strongswan/src/pluto/demux.c

2528 lines
72 KiB
C

/* demultiplex incoming IKE messages
* Copyright (C) 1997 Angelos D. Keromytis.
* Copyright (C) 1998-2002 D. Hugh Redelmeier.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version. See <http://www.fsf.org/copyleft/gpl.txt>.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*/
/* Ordering Constraints on Payloads
*
* rfc2409: The Internet Key Exchange (IKE)
*
* 5 Exchanges:
* "The SA payload MUST precede all other payloads in a phase 1 exchange."
*
* "Except where otherwise noted, there are no requirements for ISAKMP
* payloads in any message to be in any particular order."
*
* 5.3 Phase 1 Authenticated With a Revised Mode of Public Key Encryption:
*
* "If the HASH payload is sent it MUST be the first payload of the
* second message exchange and MUST be followed by the encrypted
* nonce. If the HASH payload is not sent, the first payload of the
* second message exchange MUST be the encrypted nonce."
*
* "Save the requirements on the location of the optional HASH payload
* and the mandatory nonce payload there are no further payload
* requirements. All payloads-- in whatever order-- following the
* encrypted nonce MUST be encrypted with Ke_i or Ke_r depending on the
* direction."
*
* 5.5 Phase 2 - Quick Mode
*
* "In Quick Mode, a HASH payload MUST immediately follow the ISAKMP
* header and a SA payload MUST immediately follow the HASH."
* [NOTE: there may be more than one SA payload, so this is not
* totally reasonable. Probably all SAs should be so constrained.]
*
* "If ISAKMP is acting as a client negotiator on behalf of another
* party, the identities of the parties MUST be passed as IDci and
* then IDcr."
*
* "With the exception of the HASH, SA, and the optional ID payloads,
* there are no payload ordering restrictions on Quick Mode."
*/
/* Unfolding of Identity -- a central mystery
*
* This concerns Phase 1 identities, those of the IKE hosts.
* These are the only ones that are authenticated. Phase 2
* identities are for IPsec SAs.
*
* There are three case of interest:
*
* (1) We initiate, based on a whack command specifying a Connection.
* We know the identity of the peer from the Connection.
*
* (2) (to be implemented) we initiate based on a flow from our client
* to some IP address.
* We immediately know one of the peer's client IP addresses from
* the flow. We must use this to figure out the peer's IP address
* and Id. To be solved.
*
* (3) We respond to an IKE negotiation.
* We immediately know the peer's IP address.
* We get an ID Payload in Main I2.
*
* Unfortunately, this is too late for a number of things:
* - the ISAKMP SA proposals have already been made (Main I1)
* AND one accepted (Main R1)
* - the SA includes a specification of the type of ID
* authentication so this is negotiated without being told the ID.
* - with Preshared Key authentication, Main I2 is encrypted
* using the key, so it cannot be decoded to reveal the ID
* without knowing (or guessing) which key to use.
*
* There are three reasonable choices here for the responder:
* + assume that the initiator is making wise offers since it
* knows the IDs involved. We can balk later (but not gracefully)
* when we find the actual initiator ID
* + attempt to infer identity by IP address. Again, we can balk
* when the true identity is revealed. Actually, it is enough
* to infer properties of the identity (eg. SA properties and
* PSK, if needed).
* + make all properties universal so discrimination based on
* identity isn't required. For example, always accept the same
* kinds of encryption. Accept Public Key Id authentication
* since the Initiator presumably has our public key and thinks
* we must have / can find his. This approach is weakest
* for preshared key since the actual key must be known to
* decrypt the Initiator's ID Payload.
* These choices can be blended. For example, a class of Identities
* can be inferred, sufficient to select a preshared key but not
* sufficient to infer a unique identity.
*/
#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>
#include <string.h>
#include <unistd.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/time.h> /* only used for belt-and-suspenders select call */
#include <sys/poll.h> /* only used for forensic poll call */
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <sys/queue.h>
#if defined(IP_RECVERR) && defined(MSG_ERRQUEUE)
# include <asm/types.h> /* for __u8, __u32 */
# include <linux/errqueue.h>
# include <sys/uio.h> /* struct iovec */
#endif
#include <freeswan.h>
#include "constants.h"
#include "defs.h"
#include "cookie.h"
#include "connections.h"
#include "state.h"
#include "packet.h"
#include "crypto.h"
#include "ike_alg.h"
#include "log.h"
#include "demux.h" /* needs packet.h */
#include "ipsec_doi.h" /* needs demux.h and state.h */
#include "timer.h"
#include "whack.h" /* requires connections.h */
#include "server.h"
#include "nat_traversal.h"
#include "vendor.h"
#include "modecfg.h"
/* This file does basic header checking and demux of
* incoming packets.
*/
/* forward declarations */
static bool read_packet(struct msg_digest *md);
static void process_packet(struct msg_digest **mdp);
/* Reply messages are built in this buffer.
* Only one state transition function can be using it at a time
* so suspended STFs must save and restore it.
* It could be an auto variable of complete_state_transition except for the fact
* that when a suspended STF resumes, its reply message buffer
* must be at the same location -- there are pointers into it.
*/
u_int8_t reply_buffer[MAX_OUTPUT_UDP_SIZE];
/* state_microcode is a tuple of information parameterizing certain
* centralized processing of a packet. For example, it roughly
* specifies what payloads are expected in this message.
* The microcode is selected primarily based on the state.
* In Phase 1, the payload structure often depends on the
* authentication technique, so that too plays a part in selecting
* the state_microcode to use.
*/
struct state_microcode {
enum state_kind state, next_state;
lset_t flags;
lset_t req_payloads; /* required payloads (allows just one) */
lset_t opt_payloads; /* optional payloads (any mumber) */
/* if not ISAKMP_NEXT_NONE, process_packet will emit HDR with this as np */
u_int8_t first_out_payload;
enum event_type timeout_event;
state_transition_fn *processor;
};
/* State Microcode Flags, in several groups */
/* Oakley Auth values: to which auth values does this entry apply?
* Most entries will use SMF_ALL_AUTH because they apply to all.
* Note: SMF_ALL_AUTH matches 0 for those circumstances when no auth
* has been set.
*/
#define SMF_ALL_AUTH LRANGE(0, OAKLEY_AUTH_ROOF-1)
#define SMF_PSK_AUTH LELEM(OAKLEY_PRESHARED_KEY)
#define SMF_DS_AUTH (LELEM(OAKLEY_DSS_SIG) | LELEM(OAKLEY_RSA_SIG) | \
LELEM(OAKLEY_ECDSA_SIG) | LELEM(OAKLEY_ECDSA_256) | \
LELEM(OAKLEY_ECDSA_384) | LELEM(OAKLEY_ECDSA_521))
#define SMF_PKE_AUTH (LELEM(OAKLEY_RSA_ENC) | LELEM(OAKLEY_ELGAMAL_ENC))
#define SMF_RPKE_AUTH (LELEM(OAKLEY_RSA_ENC_REV) | LELEM(OAKLEY_ELGAMAL_ENC_REV))
/* misc flags */
#define SMF_INITIATOR LELEM(OAKLEY_AUTH_ROOF + 0)
#define SMF_FIRST_ENCRYPTED_INPUT LELEM(OAKLEY_AUTH_ROOF + 1)
#define SMF_INPUT_ENCRYPTED LELEM(OAKLEY_AUTH_ROOF + 2)
#define SMF_OUTPUT_ENCRYPTED LELEM(OAKLEY_AUTH_ROOF + 3)
#define SMF_RETRANSMIT_ON_DUPLICATE LELEM(OAKLEY_AUTH_ROOF + 4)
#define SMF_ENCRYPTED (SMF_INPUT_ENCRYPTED | SMF_OUTPUT_ENCRYPTED)
/* this state generates a reply message */
#define SMF_REPLY LELEM(OAKLEY_AUTH_ROOF + 5)
/* this state completes P1, so any pending P2 negotiations should start */
#define SMF_RELEASE_PENDING_P2 LELEM(OAKLEY_AUTH_ROOF + 6)
/* end of flags */
static state_transition_fn /* forward declaration */
unexpected,
informational;
/* state_microcode_table is a table of all state_microcode tuples.
* It must be in order of state (the first element).
* After initialization, ike_microcode_index[s] points to the
* first entry in state_microcode_table for state s.
* Remember that each state name in Main or Quick Mode describes
* what has happened in the past, not what this message is.
*/
static const struct state_microcode
*ike_microcode_index[STATE_IKE_ROOF - STATE_IKE_FLOOR];
static const struct state_microcode state_microcode_table[] = {
#define PT(n) ISAKMP_NEXT_##n
#define P(n) LELEM(PT(n))
/***** Phase 1 Main Mode *****/
/* No state for main_outI1: --> HDR, SA */
/* STATE_MAIN_R0: I1 --> R1
* HDR, SA --> HDR, SA
*/
{ STATE_MAIN_R0, STATE_MAIN_R1
, SMF_ALL_AUTH | SMF_REPLY
, P(SA), P(VID) | P(CR), PT(NONE)
, EVENT_RETRANSMIT, main_inI1_outR1},
/* STATE_MAIN_I1: R1 --> I2
* HDR, SA --> auth dependent
* SMF_PSK_AUTH, SMF_DS_AUTH: --> HDR, KE, Ni
* SMF_PKE_AUTH:
* --> HDR, KE, [ HASH(1), ] <IDi1_b>PubKey_r, <Ni_b>PubKey_r
* SMF_RPKE_AUTH:
* --> HDR, [ HASH(1), ] <Ni_b>Pubkey_r, <KE_b>Ke_i, <IDi1_b>Ke_i [,<<Cert-I_b>Ke_i]
* Note: since we don't know auth at start, we cannot differentiate
* microcode entries based on it.
*/
{ STATE_MAIN_I1, STATE_MAIN_I2
, SMF_ALL_AUTH | SMF_INITIATOR | SMF_REPLY
, P(SA), P(VID) | P(CR), PT(NONE) /* don't know yet */
, EVENT_RETRANSMIT, main_inR1_outI2 },
/* STATE_MAIN_R1: I2 --> R2
* SMF_PSK_AUTH, SMF_DS_AUTH: HDR, KE, Ni --> HDR, KE, Nr
* SMF_PKE_AUTH: HDR, KE, [ HASH(1), ] <IDi1_b>PubKey_r, <Ni_b>PubKey_r
* --> HDR, KE, <IDr1_b>PubKey_i, <Nr_b>PubKey_i
* SMF_RPKE_AUTH:
* HDR, [ HASH(1), ] <Ni_b>Pubkey_r, <KE_b>Ke_i, <IDi1_b>Ke_i [,<<Cert-I_b>Ke_i]
* --> HDR, <Nr_b>PubKey_i, <KE_b>Ke_r, <IDr1_b>Ke_r
*/
{ STATE_MAIN_R1, STATE_MAIN_R2
, SMF_PSK_AUTH | SMF_DS_AUTH | SMF_REPLY
, P(KE) | P(NONCE), P(VID) | P(CR) | P(NATD_RFC), PT(KE)
, EVENT_RETRANSMIT, main_inI2_outR2 },
{ STATE_MAIN_R1, STATE_UNDEFINED
, SMF_PKE_AUTH | SMF_REPLY
, P(KE) | P(ID) | P(NONCE), P(VID) | P(CR) | P(HASH), PT(KE)
, EVENT_RETRANSMIT, unexpected /* ??? not yet implemented */ },
{ STATE_MAIN_R1, STATE_UNDEFINED
, SMF_RPKE_AUTH | SMF_REPLY
, P(NONCE) | P(KE) | P(ID), P(VID) | P(CR) | P(HASH) | P(CERT), PT(NONCE)
, EVENT_RETRANSMIT, unexpected /* ??? not yet implemented */ },
/* for states from here on, output message must be encrypted */
/* STATE_MAIN_I2: R2 --> I3
* SMF_PSK_AUTH: HDR, KE, Nr --> HDR*, IDi1, HASH_I
* SMF_DS_AUTH: HDR, KE, Nr --> HDR*, IDi1, [ CERT, ] SIG_I
* SMF_PKE_AUTH: HDR, KE, <IDr1_b>PubKey_i, <Nr_b>PubKey_i
* --> HDR*, HASH_I
* SMF_RPKE_AUTH: HDR, <Nr_b>PubKey_i, <KE_b>Ke_r, <IDr1_b>Ke_r
* --> HDR*, HASH_I
*/
{ STATE_MAIN_I2, STATE_MAIN_I3
, SMF_PSK_AUTH | SMF_DS_AUTH | SMF_INITIATOR | SMF_OUTPUT_ENCRYPTED | SMF_REPLY
, P(KE) | P(NONCE), P(VID) | P(CR) | P(NATD_RFC), PT(ID)
, EVENT_RETRANSMIT, main_inR2_outI3 },
{ STATE_MAIN_I2, STATE_UNDEFINED
, SMF_PKE_AUTH | SMF_INITIATOR | SMF_OUTPUT_ENCRYPTED | SMF_REPLY
, P(KE) | P(ID) | P(NONCE), P(VID) | P(CR), PT(HASH)
, EVENT_RETRANSMIT, unexpected /* ??? not yet implemented */ },
{ STATE_MAIN_I2, STATE_UNDEFINED
, SMF_ALL_AUTH | SMF_INITIATOR | SMF_OUTPUT_ENCRYPTED | SMF_REPLY
, P(NONCE) | P(KE) | P(ID), P(VID) | P(CR), PT(HASH)
, EVENT_RETRANSMIT, unexpected /* ??? not yet implemented */ },
/* for states from here on, input message must be encrypted */
/* STATE_MAIN_R2: I3 --> R3
* SMF_PSK_AUTH: HDR*, IDi1, HASH_I --> HDR*, IDr1, HASH_R
* SMF_DS_AUTH: HDR*, IDi1, [ CERT, ] SIG_I --> HDR*, IDr1, [ CERT, ] SIG_R
* SMF_PKE_AUTH, SMF_RPKE_AUTH: HDR*, HASH_I --> HDR*, HASH_R
*/
{ STATE_MAIN_R2, STATE_MAIN_R3
, SMF_PSK_AUTH | SMF_FIRST_ENCRYPTED_INPUT | SMF_ENCRYPTED
| SMF_REPLY | SMF_RELEASE_PENDING_P2
, P(ID) | P(HASH), P(VID) | P(CR), PT(NONE)
, EVENT_SA_REPLACE, main_inI3_outR3 },
{ STATE_MAIN_R2, STATE_MAIN_R3
, SMF_DS_AUTH | SMF_FIRST_ENCRYPTED_INPUT | SMF_ENCRYPTED
| SMF_REPLY | SMF_RELEASE_PENDING_P2
, P(ID) | P(SIG), P(VID) | P(CR) | P(CERT), PT(NONE)
, EVENT_SA_REPLACE, main_inI3_outR3 },
{ STATE_MAIN_R2, STATE_UNDEFINED
, SMF_PKE_AUTH | SMF_RPKE_AUTH | SMF_FIRST_ENCRYPTED_INPUT | SMF_ENCRYPTED
| SMF_REPLY | SMF_RELEASE_PENDING_P2
, P(HASH), P(VID) | P(CR), PT(NONE)
, EVENT_SA_REPLACE, unexpected /* ??? not yet implemented */ },
/* STATE_MAIN_I3: R3 --> done
* SMF_PSK_AUTH: HDR*, IDr1, HASH_R --> done
* SMF_DS_AUTH: HDR*, IDr1, [ CERT, ] SIG_R --> done
* SMF_PKE_AUTH, SMF_RPKE_AUTH: HDR*, HASH_R --> done
* May initiate quick mode by calling quick_outI1
*/
{ STATE_MAIN_I3, STATE_MAIN_I4
, SMF_PSK_AUTH | SMF_INITIATOR
| SMF_FIRST_ENCRYPTED_INPUT | SMF_ENCRYPTED | SMF_RELEASE_PENDING_P2
, P(ID) | P(HASH), P(VID) | P(CR), PT(NONE)
, EVENT_SA_REPLACE, main_inR3 },
{ STATE_MAIN_I3, STATE_MAIN_I4
, SMF_DS_AUTH | SMF_INITIATOR
| SMF_FIRST_ENCRYPTED_INPUT | SMF_ENCRYPTED | SMF_RELEASE_PENDING_P2
, P(ID) | P(SIG), P(VID) | P(CR) | P(CERT), PT(NONE)
, EVENT_SA_REPLACE, main_inR3 },
{ STATE_MAIN_I3, STATE_UNDEFINED
, SMF_PKE_AUTH | SMF_RPKE_AUTH | SMF_INITIATOR
| SMF_FIRST_ENCRYPTED_INPUT | SMF_ENCRYPTED | SMF_RELEASE_PENDING_P2
, P(HASH), P(VID) | P(CR), PT(NONE)
, EVENT_SA_REPLACE, unexpected /* ??? not yet implemented */ },
/* STATE_MAIN_R3: can only get here due to packet loss */
{ STATE_MAIN_R3, STATE_UNDEFINED
, SMF_ALL_AUTH | SMF_ENCRYPTED | SMF_RETRANSMIT_ON_DUPLICATE
, LEMPTY, LEMPTY
, PT(NONE), EVENT_NULL, unexpected },
/* STATE_MAIN_I4: can only get here due to packet loss */
{ STATE_MAIN_I4, STATE_UNDEFINED
, SMF_ALL_AUTH | SMF_INITIATOR | SMF_ENCRYPTED
, LEMPTY, LEMPTY
, PT(NONE), EVENT_NULL, unexpected },
/***** Phase 2 Quick Mode *****/
/* No state for quick_outI1:
* --> HDR*, HASH(1), SA, Nr [, KE ] [, IDci, IDcr ]
*/
/* STATE_QUICK_R0:
* HDR*, HASH(1), SA, Ni [, KE ] [, IDci, IDcr ] -->
* HDR*, HASH(2), SA, Nr [, KE ] [, IDci, IDcr ]
* Installs inbound IPsec SAs.
* Because it may suspend for asynchronous DNS, first_out_payload
* is set to NONE to suppress early emission of HDR*.
* ??? it is legal to have multiple SAs, but we don't support it yet.
*/
{ STATE_QUICK_R0, STATE_QUICK_R1
, SMF_ALL_AUTH | SMF_ENCRYPTED | SMF_REPLY
, P(HASH) | P(SA) | P(NONCE), /* P(SA) | */ P(KE) | P(ID) | P(NATOA_RFC), PT(NONE)
, EVENT_RETRANSMIT, quick_inI1_outR1 },
/* STATE_QUICK_I1:
* HDR*, HASH(2), SA, Nr [, KE ] [, IDci, IDcr ] -->
* HDR*, HASH(3)
* Installs inbound and outbound IPsec SAs, routing, etc.
* ??? it is legal to have multiple SAs, but we don't support it yet.
*/
{ STATE_QUICK_I1, STATE_QUICK_I2
, SMF_ALL_AUTH | SMF_INITIATOR | SMF_ENCRYPTED | SMF_REPLY
, P(HASH) | P(SA) | P(NONCE), /* P(SA) | */ P(KE) | P(ID) | P(NATOA_RFC), PT(HASH)
, EVENT_SA_REPLACE, quick_inR1_outI2 },
/* STATE_QUICK_R1: HDR*, HASH(3) --> done
* Installs outbound IPsec SAs, routing, etc.
*/
{ STATE_QUICK_R1, STATE_QUICK_R2
, SMF_ALL_AUTH | SMF_ENCRYPTED
, P(HASH), LEMPTY, PT(NONE)
, EVENT_SA_REPLACE, quick_inI2 },
/* STATE_QUICK_I2: can only happen due to lost packet */
{ STATE_QUICK_I2, STATE_UNDEFINED
, SMF_ALL_AUTH | SMF_INITIATOR | SMF_ENCRYPTED | SMF_RETRANSMIT_ON_DUPLICATE
, LEMPTY, LEMPTY, PT(NONE)
, EVENT_NULL, unexpected },
/* STATE_QUICK_R2: can only happen due to lost packet */
{ STATE_QUICK_R2, STATE_UNDEFINED
, SMF_ALL_AUTH | SMF_ENCRYPTED
, LEMPTY, LEMPTY, PT(NONE)
, EVENT_NULL, unexpected },
/***** informational messages *****/
/* STATE_INFO: */
{ STATE_INFO, STATE_UNDEFINED
, SMF_ALL_AUTH
, LEMPTY, LEMPTY, PT(NONE)
, EVENT_NULL, informational },
/* STATE_INFO_PROTECTED: */
{ STATE_INFO_PROTECTED, STATE_UNDEFINED
, SMF_ALL_AUTH | SMF_ENCRYPTED
, P(HASH), LEMPTY, PT(NONE)
, EVENT_NULL, informational },
/* XAUTH state transitions */
{ STATE_XAUTH_I0, STATE_XAUTH_I1
, SMF_ALL_AUTH | SMF_ENCRYPTED | SMF_REPLY
, P(ATTR) | P(HASH), P(VID), PT(HASH)
, EVENT_RETRANSMIT, xauth_inI0 },
{ STATE_XAUTH_R1, STATE_XAUTH_R2
, SMF_ALL_AUTH | SMF_ENCRYPTED
, P(ATTR) | P(HASH), P(VID), PT(HASH)
, EVENT_RETRANSMIT, xauth_inR1 },
{ STATE_XAUTH_I1, STATE_XAUTH_I2
, SMF_ALL_AUTH | SMF_ENCRYPTED | SMF_REPLY | SMF_RELEASE_PENDING_P2
, P(ATTR) | P(HASH), P(VID), PT(HASH)
, EVENT_SA_REPLACE, xauth_inI1 },
{ STATE_XAUTH_R2, STATE_XAUTH_R3
, SMF_ALL_AUTH | SMF_ENCRYPTED | SMF_RELEASE_PENDING_P2
, P(ATTR) | P(HASH), P(VID), PT(NONE)
, EVENT_SA_REPLACE, xauth_inR2 },
{ STATE_XAUTH_I2, STATE_UNDEFINED
, SMF_ALL_AUTH | SMF_ENCRYPTED
, LEMPTY, LEMPTY, PT(NONE)
, EVENT_NULL, unexpected },
{ STATE_XAUTH_R3, STATE_UNDEFINED
, SMF_ALL_AUTH | SMF_ENCRYPTED
, LEMPTY, LEMPTY, PT(NONE)
, EVENT_NULL, unexpected },
/* ModeCfg pull mode state transitions */
{ STATE_MODE_CFG_R0, STATE_MODE_CFG_R1
, SMF_ALL_AUTH | SMF_ENCRYPTED | SMF_REPLY | SMF_RELEASE_PENDING_P2
, P(ATTR) | P(HASH), P(VID), PT(HASH)
, EVENT_SA_REPLACE, modecfg_inR0 },
{ STATE_MODE_CFG_I1, STATE_MODE_CFG_I2
, SMF_ALL_AUTH | SMF_ENCRYPTED | SMF_RELEASE_PENDING_P2
, P(ATTR) | P(HASH), P(VID), PT(HASH)
, EVENT_SA_REPLACE, modecfg_inI1 },
{ STATE_MODE_CFG_R1, STATE_UNDEFINED
, SMF_ALL_AUTH | SMF_ENCRYPTED
, LEMPTY, LEMPTY, PT(NONE)
, EVENT_NULL, unexpected },
{ STATE_MODE_CFG_I2, STATE_UNDEFINED
, SMF_ALL_AUTH | SMF_ENCRYPTED
, LEMPTY, LEMPTY, PT(NONE)
, EVENT_NULL, unexpected },
/* ModeCfg push mode state transitions */
{ STATE_MODE_CFG_I0, STATE_MODE_CFG_I3
, SMF_ALL_AUTH | SMF_ENCRYPTED | SMF_REPLY | SMF_RELEASE_PENDING_P2
, P(ATTR) | P(HASH), P(VID), PT(HASH)
, EVENT_SA_REPLACE, modecfg_inI0 },
{ STATE_MODE_CFG_R3, STATE_MODE_CFG_R4
, SMF_ALL_AUTH | SMF_ENCRYPTED | SMF_RELEASE_PENDING_P2
, P(ATTR) | P(HASH), P(VID), PT(HASH)
, EVENT_SA_REPLACE, modecfg_inR3 },
{ STATE_MODE_CFG_I3, STATE_UNDEFINED
, SMF_ALL_AUTH | SMF_ENCRYPTED
, LEMPTY, LEMPTY, PT(NONE)
, EVENT_NULL, unexpected },
{ STATE_MODE_CFG_R4, STATE_UNDEFINED
, SMF_ALL_AUTH | SMF_ENCRYPTED
, LEMPTY, LEMPTY, PT(NONE)
, EVENT_NULL, unexpected },
#undef P
#undef PT
};
void
init_demux(void)
{
/* fill ike_microcode_index:
* make ike_microcode_index[s] point to first entry in
* state_microcode_table for state s (backward scan makes this easier).
* Check that table is in order -- catch coding errors.
* For what it's worth, this routine is idempotent.
*/
const struct state_microcode *t;
for (t = &state_microcode_table[countof(state_microcode_table) - 1];;)
{
passert(STATE_IKE_FLOOR <= t->state && t->state < STATE_IKE_ROOF);
ike_microcode_index[t->state - STATE_IKE_FLOOR] = t;
if (t == state_microcode_table)
break;
t--;
passert(t[0].state <= t[1].state);
}
}
/* Process any message on the MSG_ERRQUEUE
*
* This information is generated because of the IP_RECVERR socket option.
* The API is sparsely documented, and may be LINUX-only, and only on
* fairly recent versions at that (hence the conditional compilation).
*
* - ip(7) describes IP_RECVERR
* - recvmsg(2) describes MSG_ERRQUEUE
* - readv(2) describes iovec
* - cmsg(3) describes how to process auxiliary messages
*
* ??? we should link this message with one we've sent
* so that the diagnostic can refer to that negotiation.
*
* ??? how long can the messge be?
*
* ??? poll(2) has a very incomplete description of the POLL* events.
* We assume that POLLIN, POLLOUT, and POLLERR are all we need to deal with
* and that POLLERR will be on iff there is a MSG_ERRQUEUE message.
*
* We have to code around a couple of surprises:
*
* - Select can say that a socket is ready to read from, and
* yet a read will hang. It turns out that a message available on the
* MSG_ERRQUEUE will cause select to say something is pending, but
* a normal read will hang. poll(2) can tell when a MSG_ERRQUEUE
* message is pending.
*
* This is dealt with by calling check_msg_errqueue after select
* has indicated that there is something to read, but before the
* read is performed. check_msg_errqueue will return TRUE if there
* is something left to read.
*
* - A write to a socket may fail because there is a pending MSG_ERRQUEUE
* message, without there being anything wrong with the write. This
* makes for confusing diagnostics.
*
* To avoid this, we call check_msg_errqueue before a write. True,
* there is a race condition (a MSG_ERRQUEUE message might arrive
* between the check and the write), but we should eliminate many
* of the problematic events. To narrow the window, the poll(2)
* will await until an event happens (in the case or a write,
* POLLOUT; this should be benign for POLLIN).
*/
#if defined(IP_RECVERR) && defined(MSG_ERRQUEUE)
static bool
check_msg_errqueue(const struct iface *ifp, short interest)
{
struct pollfd pfd;
pfd.fd = ifp->fd;
pfd.events = interest | POLLPRI | POLLOUT;
while (pfd.revents = 0
, poll(&pfd, 1, -1) > 0 && (pfd.revents & POLLERR))
{
u_int8_t buffer[3000]; /* hope that this is big enough */
union
{
struct sockaddr sa;
struct sockaddr_in sa_in4;
struct sockaddr_in6 sa_in6;
} from;
int from_len = sizeof(from);
int packet_len;
struct msghdr emh;
struct iovec eiov;
union {
/* force alignment (not documented as necessary) */
struct cmsghdr ecms;
/* how much space is enough? */
unsigned char space[256];
} ecms_buf;
struct cmsghdr *cm;
char fromstr[sizeof(" for message to port 65536") + INET6_ADDRSTRLEN];
struct state *sender = NULL;
zero(&from.sa);
from_len = sizeof(from);
emh.msg_name = &from.sa; /* ??? filled in? */
emh.msg_namelen = sizeof(from);
emh.msg_iov = &eiov;
emh.msg_iovlen = 1;
emh.msg_control = &ecms_buf;
emh.msg_controllen = sizeof(ecms_buf);
emh.msg_flags = 0;
eiov.iov_base = buffer; /* see readv(2) */
eiov.iov_len = sizeof(buffer);
packet_len = recvmsg(ifp->fd, &emh, MSG_ERRQUEUE);
if (packet_len == -1)
{
log_errno((e, "recvmsg(,, MSG_ERRQUEUE) on %s failed in comm_handle"
, ifp->rname));
break;
}
else if (packet_len == sizeof(buffer))
{
plog("MSG_ERRQUEUE message longer than %lu bytes; truncated"
, (unsigned long) sizeof(buffer));
}
else
{
sender = find_sender((size_t) packet_len, buffer);
}
DBG_cond_dump(DBG_ALL, "rejected packet:\n", buffer, packet_len);
DBG_cond_dump(DBG_ALL, "control:\n", emh.msg_control, emh.msg_controllen);
/* ??? Andi Kleen <ak@suse.de> and misc documentation
* suggests that name will have the original destination
* of the packet. We seem to see msg_namelen == 0.
* Andi says that this is a kernel bug and has fixed it.
* Perhaps in 2.2.18/2.4.0.
*/
passert(emh.msg_name == &from.sa);
DBG_cond_dump(DBG_ALL, "name:\n", emh.msg_name
, emh.msg_namelen);
fromstr[0] = '\0'; /* usual case :-( */
switch (from.sa.sa_family)
{
char as[INET6_ADDRSTRLEN];
case AF_INET:
if (emh.msg_namelen == sizeof(struct sockaddr_in))
snprintf(fromstr, sizeof(fromstr)
, " for message to %s port %u"
, inet_ntop(from.sa.sa_family
, &from.sa_in4.sin_addr, as, sizeof(as))
, ntohs(from.sa_in4.sin_port));
break;
case AF_INET6:
if (emh.msg_namelen == sizeof(struct sockaddr_in6))
snprintf(fromstr, sizeof(fromstr)
, " for message to %s port %u"
, inet_ntop(from.sa.sa_family
, &from.sa_in6.sin6_addr, as, sizeof(as))
, ntohs(from.sa_in6.sin6_port));
break;
}
for (cm = CMSG_FIRSTHDR(&emh)
; cm != NULL
; cm = CMSG_NXTHDR(&emh,cm))
{
if (cm->cmsg_level == SOL_IP
&& cm->cmsg_type == IP_RECVERR)
{
/* ip(7) and recvmsg(2) specify:
* ee_origin is SO_EE_ORIGIN_ICMP for ICMP
* or SO_EE_ORIGIN_LOCAL for locally generated errors.
* ee_type and ee_code are from the ICMP header.
* ee_info is the discovered MTU for EMSGSIZE errors
* ee_data is not used.
*
* ??? recvmsg(2) says "SOCK_EE_OFFENDER" but
* means "SO_EE_OFFENDER". The OFFENDER is really
* the router that complained. As such, the port
* is meaningless.
*/
/* ??? cmsg(3) claims that CMSG_DATA returns
* void *, but RFC 2292 and /usr/include/bits/socket.h
* say unsigned char *. The manual is being fixed.
*/
struct sock_extended_err *ee = (void *)CMSG_DATA(cm);
const char *offstr = "unspecified";
char offstrspace[INET6_ADDRSTRLEN];
char orname[50];
if (cm->cmsg_len > CMSG_LEN(sizeof(struct sock_extended_err)))
{
const struct sockaddr *offender = SO_EE_OFFENDER(ee);
switch (offender->sa_family)
{
case AF_INET:
offstr = inet_ntop(offender->sa_family
, &((const struct sockaddr_in *)offender)->sin_addr
, offstrspace, sizeof(offstrspace));
break;
case AF_INET6:
offstr = inet_ntop(offender->sa_family
, &((const struct sockaddr_in6 *)offender)->sin6_addr
, offstrspace, sizeof(offstrspace));
break;
default:
offstr = "unknown";
break;
}
}
switch (ee->ee_origin)
{
case SO_EE_ORIGIN_NONE:
snprintf(orname, sizeof(orname), "none");
break;
case SO_EE_ORIGIN_LOCAL:
snprintf(orname, sizeof(orname), "local");
break;
case SO_EE_ORIGIN_ICMP:
snprintf(orname, sizeof(orname)
, "ICMP type %d code %d (not authenticated)"
, ee->ee_type, ee->ee_code
);
break;
case SO_EE_ORIGIN_ICMP6:
snprintf(orname, sizeof(orname)
, "ICMP6 type %d code %d (not authenticated)"
, ee->ee_type, ee->ee_code
);
break;
default:
snprintf(orname, sizeof(orname), "invalid origin %lu"
, (unsigned long) ee->ee_origin);
break;
}
{
struct state *old_state = cur_state;
cur_state = sender;
/* note dirty trick to suppress ~ at start of format
* if we know what state to blame.
*/
if ((packet_len == 1) && (buffer[0] == 0xff)
#ifdef DEBUG
&& ((cur_debugging & DBG_NATT) == 0)
#endif
) {
/* don't log NAT-T keepalive related errors unless NATT debug is
* enabled
*/
}
else
plog((sender != NULL) + "~"
"ERROR: asynchronous network error report on %s"
"%s"
", complainant %s"
": %s"
" [errno %lu, origin %s"
/* ", pad %d, info %ld" */
/* ", data %ld" */
"]"
, ifp->rname
, fromstr
, offstr
, strerror(ee->ee_errno)
, (unsigned long) ee->ee_errno
, orname
/* , ee->ee_pad, (unsigned long)ee->ee_info */
/* , (unsigned long)ee->ee_data */
);
cur_state = old_state;
}
}
else
{
/* .cmsg_len is a kernel_size_t(!), but the value
* certainly ought to fit in an unsigned long.
*/
plog("unknown cmsg: level %d, type %d, len %lu"
, cm->cmsg_level, cm->cmsg_type
, (unsigned long) cm->cmsg_len);
}
}
}
return (pfd.revents & interest) != 0;
}
#endif /* defined(IP_RECVERR) && defined(MSG_ERRQUEUE) */
bool
send_packet(struct state *st, const char *where)
{
connection_t *c = st->st_connection;
int port_buf;
bool err;
u_int8_t ike_pkt[MAX_OUTPUT_UDP_SIZE];
u_int8_t *ptr;
unsigned long len;
if (c->interface->ike_float && st->st_tpacket.len != 1)
{
if ((unsigned long) st->st_tpacket.len > (MAX_OUTPUT_UDP_SIZE-sizeof(u_int32_t)))
{
DBG_log("send_packet(): really too big");
return FALSE;
}
ptr = ike_pkt;
/** Add Non-ESP marker **/
memset(ike_pkt, 0, sizeof(u_int32_t));
memcpy(ike_pkt + sizeof(u_int32_t), st->st_tpacket.ptr,
(unsigned long)st->st_tpacket.len);
len = (unsigned long) st->st_tpacket.len + sizeof(u_int32_t);
}
else
{
ptr = st->st_tpacket.ptr;
len = (unsigned long) st->st_tpacket.len;
}
DBG(DBG_RAW,
{
DBG_log("sending %lu bytes for %s through %s to %s:%u:"
, (unsigned long) st->st_tpacket.len
, where
, c->interface->rname
, ip_str(&c->spd.that.host_addr)
, (unsigned)c->spd.that.host_port);
DBG_dump_chunk(NULL, st->st_tpacket);
});
/* XXX: Not very clean. We manipulate the port of the ip_address to
* have a port in the sockaddr*, but we retain the original port
* and restore it afterwards.
*/
port_buf = portof(&c->spd.that.host_addr);
setportof(htons(c->spd.that.host_port), &c->spd.that.host_addr);
#if defined(IP_RECVERR) && defined(MSG_ERRQUEUE)
(void) check_msg_errqueue(c->interface, POLLOUT);
#endif /* defined(IP_RECVERR) && defined(MSG_ERRQUEUE) */
err = sendto(c->interface->fd
, ptr, len, 0
, sockaddrof(&c->spd.that.host_addr)
, sockaddrlenof(&c->spd.that.host_addr)) != (ssize_t)len;
/* restore port */
setportof(port_buf, &c->spd.that.host_addr);
if (err)
{
/* do not log NAT-T Keep Alive packets */
if (streq(where, "NAT-T Keep Alive"))
return FALSE;
log_errno((e, "sendto on %s to %s:%u failed in %s"
, c->interface->rname
, ip_str(&c->spd.that.host_addr)
, (unsigned)c->spd.that.host_port
, where));
return FALSE;
}
else
{
return TRUE;
}
}
static stf_status
unexpected(struct msg_digest *md)
{
loglog(RC_LOG_SERIOUS, "unexpected message received in state %s"
, enum_name(&state_names, md->st->st_state));
return STF_IGNORE;
}
static stf_status
informational(struct msg_digest *md UNUSED)
{
struct payload_digest *const n_pld = md->chain[ISAKMP_NEXT_N];
/* If the Notification Payload is not null... */
if (n_pld != NULL)
{
pb_stream *const n_pbs = &n_pld->pbs;
struct isakmp_notification *const n = &n_pld->payload.notification;
int disp_len;
char disp_buf[200];
/* Switch on Notification Type (enum) */
switch (n->isan_type)
{
case R_U_THERE:
return dpd_inI_outR(md->st, n, n_pbs);
case R_U_THERE_ACK:
return dpd_inR(md->st, n, n_pbs);
default:
if (pbs_left(n_pbs) >= sizeof(disp_buf)-1)
disp_len = sizeof(disp_buf)-1;
else
disp_len = pbs_left(n_pbs);
memcpy(disp_buf, n_pbs->cur, disp_len);
disp_buf[disp_len] = '\0';
break;
}
}
return STF_IGNORE;
}
/* message digest allocation and deallocation */
static struct msg_digest *md_pool = NULL;
/* free_md_pool is only used to avoid leak reports */
void
free_md_pool(void)
{
for (;;)
{
struct msg_digest *md = md_pool;
if (md == NULL)
break;
md_pool = md->next;
free(md);
}
}
static struct msg_digest *
malloc_md(void)
{
struct msg_digest *md = md_pool;
/* convenient initializer:
* - all pointers NULL
* - .note = NOTHING_WRONG
* - .encrypted = FALSE
*/
static const struct msg_digest blank_md = {
.next = NULL,
};
if (md == NULL)
{
md = malloc_thing(struct msg_digest);
zero(md);
}
else
md_pool = md->next;
*md = blank_md;
md->digest_roof = md->digest;
/* note: although there may be multiple msg_digests at once
* (due to suspended state transitions), there is a single
* global reply_buffer. It will need to be saved and restored.
*/
init_pbs(&md->reply, reply_buffer, sizeof(reply_buffer), "reply packet");
return md;
}
void
release_md(struct msg_digest *md)
{
chunk_free(&md->raw_packet);
free(md->packet_pbs.start);
md->packet_pbs.start = NULL;
md->next = md_pool;
md_pool = md;
}
/* wrapper for read_packet and process_packet
*
* The main purpose of this wrapper is to factor out teardown code
* from the many return points in process_packet. This amounts to
* releasing the msg_digest and resetting global variables.
*
* When processing of a packet is suspended (STF_SUSPEND),
* process_packet sets md to NULL to prevent the msg_digest being freed.
* Someone else must ensure that msg_digest is freed eventually.
*
* read_packet is broken out to minimize the lifetime of the
* enormous input packet buffer, an auto.
*/
void
comm_handle(const struct iface *ifp)
{
static struct msg_digest *md;
#if defined(IP_RECVERR) && defined(MSG_ERRQUEUE)
/* Even though select(2) says that there is a message,
* it might only be a MSG_ERRQUEUE message. At least
* sometimes that leads to a hanging recvfrom. To avoid
* what appears to be a kernel bug, check_msg_errqueue
* uses poll(2) and tells us if there is anything for us
* to read.
*
* This is early enough that teardown isn't required:
* just return on failure.
*/
if (!check_msg_errqueue(ifp, POLLIN))
return; /* no normal message to read */
#endif /* defined(IP_RECVERR) && defined(MSG_ERRQUEUE) */
md = malloc_md();
md->iface = ifp;
if (read_packet(md))
process_packet(&md);
if (md != NULL)
release_md(md);
cur_state = NULL;
reset_cur_connection();
cur_from = NULL;
}
/* read the message.
* Since we don't know its size, we read it into
* an overly large buffer and then copy it to a
* new, properly sized buffer.
*/
static bool
read_packet(struct msg_digest *md)
{
const struct iface *ifp = md->iface;
int packet_len;
u_int8_t *buffer;
u_int8_t *buffer_nat;
union
{
struct sockaddr sa;
struct sockaddr_in sa_in4;
struct sockaddr_in6 sa_in6;
} from;
int from_len = sizeof(from);
err_t from_ugh = NULL;
static const char undisclosed[] = "unknown source";
happy(anyaddr(addrtypeof(&ifp->addr), &md->sender));
zero(&from.sa);
ioctl(ifp->fd, FIONREAD, &packet_len);
buffer = malloc(packet_len);
packet_len = recvfrom(ifp->fd, buffer, packet_len, 0
, &from.sa, &from_len);
/* First: digest the from address.
* We presume that nothing here disturbs errno.
*/
if (packet_len == -1
&& from_len == sizeof(from)
&& all_zero((const void *)&from.sa, sizeof(from)))
{
/* "from" is untouched -- not set by recvfrom */
from_ugh = undisclosed;
}
else if (from_len
< (int) (offsetof(struct sockaddr, sa_family) + sizeof(from.sa.sa_family)))
{
from_ugh = "truncated";
}
else
{
const struct af_info *afi = aftoinfo(from.sa.sa_family);
if (afi == NULL)
{
from_ugh = "unexpected Address Family";
}
else if (from_len != (int)afi->sa_sz)
{
from_ugh = "wrong length";
}
else
{
switch (from.sa.sa_family)
{
case AF_INET:
from_ugh = initaddr((void *) &from.sa_in4.sin_addr
, sizeof(from.sa_in4.sin_addr), AF_INET, &md->sender);
md->sender_port = ntohs(from.sa_in4.sin_port);
break;
case AF_INET6:
from_ugh = initaddr((void *) &from.sa_in6.sin6_addr
, sizeof(from.sa_in6.sin6_addr), AF_INET6, &md->sender);
md->sender_port = ntohs(from.sa_in6.sin6_port);
break;
}
}
}
/* now we report any actual I/O error */
if (packet_len == -1)
{
if (from_ugh == undisclosed
&& errno == ECONNREFUSED)
{
/* Tone down scary message for vague event:
* We get "connection refused" in response to some
* datagram we sent, but we cannot tell which one.
*/
plog("some IKE message we sent has been rejected with ECONNREFUSED (kernel supplied no details)");
}
else if (from_ugh != NULL)
{
log_errno((e, "recvfrom on %s failed; Pluto cannot decode source sockaddr in rejection: %s"
, ifp->rname, from_ugh));
}
else
{
log_errno((e, "recvfrom on %s from %s:%u failed"
, ifp->rname
, ip_str(&md->sender), (unsigned)md->sender_port));
}
free(buffer);
return FALSE;
}
else if (from_ugh != NULL)
{
plog("recvfrom on %s returned malformed source sockaddr: %s"
, ifp->rname, from_ugh);
free(buffer);
return FALSE;
}
cur_from = &md->sender;
cur_from_port = md->sender_port;
if (ifp->ike_float == TRUE)
{
u_int32_t non_esp;
if (packet_len < (int)sizeof(u_int32_t))
{
plog("recvfrom %s:%u too small packet (%d)"
, ip_str(cur_from), (unsigned) cur_from_port, packet_len);
free(buffer);
return FALSE;
}
memcpy(&non_esp, buffer, sizeof(u_int32_t));
if (non_esp != 0)
{
plog("recvfrom %s:%u has no Non-ESP marker"
, ip_str(cur_from), (unsigned) cur_from_port);
free(buffer);
return FALSE;
}
packet_len -= sizeof(u_int32_t);
buffer_nat = malloc(packet_len);
memcpy(buffer_nat, buffer + sizeof(u_int32_t), packet_len);
free(buffer);
buffer = buffer_nat;
}
/* Clone actual message contents
* and set up md->packet_pbs to describe it.
*/
init_pbs(&md->packet_pbs, buffer, packet_len, "packet");
DBG(DBG_RAW | DBG_CRYPT | DBG_PARSING | DBG_CONTROL,
{
DBG_log(BLANK_FORMAT);
DBG_log("*received %d bytes from %s:%u on %s"
, (int) pbs_room(&md->packet_pbs)
, ip_str(cur_from), (unsigned) cur_from_port
, ifp->rname);
});
DBG(DBG_RAW,
DBG_dump("", md->packet_pbs.start, pbs_room(&md->packet_pbs)));
if ((pbs_room(&md->packet_pbs)==1) && (md->packet_pbs.start[0]==0xff))
{
/**
* NAT-T Keep-alive packets should be discarded by kernel ESPinUDP
* layer. But bogus keep-alive packets (sent with a non-esp marker)
* can reach this point. Complain and discard them.
*/
DBG(DBG_NATT,
DBG_log("NAT-T keep-alive (bogus ?) should not reach this point. "
"Ignored. Sender: %s:%u", ip_str(cur_from),
(unsigned) cur_from_port);
)
return FALSE;
}
#define IKEV2_VERSION_OFFSET 17
#define IKEV2_VERSION 0x20
/* ignore IKEv2 packets - they will be handled by charon */
if (pbs_room(&md->packet_pbs) > IKEV2_VERSION_OFFSET
&& (md->packet_pbs.start[IKEV2_VERSION_OFFSET] & 0xF0) == IKEV2_VERSION)
{
DBG(DBG_CONTROLMORE,
DBG_log(" ignoring IKEv2 packet")
)
return FALSE;
}
return TRUE;
}
/* process an input packet, possibly generating a reply.
*
* If all goes well, this routine eventually calls a state-specific
* transition function.
*/
static void
process_packet(struct msg_digest **mdp)
{
struct msg_digest *md = *mdp;
const struct state_microcode *smc;
bool new_iv_set = FALSE;
bool restore_iv = FALSE;
u_char new_iv[MAX_DIGEST_LEN];
u_int new_iv_len = 0;
struct state *st = NULL;
enum state_kind from_state = STATE_UNDEFINED; /* state we started in */
#define SEND_NOTIFICATION(t) { \
if (st) send_notification_from_state(st, from_state, t); \
else send_notification_from_md(md, t); }
if (!in_struct(&md->hdr, &isakmp_hdr_desc, &md->packet_pbs, &md->message_pbs))
{
/* Identify specific failures:
* - bad ISAKMP major/minor version numbers
*/
if (md->packet_pbs.roof - md->packet_pbs.cur >= (ptrdiff_t)isakmp_hdr_desc.size)
{
struct isakmp_hdr *hdr = (struct isakmp_hdr *)md->packet_pbs.cur;
if ((hdr->isa_version >> ISA_MAJ_SHIFT) != ISAKMP_MAJOR_VERSION)
{
SEND_NOTIFICATION(ISAKMP_INVALID_MAJOR_VERSION);
return;
}
else if ((hdr->isa_version & ISA_MIN_MASK) != ISAKMP_MINOR_VERSION)
{
SEND_NOTIFICATION(ISAKMP_INVALID_MINOR_VERSION);
return;
}
}
SEND_NOTIFICATION(ISAKMP_PAYLOAD_MALFORMED);
return;
}
if (md->packet_pbs.roof != md->message_pbs.roof)
{
plog("size (%u) differs from size specified in ISAKMP HDR (%u)"
, (unsigned) pbs_room(&md->packet_pbs), md->hdr.isa_length);
#ifdef CISCO_QUIRKS
if (pbs_room(&md->packet_pbs) - md->hdr.isa_length == 16)
plog("Cisco VPN client appends 16 surplus NULL bytes");
else
#endif
return;
}
switch (md->hdr.isa_xchg)
{
#ifdef NOTYET
case ISAKMP_XCHG_NONE:
case ISAKMP_XCHG_BASE:
#endif
case ISAKMP_XCHG_IDPROT: /* part of a Main Mode exchange */
if (md->hdr.isa_msgid != MAINMODE_MSGID)
{
plog("Message ID was 0x%08lx but should be zero in Main Mode",
(unsigned long) md->hdr.isa_msgid);
SEND_NOTIFICATION(ISAKMP_INVALID_MESSAGE_ID);
return;
}
if (is_zero_cookie(md->hdr.isa_icookie))
{
plog("Initiator Cookie must not be zero in Main Mode message");
SEND_NOTIFICATION(ISAKMP_INVALID_COOKIE);
return;
}
if (is_zero_cookie(md->hdr.isa_rcookie))
{
/* initial message from initiator
* ??? what if this is a duplicate of another message?
*/
if (md->hdr.isa_flags & ISAKMP_FLAG_ENCRYPTION)
{
plog("initial Main Mode message is invalid:"
" its Encrypted Flag is on");
SEND_NOTIFICATION(ISAKMP_INVALID_FLAGS);
return;
}
/* don't build a state until the message looks tasty */
from_state = STATE_MAIN_R0;
}
else
{
/* not an initial message */
st = find_state(md->hdr.isa_icookie, md->hdr.isa_rcookie
, &md->sender, md->hdr.isa_msgid);
if (st == NULL)
{
/* perhaps this is a first message from the responder
* and contains a responder cookie that we've not yet seen.
*/
st = find_state(md->hdr.isa_icookie, zero_cookie
, &md->sender, md->hdr.isa_msgid);
if (st == NULL)
{
plog("Main Mode message is part of an unknown exchange");
/* XXX Could send notification back */
return;
}
}
set_cur_state(st);
from_state = st->st_state;
}
break;
#ifdef NOTYET
case ISAKMP_XCHG_AO:
case ISAKMP_XCHG_AGGR:
#endif
case ISAKMP_XCHG_INFO: /* an informational exchange */
st = find_state(md->hdr.isa_icookie, md->hdr.isa_rcookie
, &md->sender, MAINMODE_MSGID);
if (st != NULL)
set_cur_state(st);
if (md->hdr.isa_flags & ISAKMP_FLAG_ENCRYPTION)
{
if (st == NULL)
{
plog("Informational Exchange is for an unknown (expired?) SA");
/* XXX Could send notification back */
return;
}
if (!IS_ISAKMP_ENCRYPTED(st->st_state))
{
loglog(RC_LOG_SERIOUS, "encrypted Informational Exchange message is invalid"
" because no key is known");
/* XXX Could send notification back */
return;
}
if (md->hdr.isa_msgid == MAINMODE_MSGID)
{
loglog(RC_LOG_SERIOUS, "Informational Exchange message is invalid because"
" it has a Message ID of 0");
/* XXX Could send notification back */
return;
}
if (!reserve_msgid(st, md->hdr.isa_msgid))
{
loglog(RC_LOG_SERIOUS, "Informational Exchange message is invalid because"
" it has a previously used Message ID (0x%08lx)"
, (unsigned long)md->hdr.isa_msgid);
/* XXX Could send notification back */
return;
}
if (!IS_ISAKMP_SA_ESTABLISHED(st->st_state))
{
memcpy(st->st_ph1_iv, st->st_new_iv, st->st_new_iv_len);
st->st_ph1_iv_len = st->st_new_iv_len;
/* backup new_iv */
new_iv_len = st->st_new_iv_len;
passert(new_iv_len <= MAX_DIGEST_LEN)
memcpy(new_iv, st->st_new_iv, new_iv_len);
restore_iv = TRUE;
}
init_phase2_iv(st, &md->hdr.isa_msgid);
new_iv_set = TRUE;
from_state = STATE_INFO_PROTECTED;
}
else
{
if (st != NULL && IS_ISAKMP_ENCRYPTED(st->st_state))
{
loglog(RC_LOG_SERIOUS, "Informational Exchange message"
" must be encrypted");
/* XXX Could send notification back */
return;
}
from_state = STATE_INFO;
}
break;
case ISAKMP_XCHG_QUICK: /* part of a Quick Mode exchange */
if (is_zero_cookie(md->hdr.isa_icookie))
{
plog("Quick Mode message is invalid because"
" it has an Initiator Cookie of 0");
SEND_NOTIFICATION(ISAKMP_INVALID_COOKIE);
return;
}
if (is_zero_cookie(md->hdr.isa_rcookie))
{
plog("Quick Mode message is invalid because"
" it has a Responder Cookie of 0");
SEND_NOTIFICATION(ISAKMP_INVALID_COOKIE);
return;
}
if (md->hdr.isa_msgid == MAINMODE_MSGID)
{
plog("Quick Mode message is invalid because"
" it has a Message ID of 0");
SEND_NOTIFICATION(ISAKMP_INVALID_MESSAGE_ID);
return;
}
st = find_state(md->hdr.isa_icookie, md->hdr.isa_rcookie
, &md->sender, md->hdr.isa_msgid);
if (st == NULL)
{
/* No appropriate Quick Mode state.
* See if we have a Main Mode state.
* ??? what if this is a duplicate of another message?
*/
st = find_state(md->hdr.isa_icookie, md->hdr.isa_rcookie
, &md->sender, MAINMODE_MSGID);
if (st == NULL)
{
plog("Quick Mode message is for a non-existent (expired?)"
" ISAKMP SA");
/* XXX Could send notification back */
return;
}
set_cur_state(st);
if (!IS_ISAKMP_SA_ESTABLISHED(st->st_state))
{
loglog(RC_LOG_SERIOUS, "Quick Mode message is unacceptable because"
" it is for an incomplete ISAKMP SA");
SEND_NOTIFICATION(ISAKMP_PAYLOAD_MALFORMED /* XXX ? */);
return;
}
/* only accept this new Quick Mode exchange if it has a unique message ID */
if (!reserve_msgid(st, md->hdr.isa_msgid))
{
loglog(RC_LOG_SERIOUS, "Quick Mode I1 message is unacceptable because"
" it uses a previously used Message ID 0x%08lx"
" (perhaps this is a duplicated packet)"
, (unsigned long) md->hdr.isa_msgid);
SEND_NOTIFICATION(ISAKMP_INVALID_MESSAGE_ID);
return;
}
/* Quick Mode Initial IV */
init_phase2_iv(st, &md->hdr.isa_msgid);
new_iv_set = TRUE;
from_state = STATE_QUICK_R0;
}
else
{
set_cur_state(st);
from_state = st->st_state;
}
break;
case ISAKMP_XCHG_MODE_CFG:
if (is_zero_cookie(md->hdr.isa_icookie))
{
plog("ModeCfg message is invalid because"
" it has an Initiator Cookie of 0");
/* XXX Could send notification back */
return;
}
if (is_zero_cookie(md->hdr.isa_rcookie))
{
plog("ModeCfg message is invalid because"
" it has a Responder Cookie of 0");
/* XXX Could send notification back */
return;
}
if (md->hdr.isa_msgid == 0)
{
plog("ModeCfg message is invalid because"
" it has a Message ID of 0");
/* XXX Could send notification back */
return;
}
st = find_state(md->hdr.isa_icookie, md->hdr.isa_rcookie
, &md->sender, md->hdr.isa_msgid);
if (st == NULL)
{
bool has_xauth_policy;
/* No appropriate ModeCfg state.
* See if we have a Main Mode state.
* ??? what if this is a duplicate of another message?
*/
st = find_state(md->hdr.isa_icookie, md->hdr.isa_rcookie
, &md->sender, 0);
if (st == NULL)
{
plog("ModeCfg message is for a non-existent (expired?)"
" ISAKMP SA");
/* XXX Could send notification back */
return;
}
set_cur_state(st);
/* the XAUTH_STATUS message might have a new msgid */
if (st->st_state == STATE_XAUTH_I1)
{
init_phase2_iv(st, &md->hdr.isa_msgid);
new_iv_set = TRUE;
from_state = st->st_state;
break;
}
if (!IS_ISAKMP_SA_ESTABLISHED(st->st_state))
{
loglog(RC_LOG_SERIOUS, "ModeCfg message is unacceptable because"
" it is for an incomplete ISAKMP SA (state=%s)"
, enum_name(&state_names, st->st_state));
/* XXX Could send notification back */
return;
}
init_phase2_iv(st, &md->hdr.isa_msgid);
new_iv_set = TRUE;
/*
* okay, now we have to figure out if we are receiving a bogus
* new message in an outstanding XAUTH server conversation
* (i.e. a reply to our challenge)
* (this occurs with some broken other implementations).
*
* or if receiving for the first time, an XAUTH challenge.
*
* or if we are getting a MODECFG request.
*
* we distinguish these states because we can not both be an
* XAUTH server and client, and our policy tells us which
* one we are.
*
* to complicate further, it is normal to start a new msgid
* when going from one state to another, or when restarting
* the challenge.
*
*/
has_xauth_policy = (st->st_connection->policy
& (POLICY_XAUTH_RSASIG | POLICY_XAUTH_PSK))
!= LEMPTY;
if (has_xauth_policy && !st->st_xauth.started
&& IS_PHASE1(st->st_state))
{
from_state = STATE_XAUTH_I0;
}
else if (st->st_connection->spd.that.modecfg
&& IS_PHASE1(st->st_state))
{
from_state = STATE_MODE_CFG_R0;
}
else if (st->st_connection->spd.this.modecfg
&& IS_PHASE1(st->st_state))
{
from_state = STATE_MODE_CFG_I0;
}
else
{
/* XXX check if we are being a mode config server here */
plog("received ModeCfg message when in state %s, and we aren't mode config client"
, enum_name(&state_names, st->st_state));
return;
}
}
else
{
set_cur_state(st);
from_state = st->st_state;
}
break;
#ifdef NOTYET
case ISAKMP_XCHG_NGRP:
case ISAKMP_XCHG_ACK_INFO:
#endif
default:
plog("unsupported exchange type %s in message"
, enum_show(&exchange_names, md->hdr.isa_xchg));
SEND_NOTIFICATION(ISAKMP_UNSUPPORTED_EXCHANGE_TYPE);
return;
}
/* We have found a from_state, and perhaps a state object.
* If we need to build a new state object,
* we wait until the packet has been sanity checked.
*/
/* We don't support the Commit Flag. It is such a bad feature.
* It isn't protected -- neither encrypted nor authenticated.
* A man in the middle turns it on, leading to DoS.
* We just ignore it, with a warning.
* By placing the check here, we could easily add a policy bit
* to a connection to suppress the warning. This might be useful
* because the Commit Flag is expected from some peers.
*/
if (md->hdr.isa_flags & ISAKMP_FLAG_COMMIT)
{
plog("IKE message has the Commit Flag set but Pluto doesn't implement this feature; ignoring flag");
}
/* Set smc to describe this state's properties.
* Look up the appropriate microcode based on state and
* possibly Oakley Auth type.
*/
passert(STATE_IKE_FLOOR <= from_state && from_state < STATE_IKE_ROOF);
smc = ike_microcode_index[from_state - STATE_IKE_FLOOR];
if (st != NULL)
{
u_int16_t auth;
switch (st->st_oakley.auth)
{
case XAUTHInitPreShared:
case XAUTHRespPreShared:
auth = OAKLEY_PRESHARED_KEY;
break;
case XAUTHInitRSA:
case XAUTHRespRSA:
auth = OAKLEY_RSA_SIG;
break;
default:
auth = st->st_oakley.auth;
}
while (!LHAS(smc->flags, auth))
{
smc++;
passert(smc->state == from_state);
}
}
/* Ignore a packet if the state has a suspended state transition
* Probably a duplicated packet but the original packet is not yet
* recorded in st->st_rpacket, so duplicate checking won't catch.
* ??? Should the packet be recorded earlier to improve diagnosis?
*/
if (st != NULL && st->st_suspended_md != NULL)
{
loglog(RC_LOG, "discarding packet received during DNS lookup in %s"
, enum_name(&state_names, st->st_state));
return;
}
/* Detect and handle duplicated packets.
* This won't work for the initial packet of an exchange
* because we won't have a state object to remember it.
* If we are in a non-receiving state (terminal), and the preceding
* state did transmit, then the duplicate may indicate that that
* transmission wasn't received -- retransmit it.
* Otherwise, just discard it.
* ??? Notification packets are like exchanges -- I hope that
* they are idempotent!
*/
if (st != NULL
&& st->st_rpacket.ptr != NULL
&& st->st_rpacket.len == pbs_room(&md->packet_pbs)
&& memeq(st->st_rpacket.ptr, md->packet_pbs.start, st->st_rpacket.len))
{
if (smc->flags & SMF_RETRANSMIT_ON_DUPLICATE)
{
if (st->st_retransmit < MAXIMUM_RETRANSMISSIONS)
{
st->st_retransmit++;
loglog(RC_RETRANSMISSION
, "retransmitting in response to duplicate packet; already %s"
, enum_name(&state_names, st->st_state));
send_packet(st, "retransmit in response to duplicate");
}
else
{
loglog(RC_LOG_SERIOUS, "discarding duplicate packet -- exhausted retransmission; already %s"
, enum_name(&state_names, st->st_state));
}
}
else
{
loglog(RC_LOG_SERIOUS, "discarding duplicate packet; already %s"
, enum_name(&state_names, st->st_state));
}
return;
}
if (md->hdr.isa_flags & ISAKMP_FLAG_ENCRYPTION)
{
DBG(DBG_CRYPT, DBG_log("received encrypted packet from %s:%u"
, ip_str(&md->sender), (unsigned)md->sender_port));
if (st == NULL)
{
plog("discarding encrypted message for an unknown ISAKMP SA");
SEND_NOTIFICATION(ISAKMP_PAYLOAD_MALFORMED /* XXX ? */);
return;
}
if (st->st_skeyid_e.ptr == (u_char *) NULL)
{
loglog(RC_LOG_SERIOUS, "discarding encrypted message"
" because we haven't yet negotiated keying materiel");
SEND_NOTIFICATION(ISAKMP_INVALID_FLAGS);
return;
}
/* Mark as encrypted */
md->encrypted = TRUE;
DBG(DBG_CRYPT, DBG_log("decrypting %u bytes using algorithm %s"
, (unsigned) pbs_left(&md->message_pbs)
, enum_show(&oakley_enc_names, st->st_oakley.encrypt)));
/* do the specified decryption
*
* IV is from st->st_iv or (if new_iv_set) st->st_new_iv.
* The new IV is placed in st->st_new_iv
*
* See RFC 2409 "IKE" Appendix B
*
* XXX The IV should only be updated really if the packet
* is successfully processed.
* We should keep this value, check for a success return
* value from the parsing routines and then replace.
*
* Each post phase 1 exchange generates IVs from
* the last phase 1 block, not the last block sent.
*/
{
size_t crypter_block_size, crypter_iv_size;
encryption_algorithm_t enc_alg;
crypter_t *crypter;
chunk_t data, iv;
char *new_iv;
enc_alg = oakley_to_encryption_algorithm(st->st_oakley.encrypt);
crypter = lib->crypto->create_crypter(lib->crypto, enc_alg, st->st_enc_key.len);
crypter_block_size = crypter->get_block_size(crypter);
crypter_iv_size = crypter->get_iv_size(crypter);
if (pbs_left(&md->message_pbs) % crypter_block_size != 0)
{
loglog(RC_LOG_SERIOUS, "malformed message: not a multiple of encryption blocksize");
SEND_NOTIFICATION(ISAKMP_PAYLOAD_MALFORMED);
return;
}
/* XXX Detect weak keys */
/* grab a copy of raw packet (for duplicate packet detection) */
md->raw_packet = chunk_create(md->packet_pbs.start, pbs_room(&md->packet_pbs));
md->raw_packet = chunk_clone(md->raw_packet);
data = chunk_create(md->message_pbs.cur, pbs_left(&md->message_pbs));
/* Decrypt everything after header */
if (!new_iv_set)
{
/* use old IV */
passert(st->st_iv_len <= sizeof(st->st_new_iv));
st->st_new_iv_len = st->st_iv_len;
memcpy(st->st_new_iv, st->st_iv, st->st_new_iv_len);
}
/* form iv by truncation */
st->st_new_iv_len = crypter_iv_size;
iv = chunk_create(st->st_new_iv, st->st_new_iv_len);
new_iv = alloca(crypter_iv_size);
memcpy(new_iv, data.ptr + data.len - crypter_iv_size,
crypter_iv_size);
crypter->set_key(crypter, st->st_enc_key);
crypter->decrypt(crypter, data, iv, NULL);
crypter->destroy(crypter);
memcpy(st->st_new_iv, new_iv, crypter_iv_size);
if (restore_iv)
{
memcpy(st->st_new_iv, new_iv, new_iv_len);
st->st_new_iv_len = new_iv_len;
}
}
DBG_cond_dump(DBG_CRYPT, "decrypted:\n", md->message_pbs.cur
, md->message_pbs.roof - md->message_pbs.cur);
DBG_cond_dump(DBG_CRYPT, "next IV:"
, st->st_new_iv, st->st_new_iv_len);
}
else
{
/* packet was not encryped -- should it have been? */
if (smc->flags & SMF_INPUT_ENCRYPTED)
{
loglog(RC_LOG_SERIOUS, "packet rejected: should have been encrypted");
SEND_NOTIFICATION(ISAKMP_INVALID_FLAGS);
return;
}
}
/* Digest the message.
* Padding must be removed to make hashing work.
* Padding comes from encryption (so this code must be after decryption).
* Padding rules are described before the definition of
* struct isakmp_hdr in packet.h.
*/
{
struct payload_digest *pd = md->digest;
int np = md->hdr.isa_np;
lset_t needed = smc->req_payloads;
const char *excuse
= LIN(SMF_PSK_AUTH | SMF_FIRST_ENCRYPTED_INPUT, smc->flags)
? "probable authentication failure (mismatch of preshared secrets?): "
: "";
while (np != ISAKMP_NEXT_NONE)
{
struct_desc *sd = np < ISAKMP_NEXT_ROOF? payload_descs[np] : NULL;
if (pd == &md->digest[PAYLIMIT])
{
loglog(RC_LOG_SERIOUS, "more than %d payloads in message; ignored", PAYLIMIT);
SEND_NOTIFICATION(ISAKMP_PAYLOAD_MALFORMED);
return;
}
switch (np)
{
case ISAKMP_NEXT_NATD_RFC:
case ISAKMP_NEXT_NATOA_RFC:
if (!st || !(st->nat_traversal & NAT_T_WITH_RFC_VALUES))
{
/*
* don't accept NAT-D/NAT-OA reloc directly in message, unless
* we're using NAT-T RFC
*/
sd = NULL;
}
break;
}
if (sd == NULL)
{
/* payload type is out of range or requires special handling */
switch (np)
{
case ISAKMP_NEXT_ID:
sd = IS_PHASE1(from_state)
? &isakmp_identification_desc : &isakmp_ipsec_identification_desc;
break;
case ISAKMP_NEXT_NATD_DRAFTS:
np = ISAKMP_NEXT_NATD_RFC; /* NAT-D relocated */
sd = payload_descs[np];
break;
case ISAKMP_NEXT_NATOA_DRAFTS:
np = ISAKMP_NEXT_NATOA_RFC; /* NAT-OA relocated */
sd = payload_descs[np];
break;
default:
loglog(RC_LOG_SERIOUS, "%smessage ignored because it contains an unknown or"
" unexpected payload type (%s) at the outermost level"
, excuse, enum_show(&payload_names, np));
SEND_NOTIFICATION(ISAKMP_INVALID_PAYLOAD_TYPE);
return;
}
}
{
lset_t s = LELEM(np);
if (LDISJOINT(s
, needed | smc->opt_payloads| LELEM(ISAKMP_NEXT_N) | LELEM(ISAKMP_NEXT_D)))
{
loglog(RC_LOG_SERIOUS, "%smessage ignored because it "
"contains an unexpected payload type (%s)"
, excuse, enum_show(&payload_names, np));
SEND_NOTIFICATION(ISAKMP_INVALID_PAYLOAD_TYPE);
return;
}
needed &= ~s;
}
if (!in_struct(&pd->payload, sd, &md->message_pbs, &pd->pbs))
{
loglog(RC_LOG_SERIOUS, "%smalformed payload in packet", excuse);
if (md->hdr.isa_xchg != ISAKMP_XCHG_INFO)
SEND_NOTIFICATION(ISAKMP_PAYLOAD_MALFORMED);
return;
}
/* place this payload at the end of the chain for this type */
{
struct payload_digest **p;
for (p = &md->chain[np]; *p != NULL; p = &(*p)->next)
;
*p = pd;
pd->next = NULL;
}
np = pd->payload.generic.isag_np;
pd++;
/* since we've digested one payload happily, it is probably
* the case that any decryption worked. So we will not suggest
* encryption failure as an excuse for subsequent payload
* problems.
*/
excuse = "";
}
md->digest_roof = pd;
DBG(DBG_PARSING,
if (pbs_left(&md->message_pbs) != 0)
DBG_log("removing %d bytes of padding", (int) pbs_left(&md->message_pbs)));
md->message_pbs.roof = md->message_pbs.cur;
/* check that all mandatory payloads appeared */
if (needed != 0)
{
loglog(RC_LOG_SERIOUS, "message for %s is missing payloads %s"
, enum_show(&state_names, from_state)
, bitnamesof(payload_name, needed));
SEND_NOTIFICATION(ISAKMP_PAYLOAD_MALFORMED);
return;
}
}
/* more sanity checking: enforce most ordering constraints */
if (IS_PHASE1(from_state))
{
/* rfc2409: The Internet Key Exchange (IKE), 5 Exchanges:
* "The SA payload MUST precede all other payloads in a phase 1 exchange."
*/
if (md->chain[ISAKMP_NEXT_SA] != NULL
&& md->hdr.isa_np != ISAKMP_NEXT_SA)
{
loglog(RC_LOG_SERIOUS, "malformed Phase 1 message: does not start with an SA payload");
SEND_NOTIFICATION(ISAKMP_PAYLOAD_MALFORMED);
return;
}
}
else if (IS_QUICK(from_state))
{
/* rfc2409: The Internet Key Exchange (IKE), 5.5 Phase 2 - Quick Mode
*
* "In Quick Mode, a HASH payload MUST immediately follow the ISAKMP
* header and a SA payload MUST immediately follow the HASH."
* [NOTE: there may be more than one SA payload, so this is not
* totally reasonable. Probably all SAs should be so constrained.]
*
* "If ISAKMP is acting as a client negotiator on behalf of another
* party, the identities of the parties MUST be passed as IDci and
* then IDcr."
*
* "With the exception of the HASH, SA, and the optional ID payloads,
* there are no payload ordering restrictions on Quick Mode."
*/
if (md->hdr.isa_np != ISAKMP_NEXT_HASH)
{
loglog(RC_LOG_SERIOUS, "malformed Quick Mode message: does not start with a HASH payload");
SEND_NOTIFICATION(ISAKMP_PAYLOAD_MALFORMED);
return;
}
{
struct payload_digest *p;
int i;
for (p = md->chain[ISAKMP_NEXT_SA], i = 1; p != NULL
; p = p->next, i++)
{
if (p != &md->digest[i])
{
loglog(RC_LOG_SERIOUS, "malformed Quick Mode message: SA payload is in wrong position");
SEND_NOTIFICATION(ISAKMP_PAYLOAD_MALFORMED);
return;
}
}
}
/* rfc2409: The Internet Key Exchange (IKE), 5.5 Phase 2 - Quick Mode:
* "If ISAKMP is acting as a client negotiator on behalf of another
* party, the identities of the parties MUST be passed as IDci and
* then IDcr."
*/
{
struct payload_digest *id = md->chain[ISAKMP_NEXT_ID];
if (id != NULL)
{
if (id->next == NULL || id->next->next != NULL)
{
loglog(RC_LOG_SERIOUS, "malformed Quick Mode message:"
" if any ID payload is present,"
" there must be exactly two");
SEND_NOTIFICATION(ISAKMP_PAYLOAD_MALFORMED);
return;
}
if (id+1 != id->next)
{
loglog(RC_LOG_SERIOUS, "malformed Quick Mode message:"
" the ID payloads are not adjacent");
SEND_NOTIFICATION(ISAKMP_PAYLOAD_MALFORMED);
return;
}
}
}
}
/* Ignore payloads that we don't handle:
* Delete, Notification, VendorID
*/
/* XXX Handle deletions */
/* XXX Handle Notifications */
/* XXX Handle VID payloads */
{
struct payload_digest *p;
for (p = md->chain[ISAKMP_NEXT_N]; p != NULL; p = p->next)
{
if (p->payload.notification.isan_type != R_U_THERE
&& p->payload.notification.isan_type != R_U_THERE_ACK)
{
loglog(RC_LOG_SERIOUS, "ignoring informational payload, type %s"
, enum_show(&notification_names, p->payload.notification.isan_type));
}
DBG_cond_dump(DBG_PARSING, "info:", p->pbs.cur, pbs_left(&p->pbs));
}
for (p = md->chain[ISAKMP_NEXT_D]; p != NULL; p = p->next)
{
accept_delete(st, md, p);
DBG_cond_dump(DBG_PARSING, "del:", p->pbs.cur, pbs_left(&p->pbs));
}
for (p = md->chain[ISAKMP_NEXT_VID]; p != NULL; p = p->next)
{
handle_vendorid(md, p->pbs.cur, pbs_left(&p->pbs));
}
}
md->from_state = from_state;
md->smc = smc;
md->st = st;
/* possibly fill in hdr */
if (smc->first_out_payload != ISAKMP_NEXT_NONE)
echo_hdr(md, (smc->flags & SMF_OUTPUT_ENCRYPTED) != 0
, smc->first_out_payload);
complete_state_transition(mdp, smc->processor(md));
}
/* complete job started by the state-specific state transition function */
void
complete_state_transition(struct msg_digest **mdp, stf_status result)
{
bool has_xauth_policy;
bool is_xauth_server;
struct msg_digest *md = *mdp;
const struct state_microcode *smc = md->smc;
enum state_kind from_state = md->from_state;
struct state *st;
cur_state = st = md->st; /* might have changed */
/* If state has DPD support, import it */
if (st && md->dpd)
st->st_dpd = TRUE;
switch (result)
{
case STF_IGNORE:
break;
case STF_SUSPEND:
/* the stf didn't complete its job: don't relase md */
*mdp = NULL;
break;
case STF_OK:
/* advance the state */
st->st_state = smc->next_state;
/* Delete previous retransmission event.
* New event will be scheduled below.
*/
delete_event(st);
/* replace previous receive packet with latest */
free(st->st_rpacket.ptr);
if (md->encrypted)
{
/* if encrypted, duplication already done */
st->st_rpacket = md->raw_packet;
md->raw_packet.ptr = NULL;
}
else
{
st->st_rpacket = chunk_create(md->packet_pbs.start,
pbs_room(&md->packet_pbs));
st->st_rpacket = chunk_clone(st->st_rpacket);
}
/* free previous transmit packet */
chunk_free(&st->st_tpacket);
/* if requested, send the new reply packet */
if (smc->flags & SMF_REPLY)
{
close_output_pbs(&md->reply); /* good form, but actually a no-op */
st->st_tpacket = chunk_create(md->reply.start, pbs_offset(&md->reply));
st->st_tpacket = chunk_clone(st->st_tpacket);
if (nat_traversal_enabled)
nat_traversal_change_port_lookup(md, md->st);
/* actually send the packet
* Note: this is a great place to implement "impairments"
* for testing purposes. Suppress or duplicate the
* send_packet call depending on st->st_state.
*/
send_packet(st, enum_name(&state_names, from_state));
}
/* Schedule for whatever timeout is specified */
{
time_t delay = UNDEFINED_TIME;
enum event_type kind = smc->timeout_event;
bool agreed_time = FALSE;
connection_t *c = st->st_connection;
switch (kind)
{
case EVENT_RETRANSMIT: /* Retransmit packet */
delay = EVENT_RETRANSMIT_DELAY_0;
break;
case EVENT_SA_REPLACE: /* SA replacement event */
if (IS_PHASE1(st->st_state))
{
/* Note: we will defer to the "negotiated" (dictated)
* lifetime if we are POLICY_DONT_REKEY.
* This allows the other side to dictate
* a time we would not otherwise accept
* but it prevents us from having to initiate
* rekeying. The negative consequences seem
* minor.
*/
delay = c->sa_ike_life_seconds;
if ((c->policy & POLICY_DONT_REKEY)
|| delay >= st->st_oakley.life_seconds)
{
agreed_time = TRUE;
delay = st->st_oakley.life_seconds;
}
}
else
{
/* Delay is min of up to four things:
* each can limit the lifetime.
*/
delay = c->sa_ipsec_life_seconds;
if (st->st_ah.present
&& delay >= st->st_ah.attrs.life_seconds)
{
agreed_time = TRUE;
delay = st->st_ah.attrs.life_seconds;
}
if (st->st_esp.present
&& delay >= st->st_esp.attrs.life_seconds)
{
agreed_time = TRUE;
delay = st->st_esp.attrs.life_seconds;
}
if (st->st_ipcomp.present
&& delay >= st->st_ipcomp.attrs.life_seconds)
{
agreed_time = TRUE;
delay = st->st_ipcomp.attrs.life_seconds;
}
}
/* By default, we plan to rekey.
*
* If there isn't enough time to rekey, plan to
* expire.
*
* If we are --dontrekey, a lot more rules apply.
* If we are the Initiator, use REPLACE_IF_USED.
* If we are the Responder, and the dictated time
* was unacceptable (too large), plan to REPLACE
* (the only way to ratchet down the time).
* If we are the Responder, and the dictated time
* is acceptable, plan to EXPIRE.
*
* Important policy lies buried here.
* For example, we favour the initiator over the
* responder by making the initiator start rekeying
* sooner. Also, fuzz is only added to the
* initiator's margin.
*
* Note: for ISAKMP SA, we let the negotiated
* time stand (implemented by earlier logic).
*/
if (agreed_time
&& (c->policy & POLICY_DONT_REKEY))
{
kind = (smc->flags & SMF_INITIATOR)
? EVENT_SA_REPLACE_IF_USED
: EVENT_SA_EXPIRE;
}
if (kind != EVENT_SA_EXPIRE)
{
unsigned long marg = c->sa_rekey_margin;
if (smc->flags & SMF_INITIATOR)
marg += marg
* c->sa_rekey_fuzz / 100.E0
* (rand() / (RAND_MAX + 1.E0));
else
marg /= 2;
if ((unsigned long)delay > marg)
{
delay -= marg;
st->st_margin = marg;
}
else
{
kind = EVENT_SA_EXPIRE;
}
}
break;
case EVENT_NULL: /* non-event */
case EVENT_REINIT_SECRET: /* Refresh cookie secret */
default:
bad_case(kind);
}
event_schedule(kind, delay, st);
}
/* tell whack and log of progress */
{
const char *story = state_story[st->st_state];
enum rc_type w = RC_NEW_STATE + st->st_state;
char sadetails[128];
sadetails[0]='\0';
if (IS_IPSEC_SA_ESTABLISHED(st->st_state))
{
char *b = sadetails;
const char *ini = " {";
const char *fin = "";
/* -1 is to leave space for "fin" */
if (st->st_esp.present)
{
snprintf(b, sizeof(sadetails)-(b-sadetails)-1
, "%sESP=>0x%08x <0x%08x"
, ini
, ntohl(st->st_esp.attrs.spi)
, ntohl(st->st_esp.our_spi));
ini = " ";
fin = "}";
}
/* advance b to end of string */
b = b + strlen(b);
if (st->st_ah.present)
{
snprintf(b, sizeof(sadetails)-(b-sadetails)-1
, "%sAH=>0x%08x <0x%08x"
, ini
, ntohl(st->st_ah.attrs.spi)
, ntohl(st->st_ah.our_spi));
ini = " ";
fin = "}";
}
/* advance b to end of string */
b = b + strlen(b);
if (st->st_ipcomp.present)
{
snprintf(b, sizeof(sadetails)-(b-sadetails)-1
, "%sIPCOMP=>0x%08x <0x%08x"
, ini
, ntohl(st->st_ipcomp.attrs.spi)
, ntohl(st->st_ipcomp.our_spi));
ini = " ";
fin = "}";
}
/* advance b to end of string */
b = b + strlen(b);
if (st->nat_traversal)
{
char oa[ADDRTOT_BUF];
addrtot(&st->nat_oa, 0, oa, sizeof(oa));
snprintf(b, sizeof(sadetails)-(b-sadetails)-1
, "%sNATOA=%s"
, ini, oa);
ini = " ";
fin = "}";
}
/* advance b to end of string */
b = b + strlen(b);
if (st->st_dpd)
{
snprintf(b, sizeof(sadetails)-(b-sadetails)-1
, "%sDPD"
, ini);
ini = " ";
fin = "}";
}
strcat(b, fin);
}
if (IS_ISAKMP_SA_ESTABLISHED(st->st_state)
|| IS_IPSEC_SA_ESTABLISHED(st->st_state))
{
/* log our success */
plog("%s%s", story, sadetails);
w = RC_SUCCESS;
}
/* tell whack our progress */
whack_log(w
, "%s: %s%s"
, enum_name(&state_names, st->st_state)
, story, sadetails);
}
has_xauth_policy = (st->st_connection->policy
& (POLICY_XAUTH_RSASIG | POLICY_XAUTH_PSK))
!= LEMPTY;
is_xauth_server = (st->st_connection->policy
& POLICY_XAUTH_SERVER)
!= LEMPTY;
/* Should we start XAUTH as a server */
if (has_xauth_policy && is_xauth_server
&& IS_ISAKMP_SA_ESTABLISHED(st->st_state)
&& !st->st_xauth.started)
{
DBG(DBG_CONTROL,
DBG_log("starting XAUTH server")
)
xauth_send_request(st);
break;
}
/* Wait for XAUTH request from server */
if (has_xauth_policy && !is_xauth_server
&& IS_ISAKMP_SA_ESTABLISHED(st->st_state)
&& !st->st_xauth.started)
{
DBG(DBG_CONTROL,
DBG_log("waiting for XAUTH request from server")
)
break;
}
/* Should we start ModeConfig as a client? */
if (st->st_connection->spd.this.modecfg
&& IS_ISAKMP_SA_ESTABLISHED(st->st_state)
&& !(st->st_connection->policy & POLICY_MODECFG_PUSH)
&& !st->st_modecfg.started)
{
DBG(DBG_CONTROL,
DBG_log("starting ModeCfg client in pull mode")
)
modecfg_send_request(st);
break;
}
/* Should we start ModeConfig as a server? */
if (st->st_connection->spd.that.modecfg
&& IS_ISAKMP_SA_ESTABLISHED(st->st_state)
&& !st->st_modecfg.started
&& (st->st_connection->policy & POLICY_MODECFG_PUSH))
{
DBG(DBG_CONTROL,
DBG_log("starting ModeCfg server in push mode")
)
modecfg_send_set(st);
break;
}
/* Wait for ModeConfig set from server */
if (st->st_connection->spd.this.modecfg
&& IS_ISAKMP_SA_ESTABLISHED(st->st_state)
&& !st->st_modecfg.vars_set)
{
DBG(DBG_CONTROL,
DBG_log("waiting for ModeCfg set from server")
)
break;
}
if (smc->flags & SMF_RELEASE_PENDING_P2)
{
/* Initiate any Quick Mode negotiations that
* were waiting to piggyback on this Keying Channel.
*
* ??? there is a potential race condition
* if we are the responder: the initial Phase 2
* message might outrun the final Phase 1 message.
* I think that retransmission will recover.
*/
unpend(st);
}
if (IS_ISAKMP_SA_ESTABLISHED(st->st_state)
|| IS_IPSEC_SA_ESTABLISHED(st->st_state))
release_whack(st);
break;
case STF_INTERNAL_ERROR:
whack_log(RC_INTERNALERR + md->note
, "%s: internal error"
, enum_name(&state_names, st->st_state));
DBG(DBG_CONTROL,
DBG_log("state transition function for %s had internal error"
, enum_name(&state_names, from_state)));
break;
default: /* a shortcut to STF_FAIL, setting md->note */
passert(result > STF_FAIL);
md->note = result - STF_FAIL;
result = STF_FAIL;
/* FALL THROUGH ... */
case STF_FAIL:
/* As it is, we act as if this message never happened:
* whatever retrying was in place, remains in place.
*/
whack_log(RC_NOTIFICATION + md->note
, "%s: %s"
, enum_name(&state_names, (st == NULL)? STATE_MAIN_R0:st->st_state)
, enum_name(&notification_names, md->note));
SEND_NOTIFICATION(md->note);
DBG(DBG_CONTROL,
DBG_log("state transition function for %s failed: %s"
, enum_name(&state_names, from_state)
, enum_name(&notification_names, md->note)));
break;
}
}