strongswan/src/libhydra/plugins/kernel_pfkey/kernel_pfkey_ipsec.c

2506 lines
66 KiB
C

/*
* Copyright (C) 2008-2011 Tobias Brunner
* Copyright (C) 2008 Andreas Steffen
* Hochschule fuer Technik Rapperswil
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version. See <http://www.fsf.org/copyleft/gpl.txt>.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*/
#include <sys/types.h>
#include <sys/socket.h>
#ifdef __FreeBSD__
#include <limits.h> /* for LONG_MAX */
#endif
#ifdef HAVE_NET_PFKEYV2_H
#include <net/pfkeyv2.h>
#else
#include <stdint.h>
#include <linux/pfkeyv2.h>
#endif
#ifdef SADB_X_EXT_NAT_T_TYPE
#define HAVE_NATT
#endif
#ifdef HAVE_NETIPSEC_IPSEC_H
#include <netipsec/ipsec.h>
#elif defined(HAVE_NETINET6_IPSEC_H)
#include <netinet6/ipsec.h>
#else
#include <linux/ipsec.h>
#endif
#ifdef HAVE_NATT
#ifdef HAVE_LINUX_UDP_H
#include <linux/udp.h>
#else
#include <netinet/udp.h>
#endif /*HAVE_LINUX_UDP_H*/
#endif /*HAVE_NATT*/
#include <unistd.h>
#include <time.h>
#include <errno.h>
#include "kernel_pfkey_ipsec.h"
#include <hydra.h>
#include <debug.h>
#include <utils/host.h>
#include <utils/linked_list.h>
#include <utils/hashtable.h>
#include <threading/thread.h>
#include <threading/mutex.h>
#include <processing/jobs/callback_job.h>
/** non linux specific */
#ifndef IPPROTO_COMP
#ifdef IPPROTO_IPCOMP
#define IPPROTO_COMP IPPROTO_IPCOMP
#endif
#endif
#ifndef SADB_X_AALG_SHA2_256HMAC
#define SADB_X_AALG_SHA2_256HMAC SADB_X_AALG_SHA2_256
#define SADB_X_AALG_SHA2_384HMAC SADB_X_AALG_SHA2_384
#define SADB_X_AALG_SHA2_512HMAC SADB_X_AALG_SHA2_512
#endif
#ifndef SADB_X_EALG_AESCBC
#define SADB_X_EALG_AESCBC SADB_X_EALG_AES
#endif
#ifndef SADB_X_EALG_CASTCBC
#define SADB_X_EALG_CASTCBC SADB_X_EALG_CAST128CBC
#endif
#ifndef SOL_IP
#define SOL_IP IPPROTO_IP
#define SOL_IPV6 IPPROTO_IPV6
#endif
/** from linux/in.h */
#ifndef IP_IPSEC_POLICY
#define IP_IPSEC_POLICY 16
#endif
/** missing on uclibc */
#ifndef IPV6_IPSEC_POLICY
#define IPV6_IPSEC_POLICY 34
#endif
/** default priority of installed policies */
#define PRIO_LOW 1024
#define PRIO_HIGH 512
#ifdef __APPLE__
/** from xnu/bsd/net/pfkeyv2.h */
#define SADB_X_EXT_NATT 0x002
struct sadb_sa_2 {
struct sadb_sa sa;
u_int16_t sadb_sa_natt_port;
u_int16_t sadb_reserved0;
u_int32_t sadb_reserved1;
};
#endif
/** buffer size for PF_KEY messages */
#define PFKEY_BUFFER_SIZE 4096
/** PF_KEY messages are 64 bit aligned */
#define PFKEY_ALIGNMENT 8
/** aligns len to 64 bits */
#define PFKEY_ALIGN(len) (((len) + PFKEY_ALIGNMENT - 1) & ~(PFKEY_ALIGNMENT - 1))
/** calculates the properly padded length in 64 bit chunks */
#define PFKEY_LEN(len) ((PFKEY_ALIGN(len) / PFKEY_ALIGNMENT))
/** calculates user mode length i.e. in bytes */
#define PFKEY_USER_LEN(len) ((len) * PFKEY_ALIGNMENT)
/** given a PF_KEY message header and an extension this updates the length in the header */
#define PFKEY_EXT_ADD(msg, ext) ((msg)->sadb_msg_len += ((struct sadb_ext*)ext)->sadb_ext_len)
/** given a PF_KEY message header this returns a pointer to the next extension */
#define PFKEY_EXT_ADD_NEXT(msg) ((struct sadb_ext*)(((char*)(msg)) + PFKEY_USER_LEN((msg)->sadb_msg_len)))
/** copy an extension and append it to a PF_KEY message */
#define PFKEY_EXT_COPY(msg, ext) (PFKEY_EXT_ADD(msg, memcpy(PFKEY_EXT_ADD_NEXT(msg), ext, PFKEY_USER_LEN(((struct sadb_ext*)ext)->sadb_ext_len))))
/** given a PF_KEY extension this returns a pointer to the next extension */
#define PFKEY_EXT_NEXT(ext) ((struct sadb_ext*)(((char*)(ext)) + PFKEY_USER_LEN(((struct sadb_ext*)ext)->sadb_ext_len)))
/** given a PF_KEY extension this returns a pointer to the next extension also updates len (len in 64 bit words) */
#define PFKEY_EXT_NEXT_LEN(ext,len) ((len) -= (ext)->sadb_ext_len, PFKEY_EXT_NEXT(ext))
/** true if ext has a valid length and len is large enough to contain ext (assuming len in 64 bit words) */
#define PFKEY_EXT_OK(ext,len) ((len) >= PFKEY_LEN(sizeof(struct sadb_ext)) && \
(ext)->sadb_ext_len >= PFKEY_LEN(sizeof(struct sadb_ext)) && \
(ext)->sadb_ext_len <= (len))
typedef struct private_kernel_pfkey_ipsec_t private_kernel_pfkey_ipsec_t;
/**
* Private variables and functions of kernel_pfkey class.
*/
struct private_kernel_pfkey_ipsec_t
{
/**
* Public part of the kernel_pfkey_t object.
*/
kernel_pfkey_ipsec_t public;
/**
* mutex to lock access to various lists
*/
mutex_t *mutex;
/**
* List of installed policies (policy_entry_t)
*/
linked_list_t *policies;
/**
* Hash table of IPsec SAs using policies (ipsec_sa_t)
*/
hashtable_t *sas;
/**
* whether to install routes along policies
*/
bool install_routes;
/**
* job receiving PF_KEY events
*/
callback_job_t *job;
/**
* mutex to lock access to the PF_KEY socket
*/
mutex_t *mutex_pfkey;
/**
* PF_KEY socket to communicate with the kernel
*/
int socket;
/**
* PF_KEY socket to receive acquire and expire events
*/
int socket_events;
/**
* sequence number for messages sent to the kernel
*/
int seq;
};
typedef struct route_entry_t route_entry_t;
/**
* installed routing entry
*/
struct route_entry_t {
/** name of the interface the route is bound to */
char *if_name;
/** source ip of the route */
host_t *src_ip;
/** gateway for this route */
host_t *gateway;
/** destination net */
chunk_t dst_net;
/** destination net prefixlen */
u_int8_t prefixlen;
};
/**
* destroy an route_entry_t object
*/
static void route_entry_destroy(route_entry_t *this)
{
free(this->if_name);
DESTROY_IF(this->src_ip);
DESTROY_IF(this->gateway);
chunk_free(&this->dst_net);
free(this);
}
/**
* compare two route_entry_t objects
*/
static bool route_entry_equals(route_entry_t *a, route_entry_t *b)
{
return a->if_name && b->if_name && streq(a->if_name, b->if_name) &&
a->src_ip->equals(a->src_ip, b->src_ip) &&
a->gateway->equals(a->gateway, b->gateway) &&
chunk_equals(a->dst_net, b->dst_net) && a->prefixlen == b->prefixlen;
}
typedef struct ipsec_sa_t ipsec_sa_t;
/**
* IPsec SA assigned to a policy.
*/
struct ipsec_sa_t {
/** Source address of this SA */
host_t *src;
/** Destination address of this SA */
host_t *dst;
/** Description of this SA */
ipsec_sa_cfg_t cfg;
/** Reference count for this SA */
refcount_t refcount;
};
/**
* Hash function for ipsec_sa_t objects
*/
static u_int ipsec_sa_hash(ipsec_sa_t *sa)
{
return chunk_hash_inc(sa->src->get_address(sa->src),
chunk_hash_inc(sa->dst->get_address(sa->dst),
chunk_hash(chunk_from_thing(sa->cfg))));
}
/**
* Equality function for ipsec_sa_t objects
*/
static bool ipsec_sa_equals(ipsec_sa_t *sa, ipsec_sa_t *other_sa)
{
return sa->src->ip_equals(sa->src, other_sa->src) &&
sa->dst->ip_equals(sa->dst, other_sa->dst) &&
memeq(&sa->cfg, &other_sa->cfg, sizeof(ipsec_sa_cfg_t));
}
/**
* Allocate or reference an IPsec SA object
*/
static ipsec_sa_t *ipsec_sa_create(private_kernel_pfkey_ipsec_t *this,
host_t *src, host_t *dst,
ipsec_sa_cfg_t *cfg)
{
ipsec_sa_t *sa, *found;
INIT(sa,
.src = src,
.dst = dst,
.cfg = *cfg,
);
found = this->sas->get(this->sas, sa);
if (!found)
{
sa->src = src->clone(src);
sa->dst = dst->clone(dst);
this->sas->put(this->sas, sa, sa);
}
else
{
free(sa);
sa = found;
}
ref_get(&sa->refcount);
return sa;
}
/**
* Release and destroy an IPsec SA object
*/
static void ipsec_sa_destroy(private_kernel_pfkey_ipsec_t *this,
ipsec_sa_t *sa)
{
if (ref_put(&sa->refcount))
{
this->sas->remove(this->sas, sa);
DESTROY_IF(sa->src);
DESTROY_IF(sa->dst);
free(sa);
}
}
typedef struct policy_sa_t policy_sa_t;
typedef struct policy_sa_fwd_t policy_sa_fwd_t;
/**
* Mapping between a policy and an IPsec SA.
*/
struct policy_sa_t {
/** Priority assigned to the policy when installed with this SA */
u_int32_t priority;
/** Type of the policy */
policy_type_t type;
/** Assigned SA */
ipsec_sa_t *sa;
};
/**
* For forward policies we also cache the traffic selectors in order to install
* the route.
*/
struct policy_sa_fwd_t {
/** Generic interface */
policy_sa_t generic;
/** Source traffic selector of this policy */
traffic_selector_t *src_ts;
/** Destination traffic selector of this policy */
traffic_selector_t *dst_ts;
};
/**
* Create a policy_sa(_fwd)_t object
*/
static policy_sa_t *policy_sa_create(private_kernel_pfkey_ipsec_t *this,
policy_dir_t dir, policy_type_t type, host_t *src, host_t *dst,
traffic_selector_t *src_ts, traffic_selector_t *dst_ts, ipsec_sa_cfg_t *cfg)
{
policy_sa_t *policy;
if (dir == POLICY_FWD)
{
policy_sa_fwd_t *fwd;
INIT(fwd,
.src_ts = src_ts->clone(src_ts),
.dst_ts = dst_ts->clone(dst_ts),
);
policy = &fwd->generic;
}
else
{
INIT(policy);
}
policy->type = type;
policy->sa = ipsec_sa_create(this, src, dst, cfg);
return policy;
}
/**
* Destroy a policy_sa(_fwd)_t object
*/
static void policy_sa_destroy(policy_sa_t *policy, policy_dir_t *dir,
private_kernel_pfkey_ipsec_t *this)
{
if (*dir == POLICY_FWD)
{
policy_sa_fwd_t *fwd = (policy_sa_fwd_t*)policy;
fwd->src_ts->destroy(fwd->src_ts);
fwd->dst_ts->destroy(fwd->dst_ts);
}
ipsec_sa_destroy(this, policy->sa);
free(policy);
}
typedef struct policy_entry_t policy_entry_t;
/**
* installed kernel policy.
*/
struct policy_entry_t {
/** Index assigned by the kernel */
u_int32_t index;
/** Direction of this policy: in, out, forward */
u_int8_t direction;
/** Parameters of installed policy */
struct {
/** Subnet and port */
host_t *net;
/** Subnet mask */
u_int8_t mask;
/** Protocol */
u_int8_t proto;
} src, dst;
/** Associated route installed for this policy */
route_entry_t *route;
/** List of SAs this policy is used by, ordered by priority */
linked_list_t *used_by;
};
/**
* Create a policy_entry_t object
*/
static policy_entry_t *create_policy_entry(traffic_selector_t *src_ts,
traffic_selector_t *dst_ts,
policy_dir_t dir)
{
policy_entry_t *policy;
INIT(policy,
.direction = dir,
);
src_ts->to_subnet(src_ts, &policy->src.net, &policy->src.mask);
dst_ts->to_subnet(dst_ts, &policy->dst.net, &policy->dst.mask);
/* src or dest proto may be "any" (0), use more restrictive one */
policy->src.proto = max(src_ts->get_protocol(src_ts),
dst_ts->get_protocol(dst_ts));
policy->src.proto = policy->src.proto ? policy->src.proto : IPSEC_PROTO_ANY;
policy->dst.proto = policy->src.proto;
return policy;
}
/**
* Destroy a policy_entry_t object
*/
static void policy_entry_destroy(policy_entry_t *policy,
private_kernel_pfkey_ipsec_t *this)
{
if (policy->route)
{
route_entry_destroy(policy->route);
}
if (policy->used_by)
{
policy->used_by->invoke_function(policy->used_by,
(linked_list_invoke_t)policy_sa_destroy,
&policy->direction, this);
policy->used_by->destroy(policy->used_by);
}
DESTROY_IF(policy->src.net);
DESTROY_IF(policy->dst.net);
free(policy);
}
/**
* compares two policy_entry_t
*/
static inline bool policy_entry_equals(policy_entry_t *current,
policy_entry_t *policy)
{
return current->direction == policy->direction &&
current->src.proto == policy->src.proto &&
current->dst.proto == policy->dst.proto &&
current->src.mask == policy->src.mask &&
current->dst.mask == policy->dst.mask &&
current->src.net->equals(current->src.net, policy->src.net) &&
current->dst.net->equals(current->dst.net, policy->dst.net);
}
/**
* compare the given kernel index with that of a policy
*/
static inline bool policy_entry_match_byindex(policy_entry_t *current,
u_int32_t *index)
{
return current->index == *index;
}
typedef struct pfkey_msg_t pfkey_msg_t;
struct pfkey_msg_t
{
/**
* PF_KEY message base
*/
struct sadb_msg *msg;
/**
* PF_KEY message extensions
*/
union {
struct sadb_ext *ext[SADB_EXT_MAX + 1];
struct {
struct sadb_ext *reserved; /* SADB_EXT_RESERVED */
struct sadb_sa *sa; /* SADB_EXT_SA */
struct sadb_lifetime *lft_current; /* SADB_EXT_LIFETIME_CURRENT */
struct sadb_lifetime *lft_hard; /* SADB_EXT_LIFETIME_HARD */
struct sadb_lifetime *lft_soft; /* SADB_EXT_LIFETIME_SOFT */
struct sadb_address *src; /* SADB_EXT_ADDRESS_SRC */
struct sadb_address *dst; /* SADB_EXT_ADDRESS_DST */
struct sadb_address *proxy; /* SADB_EXT_ADDRESS_PROXY */
struct sadb_key *key_auth; /* SADB_EXT_KEY_AUTH */
struct sadb_key *key_encr; /* SADB_EXT_KEY_ENCRYPT */
struct sadb_ident *id_src; /* SADB_EXT_IDENTITY_SRC */
struct sadb_ident *id_dst; /* SADB_EXT_IDENTITY_DST */
struct sadb_sens *sensitivity; /* SADB_EXT_SENSITIVITY */
struct sadb_prop *proposal; /* SADB_EXT_PROPOSAL */
struct sadb_supported *supported_auth; /* SADB_EXT_SUPPORTED_AUTH */
struct sadb_supported *supported_encr; /* SADB_EXT_SUPPORTED_ENCRYPT */
struct sadb_spirange *spirange; /* SADB_EXT_SPIRANGE */
struct sadb_x_kmprivate *x_kmprivate; /* SADB_X_EXT_KMPRIVATE */
struct sadb_x_policy *x_policy; /* SADB_X_EXT_POLICY */
struct sadb_x_sa2 *x_sa2; /* SADB_X_EXT_SA2 */
struct sadb_x_nat_t_type *x_natt_type; /* SADB_X_EXT_NAT_T_TYPE */
struct sadb_x_nat_t_port *x_natt_sport; /* SADB_X_EXT_NAT_T_SPORT */
struct sadb_x_nat_t_port *x_natt_dport; /* SADB_X_EXT_NAT_T_DPORT */
struct sadb_address *x_natt_oa; /* SADB_X_EXT_NAT_T_OA */
struct sadb_x_sec_ctx *x_sec_ctx; /* SADB_X_EXT_SEC_CTX */
struct sadb_x_kmaddress *x_kmaddress; /* SADB_X_EXT_KMADDRESS */
} __attribute__((__packed__));
};
};
ENUM(sadb_ext_type_names, SADB_EXT_RESERVED, SADB_EXT_MAX,
"SADB_EXT_RESERVED",
"SADB_EXT_SA",
"SADB_EXT_LIFETIME_CURRENT",
"SADB_EXT_LIFETIME_HARD",
"SADB_EXT_LIFETIME_SOFT",
"SADB_EXT_ADDRESS_SRC",
"SADB_EXT_ADDRESS_DST",
"SADB_EXT_ADDRESS_PROXY",
"SADB_EXT_KEY_AUTH",
"SADB_EXT_KEY_ENCRYPT",
"SADB_EXT_IDENTITY_SRC",
"SADB_EXT_IDENTITY_DST",
"SADB_EXT_SENSITIVITY",
"SADB_EXT_PROPOSAL",
"SADB_EXT_SUPPORTED_AUTH",
"SADB_EXT_SUPPORTED_ENCRYPT",
"SADB_EXT_SPIRANGE",
"SADB_X_EXT_KMPRIVATE",
"SADB_X_EXT_POLICY",
"SADB_X_EXT_SA2",
"SADB_X_EXT_NAT_T_TYPE",
"SADB_X_EXT_NAT_T_SPORT",
"SADB_X_EXT_NAT_T_DPORT",
"SADB_X_EXT_NAT_T_OA",
"SADB_X_EXT_SEC_CTX",
"SADB_X_EXT_KMADDRESS"
);
/**
* convert a protocol identifier to the PF_KEY sa type
*/
static u_int8_t proto2satype(u_int8_t proto)
{
switch (proto)
{
case IPPROTO_ESP:
return SADB_SATYPE_ESP;
case IPPROTO_AH:
return SADB_SATYPE_AH;
case IPPROTO_COMP:
return SADB_X_SATYPE_IPCOMP;
default:
return proto;
}
}
/**
* convert a PF_KEY sa type to a protocol identifier
*/
static u_int8_t satype2proto(u_int8_t satype)
{
switch (satype)
{
case SADB_SATYPE_ESP:
return IPPROTO_ESP;
case SADB_SATYPE_AH:
return IPPROTO_AH;
case SADB_X_SATYPE_IPCOMP:
return IPPROTO_COMP;
default:
return satype;
}
}
/**
* convert the general ipsec mode to the one defined in ipsec.h
*/
static u_int8_t mode2kernel(ipsec_mode_t mode)
{
switch (mode)
{
case MODE_TRANSPORT:
return IPSEC_MODE_TRANSPORT;
case MODE_TUNNEL:
return IPSEC_MODE_TUNNEL;
#ifdef HAVE_IPSEC_MODE_BEET
case MODE_BEET:
return IPSEC_MODE_BEET;
#endif
default:
return mode;
}
}
/**
* convert the general policy direction to the one defined in ipsec.h
*/
static u_int8_t dir2kernel(policy_dir_t dir)
{
switch (dir)
{
case POLICY_IN:
return IPSEC_DIR_INBOUND;
case POLICY_OUT:
return IPSEC_DIR_OUTBOUND;
#ifdef HAVE_IPSEC_DIR_FWD
case POLICY_FWD:
return IPSEC_DIR_FWD;
#endif
default:
return IPSEC_DIR_INVALID;
}
}
/**
* convert the policy type to the one defined in ipsec.h
*/
static inline u_int16_t type2kernel(policy_type_t type)
{
switch (type)
{
case POLICY_IPSEC:
return IPSEC_POLICY_IPSEC;
case POLICY_PASS:
return IPSEC_POLICY_NONE;
case POLICY_DROP:
return IPSEC_POLICY_DISCARD;
}
return type;
}
#ifdef SADB_X_MIGRATE
/**
* convert the policy direction in ipsec.h to the general one.
*/
static policy_dir_t kernel2dir(u_int8_t dir)
{
switch (dir)
{
case IPSEC_DIR_INBOUND:
return POLICY_IN;
case IPSEC_DIR_OUTBOUND:
return POLICY_OUT;
#ifdef HAVE_IPSEC_DIR_FWD
case IPSEC_DIR_FWD:
return POLICY_FWD;
#endif
default:
return dir;
}
}
#endif /*SADB_X_MIGRATE*/
typedef struct kernel_algorithm_t kernel_algorithm_t;
/**
* Mapping of IKEv2 algorithms to PF_KEY algorithms
*/
struct kernel_algorithm_t {
/**
* Identifier specified in IKEv2
*/
int ikev2;
/**
* Identifier as defined in pfkeyv2.h
*/
int kernel;
};
#define END_OF_LIST -1
/**
* Algorithms for encryption
*/
static kernel_algorithm_t encryption_algs[] = {
/* {ENCR_DES_IV64, 0 }, */
{ENCR_DES, SADB_EALG_DESCBC },
{ENCR_3DES, SADB_EALG_3DESCBC },
/* {ENCR_RC5, 0 }, */
/* {ENCR_IDEA, 0 }, */
{ENCR_CAST, SADB_X_EALG_CASTCBC },
{ENCR_BLOWFISH, SADB_X_EALG_BLOWFISHCBC },
/* {ENCR_3IDEA, 0 }, */
/* {ENCR_DES_IV32, 0 }, */
{ENCR_NULL, SADB_EALG_NULL },
{ENCR_AES_CBC, SADB_X_EALG_AESCBC },
/* {ENCR_AES_CTR, SADB_X_EALG_AESCTR }, */
/* {ENCR_AES_CCM_ICV8, SADB_X_EALG_AES_CCM_ICV8 }, */
/* {ENCR_AES_CCM_ICV12, SADB_X_EALG_AES_CCM_ICV12 }, */
/* {ENCR_AES_CCM_ICV16, SADB_X_EALG_AES_CCM_ICV16 }, */
/* {ENCR_AES_GCM_ICV8, SADB_X_EALG_AES_GCM_ICV8 }, */
/* {ENCR_AES_GCM_ICV12, SADB_X_EALG_AES_GCM_ICV12 }, */
/* {ENCR_AES_GCM_ICV16, SADB_X_EALG_AES_GCM_ICV16 }, */
{END_OF_LIST, 0 },
};
/**
* Algorithms for integrity protection
*/
static kernel_algorithm_t integrity_algs[] = {
{AUTH_HMAC_MD5_96, SADB_AALG_MD5HMAC },
{AUTH_HMAC_SHA1_96, SADB_AALG_SHA1HMAC },
{AUTH_HMAC_SHA2_256_128, SADB_X_AALG_SHA2_256HMAC },
{AUTH_HMAC_SHA2_384_192, SADB_X_AALG_SHA2_384HMAC },
{AUTH_HMAC_SHA2_512_256, SADB_X_AALG_SHA2_512HMAC },
/* {AUTH_DES_MAC, 0, }, */
/* {AUTH_KPDK_MD5, 0, }, */
#ifdef SADB_X_AALG_AES_XCBC_MAC
{AUTH_AES_XCBC_96, SADB_X_AALG_AES_XCBC_MAC, },
#endif
{END_OF_LIST, 0, },
};
#if 0
/**
* Algorithms for IPComp, unused yet
*/
static kernel_algorithm_t compression_algs[] = {
/* {IPCOMP_OUI, 0 }, */
{IPCOMP_DEFLATE, SADB_X_CALG_DEFLATE },
{IPCOMP_LZS, SADB_X_CALG_LZS },
{IPCOMP_LZJH, SADB_X_CALG_LZJH },
{END_OF_LIST, 0 },
};
#endif
/**
* Look up a kernel algorithm ID and its key size
*/
static int lookup_algorithm(kernel_algorithm_t *list, int ikev2)
{
while (list->ikev2 != END_OF_LIST)
{
if (ikev2 == list->ikev2)
{
return list->kernel;
}
list++;
}
return 0;
}
/**
* Copy a host_t as sockaddr_t to the given memory location. Ports are
* reset to zero as per RFC 2367.
* @return the number of bytes copied
*/
static size_t hostcpy(void *dest, host_t *host)
{
sockaddr_t *addr = host->get_sockaddr(host), *dest_addr = dest;
socklen_t *len = host->get_sockaddr_len(host);
memcpy(dest, addr, *len);
#ifdef HAVE_STRUCT_SOCKADDR_SA_LEN
dest_addr->sa_len = *len;
#endif
switch (dest_addr->sa_family)
{
case AF_INET:
{
struct sockaddr_in *sin = dest;
sin->sin_port = 0;
break;
}
case AF_INET6:
{
struct sockaddr_in6 *sin6 = dest;
sin6->sin6_port = 0;
break;
}
}
return *len;
}
/**
* add a host behind an sadb_address extension
*/
static void host2ext(host_t *host, struct sadb_address *ext)
{
size_t len = hostcpy(ext + 1, host);
ext->sadb_address_len = PFKEY_LEN(sizeof(*ext) + len);
}
/**
* add a host to the given sadb_msg
*/
static void add_addr_ext(struct sadb_msg *msg, host_t *host, u_int16_t type,
u_int8_t proto, u_int8_t prefixlen)
{
struct sadb_address *addr = (struct sadb_address*)PFKEY_EXT_ADD_NEXT(msg);
addr->sadb_address_exttype = type;
addr->sadb_address_proto = proto;
addr->sadb_address_prefixlen = prefixlen;
host2ext(host, addr);
PFKEY_EXT_ADD(msg, addr);
}
/**
* adds an empty address extension to the given sadb_msg
*/
static void add_anyaddr_ext(struct sadb_msg *msg, int family, u_int8_t type)
{
socklen_t len = (family == AF_INET) ? sizeof(struct sockaddr_in) :
sizeof(struct sockaddr_in6);
struct sadb_address *addr = (struct sadb_address*)PFKEY_EXT_ADD_NEXT(msg);
addr->sadb_address_exttype = type;
sockaddr_t *saddr = (sockaddr_t*)(addr + 1);
saddr->sa_family = family;
#ifdef HAVE_STRUCT_SOCKADDR_SA_LEN
saddr->sa_len = len;
#endif
addr->sadb_address_len = PFKEY_LEN(sizeof(*addr) + len);
PFKEY_EXT_ADD(msg, addr);
}
#ifdef HAVE_NATT
/**
* add udp encap extensions to a sadb_msg
*/
static void add_encap_ext(struct sadb_msg *msg, host_t *src, host_t *dst)
{
struct sadb_x_nat_t_type* nat_type;
struct sadb_x_nat_t_port* nat_port;
nat_type = (struct sadb_x_nat_t_type*)PFKEY_EXT_ADD_NEXT(msg);
nat_type->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
nat_type->sadb_x_nat_t_type_len = PFKEY_LEN(sizeof(*nat_type));
nat_type->sadb_x_nat_t_type_type = UDP_ENCAP_ESPINUDP;
PFKEY_EXT_ADD(msg, nat_type);
nat_port = (struct sadb_x_nat_t_port*)PFKEY_EXT_ADD_NEXT(msg);
nat_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
nat_port->sadb_x_nat_t_port_len = PFKEY_LEN(sizeof(*nat_port));
nat_port->sadb_x_nat_t_port_port = htons(src->get_port(src));
PFKEY_EXT_ADD(msg, nat_port);
nat_port = (struct sadb_x_nat_t_port*)PFKEY_EXT_ADD_NEXT(msg);
nat_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
nat_port->sadb_x_nat_t_port_len = PFKEY_LEN(sizeof(*nat_port));
nat_port->sadb_x_nat_t_port_port = htons(dst->get_port(dst));
PFKEY_EXT_ADD(msg, nat_port);
}
#endif /*HAVE_NATT*/
/**
* Convert a sadb_address to a traffic_selector
*/
static traffic_selector_t* sadb_address2ts(struct sadb_address *address)
{
traffic_selector_t *ts;
host_t *host;
/* The Linux 2.6 kernel does not set the protocol and port information
* in the src and dst sadb_address extensions of the SADB_ACQUIRE message.
*/
host = host_create_from_sockaddr((sockaddr_t*)&address[1]);
ts = traffic_selector_create_from_subnet(host,
address->sadb_address_prefixlen,
address->sadb_address_proto,
host->get_port(host));
return ts;
}
/**
* Parses a pfkey message received from the kernel
*/
static status_t parse_pfkey_message(struct sadb_msg *msg, pfkey_msg_t *out)
{
struct sadb_ext* ext;
size_t len;
memset(out, 0, sizeof(pfkey_msg_t));
out->msg = msg;
len = msg->sadb_msg_len;
len -= PFKEY_LEN(sizeof(struct sadb_msg));
ext = (struct sadb_ext*)(((char*)msg) + sizeof(struct sadb_msg));
while (len >= PFKEY_LEN(sizeof(struct sadb_ext)))
{
DBG3(DBG_KNL, " %N", sadb_ext_type_names, ext->sadb_ext_type);
if (ext->sadb_ext_len < PFKEY_LEN(sizeof(struct sadb_ext)) ||
ext->sadb_ext_len > len)
{
DBG1(DBG_KNL, "length of %N extension is invalid",
sadb_ext_type_names, ext->sadb_ext_type);
break;
}
if ((ext->sadb_ext_type > SADB_EXT_MAX) || (!ext->sadb_ext_type))
{
DBG1(DBG_KNL, "type of PF_KEY extension (%d) is invalid",
ext->sadb_ext_type);
break;
}
if (out->ext[ext->sadb_ext_type])
{
DBG1(DBG_KNL, "duplicate %N extension",
sadb_ext_type_names, ext->sadb_ext_type);
break;
}
out->ext[ext->sadb_ext_type] = ext;
ext = PFKEY_EXT_NEXT_LEN(ext, len);
}
if (len)
{
DBG1(DBG_KNL, "PF_KEY message length is invalid");
return FAILED;
}
return SUCCESS;
}
/**
* Send a message to a specific PF_KEY socket and handle the response.
*/
static status_t pfkey_send_socket(private_kernel_pfkey_ipsec_t *this, int socket,
struct sadb_msg *in, struct sadb_msg **out, size_t *out_len)
{
unsigned char buf[PFKEY_BUFFER_SIZE];
struct sadb_msg *msg;
int in_len, len;
this->mutex_pfkey->lock(this->mutex_pfkey);
/* FIXME: our usage of sequence numbers is probably wrong. check RFC 2367,
* in particular the behavior in response to an SADB_ACQUIRE. */
in->sadb_msg_seq = ++this->seq;
in->sadb_msg_pid = getpid();
in_len = PFKEY_USER_LEN(in->sadb_msg_len);
while (TRUE)
{
len = send(socket, in, in_len, 0);
if (len != in_len)
{
if (errno == EINTR)
{
/* interrupted, try again */
continue;
}
this->mutex_pfkey->unlock(this->mutex_pfkey);
DBG1(DBG_KNL, "error sending to PF_KEY socket: %s",
strerror(errno));
return FAILED;
}
break;
}
while (TRUE)
{
msg = (struct sadb_msg*)buf;
len = recv(socket, buf, sizeof(buf), 0);
if (len < 0)
{
if (errno == EINTR)
{
DBG1(DBG_KNL, "got interrupted");
/* interrupted, try again */
continue;
}
DBG1(DBG_KNL, "error reading from PF_KEY socket: %s",
strerror(errno));
this->mutex_pfkey->unlock(this->mutex_pfkey);
return FAILED;
}
if (len < sizeof(struct sadb_msg) ||
msg->sadb_msg_len < PFKEY_LEN(sizeof(struct sadb_msg)))
{
DBG1(DBG_KNL, "received corrupted PF_KEY message");
this->mutex_pfkey->unlock(this->mutex_pfkey);
return FAILED;
}
if (msg->sadb_msg_len > len / PFKEY_ALIGNMENT)
{
DBG1(DBG_KNL, "buffer was too small to receive the complete PF_KEY "
"message");
this->mutex_pfkey->unlock(this->mutex_pfkey);
return FAILED;
}
if (msg->sadb_msg_pid != in->sadb_msg_pid)
{
DBG2(DBG_KNL, "received PF_KEY message is not intended for us");
continue;
}
if (msg->sadb_msg_seq != this->seq)
{
DBG1(DBG_KNL, "received PF_KEY message with unexpected sequence "
"number, was %d expected %d", msg->sadb_msg_seq,
this->seq);
if (msg->sadb_msg_seq == 0)
{
/* FreeBSD and Mac OS X do this for the response to
* SADB_X_SPDGET (but not for the response to SADB_GET).
* FreeBSD: 'key_spdget' in /usr/src/sys/netipsec/key.c. */
}
else if (msg->sadb_msg_seq < this->seq)
{
continue;
}
else
{
this->mutex_pfkey->unlock(this->mutex_pfkey);
return FAILED;
}
}
if (msg->sadb_msg_type != in->sadb_msg_type)
{
DBG2(DBG_KNL, "received PF_KEY message of wrong type, "
"was %d expected %d, ignoring", msg->sadb_msg_type,
in->sadb_msg_type);
}
break;
}
*out_len = len;
*out = (struct sadb_msg*)malloc(len);
memcpy(*out, buf, len);
this->mutex_pfkey->unlock(this->mutex_pfkey);
return SUCCESS;
}
/**
* Send a message to the default PF_KEY socket and handle the response.
*/
static status_t pfkey_send(private_kernel_pfkey_ipsec_t *this,
struct sadb_msg *in, struct sadb_msg **out,
size_t *out_len)
{
return pfkey_send_socket(this, this->socket, in, out, out_len);
}
/**
* Process a SADB_ACQUIRE message from the kernel
*/
static void process_acquire(private_kernel_pfkey_ipsec_t *this,
struct sadb_msg* msg)
{
pfkey_msg_t response;
u_int32_t index, reqid = 0;
traffic_selector_t *src_ts, *dst_ts;
policy_entry_t *policy;
policy_sa_t *sa;
switch (msg->sadb_msg_satype)
{
case SADB_SATYPE_UNSPEC:
case SADB_SATYPE_ESP:
case SADB_SATYPE_AH:
break;
default:
/* acquire for AH/ESP only */
return;
}
DBG2(DBG_KNL, "received an SADB_ACQUIRE");
if (parse_pfkey_message(msg, &response) != SUCCESS)
{
DBG1(DBG_KNL, "parsing SADB_ACQUIRE from kernel failed");
return;
}
index = response.x_policy->sadb_x_policy_id;
this->mutex->lock(this->mutex);
if (this->policies->find_first(this->policies,
(linked_list_match_t)policy_entry_match_byindex,
(void**)&policy, &index) == SUCCESS &&
policy->used_by->get_first(policy->used_by, (void**)&sa) == SUCCESS)
{
reqid = sa->sa->cfg.reqid;
}
else
{
DBG1(DBG_KNL, "received an SADB_ACQUIRE with policy id %d but no "
"matching policy found", index);
}
this->mutex->unlock(this->mutex);
src_ts = sadb_address2ts(response.src);
dst_ts = sadb_address2ts(response.dst);
hydra->kernel_interface->acquire(hydra->kernel_interface, reqid, src_ts,
dst_ts);
}
/**
* Process a SADB_EXPIRE message from the kernel
*/
static void process_expire(private_kernel_pfkey_ipsec_t *this,
struct sadb_msg* msg)
{
pfkey_msg_t response;
u_int8_t protocol;
u_int32_t spi, reqid;
bool hard;
DBG2(DBG_KNL, "received an SADB_EXPIRE");
if (parse_pfkey_message(msg, &response) != SUCCESS)
{
DBG1(DBG_KNL, "parsing SADB_EXPIRE from kernel failed");
return;
}
protocol = satype2proto(msg->sadb_msg_satype);
spi = response.sa->sadb_sa_spi;
reqid = response.x_sa2->sadb_x_sa2_reqid;
hard = response.lft_hard != NULL;
if (protocol != IPPROTO_ESP && protocol != IPPROTO_AH)
{
DBG2(DBG_KNL, "ignoring SADB_EXPIRE for SA with SPI %.8x and "
"reqid {%u} which is not a CHILD_SA", ntohl(spi), reqid);
return;
}
hydra->kernel_interface->expire(hydra->kernel_interface, reqid, protocol,
spi, hard);
}
#ifdef SADB_X_MIGRATE
/**
* Process a SADB_X_MIGRATE message from the kernel
*/
static void process_migrate(private_kernel_pfkey_ipsec_t *this,
struct sadb_msg* msg)
{
pfkey_msg_t response;
traffic_selector_t *src_ts, *dst_ts;
policy_dir_t dir;
u_int32_t reqid = 0;
host_t *local = NULL, *remote = NULL;
DBG2(DBG_KNL, "received an SADB_X_MIGRATE");
if (parse_pfkey_message(msg, &response) != SUCCESS)
{
DBG1(DBG_KNL, "parsing SADB_X_MIGRATE from kernel failed");
return;
}
src_ts = sadb_address2ts(response.src);
dst_ts = sadb_address2ts(response.dst);
dir = kernel2dir(response.x_policy->sadb_x_policy_dir);
DBG2(DBG_KNL, " policy %R === %R %N, id %u", src_ts, dst_ts,
policy_dir_names, dir);
/* SADB_X_EXT_KMADDRESS is not present in unpatched kernels < 2.6.28 */
if (response.x_kmaddress)
{
sockaddr_t *local_addr, *remote_addr;
u_int32_t local_len;
local_addr = (sockaddr_t*)&response.x_kmaddress[1];
local = host_create_from_sockaddr(local_addr);
local_len = (local_addr->sa_family == AF_INET6)?
sizeof(struct sockaddr_in6) : sizeof(struct sockaddr_in);
remote_addr = (sockaddr_t*)((u_int8_t*)local_addr + local_len);
remote = host_create_from_sockaddr(remote_addr);
DBG2(DBG_KNL, " kmaddress: %H...%H", local, remote);
}
if (src_ts && dst_ts && local && remote)
{
hydra->kernel_interface->migrate(hydra->kernel_interface, reqid,
src_ts, dst_ts, dir, local, remote);
}
else
{
DESTROY_IF(src_ts);
DESTROY_IF(dst_ts);
DESTROY_IF(local);
DESTROY_IF(remote);
}
}
#endif /*SADB_X_MIGRATE*/
#ifdef SADB_X_NAT_T_NEW_MAPPING
/**
* Process a SADB_X_NAT_T_NEW_MAPPING message from the kernel
*/
static void process_mapping(private_kernel_pfkey_ipsec_t *this,
struct sadb_msg* msg)
{
pfkey_msg_t response;
u_int32_t spi, reqid;
sockaddr_t *sa;
host_t *host;
DBG2(DBG_KNL, "received an SADB_X_NAT_T_NEW_MAPPING");
if (parse_pfkey_message(msg, &response) != SUCCESS)
{
DBG1(DBG_KNL, "parsing SADB_X_NAT_T_NEW_MAPPING from kernel failed");
return;
}
if (!response.x_sa2)
{
DBG1(DBG_KNL, "received SADB_X_NAT_T_NEW_MAPPING is missing required "
"information");
return;
}
spi = response.sa->sadb_sa_spi;
reqid = response.x_sa2->sadb_x_sa2_reqid;
if (satype2proto(msg->sadb_msg_satype) != IPPROTO_ESP)
{
return;
}
sa = (sockaddr_t*)(response.dst + 1);
switch (sa->sa_family)
{
case AF_INET:
{
struct sockaddr_in *sin = (struct sockaddr_in*)sa;
sin->sin_port = htons(response.x_natt_dport->sadb_x_nat_t_port_port);
}
case AF_INET6:
{
struct sockaddr_in6 *sin6 = (struct sockaddr_in6*)sa;
sin6->sin6_port = htons(response.x_natt_dport->sadb_x_nat_t_port_port);
}
default:
break;
}
host = host_create_from_sockaddr(sa);
if (host)
{
hydra->kernel_interface->mapping(hydra->kernel_interface, reqid,
spi, host);
}
}
#endif /*SADB_X_NAT_T_NEW_MAPPING*/
/**
* Receives events from kernel
*/
static job_requeue_t receive_events(private_kernel_pfkey_ipsec_t *this)
{
unsigned char buf[PFKEY_BUFFER_SIZE];
struct sadb_msg *msg = (struct sadb_msg*)buf;
bool oldstate;
int len;
oldstate = thread_cancelability(TRUE);
len = recvfrom(this->socket_events, buf, sizeof(buf), 0, NULL, 0);
thread_cancelability(oldstate);
if (len < 0)
{
switch (errno)
{
case EINTR:
/* interrupted, try again */
return JOB_REQUEUE_DIRECT;
case EAGAIN:
/* no data ready, select again */
return JOB_REQUEUE_DIRECT;
default:
DBG1(DBG_KNL, "unable to receive from PF_KEY event socket");
sleep(1);
return JOB_REQUEUE_FAIR;
}
}
if (len < sizeof(struct sadb_msg) ||
msg->sadb_msg_len < PFKEY_LEN(sizeof(struct sadb_msg)))
{
DBG2(DBG_KNL, "received corrupted PF_KEY message");
return JOB_REQUEUE_DIRECT;
}
if (msg->sadb_msg_pid != 0)
{ /* not from kernel. not interested, try another one */
return JOB_REQUEUE_DIRECT;
}
if (msg->sadb_msg_len > len / PFKEY_ALIGNMENT)
{
DBG1(DBG_KNL, "buffer was too small to receive the complete "
"PF_KEY message");
return JOB_REQUEUE_DIRECT;
}
switch (msg->sadb_msg_type)
{
case SADB_ACQUIRE:
process_acquire(this, msg);
break;
case SADB_EXPIRE:
process_expire(this, msg);
break;
#ifdef SADB_X_MIGRATE
case SADB_X_MIGRATE:
process_migrate(this, msg);
break;
#endif /*SADB_X_MIGRATE*/
#ifdef SADB_X_NAT_T_NEW_MAPPING
case SADB_X_NAT_T_NEW_MAPPING:
process_mapping(this, msg);
break;
#endif /*SADB_X_NAT_T_NEW_MAPPING*/
default:
break;
}
return JOB_REQUEUE_DIRECT;
}
METHOD(kernel_ipsec_t, get_spi, status_t,
private_kernel_pfkey_ipsec_t *this, host_t *src, host_t *dst,
u_int8_t protocol, u_int32_t reqid, u_int32_t *spi)
{
unsigned char request[PFKEY_BUFFER_SIZE];
struct sadb_msg *msg, *out;
struct sadb_x_sa2 *sa2;
struct sadb_spirange *range;
pfkey_msg_t response;
u_int32_t received_spi = 0;
size_t len;
memset(&request, 0, sizeof(request));
msg = (struct sadb_msg*)request;
msg->sadb_msg_version = PF_KEY_V2;
msg->sadb_msg_type = SADB_GETSPI;
msg->sadb_msg_satype = proto2satype(protocol);
msg->sadb_msg_len = PFKEY_LEN(sizeof(struct sadb_msg));
sa2 = (struct sadb_x_sa2*)PFKEY_EXT_ADD_NEXT(msg);
sa2->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
sa2->sadb_x_sa2_len = PFKEY_LEN(sizeof(struct sadb_spirange));
sa2->sadb_x_sa2_reqid = reqid;
PFKEY_EXT_ADD(msg, sa2);
add_addr_ext(msg, src, SADB_EXT_ADDRESS_SRC, 0, 0);
add_addr_ext(msg, dst, SADB_EXT_ADDRESS_DST, 0, 0);
range = (struct sadb_spirange*)PFKEY_EXT_ADD_NEXT(msg);
range->sadb_spirange_exttype = SADB_EXT_SPIRANGE;
range->sadb_spirange_len = PFKEY_LEN(sizeof(struct sadb_spirange));
range->sadb_spirange_min = 0xc0000000;
range->sadb_spirange_max = 0xcFFFFFFF;
PFKEY_EXT_ADD(msg, range);
if (pfkey_send(this, msg, &out, &len) == SUCCESS)
{
if (out->sadb_msg_errno)
{
DBG1(DBG_KNL, "allocating SPI failed: %s (%d)",
strerror(out->sadb_msg_errno), out->sadb_msg_errno);
}
else if (parse_pfkey_message(out, &response) == SUCCESS)
{
received_spi = response.sa->sadb_sa_spi;
}
free(out);
}
if (received_spi == 0)
{
return FAILED;
}
*spi = received_spi;
return SUCCESS;
}
METHOD(kernel_ipsec_t, get_cpi, status_t,
private_kernel_pfkey_ipsec_t *this, host_t *src, host_t *dst,
u_int32_t reqid, u_int16_t *cpi)
{
return FAILED;
}
METHOD(kernel_ipsec_t, add_sa, status_t,
private_kernel_pfkey_ipsec_t *this, host_t *src, host_t *dst, u_int32_t spi,
u_int8_t protocol, u_int32_t reqid, mark_t mark, u_int32_t tfc,
lifetime_cfg_t *lifetime, u_int16_t enc_alg, chunk_t enc_key,
u_int16_t int_alg, chunk_t int_key, ipsec_mode_t mode,
u_int16_t ipcomp, u_int16_t cpi, bool encap, bool esn, bool inbound,
traffic_selector_t *src_ts, traffic_selector_t *dst_ts)
{
unsigned char request[PFKEY_BUFFER_SIZE];
struct sadb_msg *msg, *out;
struct sadb_sa *sa;
struct sadb_x_sa2 *sa2;
struct sadb_lifetime *lft;
struct sadb_key *key;
size_t len;
memset(&request, 0, sizeof(request));
DBG2(DBG_KNL, "adding SAD entry with SPI %.8x and reqid {%u}",
ntohl(spi), reqid);
msg = (struct sadb_msg*)request;
msg->sadb_msg_version = PF_KEY_V2;
msg->sadb_msg_type = inbound ? SADB_UPDATE : SADB_ADD;
msg->sadb_msg_satype = proto2satype(protocol);
msg->sadb_msg_len = PFKEY_LEN(sizeof(struct sadb_msg));
#ifdef __APPLE__
if (encap)
{
struct sadb_sa_2 *sa_2;
sa_2 = (struct sadb_sa_2*)PFKEY_EXT_ADD_NEXT(msg);
sa_2->sadb_sa_natt_port = dst->get_port(dst);
sa = &sa_2->sa;
sa->sadb_sa_flags |= SADB_X_EXT_NATT;
len = sizeof(struct sadb_sa_2);
}
else
#endif
{
sa = (struct sadb_sa*)PFKEY_EXT_ADD_NEXT(msg);
len = sizeof(struct sadb_sa);
}
sa->sadb_sa_exttype = SADB_EXT_SA;
sa->sadb_sa_len = PFKEY_LEN(len);
sa->sadb_sa_spi = spi;
sa->sadb_sa_replay = (protocol == IPPROTO_COMP) ? 0 : 32;
sa->sadb_sa_auth = lookup_algorithm(integrity_algs, int_alg);
sa->sadb_sa_encrypt = lookup_algorithm(encryption_algs, enc_alg);
PFKEY_EXT_ADD(msg, sa);
sa2 = (struct sadb_x_sa2*)PFKEY_EXT_ADD_NEXT(msg);
sa2->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
sa2->sadb_x_sa2_len = PFKEY_LEN(sizeof(struct sadb_spirange));
sa2->sadb_x_sa2_mode = mode2kernel(mode);
sa2->sadb_x_sa2_reqid = reqid;
PFKEY_EXT_ADD(msg, sa2);
add_addr_ext(msg, src, SADB_EXT_ADDRESS_SRC, 0, 0);
add_addr_ext(msg, dst, SADB_EXT_ADDRESS_DST, 0, 0);
lft = (struct sadb_lifetime*)PFKEY_EXT_ADD_NEXT(msg);
lft->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
lft->sadb_lifetime_len = PFKEY_LEN(sizeof(struct sadb_lifetime));
lft->sadb_lifetime_allocations = lifetime->packets.rekey;
lft->sadb_lifetime_bytes = lifetime->bytes.rekey;
lft->sadb_lifetime_addtime = lifetime->time.rekey;
lft->sadb_lifetime_usetime = 0; /* we only use addtime */
PFKEY_EXT_ADD(msg, lft);
lft = (struct sadb_lifetime*)PFKEY_EXT_ADD_NEXT(msg);
lft->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
lft->sadb_lifetime_len = PFKEY_LEN(sizeof(struct sadb_lifetime));
lft->sadb_lifetime_allocations = lifetime->packets.life;
lft->sadb_lifetime_bytes = lifetime->bytes.life;
lft->sadb_lifetime_addtime = lifetime->time.life;
lft->sadb_lifetime_usetime = 0; /* we only use addtime */
PFKEY_EXT_ADD(msg, lft);
if (enc_alg != ENCR_UNDEFINED)
{
if (!sa->sadb_sa_encrypt)
{
DBG1(DBG_KNL, "algorithm %N not supported by kernel!",
encryption_algorithm_names, enc_alg);
return FAILED;
}
DBG2(DBG_KNL, " using encryption algorithm %N with key size %d",
encryption_algorithm_names, enc_alg, enc_key.len * 8);
key = (struct sadb_key*)PFKEY_EXT_ADD_NEXT(msg);
key->sadb_key_exttype = SADB_EXT_KEY_ENCRYPT;
key->sadb_key_bits = enc_key.len * 8;
key->sadb_key_len = PFKEY_LEN(sizeof(struct sadb_key) + enc_key.len);
memcpy(key + 1, enc_key.ptr, enc_key.len);
PFKEY_EXT_ADD(msg, key);
}
if (int_alg != AUTH_UNDEFINED)
{
if (!sa->sadb_sa_auth)
{
DBG1(DBG_KNL, "algorithm %N not supported by kernel!",
integrity_algorithm_names, int_alg);
return FAILED;
}
DBG2(DBG_KNL, " using integrity algorithm %N with key size %d",
integrity_algorithm_names, int_alg, int_key.len * 8);
key = (struct sadb_key*)PFKEY_EXT_ADD_NEXT(msg);
key->sadb_key_exttype = SADB_EXT_KEY_AUTH;
key->sadb_key_bits = int_key.len * 8;
key->sadb_key_len = PFKEY_LEN(sizeof(struct sadb_key) + int_key.len);
memcpy(key + 1, int_key.ptr, int_key.len);
PFKEY_EXT_ADD(msg, key);
}
if (ipcomp != IPCOMP_NONE)
{
/*TODO*/
}
#ifdef HAVE_NATT
if (encap)
{
add_encap_ext(msg, src, dst);
}
#endif /*HAVE_NATT*/
if (pfkey_send(this, msg, &out, &len) != SUCCESS)
{
DBG1(DBG_KNL, "unable to add SAD entry with SPI %.8x", ntohl(spi));
return FAILED;
}
else if (out->sadb_msg_errno)
{
DBG1(DBG_KNL, "unable to add SAD entry with SPI %.8x: %s (%d)",
ntohl(spi), strerror(out->sadb_msg_errno), out->sadb_msg_errno);
free(out);
return FAILED;
}
free(out);
return SUCCESS;
}
METHOD(kernel_ipsec_t, update_sa, status_t,
private_kernel_pfkey_ipsec_t *this, u_int32_t spi, u_int8_t protocol,
u_int16_t cpi, host_t *src, host_t *dst, host_t *new_src, host_t *new_dst,
bool encap, bool new_encap, mark_t mark)
{
unsigned char request[PFKEY_BUFFER_SIZE];
struct sadb_msg *msg, *out;
struct sadb_sa *sa;
pfkey_msg_t response;
size_t len;
/* we can't update the SA if any of the ip addresses have changed.
* that's because we can't use SADB_UPDATE and by deleting and readding the
* SA the sequence numbers would get lost */
if (!src->ip_equals(src, new_src) ||
!dst->ip_equals(dst, new_dst))
{
DBG1(DBG_KNL, "unable to update SAD entry with SPI %.8x: address "
"changes are not supported", ntohl(spi));
return NOT_SUPPORTED;
}
memset(&request, 0, sizeof(request));
DBG2(DBG_KNL, "querying SAD entry with SPI %.8x", ntohl(spi));
msg = (struct sadb_msg*)request;
msg->sadb_msg_version = PF_KEY_V2;
msg->sadb_msg_type = SADB_GET;
msg->sadb_msg_satype = proto2satype(protocol);
msg->sadb_msg_len = PFKEY_LEN(sizeof(struct sadb_msg));
sa = (struct sadb_sa*)PFKEY_EXT_ADD_NEXT(msg);
sa->sadb_sa_exttype = SADB_EXT_SA;
sa->sadb_sa_len = PFKEY_LEN(sizeof(struct sadb_sa));
sa->sadb_sa_spi = spi;
PFKEY_EXT_ADD(msg, sa);
/* the kernel wants a SADB_EXT_ADDRESS_SRC to be present even though
* it is not used for anything. */
add_anyaddr_ext(msg, dst->get_family(dst), SADB_EXT_ADDRESS_SRC);
add_addr_ext(msg, dst, SADB_EXT_ADDRESS_DST, 0, 0);
if (pfkey_send(this, msg, &out, &len) != SUCCESS)
{
DBG1(DBG_KNL, "unable to query SAD entry with SPI %.8x", ntohl(spi));
return FAILED;
}
else if (out->sadb_msg_errno)
{
DBG1(DBG_KNL, "unable to query SAD entry with SPI %.8x: %s (%d)",
ntohl(spi), strerror(out->sadb_msg_errno),
out->sadb_msg_errno);
free(out);
return FAILED;
}
else if (parse_pfkey_message(out, &response) != SUCCESS)
{
DBG1(DBG_KNL, "unable to query SAD entry with SPI %.8x: parsing "
"response from kernel failed", ntohl(spi));
free(out);
return FAILED;
}
DBG2(DBG_KNL, "updating SAD entry with SPI %.8x from %#H..%#H to %#H..%#H",
ntohl(spi), src, dst, new_src, new_dst);
memset(&request, 0, sizeof(request));
msg = (struct sadb_msg*)request;
msg->sadb_msg_version = PF_KEY_V2;
msg->sadb_msg_type = SADB_UPDATE;
msg->sadb_msg_satype = proto2satype(protocol);
msg->sadb_msg_len = PFKEY_LEN(sizeof(struct sadb_msg));
#ifdef __APPLE__
{
struct sadb_sa_2 *sa_2;
sa_2 = (struct sadb_sa_2*)PFKEY_EXT_ADD_NEXT(msg);
sa_2->sa.sadb_sa_len = PFKEY_LEN(sizeof(struct sadb_sa_2));
memcpy(&sa_2->sa, response.sa, sizeof(struct sadb_sa));
if (encap)
{
sa_2->sadb_sa_natt_port = new_dst->get_port(new_dst);
sa_2->sa.sadb_sa_flags |= SADB_X_EXT_NATT;
}
}
#else
PFKEY_EXT_COPY(msg, response.sa);
#endif
PFKEY_EXT_COPY(msg, response.x_sa2);
PFKEY_EXT_COPY(msg, response.src);
PFKEY_EXT_COPY(msg, response.dst);
PFKEY_EXT_COPY(msg, response.lft_soft);
PFKEY_EXT_COPY(msg, response.lft_hard);
if (response.key_encr)
{
PFKEY_EXT_COPY(msg, response.key_encr);
}
if (response.key_auth)
{
PFKEY_EXT_COPY(msg, response.key_auth);
}
#ifdef HAVE_NATT
if (new_encap)
{
add_encap_ext(msg, new_src, new_dst);
}
#endif /*HAVE_NATT*/
free(out);
if (pfkey_send(this, msg, &out, &len) != SUCCESS)
{
DBG1(DBG_KNL, "unable to update SAD entry with SPI %.8x", ntohl(spi));
return FAILED;
}
else if (out->sadb_msg_errno)
{
DBG1(DBG_KNL, "unable to update SAD entry with SPI %.8x: %s (%d)",
ntohl(spi), strerror(out->sadb_msg_errno),
out->sadb_msg_errno);
free(out);
return FAILED;
}
free(out);
return SUCCESS;
}
METHOD(kernel_ipsec_t, query_sa, status_t,
private_kernel_pfkey_ipsec_t *this, host_t *src, host_t *dst,
u_int32_t spi, u_int8_t protocol, mark_t mark, u_int64_t *bytes)
{
unsigned char request[PFKEY_BUFFER_SIZE];
struct sadb_msg *msg, *out;
struct sadb_sa *sa;
pfkey_msg_t response;
size_t len;
memset(&request, 0, sizeof(request));
DBG2(DBG_KNL, "querying SAD entry with SPI %.8x", ntohl(spi));
msg = (struct sadb_msg*)request;
msg->sadb_msg_version = PF_KEY_V2;
msg->sadb_msg_type = SADB_GET;
msg->sadb_msg_satype = proto2satype(protocol);
msg->sadb_msg_len = PFKEY_LEN(sizeof(struct sadb_msg));
sa = (struct sadb_sa*)PFKEY_EXT_ADD_NEXT(msg);
sa->sadb_sa_exttype = SADB_EXT_SA;
sa->sadb_sa_len = PFKEY_LEN(sizeof(struct sadb_sa));
sa->sadb_sa_spi = spi;
PFKEY_EXT_ADD(msg, sa);
/* the Linux Kernel doesn't care for the src address, but other systems do
* (e.g. FreeBSD)
*/
add_addr_ext(msg, src, SADB_EXT_ADDRESS_SRC, 0, 0);
add_addr_ext(msg, dst, SADB_EXT_ADDRESS_DST, 0, 0);
if (pfkey_send(this, msg, &out, &len) != SUCCESS)
{
DBG1(DBG_KNL, "unable to query SAD entry with SPI %.8x", ntohl(spi));
return FAILED;
}
else if (out->sadb_msg_errno)
{
DBG1(DBG_KNL, "unable to query SAD entry with SPI %.8x: %s (%d)",
ntohl(spi), strerror(out->sadb_msg_errno),
out->sadb_msg_errno);
free(out);
return FAILED;
}
else if (parse_pfkey_message(out, &response) != SUCCESS)
{
DBG1(DBG_KNL, "unable to query SAD entry with SPI %.8x", ntohl(spi));
free(out);
return FAILED;
}
*bytes = response.lft_current->sadb_lifetime_bytes;
free(out);
return SUCCESS;
}
METHOD(kernel_ipsec_t, del_sa, status_t,
private_kernel_pfkey_ipsec_t *this, host_t *src, host_t *dst,
u_int32_t spi, u_int8_t protocol, u_int16_t cpi, mark_t mark)
{
unsigned char request[PFKEY_BUFFER_SIZE];
struct sadb_msg *msg, *out;
struct sadb_sa *sa;
size_t len;
memset(&request, 0, sizeof(request));
DBG2(DBG_KNL, "deleting SAD entry with SPI %.8x", ntohl(spi));
msg = (struct sadb_msg*)request;
msg->sadb_msg_version = PF_KEY_V2;
msg->sadb_msg_type = SADB_DELETE;
msg->sadb_msg_satype = proto2satype(protocol);
msg->sadb_msg_len = PFKEY_LEN(sizeof(struct sadb_msg));
sa = (struct sadb_sa*)PFKEY_EXT_ADD_NEXT(msg);
sa->sadb_sa_exttype = SADB_EXT_SA;
sa->sadb_sa_len = PFKEY_LEN(sizeof(struct sadb_sa));
sa->sadb_sa_spi = spi;
PFKEY_EXT_ADD(msg, sa);
/* the Linux Kernel doesn't care for the src address, but other systems do
* (e.g. FreeBSD)
*/
add_addr_ext(msg, src, SADB_EXT_ADDRESS_SRC, 0, 0);
add_addr_ext(msg, dst, SADB_EXT_ADDRESS_DST, 0, 0);
if (pfkey_send(this, msg, &out, &len) != SUCCESS)
{
DBG1(DBG_KNL, "unable to delete SAD entry with SPI %.8x", ntohl(spi));
return FAILED;
}
else if (out->sadb_msg_errno)
{
DBG1(DBG_KNL, "unable to delete SAD entry with SPI %.8x: %s (%d)",
ntohl(spi), strerror(out->sadb_msg_errno),
out->sadb_msg_errno);
free(out);
return FAILED;
}
DBG2(DBG_KNL, "deleted SAD entry with SPI %.8x", ntohl(spi));
free(out);
return SUCCESS;
}
/**
* Add or update a policy in the kernel.
*
* Note: The mutex has to be locked when entering this function.
*/
static status_t add_policy_internal(private_kernel_pfkey_ipsec_t *this,
policy_entry_t *policy, policy_sa_t *mapping, bool update)
{
unsigned char request[PFKEY_BUFFER_SIZE];
struct sadb_msg *msg, *out;
struct sadb_x_policy *pol;
struct sadb_x_ipsecrequest *req;
ipsec_sa_t *ipsec = mapping->sa;
pfkey_msg_t response;
size_t len;
memset(&request, 0, sizeof(request));
msg = (struct sadb_msg*)request;
msg->sadb_msg_version = PF_KEY_V2;
msg->sadb_msg_type = update ? SADB_X_SPDUPDATE : SADB_X_SPDADD;
msg->sadb_msg_satype = 0;
msg->sadb_msg_len = PFKEY_LEN(sizeof(struct sadb_msg));
pol = (struct sadb_x_policy*)PFKEY_EXT_ADD_NEXT(msg);
pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
pol->sadb_x_policy_len = PFKEY_LEN(sizeof(struct sadb_x_policy));
pol->sadb_x_policy_id = 0;
pol->sadb_x_policy_dir = dir2kernel(policy->direction);
pol->sadb_x_policy_type = type2kernel(mapping->type);
#ifdef HAVE_STRUCT_SADB_X_POLICY_SADB_X_POLICY_PRIORITY
pol->sadb_x_policy_priority = mapping->priority;
#endif
/* one or more sadb_x_ipsecrequest extensions are added to the
* sadb_x_policy extension */
req = (struct sadb_x_ipsecrequest*)(pol + 1);
req->sadb_x_ipsecrequest_proto = ipsec->cfg.esp.use ? IPPROTO_ESP
: IPPROTO_AH;
/* !!! the length here MUST be in octets instead of 64 bit words */
req->sadb_x_ipsecrequest_len = sizeof(struct sadb_x_ipsecrequest);
req->sadb_x_ipsecrequest_mode = mode2kernel(ipsec->cfg.mode);
req->sadb_x_ipsecrequest_reqid = ipsec->cfg.reqid;
req->sadb_x_ipsecrequest_level = IPSEC_LEVEL_UNIQUE;
if (ipsec->cfg.mode == MODE_TUNNEL)
{
len = hostcpy(req + 1, ipsec->src);
req->sadb_x_ipsecrequest_len += len;
len = hostcpy((char*)(req + 1) + len, ipsec->dst);
req->sadb_x_ipsecrequest_len += len;
}
pol->sadb_x_policy_len += PFKEY_LEN(req->sadb_x_ipsecrequest_len);
PFKEY_EXT_ADD(msg, pol);
add_addr_ext(msg, policy->src.net, SADB_EXT_ADDRESS_SRC, policy->src.proto,
policy->src.mask);
add_addr_ext(msg, policy->dst.net, SADB_EXT_ADDRESS_DST, policy->dst.proto,
policy->dst.mask);
#ifdef __FreeBSD__
{ /* on FreeBSD a lifetime has to be defined to be able to later query
* the current use time. */
struct sadb_lifetime *lft;
lft = (struct sadb_lifetime*)PFKEY_EXT_ADD_NEXT(msg);
lft->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
lft->sadb_lifetime_len = PFKEY_LEN(sizeof(struct sadb_lifetime));
lft->sadb_lifetime_addtime = LONG_MAX;
PFKEY_EXT_ADD(msg, lft);
}
#endif
this->mutex->unlock(this->mutex);
if (pfkey_send(this, msg, &out, &len) != SUCCESS)
{
return FAILED;
}
else if (out->sadb_msg_errno)
{
DBG1(DBG_KNL, "unable to %s policy: %s (%d)",
update ? "update" : "add", strerror(out->sadb_msg_errno),
out->sadb_msg_errno);
free(out);
return FAILED;
}
else if (parse_pfkey_message(out, &response) != SUCCESS)
{
DBG1(DBG_KNL, "unable to %s policy: parsing response from kernel "
"failed", update ? "update" : "add");
free(out);
return FAILED;
}
/* we try to find the policy again and update the kernel index */
this->mutex->lock(this->mutex);
if (this->policies->find_last(this->policies, NULL,
(void**)&policy) != SUCCESS)
{
DBG2(DBG_KNL, "unable to update index, the policy is already gone, "
"ignoring");
this->mutex->unlock(this->mutex);
free(out);
return SUCCESS;
}
policy->index = response.x_policy->sadb_x_policy_id;
free(out);
/* install a route, if:
* - this is a forward policy (to just get one for each child)
* - we are in tunnel mode
* - routing is not disabled via strongswan.conf
*/
if (policy->direction == POLICY_FWD &&
ipsec->cfg.mode != MODE_TRANSPORT && this->install_routes)
{
route_entry_t *route = malloc_thing(route_entry_t);
policy_sa_fwd_t *fwd = (policy_sa_fwd_t*)mapping;
if (hydra->kernel_interface->get_address_by_ts(hydra->kernel_interface,
fwd->dst_ts, &route->src_ip) == SUCCESS)
{
/* get the nexthop to src (src as we are in POLICY_FWD).*/
route->gateway = hydra->kernel_interface->get_nexthop(
hydra->kernel_interface, ipsec->src);
/* install route via outgoing interface */
route->if_name = hydra->kernel_interface->get_interface(
hydra->kernel_interface, ipsec->dst);
route->dst_net = chunk_clone(policy->src.net->get_address(
policy->src.net));
route->prefixlen = policy->src.mask;
if (!route->if_name)
{
this->mutex->unlock(this->mutex);
route_entry_destroy(route);
return SUCCESS;
}
if (policy->route)
{
route_entry_t *old = policy->route;
if (route_entry_equals(old, route))
{ /* keep previously installed route */
this->mutex->unlock(this->mutex);
route_entry_destroy(route);
return SUCCESS;
}
/* uninstall previously installed route */
if (hydra->kernel_interface->del_route(hydra->kernel_interface,
old->dst_net, old->prefixlen, old->gateway,
old->src_ip, old->if_name) != SUCCESS)
{
DBG1(DBG_KNL, "error uninstalling route installed with "
"policy %R === %R %N", fwd->src_ts,
fwd->dst_ts, policy_dir_names,
policy->direction);
}
route_entry_destroy(old);
policy->route = NULL;
}
DBG2(DBG_KNL, "installing route: %R via %H src %H dev %s",
fwd->src_ts, route->gateway, route->src_ip, route->if_name);
switch (hydra->kernel_interface->add_route(
hydra->kernel_interface, route->dst_net,
route->prefixlen, route->gateway,
route->src_ip, route->if_name))
{
default:
DBG1(DBG_KNL, "unable to install source route for %H",
route->src_ip);
/* FALL */
case ALREADY_DONE:
/* route exists, do not uninstall */
route_entry_destroy(route);
break;
case SUCCESS:
/* cache the installed route */
policy->route = route;
break;
}
}
else
{
free(route);
}
}
this->mutex->unlock(this->mutex);
return SUCCESS;
}
METHOD(kernel_ipsec_t, add_policy, status_t,
private_kernel_pfkey_ipsec_t *this, host_t *src, host_t *dst,
traffic_selector_t *src_ts, traffic_selector_t *dst_ts,
policy_dir_t direction, policy_type_t type, ipsec_sa_cfg_t *sa,
mark_t mark, bool routed)
{
policy_entry_t *policy, *found = NULL;
policy_sa_t *assigned_sa, *current_sa;
enumerator_t *enumerator;
bool update = TRUE;
if (dir2kernel(direction) == IPSEC_DIR_INVALID)
{ /* FWD policies are not supported on all platforms */
return SUCCESS;
}
/* create a policy */
policy = create_policy_entry(src_ts, dst_ts, direction);
/* find a matching policy */
this->mutex->lock(this->mutex);
if (this->policies->find_first(this->policies,
(linked_list_match_t)policy_entry_equals,
(void**)&found, policy) == SUCCESS)
{ /* use existing policy */
DBG2(DBG_KNL, "policy %R === %R %N already exists, increasing "
"refcount", src_ts, dst_ts, policy_dir_names, direction);
policy_entry_destroy(policy, this);
policy = found;
}
else
{ /* use the new one, if we have no such policy */
this->policies->insert_last(this->policies, policy);
policy->used_by = linked_list_create();
}
/* cache the assigned IPsec SA */
assigned_sa = policy_sa_create(this, direction, type, src, dst, src_ts,
dst_ts, sa);
/* calculate priority based on selector size, small size = high prio */
assigned_sa->priority = routed ? PRIO_LOW : PRIO_HIGH;
assigned_sa->priority -= policy->src.mask;
assigned_sa->priority -= policy->dst.mask;
assigned_sa->priority <<= 2; /* make some room for the two flags */
assigned_sa->priority += policy->src.net->get_port(policy->src.net) ||
policy->dst.net->get_port(policy->dst.net) ?
0 : 2;
assigned_sa->priority += policy->src.proto != IPSEC_PROTO_ANY ? 0 : 1;
/* insert the SA according to its priority */
enumerator = policy->used_by->create_enumerator(policy->used_by);
while (enumerator->enumerate(enumerator, (void**)&current_sa))
{
if (current_sa->priority >= assigned_sa->priority)
{
break;
}
update = FALSE;
}
policy->used_by->insert_before(policy->used_by, enumerator, assigned_sa);
enumerator->destroy(enumerator);
if (!update)
{ /* we don't update the policy if the priority is lower than that of the
* currently installed one */
this->mutex->unlock(this->mutex);
return SUCCESS;
}
DBG2(DBG_KNL, "%s policy %R === %R %N",
found ? "updating" : "adding", src_ts, dst_ts,
policy_dir_names, direction);
if (add_policy_internal(this, policy, assigned_sa, found) != SUCCESS)
{
DBG1(DBG_KNL, "unable to %s policy %R === %R %N",
found ? "update" : "add", src_ts, dst_ts,
policy_dir_names, direction);
return FAILED;
}
return SUCCESS;
}
METHOD(kernel_ipsec_t, query_policy, status_t,
private_kernel_pfkey_ipsec_t *this, traffic_selector_t *src_ts,
traffic_selector_t *dst_ts, policy_dir_t direction, mark_t mark,
u_int32_t *use_time)
{
unsigned char request[PFKEY_BUFFER_SIZE];
struct sadb_msg *msg, *out;
struct sadb_x_policy *pol;
policy_entry_t *policy, *found = NULL;
pfkey_msg_t response;
size_t len;
if (dir2kernel(direction) == IPSEC_DIR_INVALID)
{ /* FWD policies are not supported on all platforms */
return NOT_FOUND;
}
DBG2(DBG_KNL, "querying policy %R === %R %N", src_ts, dst_ts,
policy_dir_names, direction);
/* create a policy */
policy = create_policy_entry(src_ts, dst_ts, direction);
/* find a matching policy */
this->mutex->lock(this->mutex);
if (this->policies->find_first(this->policies,
(linked_list_match_t)policy_entry_equals,
(void**)&found, policy) != SUCCESS)
{
DBG1(DBG_KNL, "querying policy %R === %R %N failed, not found", src_ts,
dst_ts, policy_dir_names, direction);
policy_entry_destroy(policy, this);
this->mutex->unlock(this->mutex);
return NOT_FOUND;
}
policy_entry_destroy(policy, this);
policy = found;
memset(&request, 0, sizeof(request));
msg = (struct sadb_msg*)request;
msg->sadb_msg_version = PF_KEY_V2;
msg->sadb_msg_type = SADB_X_SPDGET;
msg->sadb_msg_satype = 0;
msg->sadb_msg_len = PFKEY_LEN(sizeof(struct sadb_msg));
pol = (struct sadb_x_policy*)PFKEY_EXT_ADD_NEXT(msg);
pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
pol->sadb_x_policy_id = policy->index;
pol->sadb_x_policy_len = PFKEY_LEN(sizeof(struct sadb_x_policy));
pol->sadb_x_policy_dir = dir2kernel(direction);
pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
PFKEY_EXT_ADD(msg, pol);
add_addr_ext(msg, policy->src.net, SADB_EXT_ADDRESS_SRC, policy->src.proto,
policy->src.mask);
add_addr_ext(msg, policy->dst.net, SADB_EXT_ADDRESS_DST, policy->dst.proto,
policy->dst.mask);
this->mutex->unlock(this->mutex);
if (pfkey_send(this, msg, &out, &len) != SUCCESS)
{
DBG1(DBG_KNL, "unable to query policy %R === %R %N", src_ts, dst_ts,
policy_dir_names, direction);
return FAILED;
}
else if (out->sadb_msg_errno)
{
DBG1(DBG_KNL, "unable to query policy %R === %R %N: %s (%d)", src_ts,
dst_ts, policy_dir_names, direction,
strerror(out->sadb_msg_errno), out->sadb_msg_errno);
free(out);
return FAILED;
}
else if (parse_pfkey_message(out, &response) != SUCCESS)
{
DBG1(DBG_KNL, "unable to query policy %R === %R %N: parsing response "
"from kernel failed", src_ts, dst_ts, policy_dir_names,
direction);
free(out);
return FAILED;
}
else if (response.lft_current == NULL)
{
DBG1(DBG_KNL, "unable to query policy %R === %R %N: kernel reports no "
"use time", src_ts, dst_ts, policy_dir_names, direction);
free(out);
return FAILED;
}
/* we need the monotonic time, but the kernel returns system time. */
if (response.lft_current->sadb_lifetime_usetime)
{
*use_time = time_monotonic(NULL) -
(time(NULL) - response.lft_current->sadb_lifetime_usetime);
}
else
{
*use_time = 0;
}
free(out);
return SUCCESS;
}
METHOD(kernel_ipsec_t, del_policy, status_t,
private_kernel_pfkey_ipsec_t *this, traffic_selector_t *src_ts,
traffic_selector_t *dst_ts, policy_dir_t direction, u_int32_t reqid,
mark_t mark, bool unrouted)
{
unsigned char request[PFKEY_BUFFER_SIZE];
struct sadb_msg *msg, *out;
struct sadb_x_policy *pol;
policy_entry_t *policy, *found = NULL;
policy_sa_t *mapping;
enumerator_t *enumerator;
bool is_installed = TRUE;
size_t len;
if (dir2kernel(direction) == IPSEC_DIR_INVALID)
{ /* FWD policies are not supported on all platforms */
return SUCCESS;
}
DBG2(DBG_KNL, "deleting policy %R === %R %N", src_ts, dst_ts,
policy_dir_names, direction);
/* create a policy */
policy = create_policy_entry(src_ts, dst_ts, direction);
/* find a matching policy */
this->mutex->lock(this->mutex);
if (this->policies->find_first(this->policies,
(linked_list_match_t)policy_entry_equals,
(void**)&found, policy) != SUCCESS)
{
DBG1(DBG_KNL, "deleting policy %R === %R %N failed, not found", src_ts,
dst_ts, policy_dir_names, direction);
policy_entry_destroy(policy, this);
this->mutex->unlock(this->mutex);
return NOT_FOUND;
}
policy_entry_destroy(policy, this);
policy = found;
/* remove mapping to SA by reqid */
enumerator = policy->used_by->create_enumerator(policy->used_by);
while (enumerator->enumerate(enumerator, (void**)&mapping))
{
if (reqid == mapping->sa->cfg.reqid)
{
policy->used_by->remove_at(policy->used_by, enumerator);
break;
}
is_installed = FALSE;
}
enumerator->destroy(enumerator);
if (policy->used_by->get_count(policy->used_by) > 0)
{ /* policy is used by more SAs, keep in kernel */
DBG2(DBG_KNL, "policy still used by another CHILD_SA, not removed");
policy_sa_destroy(mapping, &direction, this);
if (!is_installed)
{ /* no need to update as the policy was not installed for this SA */
this->mutex->unlock(this->mutex);
return SUCCESS;
}
DBG2(DBG_KNL, "updating policy %R === %R %N", src_ts, dst_ts,
policy_dir_names, direction);
policy->used_by->get_first(policy->used_by, (void**)&mapping);
if (add_policy_internal(this, policy, mapping, TRUE) != SUCCESS)
{
DBG1(DBG_KNL, "unable to update policy %R === %R %N",
src_ts, dst_ts, policy_dir_names, direction);
return FAILED;
}
return SUCCESS;
}
memset(&request, 0, sizeof(request));
msg = (struct sadb_msg*)request;
msg->sadb_msg_version = PF_KEY_V2;
msg->sadb_msg_type = SADB_X_SPDDELETE;
msg->sadb_msg_satype = 0;
msg->sadb_msg_len = PFKEY_LEN(sizeof(struct sadb_msg));
pol = (struct sadb_x_policy*)PFKEY_EXT_ADD_NEXT(msg);
pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
pol->sadb_x_policy_len = PFKEY_LEN(sizeof(struct sadb_x_policy));
pol->sadb_x_policy_dir = dir2kernel(direction);
pol->sadb_x_policy_type = type2kernel(mapping->type);
PFKEY_EXT_ADD(msg, pol);
add_addr_ext(msg, policy->src.net, SADB_EXT_ADDRESS_SRC, policy->src.proto,
policy->src.mask);
add_addr_ext(msg, policy->dst.net, SADB_EXT_ADDRESS_DST, policy->dst.proto,
policy->dst.mask);
if (policy->route)
{
route_entry_t *route = policy->route;
if (hydra->kernel_interface->del_route(hydra->kernel_interface,
route->dst_net, route->prefixlen, route->gateway,
route->src_ip, route->if_name) != SUCCESS)
{
DBG1(DBG_KNL, "error uninstalling route installed with "
"policy %R === %R %N", src_ts, dst_ts,
policy_dir_names, direction);
}
}
this->policies->remove(this->policies, found, NULL);
policy_sa_destroy(mapping, &direction, this);
policy_entry_destroy(policy, this);
this->mutex->unlock(this->mutex);
if (pfkey_send(this, msg, &out, &len) != SUCCESS)
{
DBG1(DBG_KNL, "unable to delete policy %R === %R %N", src_ts, dst_ts,
policy_dir_names, direction);
return FAILED;
}
else if (out->sadb_msg_errno)
{
DBG1(DBG_KNL, "unable to delete policy %R === %R %N: %s (%d)", src_ts,
dst_ts, policy_dir_names, direction,
strerror(out->sadb_msg_errno), out->sadb_msg_errno);
free(out);
return FAILED;
}
free(out);
return SUCCESS;
}
/**
* Register a socket for ACQUIRE/EXPIRE messages
*/
static status_t register_pfkey_socket(private_kernel_pfkey_ipsec_t *this,
u_int8_t satype)
{
unsigned char request[PFKEY_BUFFER_SIZE];
struct sadb_msg *msg, *out;
size_t len;
memset(&request, 0, sizeof(request));
msg = (struct sadb_msg*)request;
msg->sadb_msg_version = PF_KEY_V2;
msg->sadb_msg_type = SADB_REGISTER;
msg->sadb_msg_satype = satype;
msg->sadb_msg_len = PFKEY_LEN(sizeof(struct sadb_msg));
if (pfkey_send_socket(this, this->socket_events, msg, &out, &len) != SUCCESS)
{
DBG1(DBG_KNL, "unable to register PF_KEY socket");
return FAILED;
}
else if (out->sadb_msg_errno)
{
DBG1(DBG_KNL, "unable to register PF_KEY socket: %s (%d)",
strerror(out->sadb_msg_errno), out->sadb_msg_errno);
free(out);
return FAILED;
}
free(out);
return SUCCESS;
}
METHOD(kernel_ipsec_t, bypass_socket, bool,
private_kernel_pfkey_ipsec_t *this, int fd, int family)
{
struct sadb_x_policy policy;
u_int sol, ipsec_policy;
switch (family)
{
case AF_INET:
{
sol = SOL_IP;
ipsec_policy = IP_IPSEC_POLICY;
break;
}
case AF_INET6:
{
sol = SOL_IPV6;
ipsec_policy = IPV6_IPSEC_POLICY;
break;
}
default:
return FALSE;
}
memset(&policy, 0, sizeof(policy));
policy.sadb_x_policy_len = sizeof(policy) / sizeof(u_int64_t);
policy.sadb_x_policy_exttype = SADB_X_EXT_POLICY;
policy.sadb_x_policy_type = IPSEC_POLICY_BYPASS;
policy.sadb_x_policy_dir = IPSEC_DIR_OUTBOUND;
if (setsockopt(fd, sol, ipsec_policy, &policy, sizeof(policy)) < 0)
{
DBG1(DBG_KNL, "unable to set IPSEC_POLICY on socket: %s",
strerror(errno));
return FALSE;
}
policy.sadb_x_policy_dir = IPSEC_DIR_INBOUND;
if (setsockopt(fd, sol, ipsec_policy, &policy, sizeof(policy)) < 0)
{
DBG1(DBG_KNL, "unable to set IPSEC_POLICY on socket: %s",
strerror(errno));
return FALSE;
}
return TRUE;
}
METHOD(kernel_ipsec_t, destroy, void,
private_kernel_pfkey_ipsec_t *this)
{
if (this->job)
{
this->job->cancel(this->job);
}
if (this->socket > 0)
{
close(this->socket);
}
if (this->socket_events > 0)
{
close(this->socket_events);
}
this->policies->invoke_function(this->policies,
(linked_list_invoke_t)policy_entry_destroy,
this);
this->policies->destroy(this->policies);
this->sas->destroy(this->sas);
this->mutex->destroy(this->mutex);
this->mutex_pfkey->destroy(this->mutex_pfkey);
free(this);
}
/*
* Described in header.
*/
kernel_pfkey_ipsec_t *kernel_pfkey_ipsec_create()
{
private_kernel_pfkey_ipsec_t *this;
INIT(this,
.public = {
.interface = {
.get_spi = _get_spi,
.get_cpi = _get_cpi,
.add_sa = _add_sa,
.update_sa = _update_sa,
.query_sa = _query_sa,
.del_sa = _del_sa,
.add_policy = _add_policy,
.query_policy = _query_policy,
.del_policy = _del_policy,
.bypass_socket = _bypass_socket,
.destroy = _destroy,
},
},
.policies = linked_list_create(),
.sas = hashtable_create((hashtable_hash_t)ipsec_sa_hash,
(hashtable_equals_t)ipsec_sa_equals, 32),
.mutex = mutex_create(MUTEX_TYPE_DEFAULT),
.mutex_pfkey = mutex_create(MUTEX_TYPE_DEFAULT),
.install_routes = lib->settings->get_bool(lib->settings,
"%s.install_routes", TRUE,
hydra->daemon),
);
if (streq(hydra->daemon, "pluto"))
{ /* no routes for pluto, they are installed via updown script */
this->install_routes = FALSE;
}
/* create a PF_KEY socket to communicate with the kernel */
this->socket = socket(PF_KEY, SOCK_RAW, PF_KEY_V2);
if (this->socket <= 0)
{
DBG1(DBG_KNL, "unable to create PF_KEY socket");
destroy(this);
return NULL;
}
/* create a PF_KEY socket for ACQUIRE & EXPIRE */
this->socket_events = socket(PF_KEY, SOCK_RAW, PF_KEY_V2);
if (this->socket_events <= 0)
{
DBG1(DBG_KNL, "unable to create PF_KEY event socket");
destroy(this);
return NULL;
}
/* register the event socket */
if (register_pfkey_socket(this, SADB_SATYPE_ESP) != SUCCESS ||
register_pfkey_socket(this, SADB_SATYPE_AH) != SUCCESS)
{
DBG1(DBG_KNL, "unable to register PF_KEY event socket");
destroy(this);
return NULL;
}
this->job = callback_job_create_with_prio((callback_job_cb_t)receive_events,
this, NULL, NULL, JOB_PRIO_CRITICAL);
lib->processor->queue_job(lib->processor, (job_t*)this->job);
return &this->public;
}