strongswan/src/libtls/tls_hkdf.c

512 lines
11 KiB
C

/*
* Copyright (C) 2020 Pascal Knecht
* Copyright (C) 2020 Méline Sieber
* HSR Hochschule fuer Technik Rapperswil
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version. See <http://www.fsf.org/copyleft/gpl.txt>.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*/
#include "tls_hkdf.h"
#include <bio/bio_writer.h>
#include <crypto/prf_plus.h>
typedef struct private_tls_hkdf_t private_tls_hkdf_t;
typedef enum hkdf_phase {
HKDF_PHASE_0,
HKDF_PHASE_1,
HKDF_PHASE_2,
HKDF_PHASE_3,
} hkdf_phase;
struct private_tls_hkdf_t {
/**
* Public tls_hkdf_t interface.
*/
struct tls_hkdf_t public;
/**
* Phase we are in.
*/
hkdf_phase phase;
/**
* Hash algorithm used.
*/
hash_algorithm_t hash_algorithm;
/**
* Pseudorandom function used.
*/
prf_t *prf;
/**
* Hasher used.
*/
hasher_t *hasher;
/**
* (EC)DHE as IKM to switch from phase 1 to phase 2
*/
chunk_t shared_secret;
/**
* IKM used.
*/
chunk_t ikm;
/**
* PRK used.
*/
chunk_t prk;
/**
* OKM used.
*/
chunk_t okm;
/**
* Current implementation needs a copy of derived secrets to calculate the
* proper finished key.
*/
chunk_t client_traffic_secret;
chunk_t server_traffic_secret;
};
static char *hkdf_labels[] = {
"tls13 ext binder",
"tls13 res binder",
"tls13 c e traffic",
"tls13 e exp master",
"tls13 c hs traffic",
"tls13 s hs traffic",
"tls13 c ap traffic",
"tls13 s ap traffic",
"tls13 exp master",
"tls13 res master",
};
/**
* Step 1: Extract, as defined in RFC 5869, section 2.2:
* HKDF-Extract(salt, IKM) -> PRK
*/
static bool extract(private_tls_hkdf_t *this, chunk_t salt, chunk_t ikm,
chunk_t *prk)
{
if (!this->prf->set_key(this->prf, salt))
{
DBG1(DBG_TLS, "unable to set PRF salt");
return FALSE;
}
chunk_clear(prk);
if(!this->prf->allocate_bytes(this->prf, ikm, prk))
{
DBG1(DBG_TLS, "unable to allocate PRF space");
return FALSE;
}
DBG4(DBG_TLS, "PRK: %B", prk);
return TRUE;
}
/**
* Step 2: Expand as defined in RFC 5869, section 2.3:
* HKDF-Expand(PRK, info, L) -> OKM
*/
static bool expand(private_tls_hkdf_t *this, chunk_t prk, chunk_t info,
size_t length, chunk_t *okm)
{
if (!this->prf->set_key(this->prf, prk))
{
DBG1(DBG_TLS, "unable to set PRF PRK");
return FALSE;
}
prf_plus_t *prf_plus = prf_plus_create(this->prf, TRUE, info);
chunk_clear(&this->okm);
if (!prf_plus || !prf_plus->allocate_bytes(prf_plus, length, okm))
{
DBG1(DBG_TLS, "unable to allocate PRF plus space");
DESTROY_IF(prf_plus);
chunk_clear(okm);
return FALSE;
}
DESTROY_IF(prf_plus);
DBG4(DBG_TLS, "OKM: %B", okm);
return TRUE;
}
/**
* Expand-Label as defined in RFC 8446, section 7.1:
* HKDF-Expand-Label(Secret, Label, Context, Length) -> OKM
*/
static bool expand_label(private_tls_hkdf_t *this, chunk_t secret,
chunk_t label, chunk_t context, uint16_t length,
chunk_t *key)
{
bool success;
if (label.len < 7 || label.len > 255 || context.len > 255)
{
return FALSE;
}
/* HKDFLabel as defined in RFC 8446, section 7.1 */
bio_writer_t *writer = bio_writer_create(0);
writer->write_uint16(writer, length);
writer->write_data8(writer, label);
writer->write_data8(writer, context);
success = expand(this, secret, writer->get_buf(writer), length, key);
writer->destroy(writer);
return success;
}
/**
* Derive-Secret as defined in RFC 8446, section 7.1:
* Derive-Secret(Secret, Label, Message) -> OKM
*/
static bool derive_secret(private_tls_hkdf_t *this, chunk_t label,
chunk_t messages)
{
bool success;
chunk_t context;
if (!this->hasher ||
!this->hasher->allocate_hash(this->hasher, messages, &context))
{
DBG1(DBG_TLS, "%N not supported", hash_algorithm_names,
this->hash_algorithm);
return FALSE;
}
success = expand_label(this, this->prk, label, context,
this->hasher->get_hash_size(this->hasher),
&this->okm);
chunk_free(&context);
return success;
}
static bool move_to_phase_1(private_tls_hkdf_t *this)
{
chunk_t salt_zero;
switch (this->phase)
{
case HKDF_PHASE_0:
salt_zero = chunk_alloca(this->hasher->get_hash_size(this->hasher));
chunk_copy_pad(salt_zero, chunk_empty, 0);
if (!extract(this, salt_zero, this->ikm, &this->prk))
{
DBG1(DBG_TLS, "unable to extract PRK");
return FALSE;
}
this->phase = HKDF_PHASE_1;
return TRUE;
case HKDF_PHASE_1:
return TRUE;
default:
DBG1(DBG_TLS, "invalid HKDF phase");
return FALSE;
}
}
static bool move_to_phase_2(private_tls_hkdf_t *this)
{
chunk_t derived;
switch (this->phase)
{
case HKDF_PHASE_0:
if (!move_to_phase_1(this))
{
DBG1(DBG_TLS, "unable to move to phase 1");
return FALSE;
}
/* fall-through */
case HKDF_PHASE_1:
derived = chunk_from_str("tls13 derived");
if (!derive_secret(this, derived, chunk_empty))
{
DBG1(DBG_TLS, "unable to derive secret");
return FALSE;
}
if (!this->shared_secret.ptr)
{
DBG1(DBG_TLS, "no shared secret set");
return FALSE;
}
else
{
chunk_clear(&this->ikm);
this->ikm = chunk_clone(this->shared_secret);
}
if (!extract(this, this->okm, this->ikm, &this->prk))
{
DBG1(DBG_TLS, "unable extract PRK");
return FALSE;
}
this->phase = HKDF_PHASE_2;
return TRUE;
case HKDF_PHASE_2:
return TRUE;
default:
DBG1(DBG_TLS, "invalid HKDF phase");
return FALSE;
}
}
static bool move_to_phase_3(private_tls_hkdf_t *this)
{
chunk_t derived, ikm_zero;
switch (this->phase)
{
case HKDF_PHASE_0:
case HKDF_PHASE_1:
if (!move_to_phase_2(this))
{
DBG1(DBG_TLS, "unable to move to phase 2");
return FALSE;
}
/* fall-through */
case HKDF_PHASE_2:
/* prepare okm for next extract */
derived = chunk_from_str("tls13 derived");
if (!derive_secret(this, derived, chunk_empty))
{
DBG1(DBG_TLS, "unable to derive secret");
return FALSE;
}
ikm_zero = chunk_alloca(this->hasher->get_hash_size(this->hasher));
chunk_copy_pad(ikm_zero, chunk_empty, 0);
if (!extract(this, this->okm, ikm_zero, &this->prk))
{
DBG1(DBG_TLS, "unable extract PRK");
return FALSE;
}
this->phase = HKDF_PHASE_3;
return TRUE;
case HKDF_PHASE_3:
return TRUE;
default:
DBG1(DBG_TLS, "invalid HKDF phase");
return FALSE;
}
}
static void return_secret(private_tls_hkdf_t *this, chunk_t key,
chunk_t *secret)
{
*secret = chunk_alloc(key.len);
chunk_copy_pad(*secret, key, 0);
}
static bool get_shared_label_keys(private_tls_hkdf_t *this, chunk_t label,
bool is_server, size_t length, chunk_t *key)
{
chunk_t result, secret;
if (is_server)
{
secret = chunk_clone(this->server_traffic_secret);
}
else
{
secret = chunk_clone(this->client_traffic_secret);
}
if (!expand_label(this, secret, label, chunk_empty, length, &result))
{
DBG1(DBG_TLS, "unable to derive secret");
chunk_clear(&secret);
chunk_clear(&result);
return FALSE;
}
if (key)
{
return_secret(this, result, key);
}
chunk_clear(&secret);
chunk_clear(&result);
return TRUE;
}
METHOD(tls_hkdf_t, set_shared_secret, void,
private_tls_hkdf_t *this, chunk_t shared_secret)
{
this->shared_secret = chunk_clone(shared_secret);
}
METHOD(tls_hkdf_t, generate_secret, bool,
private_tls_hkdf_t *this, tls_hkdf_label_t label, chunk_t messages,
chunk_t *secret)
{
switch (label)
{
case TLS_HKDF_EXT_BINDER:
case TLS_HKDF_RES_BINDER:
case TLS_HKDF_C_E_TRAFFIC:
case TLS_HKDF_E_EXP_MASTER:
if (!move_to_phase_1(this))
{
DBG1(DBG_TLS, "unable to move to phase 1");
return FALSE;
}
break;
case TLS_HKDF_C_HS_TRAFFIC:
case TLS_HKDF_S_HS_TRAFFIC:
if (!move_to_phase_2(this))
{
DBG1(DBG_TLS, "unable to move to phase 2");
return FALSE;
}
break;
case TLS_HKDF_C_AP_TRAFFIC:
case TLS_HKDF_S_AP_TRAFFIC:
case TLS_HKDF_EXP_MASTER:
case TLS_HKDF_RES_MASTER:
if (!move_to_phase_3(this))
{
DBG1(DBG_TLS, "unable to move to phase 3");
return FALSE;
}
break;
default:
DBG1(DBG_TLS, "invalid HKDF label");
return FALSE;
}
if (!derive_secret(this, chunk_from_str(hkdf_labels[label]), messages))
{
DBG1(DBG_TLS, "unable to derive secret");
return FALSE;
}
if (label == TLS_HKDF_C_HS_TRAFFIC || label == TLS_HKDF_C_AP_TRAFFIC)
{
chunk_clear(&this->client_traffic_secret);
this->client_traffic_secret = chunk_clone(this->okm);
}
if (label == TLS_HKDF_S_HS_TRAFFIC || label == TLS_HKDF_S_AP_TRAFFIC)
{
chunk_clear(&this->server_traffic_secret);
this->server_traffic_secret = chunk_clone(this->okm);
}
if (secret)
{
return_secret(this, this->okm, secret);
}
return TRUE;
}
METHOD(tls_hkdf_t, derive_key, bool,
private_tls_hkdf_t *this, bool is_server, size_t length, chunk_t *key)
{
return get_shared_label_keys(this, chunk_from_str("tls13 key"), is_server,
length, key);
}
METHOD(tls_hkdf_t, derive_iv, bool,
private_tls_hkdf_t *this, bool is_server, size_t length, chunk_t *iv)
{
return get_shared_label_keys(this, chunk_from_str("tls13 iv"), is_server,
length, iv);
}
METHOD(tls_hkdf_t, derive_finished, bool,
private_tls_hkdf_t *this, bool is_server, chunk_t *finished)
{
return get_shared_label_keys(this, chunk_from_str("tls13 finished"),
is_server,
this->hasher->get_hash_size(this->hasher),
finished);
}
METHOD(tls_hkdf_t, destroy, void,
private_tls_hkdf_t *this)
{
chunk_free(&this->ikm);
chunk_clear(&this->prk);
chunk_clear(&this->shared_secret);
chunk_clear(&this->okm);
chunk_clear(&this->client_traffic_secret);
chunk_clear(&this->server_traffic_secret);
DESTROY_IF(this->prf);
DESTROY_IF(this->hasher);
free(this);
}
tls_hkdf_t *tls_hkdf_create(hash_algorithm_t hash_algorithm, chunk_t psk)
{
private_tls_hkdf_t *this;
pseudo_random_function_t prf_algorithm;
switch (hash_algorithm)
{
case HASH_SHA256:
prf_algorithm = PRF_HMAC_SHA2_256;
break;
case HASH_SHA384:
prf_algorithm = PRF_HMAC_SHA2_384;
break;
default:
DBG1(DBG_TLS, "not supported hash algorithm");
return NULL;
}
INIT(this,
.public = {
.set_shared_secret = _set_shared_secret,
.generate_secret = _generate_secret,
.derive_key = _derive_key,
.derive_iv = _derive_iv,
.derive_finished = _derive_finished,
.destroy = _destroy,
},
.phase = HKDF_PHASE_0,
.hash_algorithm = hash_algorithm,
.prf = lib->crypto->create_prf(lib->crypto, prf_algorithm),
.hasher = lib->crypto->create_hasher(lib->crypto, hash_algorithm),
);
if (!psk.ptr)
{
this->ikm = chunk_alloc(this->hasher->get_hash_size(this->hasher));
chunk_copy_pad(this->ikm, chunk_empty, 0);
}
else
{
this->ikm = chunk_clone(psk);
}
if (!this->prf || !this->hasher)
{
DBG1(DBG_TLS, "unable to initialise HKDF");
destroy(this);
return NULL;
}
return &this->public;
}