;
byte |= (correctionCode[0] << 1) & 0x40;
byte |= (correctionCode[0] << 2) & 0x20;
byte |= (correctionCode[0] << 3) & 0x10;
byte |= (correctionCode[1] >> 4) & 0x08;
byte |= (correctionCode[1] >> 3) & 0x04;
byte |= (correctionCode[1] >> 2) & 0x02;
byte |= (correctionCode[1] >> 1) & 0x01;
unsigned char bit = (correctionCode[2] >> 5) & 0x04;
bit |= (correctionCode[2] >> 4) & 0x02;
bit |= (correctionCode[2] >> 3) & 0x01;
// Correct bit
TRACE_DEBUG("Correcting byte #%d at bit %d\n\r", byte, bit);
data[byte] ^= (1 << bit);
return Hamming_ERROR_SINGLEBIT;
}
// Check if ECC has been corrupted
if (CountBitsInCode256(correctionCode) == 1) {
return Hamming_ERROR_ECC;
}
// Otherwise, this is a multi-bit error
else {
return Hamming_ERROR_MULTIPLEBITS;
}
}
//------------------------------------------------------------------------------
// Exported functions
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
/// Computes 3-bytes hamming codes for a data block whose size is multiple of
/// 256 bytes. Each 256 bytes block gets its own code.
/// \param data Data to compute code for.
/// \param size Data size in bytes.
/// \param code Codes buffer.
//------------------------------------------------------------------------------
void Hamming_Compute256x(
const unsigned char *data,
unsigned int size,
unsigned char *code)
{
TRACE_DEBUG("Hamming_Compute256x()\n\r");
while (size > 0) {
Compute256(data, code);
data += 256;
code += 3;
size -= 256;
}
}
//------------------------------------------------------------------------------
/// Verifies 3-bytes hamming codes for a data block whose size is multiple of
/// 256 bytes. Each 256-bytes block is verified with its own code.
/// Returns 0 if the data is correct, Hamming_ERROR_SINGLEBIT if one or more
/// block(s) have had a single bit corrected, or either Hamming_ERROR_ECC
/// or Hamming_ERROR_MULTIPLEBITS.
/// \param data Data buffer to verify.
/// \param size Size of the data in bytes.
/// \param code Original codes.
//------------------------------------------------------------------------------
unsigned char Hamming_Verify256x(
unsigned char *data,
unsigned int size,
const unsigned char *code)
{
unsigned char error;
unsigned char result = 0;
TRACE_DEBUG("Hamming_Verify256x()\n\r");
while (size > 0) {
error = Verify256(data, code);
if (error == Hamming_ERROR_SINGLEBIT) {
result = Hamming_ERROR_SINGLEBIT;
}
else if (error) {
return error;
}
data += 256;
code += 3;
size -= 256;
}
return result;
}