strongswan/src/libhydra/plugins/kernel_klips/kernel_klips_ipsec.c

2644 lines
71 KiB
C

/*
* Copyright (C) 2008 Tobias Brunner
* Hochschule fuer Technik Rapperswil
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version. See <http://www.fsf.org/copyleft/gpl.txt>.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*/
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <stdint.h>
#include "pfkeyv2.h"
#include <linux/udp.h>
#include <net/if.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h>
#include <time.h>
#include <errno.h>
#include "kernel_klips_ipsec.h"
#include <hydra.h>
#include <debug.h>
#include <utils/linked_list.h>
#include <threading/thread.h>
#include <threading/mutex.h>
#include <processing/jobs/callback_job.h>
/** default timeout for generated SPIs (in seconds) */
#define SPI_TIMEOUT 30
/** buffer size for PF_KEY messages */
#define PFKEY_BUFFER_SIZE 2048
/** PF_KEY messages are 64 bit aligned */
#define PFKEY_ALIGNMENT 8
/** aligns len to 64 bits */
#define PFKEY_ALIGN(len) (((len) + PFKEY_ALIGNMENT - 1) & ~(PFKEY_ALIGNMENT - 1))
/** calculates the properly padded length in 64 bit chunks */
#define PFKEY_LEN(len) ((PFKEY_ALIGN(len) / PFKEY_ALIGNMENT))
/** calculates user mode length i.e. in bytes */
#define PFKEY_USER_LEN(len) ((len) * PFKEY_ALIGNMENT)
/** given a PF_KEY message header and an extension this updates the length in the header */
#define PFKEY_EXT_ADD(msg, ext) ((msg)->sadb_msg_len += ((struct sadb_ext*)ext)->sadb_ext_len)
/** given a PF_KEY message header this returns a pointer to the next extension */
#define PFKEY_EXT_ADD_NEXT(msg) ((struct sadb_ext*)(((char*)(msg)) + PFKEY_USER_LEN((msg)->sadb_msg_len)))
/** copy an extension and append it to a PF_KEY message */
#define PFKEY_EXT_COPY(msg, ext) (PFKEY_EXT_ADD(msg, memcpy(PFKEY_EXT_ADD_NEXT(msg), ext, PFKEY_USER_LEN(((struct sadb_ext*)ext)->sadb_ext_len))))
/** given a PF_KEY extension this returns a pointer to the next extension */
#define PFKEY_EXT_NEXT(ext) ((struct sadb_ext*)(((char*)(ext)) + PFKEY_USER_LEN(((struct sadb_ext*)ext)->sadb_ext_len)))
/** given a PF_KEY extension this returns a pointer to the next extension also updates len (len in 64 bit words) */
#define PFKEY_EXT_NEXT_LEN(ext,len) ((len) -= (ext)->sadb_ext_len, PFKEY_EXT_NEXT(ext))
/** true if ext has a valid length and len is large enough to contain ext (assuming len in 64 bit words) */
#define PFKEY_EXT_OK(ext,len) ((len) >= PFKEY_LEN(sizeof(struct sadb_ext)) && \
(ext)->sadb_ext_len >= PFKEY_LEN(sizeof(struct sadb_ext)) && \
(ext)->sadb_ext_len <= (len))
/** special SPI values used for policies in KLIPS */
#define SPI_PASS 256
#define SPI_DROP 257
#define SPI_REJECT 258
#define SPI_HOLD 259
#define SPI_TRAP 260
#define SPI_TRAPSUBNET 261
/** the prefix of the name of KLIPS ipsec devices */
#define IPSEC_DEV_PREFIX "ipsec"
/** this is the default number of ipsec devices */
#define DEFAULT_IPSEC_DEV_COUNT 4
/** TRUE if the given name matches an ipsec device */
#define IS_IPSEC_DEV(name) (strneq((name), IPSEC_DEV_PREFIX, sizeof(IPSEC_DEV_PREFIX) - 1))
/** the following stuff is from ipsec_tunnel.h */
struct ipsectunnelconf
{
__u32 cf_cmd;
union
{
char cfu_name[12];
} cf_u;
#define cf_name cf_u.cfu_name
};
#define IPSEC_SET_DEV (SIOCDEVPRIVATE)
#define IPSEC_DEL_DEV (SIOCDEVPRIVATE + 1)
#define IPSEC_CLR_DEV (SIOCDEVPRIVATE + 2)
typedef struct private_kernel_klips_ipsec_t private_kernel_klips_ipsec_t;
/**
* Private variables and functions of kernel_klips class.
*/
struct private_kernel_klips_ipsec_t
{
/**
* Public part of the kernel_klips_t object.
*/
kernel_klips_ipsec_t public;
/**
* mutex to lock access to various lists
*/
mutex_t *mutex;
/**
* List of installed policies (policy_entry_t)
*/
linked_list_t *policies;
/**
* List of allocated SPIs without installed SA (sa_entry_t)
*/
linked_list_t *allocated_spis;
/**
* List of installed SAs (sa_entry_t)
*/
linked_list_t *installed_sas;
/**
* whether to install routes along policies
*/
bool install_routes;
/**
* List of ipsec devices (ipsec_dev_t)
*/
linked_list_t *ipsec_devices;
/**
* job receiving PF_KEY events
*/
callback_job_t *job;
/**
* mutex to lock access to the PF_KEY socket
*/
mutex_t *mutex_pfkey;
/**
* PF_KEY socket to communicate with the kernel
*/
int socket;
/**
* PF_KEY socket to receive acquire and expire events
*/
int socket_events;
/**
* sequence number for messages sent to the kernel
*/
int seq;
};
typedef struct ipsec_dev_t ipsec_dev_t;
/**
* ipsec device
*/
struct ipsec_dev_t {
/** name of the virtual ipsec interface */
char name[IFNAMSIZ];
/** name of the physical interface */
char phys_name[IFNAMSIZ];
/** by how many CHILD_SA's this ipsec device is used */
u_int refcount;
};
/**
* compare the given name with the virtual device name
*/
static inline bool ipsec_dev_match_byname(ipsec_dev_t *current, char *name)
{
return name && streq(current->name, name);
}
/**
* compare the given name with the physical device name
*/
static inline bool ipsec_dev_match_byphys(ipsec_dev_t *current, char *name)
{
return name && streq(current->phys_name, name);
}
/**
* matches free ipsec devices
*/
static inline bool ipsec_dev_match_free(ipsec_dev_t *current)
{
return current->refcount == 0;
}
/**
* tries to find an ipsec_dev_t object by name
*/
static status_t find_ipsec_dev(private_kernel_klips_ipsec_t *this, char *name,
ipsec_dev_t **dev)
{
linked_list_match_t match = (linked_list_match_t)(IS_IPSEC_DEV(name) ?
ipsec_dev_match_byname : ipsec_dev_match_byphys);
return this->ipsec_devices->find_first(this->ipsec_devices, match,
(void**)dev, name);
}
/**
* attach an ipsec device to a physical interface
*/
static status_t attach_ipsec_dev(char* name, char *phys_name)
{
int sock;
struct ifreq req;
struct ipsectunnelconf *itc = (struct ipsectunnelconf*)&req.ifr_data;
short phys_flags;
int mtu;
DBG2(DBG_KNL, "attaching virtual interface %s to %s", name, phys_name);
if ((sock = socket(AF_INET, SOCK_DGRAM, 0)) <= 0)
{
return FAILED;
}
strncpy(req.ifr_name, phys_name, IFNAMSIZ);
if (ioctl(sock, SIOCGIFFLAGS, &req) < 0)
{
close(sock);
return FAILED;
}
phys_flags = req.ifr_flags;
strncpy(req.ifr_name, name, IFNAMSIZ);
if (ioctl(sock, SIOCGIFFLAGS, &req) < 0)
{
close(sock);
return FAILED;
}
if (req.ifr_flags & IFF_UP)
{
/* if it's already up, it is already attached, detach it first */
ioctl(sock, IPSEC_DEL_DEV, &req);
}
/* attach it */
strncpy(req.ifr_name, name, IFNAMSIZ);
strncpy(itc->cf_name, phys_name, sizeof(itc->cf_name));
ioctl(sock, IPSEC_SET_DEV, &req);
/* copy address from physical to virtual */
strncpy(req.ifr_name, phys_name, IFNAMSIZ);
if (ioctl(sock, SIOCGIFADDR, &req) == 0)
{
strncpy(req.ifr_name, name, IFNAMSIZ);
ioctl(sock, SIOCSIFADDR, &req);
}
/* copy net mask from physical to virtual */
strncpy(req.ifr_name, phys_name, IFNAMSIZ);
if (ioctl(sock, SIOCGIFNETMASK, &req) == 0)
{
strncpy(req.ifr_name, name, IFNAMSIZ);
ioctl(sock, SIOCSIFNETMASK, &req);
}
/* copy other flags and addresses */
strncpy(req.ifr_name, name, IFNAMSIZ);
if (ioctl(sock, SIOCGIFFLAGS, &req) == 0)
{
if (phys_flags & IFF_POINTOPOINT)
{
req.ifr_flags |= IFF_POINTOPOINT;
req.ifr_flags &= ~IFF_BROADCAST;
ioctl(sock, SIOCSIFFLAGS, &req);
strncpy(req.ifr_name, phys_name, IFNAMSIZ);
if (ioctl(sock, SIOCGIFDSTADDR, &req) == 0)
{
strncpy(req.ifr_name, name, IFNAMSIZ);
ioctl(sock, SIOCSIFDSTADDR, &req);
}
}
else if (phys_flags & IFF_BROADCAST)
{
req.ifr_flags &= ~IFF_POINTOPOINT;
req.ifr_flags |= IFF_BROADCAST;
ioctl(sock, SIOCSIFFLAGS, &req);
strncpy(req.ifr_name, phys_name, IFNAMSIZ);
if (ioctl(sock, SIOCGIFBRDADDR, &req)==0)
{
strncpy(req.ifr_name, name, IFNAMSIZ);
ioctl(sock, SIOCSIFBRDADDR, &req);
}
}
else
{
req.ifr_flags &= ~IFF_POINTOPOINT;
req.ifr_flags &= ~IFF_BROADCAST;
ioctl(sock, SIOCSIFFLAGS, &req);
}
}
mtu = lib->settings->get_int(lib->settings,
"%s.plugins.kernel-klips.ipsec_dev_mtu", 0,
hydra->daemon);
if (mtu <= 0)
{
/* guess MTU as physical MTU - ESP overhead [- NAT-T overhead]
* ESP overhead : 73 bytes
* NAT-T overhead : 8 bytes ==> 81 bytes
*
* assuming tunnel mode with AES encryption and integrity
* outer IP header : 20 bytes
* (NAT-T UDP header: 8 bytes)
* ESP header : 8 bytes
* IV : 16 bytes
* padding : 15 bytes (worst-case)
* pad len / NH : 2 bytes
* auth data : 12 bytes
*/
strncpy(req.ifr_name, phys_name, IFNAMSIZ);
ioctl(sock, SIOCGIFMTU, &req);
mtu = req.ifr_mtu - 81;
}
/* set MTU */
strncpy(req.ifr_name, name, IFNAMSIZ);
req.ifr_mtu = mtu;
ioctl(sock, SIOCSIFMTU, &req);
/* bring ipsec device UP */
if (ioctl(sock, SIOCGIFFLAGS, &req) == 0)
{
req.ifr_flags |= IFF_UP;
ioctl(sock, SIOCSIFFLAGS, &req);
}
close(sock);
return SUCCESS;
}
/**
* detach an ipsec device from a physical interface
*/
static status_t detach_ipsec_dev(char* name, char *phys_name)
{
int sock;
struct ifreq req;
DBG2(DBG_KNL, "detaching virtual interface %s from %s", name,
strlen(phys_name) ? phys_name : "any physical interface");
if ((sock = socket(AF_INET, SOCK_DGRAM, 0)) <= 0)
{
return FAILED;
}
strncpy(req.ifr_name, name, IFNAMSIZ);
if (ioctl(sock, SIOCGIFFLAGS, &req) < 0)
{
close(sock);
return FAILED;
}
/* shutting interface down */
if (req.ifr_flags & IFF_UP)
{
req.ifr_flags &= ~IFF_UP;
ioctl(sock, SIOCSIFFLAGS, &req);
}
/* unset address */
memset(&req.ifr_addr, 0, sizeof(req.ifr_addr));
req.ifr_addr.sa_family = AF_INET;
ioctl(sock, SIOCSIFADDR, &req);
/* detach interface */
ioctl(sock, IPSEC_DEL_DEV, &req);
close(sock);
return SUCCESS;
}
/**
* destroy an ipsec_dev_t object
*/
static void ipsec_dev_destroy(ipsec_dev_t *this)
{
detach_ipsec_dev(this->name, this->phys_name);
free(this);
}
typedef struct route_entry_t route_entry_t;
/**
* installed routing entry
*/
struct route_entry_t {
/** Name of the interface the route is bound to */
char *if_name;
/** Source ip of the route */
host_t *src_ip;
/** Gateway for this route */
host_t *gateway;
/** Destination net */
chunk_t dst_net;
/** Destination net prefixlen */
u_int8_t prefixlen;
};
/**
* destroy an route_entry_t object
*/
static void route_entry_destroy(route_entry_t *this)
{
free(this->if_name);
this->src_ip->destroy(this->src_ip);
this->gateway->destroy(this->gateway);
chunk_free(&this->dst_net);
free(this);
}
typedef struct policy_entry_t policy_entry_t;
/**
* installed kernel policy.
*/
struct policy_entry_t {
/** reqid of this policy, if setup as trap */
u_int32_t reqid;
/** direction of this policy: in, out, forward */
u_int8_t direction;
/** parameters of installed policy */
struct {
/** subnet and port */
host_t *net;
/** subnet mask */
u_int8_t mask;
/** protocol */
u_int8_t proto;
} src, dst;
/** associated route installed for this policy */
route_entry_t *route;
/** by how many CHILD_SA's this policy is actively used */
u_int activecount;
/** by how many CHILD_SA's this policy is trapped */
u_int trapcount;
};
/**
* convert a numerical netmask to a host_t
*/
static host_t *mask2host(int family, u_int8_t mask)
{
static const u_char bitmask[] = { 0x00, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe };
chunk_t chunk = chunk_alloca(family == AF_INET ? 4 : 16);
int bytes = mask / 8, bits = mask % 8;
memset(chunk.ptr, 0xFF, bytes);
memset(chunk.ptr + bytes, 0, chunk.len - bytes);
if (bits)
{
chunk.ptr[bytes] = bitmask[bits];
}
return host_create_from_chunk(family, chunk, 0);
}
/**
* check if a host is in a subnet (host with netmask in bits)
*/
static bool is_host_in_net(host_t *host, host_t *net, u_int8_t mask)
{
static const u_char bitmask[] = { 0x00, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe };
chunk_t host_chunk, net_chunk;
int bytes = mask / 8, bits = mask % 8;
host_chunk = host->get_address(host);
net_chunk = net->get_address(net);
if (host_chunk.len != net_chunk.len)
{
return FALSE;
}
if (memeq(host_chunk.ptr, net_chunk.ptr, bytes))
{
return (bits == 0) ||
(host_chunk.ptr[bytes] & bitmask[bits]) ==
(net_chunk.ptr[bytes] & bitmask[bits]);
}
return FALSE;
}
/**
* create a policy_entry_t object
*/
static policy_entry_t *create_policy_entry(traffic_selector_t *src_ts,
traffic_selector_t *dst_ts, policy_dir_t dir)
{
policy_entry_t *policy = malloc_thing(policy_entry_t);
policy->reqid = 0;
policy->direction = dir;
policy->route = NULL;
policy->activecount = 0;
policy->trapcount = 0;
src_ts->to_subnet(src_ts, &policy->src.net, &policy->src.mask);
dst_ts->to_subnet(dst_ts, &policy->dst.net, &policy->dst.mask);
/* src or dest proto may be "any" (0), use more restrictive one */
policy->src.proto = max(src_ts->get_protocol(src_ts), dst_ts->get_protocol(dst_ts));
policy->src.proto = policy->src.proto ? policy->src.proto : 0;
policy->dst.proto = policy->src.proto;
return policy;
}
/**
* destroy a policy_entry_t object
*/
static void policy_entry_destroy(policy_entry_t *this)
{
DESTROY_IF(this->src.net);
DESTROY_IF(this->dst.net);
if (this->route)
{
route_entry_destroy(this->route);
}
free(this);
}
/**
* compares two policy_entry_t
*/
static inline bool policy_entry_equals(policy_entry_t *current, policy_entry_t *policy)
{
return current->direction == policy->direction &&
current->src.proto == policy->src.proto &&
current->dst.proto == policy->dst.proto &&
current->src.mask == policy->src.mask &&
current->dst.mask == policy->dst.mask &&
current->src.net->equals(current->src.net, policy->src.net) &&
current->dst.net->equals(current->dst.net, policy->dst.net);
}
static inline bool policy_entry_match_byaddrs(policy_entry_t *current, host_t *src,
host_t *dst)
{
return is_host_in_net(src, current->src.net, current->src.mask) &&
is_host_in_net(dst, current->dst.net, current->dst.mask);
}
typedef struct sa_entry_t sa_entry_t;
/**
* used for two things:
* - allocated SPIs that have not yet resulted in an installed SA
* - installed inbound SAs with enabled UDP encapsulation
*/
struct sa_entry_t {
/** protocol of this SA */
u_int8_t protocol;
/** reqid of this SA */
u_int32_t reqid;
/** SPI of this SA */
u_int32_t spi;
/** src address of this SA */
host_t *src;
/** dst address of this SA */
host_t *dst;
/** TRUE if this SA uses UDP encapsulation */
bool encap;
/** TRUE if this SA is inbound */
bool inbound;
};
/**
* create an sa_entry_t object
*/
static sa_entry_t *create_sa_entry(u_int8_t protocol, u_int32_t spi,
u_int32_t reqid, host_t *src, host_t *dst,
bool encap, bool inbound)
{
sa_entry_t *sa = malloc_thing(sa_entry_t);
sa->protocol = protocol;
sa->reqid = reqid;
sa->spi = spi;
sa->src = src ? src->clone(src) : NULL;
sa->dst = dst ? dst->clone(dst) : NULL;
sa->encap = encap;
sa->inbound = inbound;
return sa;
}
/**
* destroy an sa_entry_t object
*/
static void sa_entry_destroy(sa_entry_t *this)
{
DESTROY_IF(this->src);
DESTROY_IF(this->dst);
free(this);
}
/**
* match an sa_entry_t for an inbound SA that uses UDP encapsulation by spi and src (remote) address
*/
static inline bool sa_entry_match_encapbysrc(sa_entry_t *current, u_int32_t *spi,
host_t *src)
{
return current->encap && current->inbound &&
current->spi == *spi && src->ip_equals(src, current->src);
}
/**
* match an sa_entry_t by protocol, spi and dst address (as the kernel does it)
*/
static inline bool sa_entry_match_bydst(sa_entry_t *current, u_int8_t *protocol,
u_int32_t *spi, host_t *dst)
{
return current->protocol == *protocol && current->spi == *spi && dst->ip_equals(dst, current->dst);
}
/**
* match an sa_entry_t by protocol, reqid and spi
*/
static inline bool sa_entry_match_byid(sa_entry_t *current, u_int8_t *protocol,
u_int32_t *spi, u_int32_t *reqid)
{
return current->protocol == *protocol && current->spi == *spi && current->reqid == *reqid;
}
typedef struct pfkey_msg_t pfkey_msg_t;
struct pfkey_msg_t
{
/**
* PF_KEY message base
*/
struct sadb_msg *msg;
/**
* PF_KEY message extensions
*/
union {
struct sadb_ext *ext[SADB_EXT_MAX + 1];
struct {
struct sadb_ext *reserved; /* SADB_EXT_RESERVED */
struct sadb_sa *sa; /* SADB_EXT_SA */
struct sadb_lifetime *lft_current; /* SADB_EXT_LIFETIME_CURRENT */
struct sadb_lifetime *lft_hard; /* SADB_EXT_LIFETIME_HARD */
struct sadb_lifetime *lft_soft; /* SADB_EXT_LIFETIME_SOFT */
struct sadb_address *src; /* SADB_EXT_ADDRESS_SRC */
struct sadb_address *dst; /* SADB_EXT_ADDRESS_DST */
struct sadb_address *proxy; /* SADB_EXT_ADDRESS_PROXY */
struct sadb_key *key_auth; /* SADB_EXT_KEY_AUTH */
struct sadb_key *key_encr; /* SADB_EXT_KEY_ENCRYPT */
struct sadb_ident *id_src; /* SADB_EXT_IDENTITY_SRC */
struct sadb_ident *id_dst; /* SADB_EXT_IDENTITY_DST */
struct sadb_sens *sensitivity; /* SADB_EXT_SENSITIVITY */
struct sadb_prop *proposal; /* SADB_EXT_PROPOSAL */
struct sadb_supported *supported_auth; /* SADB_EXT_SUPPORTED_AUTH */
struct sadb_supported *supported_encr; /* SADB_EXT_SUPPORTED_ENCRYPT */
struct sadb_spirange *spirange; /* SADB_EXT_SPIRANGE */
struct sadb_x_kmprivate *x_kmprivate; /* SADB_X_EXT_KMPRIVATE */
struct sadb_ext *x_policy; /* SADB_X_EXT_SATYPE2 */
struct sadb_ext *x_sa2; /* SADB_X_EXT_SA2 */
struct sadb_address *x_dst2; /* SADB_X_EXT_ADDRESS_DST2 */
struct sadb_address *x_src_flow; /* SADB_X_EXT_ADDRESS_SRC_FLOW */
struct sadb_address *x_dst_flow; /* SADB_X_EXT_ADDRESS_DST_FLOW */
struct sadb_address *x_src_mask; /* SADB_X_EXT_ADDRESS_SRC_MASK */
struct sadb_address *x_dst_mask; /* SADB_X_EXT_ADDRESS_DST_MASK */
struct sadb_x_debug *x_debug; /* SADB_X_EXT_DEBUG */
struct sadb_protocol *x_protocol; /* SADB_X_EXT_PROTOCOL */
struct sadb_x_nat_t_type *x_natt_type; /* SADB_X_EXT_NAT_T_TYPE */
struct sadb_x_nat_t_port *x_natt_sport; /* SADB_X_EXT_NAT_T_SPORT */
struct sadb_x_nat_t_port *x_natt_dport; /* SADB_X_EXT_NAT_T_DPORT */
struct sadb_address *x_natt_oa; /* SADB_X_EXT_NAT_T_OA */
} __attribute__((__packed__));
};
};
/**
* convert a protocol identifier to the PF_KEY sa type
*/
static u_int8_t proto2satype(u_int8_t proto)
{
switch (proto)
{
case IPPROTO_ESP:
return SADB_SATYPE_ESP;
case IPPROTO_AH:
return SADB_SATYPE_AH;
case IPPROTO_COMP:
return SADB_X_SATYPE_COMP;
default:
return proto;
}
}
/**
* convert a PF_KEY sa type to a protocol identifier
*/
static u_int8_t satype2proto(u_int8_t satype)
{
switch (satype)
{
case SADB_SATYPE_ESP:
return IPPROTO_ESP;
case SADB_SATYPE_AH:
return IPPROTO_AH;
case SADB_X_SATYPE_COMP:
return IPPROTO_COMP;
default:
return satype;
}
}
typedef struct kernel_algorithm_t kernel_algorithm_t;
/**
* Mapping of IKEv2 algorithms to PF_KEY algorithms
*/
struct kernel_algorithm_t {
/**
* Identifier specified in IKEv2
*/
int ikev2;
/**
* Identifier as defined in pfkeyv2.h
*/
int kernel;
};
#define END_OF_LIST -1
/**
* Algorithms for encryption
*/
static kernel_algorithm_t encryption_algs[] = {
/* {ENCR_DES_IV64, 0 }, */
{ENCR_DES, SADB_EALG_DESCBC },
{ENCR_3DES, SADB_EALG_3DESCBC },
/* {ENCR_RC5, 0 }, */
/* {ENCR_IDEA, 0 }, */
/* {ENCR_CAST, 0 }, */
{ENCR_BLOWFISH, SADB_EALG_BFCBC },
/* {ENCR_3IDEA, 0 }, */
/* {ENCR_DES_IV32, 0 }, */
{ENCR_NULL, SADB_EALG_NULL },
{ENCR_AES_CBC, SADB_EALG_AESCBC },
/* {ENCR_AES_CTR, 0 }, */
/* {ENCR_AES_CCM_ICV8, 0 }, */
/* {ENCR_AES_CCM_ICV12, 0 }, */
/* {ENCR_AES_CCM_ICV16, 0 }, */
/* {ENCR_AES_GCM_ICV8, 0 }, */
/* {ENCR_AES_GCM_ICV12, 0 }, */
/* {ENCR_AES_GCM_ICV16, 0 }, */
{END_OF_LIST, 0 },
};
/**
* Algorithms for integrity protection
*/
static kernel_algorithm_t integrity_algs[] = {
{AUTH_HMAC_MD5_96, SADB_AALG_MD5HMAC },
{AUTH_HMAC_SHA1_96, SADB_AALG_SHA1HMAC },
{AUTH_HMAC_SHA2_256_128, SADB_AALG_SHA256_HMAC },
{AUTH_HMAC_SHA2_384_192, SADB_AALG_SHA384_HMAC },
{AUTH_HMAC_SHA2_512_256, SADB_AALG_SHA512_HMAC },
/* {AUTH_DES_MAC, 0, }, */
/* {AUTH_KPDK_MD5, 0, }, */
/* {AUTH_AES_XCBC_96, 0, }, */
{END_OF_LIST, 0, },
};
#if 0
/**
* Algorithms for IPComp, unused yet
*/
static kernel_algorithm_t compression_algs[] = {
/* {IPCOMP_OUI, 0 }, */
{IPCOMP_DEFLATE, SADB_X_CALG_DEFLATE },
{IPCOMP_LZS, SADB_X_CALG_LZS },
/* {IPCOMP_LZJH, 0 }, */
{END_OF_LIST, 0 },
};
#endif
/**
* Look up a kernel algorithm ID and its key size
*/
static int lookup_algorithm(kernel_algorithm_t *list, int ikev2)
{
while (list->ikev2 != END_OF_LIST)
{
if (ikev2 == list->ikev2)
{
return list->kernel;
}
list++;
}
return 0;
}
/**
* add a host behind a sadb_address extension
*/
static void host2ext(host_t *host, struct sadb_address *ext)
{
sockaddr_t *host_addr = host->get_sockaddr(host);
socklen_t *len = host->get_sockaddr_len(host);
memcpy((char*)(ext + 1), host_addr, *len);
ext->sadb_address_len = PFKEY_LEN(sizeof(*ext) + *len);
}
/**
* add a host to the given sadb_msg
*/
static void add_addr_ext(struct sadb_msg *msg, host_t *host, u_int16_t type)
{
struct sadb_address *addr = (struct sadb_address*)PFKEY_EXT_ADD_NEXT(msg);
addr->sadb_address_exttype = type;
host2ext(host, addr);
PFKEY_EXT_ADD(msg, addr);
}
/**
* adds an empty address extension to the given sadb_msg
*/
static void add_anyaddr_ext(struct sadb_msg *msg, int family, u_int8_t type)
{
socklen_t len = (family == AF_INET) ? sizeof(struct sockaddr_in) :
sizeof(struct sockaddr_in6);
struct sadb_address *addr = (struct sadb_address*)PFKEY_EXT_ADD_NEXT(msg);
addr->sadb_address_exttype = type;
sockaddr_t *saddr = (sockaddr_t*)(addr + 1);
saddr->sa_family = family;
addr->sadb_address_len = PFKEY_LEN(sizeof(*addr) + len);
PFKEY_EXT_ADD(msg, addr);
}
/**
* add udp encap extensions to a sadb_msg
*/
static void add_encap_ext(struct sadb_msg *msg, host_t *src, host_t *dst,
bool ports_only)
{
struct sadb_x_nat_t_type* nat_type;
struct sadb_x_nat_t_port* nat_port;
if (!ports_only)
{
nat_type = (struct sadb_x_nat_t_type*)PFKEY_EXT_ADD_NEXT(msg);
nat_type->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
nat_type->sadb_x_nat_t_type_len = PFKEY_LEN(sizeof(struct sadb_x_nat_t_type));
nat_type->sadb_x_nat_t_type_type = UDP_ENCAP_ESPINUDP;
PFKEY_EXT_ADD(msg, nat_type);
}
nat_port = (struct sadb_x_nat_t_port*)PFKEY_EXT_ADD_NEXT(msg);
nat_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
nat_port->sadb_x_nat_t_port_len = PFKEY_LEN(sizeof(struct sadb_x_nat_t_port));
nat_port->sadb_x_nat_t_port_port = src->get_port(src);
PFKEY_EXT_ADD(msg, nat_port);
nat_port = (struct sadb_x_nat_t_port*)PFKEY_EXT_ADD_NEXT(msg);
nat_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
nat_port->sadb_x_nat_t_port_len = PFKEY_LEN(sizeof(struct sadb_x_nat_t_port));
nat_port->sadb_x_nat_t_port_port = dst->get_port(dst);
PFKEY_EXT_ADD(msg, nat_port);
}
/**
* build an SADB_X_ADDFLOW msg
*/
static void build_addflow(struct sadb_msg *msg, u_int8_t satype, u_int32_t spi,
host_t *src, host_t *dst, host_t *src_net, u_int8_t src_mask,
host_t *dst_net, u_int8_t dst_mask, u_int8_t protocol, bool replace)
{
struct sadb_sa *sa;
struct sadb_protocol *proto;
host_t *host;
msg->sadb_msg_version = PF_KEY_V2;
msg->sadb_msg_type = SADB_X_ADDFLOW;
msg->sadb_msg_satype = satype;
msg->sadb_msg_len = PFKEY_LEN(sizeof(struct sadb_msg));
sa = (struct sadb_sa*)PFKEY_EXT_ADD_NEXT(msg);
sa->sadb_sa_exttype = SADB_EXT_SA;
sa->sadb_sa_spi = spi;
sa->sadb_sa_len = PFKEY_LEN(sizeof(struct sadb_sa));
sa->sadb_sa_flags = replace ? SADB_X_SAFLAGS_REPLACEFLOW : 0;
PFKEY_EXT_ADD(msg, sa);
if (!src)
{
add_anyaddr_ext(msg, src_net->get_family(src_net), SADB_EXT_ADDRESS_SRC);
}
else
{
add_addr_ext(msg, src, SADB_EXT_ADDRESS_SRC);
}
if (!dst)
{
add_anyaddr_ext(msg, dst_net->get_family(dst_net), SADB_EXT_ADDRESS_DST);
}
else
{
add_addr_ext(msg, dst, SADB_EXT_ADDRESS_DST);
}
add_addr_ext(msg, src_net, SADB_X_EXT_ADDRESS_SRC_FLOW);
add_addr_ext(msg, dst_net, SADB_X_EXT_ADDRESS_DST_FLOW);
host = mask2host(src_net->get_family(src_net), src_mask);
add_addr_ext(msg, host, SADB_X_EXT_ADDRESS_SRC_MASK);
host->destroy(host);
host = mask2host(dst_net->get_family(dst_net), dst_mask);
add_addr_ext(msg, host, SADB_X_EXT_ADDRESS_DST_MASK);
host->destroy(host);
proto = (struct sadb_protocol*)PFKEY_EXT_ADD_NEXT(msg);
proto->sadb_protocol_exttype = SADB_X_EXT_PROTOCOL;
proto->sadb_protocol_len = PFKEY_LEN(sizeof(struct sadb_protocol));
proto->sadb_protocol_proto = protocol;
PFKEY_EXT_ADD(msg, proto);
}
/**
* build an SADB_X_DELFLOW msg
*/
static void build_delflow(struct sadb_msg *msg, u_int8_t satype,
host_t *src_net, u_int8_t src_mask, host_t *dst_net, u_int8_t dst_mask,
u_int8_t protocol)
{
struct sadb_protocol *proto;
host_t *host;
msg->sadb_msg_version = PF_KEY_V2;
msg->sadb_msg_type = SADB_X_DELFLOW;
msg->sadb_msg_satype = satype;
msg->sadb_msg_len = PFKEY_LEN(sizeof(struct sadb_msg));
add_addr_ext(msg, src_net, SADB_X_EXT_ADDRESS_SRC_FLOW);
add_addr_ext(msg, dst_net, SADB_X_EXT_ADDRESS_DST_FLOW);
host = mask2host(src_net->get_family(src_net),
src_mask);
add_addr_ext(msg, host, SADB_X_EXT_ADDRESS_SRC_MASK);
host->destroy(host);
host = mask2host(dst_net->get_family(dst_net),
dst_mask);
add_addr_ext(msg, host, SADB_X_EXT_ADDRESS_DST_MASK);
host->destroy(host);
proto = (struct sadb_protocol*)PFKEY_EXT_ADD_NEXT(msg);
proto->sadb_protocol_exttype = SADB_X_EXT_PROTOCOL;
proto->sadb_protocol_len = PFKEY_LEN(sizeof(struct sadb_protocol));
proto->sadb_protocol_proto = protocol;
PFKEY_EXT_ADD(msg, proto);
}
/**
* Parses a pfkey message received from the kernel
*/
static status_t parse_pfkey_message(struct sadb_msg *msg, pfkey_msg_t *out)
{
struct sadb_ext* ext;
size_t len;
memset(out, 0, sizeof(pfkey_msg_t));
out->msg = msg;
len = msg->sadb_msg_len;
len -= PFKEY_LEN(sizeof(struct sadb_msg));
ext = (struct sadb_ext*)(((char*)msg) + sizeof(struct sadb_msg));
while (len >= PFKEY_LEN(sizeof(struct sadb_ext)))
{
if (ext->sadb_ext_len < PFKEY_LEN(sizeof(struct sadb_ext)) ||
ext->sadb_ext_len > len)
{
DBG1(DBG_KNL, "length of PF_KEY extension (%d) is invalid", ext->sadb_ext_type);
break;
}
if ((ext->sadb_ext_type > SADB_EXT_MAX) || (!ext->sadb_ext_type))
{
DBG1(DBG_KNL, "type of PF_KEY extension (%d) is invalid", ext->sadb_ext_type);
break;
}
if (out->ext[ext->sadb_ext_type])
{
DBG1(DBG_KNL, "duplicate PF_KEY extension of type (%d)", ext->sadb_ext_type);
break;
}
out->ext[ext->sadb_ext_type] = ext;
ext = PFKEY_EXT_NEXT_LEN(ext, len);
}
if (len)
{
DBG1(DBG_KNL, "PF_KEY message length is invalid");
return FAILED;
}
return SUCCESS;
}
/**
* Send a message to a specific PF_KEY socket and handle the response.
*/
static status_t pfkey_send_socket(private_kernel_klips_ipsec_t *this, int socket,
struct sadb_msg *in, struct sadb_msg **out, size_t *out_len)
{
unsigned char buf[PFKEY_BUFFER_SIZE];
struct sadb_msg *msg;
int in_len, len;
this->mutex_pfkey->lock(this->mutex_pfkey);
in->sadb_msg_seq = ++this->seq;
in->sadb_msg_pid = getpid();
in_len = PFKEY_USER_LEN(in->sadb_msg_len);
while (TRUE)
{
len = send(socket, in, in_len, 0);
if (len != in_len)
{
switch (errno)
{
case EINTR:
/* interrupted, try again */
continue;
case EINVAL:
case EEXIST:
case ESRCH:
/* we should also get a response for these from KLIPS */
break;
default:
this->mutex_pfkey->unlock(this->mutex_pfkey);
DBG1(DBG_KNL, "error sending to PF_KEY socket: %s (%d)",
strerror(errno), errno);
return FAILED;
}
}
break;
}
while (TRUE)
{
msg = (struct sadb_msg*)buf;
len = recv(socket, buf, sizeof(buf), 0);
if (len < 0)
{
if (errno == EINTR)
{
DBG1(DBG_KNL, "got interrupted");
/* interrupted, try again */
continue;
}
this->mutex_pfkey->unlock(this->mutex_pfkey);
DBG1(DBG_KNL, "error reading from PF_KEY socket: %s", strerror(errno));
return FAILED;
}
if (len < sizeof(struct sadb_msg) ||
msg->sadb_msg_len < PFKEY_LEN(sizeof(struct sadb_msg)))
{
this->mutex_pfkey->unlock(this->mutex_pfkey);
DBG1(DBG_KNL, "received corrupted PF_KEY message");
return FAILED;
}
if (msg->sadb_msg_len > len / PFKEY_ALIGNMENT)
{
this->mutex_pfkey->unlock(this->mutex_pfkey);
DBG1(DBG_KNL, "buffer was too small to receive the complete PF_KEY message");
return FAILED;
}
if (msg->sadb_msg_pid != in->sadb_msg_pid)
{
DBG2(DBG_KNL, "received PF_KEY message is not intended for us");
continue;
}
if (msg->sadb_msg_seq != this->seq)
{
DBG1(DBG_KNL, "received PF_KEY message with invalid sequence number,"
" was %d expected %d", msg->sadb_msg_seq, this->seq);
if (msg->sadb_msg_seq < this->seq)
{
continue;
}
this->mutex_pfkey->unlock(this->mutex_pfkey);
return FAILED;
}
if (msg->sadb_msg_type != in->sadb_msg_type)
{
DBG2(DBG_KNL, "received PF_KEY message of wrong type,"
" was %d expected %d, ignoring",
msg->sadb_msg_type, in->sadb_msg_type);
}
break;
}
*out_len = len;
*out = (struct sadb_msg*)malloc(len);
memcpy(*out, buf, len);
this->mutex_pfkey->unlock(this->mutex_pfkey);
return SUCCESS;
}
/**
* Send a message to the default PF_KEY socket.
*/
static status_t pfkey_send(private_kernel_klips_ipsec_t *this,
struct sadb_msg *in, struct sadb_msg **out, size_t *out_len)
{
return pfkey_send_socket(this, this->socket, in, out, out_len);
}
/**
* Send a message to the default PF_KEY socket and handle the response.
*/
static status_t pfkey_send_ack(private_kernel_klips_ipsec_t *this, struct sadb_msg *in)
{
struct sadb_msg *out;
size_t len;
if (pfkey_send(this, in, &out, &len) != SUCCESS)
{
return FAILED;
}
else if (out->sadb_msg_errno)
{
DBG1(DBG_KNL, "PF_KEY error: %s (%d)",
strerror(out->sadb_msg_errno), out->sadb_msg_errno);
free(out);
return FAILED;
}
free(out);
return SUCCESS;
}
/**
* Add an eroute to KLIPS
*/
static status_t add_eroute(private_kernel_klips_ipsec_t *this, u_int8_t satype,
u_int32_t spi, host_t *src, host_t *dst, host_t *src_net, u_int8_t src_mask,
host_t *dst_net, u_int8_t dst_mask, u_int8_t protocol, bool replace)
{
unsigned char request[PFKEY_BUFFER_SIZE];
struct sadb_msg *msg = (struct sadb_msg*)request;
memset(&request, 0, sizeof(request));
build_addflow(msg, satype, spi, src, dst, src_net, src_mask,
dst_net, dst_mask, protocol, replace);
return pfkey_send_ack(this, msg);
}
/**
* Delete an eroute fom KLIPS
*/
static status_t del_eroute(private_kernel_klips_ipsec_t *this, u_int8_t satype,
host_t *src_net, u_int8_t src_mask, host_t *dst_net, u_int8_t dst_mask,
u_int8_t protocol)
{
unsigned char request[PFKEY_BUFFER_SIZE];
struct sadb_msg *msg = (struct sadb_msg*)request;
memset(&request, 0, sizeof(request));
build_delflow(msg, satype, src_net, src_mask, dst_net, dst_mask, protocol);
return pfkey_send_ack(this, msg);
}
/**
* Process a SADB_ACQUIRE message from the kernel
*/
static void process_acquire(private_kernel_klips_ipsec_t *this, struct sadb_msg* msg)
{
pfkey_msg_t response;
host_t *src, *dst;
u_int32_t reqid;
u_int8_t proto;
policy_entry_t *policy;
switch (msg->sadb_msg_satype)
{
case SADB_SATYPE_UNSPEC:
case SADB_SATYPE_ESP:
case SADB_SATYPE_AH:
break;
default:
/* acquire for AH/ESP only */
return;
}
if (parse_pfkey_message(msg, &response) != SUCCESS)
{
DBG1(DBG_KNL, "parsing SADB_ACQUIRE from kernel failed");
return;
}
/* KLIPS provides us only with the source and destination address,
* and the transport protocol of the packet that triggered the policy.
* we use this information to find a matching policy in our cache.
* because KLIPS installs a narrow %hold eroute covering only this information,
* we replace both the %trap and this %hold eroutes with a broader %hold
* eroute covering the whole policy */
src = host_create_from_sockaddr((sockaddr_t*)(response.src + 1));
dst = host_create_from_sockaddr((sockaddr_t*)(response.dst + 1));
proto = response.src->sadb_address_proto;
if (!src || !dst || src->get_family(src) != dst->get_family(dst))
{
DBG1(DBG_KNL, "received an SADB_ACQUIRE with invalid hosts");
return;
}
DBG2(DBG_KNL, "received an SADB_ACQUIRE for %H == %H : %d", src, dst, proto);
this->mutex->lock(this->mutex);
if (this->policies->find_first(this->policies,
(linked_list_match_t)policy_entry_match_byaddrs,
(void**)&policy, src, dst) != SUCCESS)
{
this->mutex->unlock(this->mutex);
DBG1(DBG_KNL, "received an SADB_ACQUIRE, but found no matching policy");
return;
}
if ((reqid = policy->reqid) == 0)
{
this->mutex->unlock(this->mutex);
DBG1(DBG_KNL, "received an SADB_ACQUIRE, but policy is not routed anymore");
return;
}
/* add a broad %hold eroute that replaces the %trap eroute */
add_eroute(this, SADB_X_SATYPE_INT, htonl(SPI_HOLD), NULL, NULL,
policy->src.net, policy->src.mask, policy->dst.net, policy->dst.mask,
policy->src.proto, TRUE);
/* remove the narrow %hold eroute installed by KLIPS */
del_eroute(this, SADB_X_SATYPE_INT, src, 32, dst, 32, proto);
this->mutex->unlock(this->mutex);
hydra->kernel_interface->acquire(hydra->kernel_interface, reqid, NULL,
NULL);
}
/**
* Process a SADB_X_NAT_T_NEW_MAPPING message from the kernel
*/
static void process_mapping(private_kernel_klips_ipsec_t *this, struct sadb_msg* msg)
{
pfkey_msg_t response;
u_int32_t spi, reqid;
host_t *old_src, *new_src;
DBG2(DBG_KNL, "received an SADB_X_NAT_T_NEW_MAPPING");
if (parse_pfkey_message(msg, &response) != SUCCESS)
{
DBG1(DBG_KNL, "parsing SADB_X_NAT_T_NEW_MAPPING from kernel failed");
return;
}
spi = response.sa->sadb_sa_spi;
if (satype2proto(msg->sadb_msg_satype) == IPPROTO_ESP)
{
sa_entry_t *sa;
sockaddr_t *addr = (sockaddr_t*)(response.src + 1);
old_src = host_create_from_sockaddr(addr);
this->mutex->lock(this->mutex);
if (!old_src || this->installed_sas->find_first(this->installed_sas,
(linked_list_match_t)sa_entry_match_encapbysrc,
(void**)&sa, &spi, old_src) != SUCCESS)
{
this->mutex->unlock(this->mutex);
DBG1(DBG_KNL, "received an SADB_X_NAT_T_NEW_MAPPING, but found no matching SA");
return;
}
reqid = sa->reqid;
this->mutex->unlock(this->mutex);
addr = (sockaddr_t*)(response.dst + 1);
switch (addr->sa_family)
{
case AF_INET:
{
struct sockaddr_in *sin = (struct sockaddr_in*)addr;
sin->sin_port = htons(response.x_natt_dport->sadb_x_nat_t_port_port);
}
case AF_INET6:
{
struct sockaddr_in6 *sin6 = (struct sockaddr_in6*)addr;
sin6->sin6_port = htons(response.x_natt_dport->sadb_x_nat_t_port_port);
}
default:
break;
}
new_src = host_create_from_sockaddr(addr);
if (new_src)
{
hydra->kernel_interface->mapping(hydra->kernel_interface, reqid,
spi, new_src);
}
}
}
/**
* Receives events from kernel
*/
static job_requeue_t receive_events(private_kernel_klips_ipsec_t *this)
{
unsigned char buf[PFKEY_BUFFER_SIZE];
struct sadb_msg *msg = (struct sadb_msg*)buf;
int len;
bool oldstate;
oldstate = thread_cancelability(TRUE);
len = recv(this->socket_events, buf, sizeof(buf), 0);
thread_cancelability(oldstate);
if (len < 0)
{
switch (errno)
{
case EINTR:
/* interrupted, try again */
return JOB_REQUEUE_DIRECT;
case EAGAIN:
/* no data ready, select again */
return JOB_REQUEUE_DIRECT;
default:
DBG1(DBG_KNL, "unable to receive from PF_KEY event socket");
sleep(1);
return JOB_REQUEUE_FAIR;
}
}
if (len < sizeof(struct sadb_msg) ||
msg->sadb_msg_len < PFKEY_LEN(sizeof(struct sadb_msg)))
{
DBG2(DBG_KNL, "received corrupted PF_KEY message");
return JOB_REQUEUE_DIRECT;
}
if (msg->sadb_msg_pid != 0)
{ /* not from kernel. not interested, try another one */
return JOB_REQUEUE_DIRECT;
}
if (msg->sadb_msg_len > len / PFKEY_ALIGNMENT)
{
DBG1(DBG_KNL, "buffer was too small to receive the complete PF_KEY message");
return JOB_REQUEUE_DIRECT;
}
switch (msg->sadb_msg_type)
{
case SADB_ACQUIRE:
process_acquire(this, msg);
break;
case SADB_EXPIRE:
/* SADB_EXPIRE events in KLIPS are only triggered by traffic (even
* for the time based limits). So if there is no traffic for a
* longer period than configured as hard limit, we wouldn't be able
* to rekey the SA and just receive the hard expire and thus delete
* the SA.
* To avoid this behavior and to make the daemon behave as with the
* other kernel plugins, we implement the expiration of SAs
* ourselves. */
break;
case SADB_X_NAT_T_NEW_MAPPING:
process_mapping(this, msg);
break;
default:
break;
}
return JOB_REQUEUE_DIRECT;
}
typedef enum {
/** an SPI has expired */
EXPIRE_TYPE_SPI,
/** a CHILD_SA has to be rekeyed */
EXPIRE_TYPE_SOFT,
/** a CHILD_SA has to be deleted */
EXPIRE_TYPE_HARD
} expire_type_t;
typedef struct sa_expire_t sa_expire_t;
struct sa_expire_t {
/** kernel interface */
private_kernel_klips_ipsec_t *this;
/** the SPI of the expiring SA */
u_int32_t spi;
/** the protocol of the expiring SA */
u_int8_t protocol;
/** the reqid of the expiring SA*/
u_int32_t reqid;
/** what type of expire this is */
expire_type_t type;
};
/**
* Called when an SA expires
*/
static job_requeue_t sa_expires(sa_expire_t *expire)
{
private_kernel_klips_ipsec_t *this = expire->this;
u_int8_t protocol = expire->protocol;
u_int32_t spi = expire->spi, reqid = expire->reqid;
bool hard = expire->type != EXPIRE_TYPE_SOFT;
sa_entry_t *cached_sa;
linked_list_t *list;
/* for an expired SPI we first check whether the CHILD_SA got installed
* in the meantime, for expired SAs we check whether they are still installed */
list = expire->type == EXPIRE_TYPE_SPI ? this->allocated_spis : this->installed_sas;
this->mutex->lock(this->mutex);
if (list->find_first(list, (linked_list_match_t)sa_entry_match_byid,
(void**)&cached_sa, &protocol, &spi, &reqid) != SUCCESS)
{
/* we found no entry:
* - for SPIs, a CHILD_SA has been installed
* - for SAs, the CHILD_SA has already been deleted */
this->mutex->unlock(this->mutex);
return JOB_REQUEUE_NONE;
}
else
{
list->remove(list, cached_sa, NULL);
sa_entry_destroy(cached_sa);
}
this->mutex->unlock(this->mutex);
hydra->kernel_interface->expire(hydra->kernel_interface, reqid, protocol,
spi, hard);
return JOB_REQUEUE_NONE;
}
/**
* Schedule an expire job for an SA. Time is in seconds.
*/
static void schedule_expire(private_kernel_klips_ipsec_t *this,
u_int8_t protocol, u_int32_t spi,
u_int32_t reqid, expire_type_t type, u_int32_t time)
{
callback_job_t *job;
sa_expire_t *expire = malloc_thing(sa_expire_t);
expire->this = this;
expire->protocol = protocol;
expire->spi = spi;
expire->reqid = reqid;
expire->type = type;
job = callback_job_create((callback_job_cb_t)sa_expires, expire, free, NULL);
lib->scheduler->schedule_job(lib->scheduler, (job_t*)job, time);
}
METHOD(kernel_ipsec_t, get_spi, status_t,
private_kernel_klips_ipsec_t *this, host_t *src, host_t *dst,
u_int8_t protocol, u_int32_t reqid, u_int32_t *spi)
{
/* we cannot use SADB_GETSPI because KLIPS does not allow us to set the
* NAT-T type in an SADB_UPDATE which we would have to use to update the
* implicitly created SA.
*/
rng_t *rng;
u_int32_t spi_gen;
rng = lib->crypto->create_rng(lib->crypto, RNG_WEAK);
if (!rng)
{
DBG1(DBG_KNL, "allocating SPI failed: no RNG");
return FAILED;
}
rng->get_bytes(rng, sizeof(spi_gen), (void*)&spi_gen);
rng->destroy(rng);
/* allocated SPIs lie within the range from 0xc0000000 to 0xcFFFFFFF */
spi_gen = 0xc0000000 | (spi_gen & 0x0FFFFFFF);
*spi = htonl(spi_gen);
this->mutex->lock(this->mutex);
this->allocated_spis->insert_last(this->allocated_spis,
create_sa_entry(protocol, *spi, reqid, NULL, NULL, FALSE, TRUE));
this->mutex->unlock(this->mutex);
schedule_expire(this, protocol, *spi, reqid, EXPIRE_TYPE_SPI, SPI_TIMEOUT);
return SUCCESS;
}
METHOD(kernel_ipsec_t, get_cpi, status_t,
private_kernel_klips_ipsec_t *this, host_t *src, host_t *dst,
u_int32_t reqid, u_int16_t *cpi)
{
return FAILED;
}
/**
* Add a pseudo IPIP SA for tunnel mode with KLIPS.
*/
static status_t add_ipip_sa(private_kernel_klips_ipsec_t *this,
host_t *src, host_t *dst, u_int32_t spi, u_int32_t reqid)
{
unsigned char request[PFKEY_BUFFER_SIZE];
struct sadb_msg *msg, *out;
struct sadb_sa *sa;
size_t len;
memset(&request, 0, sizeof(request));
DBG2(DBG_KNL, "adding pseudo IPIP SA with SPI %.8x and reqid {%d}", ntohl(spi), reqid);
msg = (struct sadb_msg*)request;
msg->sadb_msg_version = PF_KEY_V2;
msg->sadb_msg_type = SADB_ADD;
msg->sadb_msg_satype = SADB_X_SATYPE_IPIP;
msg->sadb_msg_len = PFKEY_LEN(sizeof(struct sadb_msg));
sa = (struct sadb_sa*)PFKEY_EXT_ADD_NEXT(msg);
sa->sadb_sa_exttype = SADB_EXT_SA;
sa->sadb_sa_len = PFKEY_LEN(sizeof(struct sadb_sa));
sa->sadb_sa_spi = spi;
sa->sadb_sa_state = SADB_SASTATE_MATURE;
PFKEY_EXT_ADD(msg, sa);
add_addr_ext(msg, src, SADB_EXT_ADDRESS_SRC);
add_addr_ext(msg, dst, SADB_EXT_ADDRESS_DST);
if (pfkey_send(this, msg, &out, &len) != SUCCESS)
{
DBG1(DBG_KNL, "unable to add pseudo IPIP SA with SPI %.8x", ntohl(spi));
return FAILED;
}
else if (out->sadb_msg_errno)
{
DBG1(DBG_KNL, "unable to add pseudo IPIP SA with SPI %.8x: %s (%d)",
ntohl(spi), strerror(out->sadb_msg_errno), out->sadb_msg_errno);
free(out);
return FAILED;
}
free(out);
return SUCCESS;
}
/**
* group the IPIP SA required for tunnel mode with the outer SA
*/
static status_t group_ipip_sa(private_kernel_klips_ipsec_t *this,
host_t *src, host_t *dst, u_int32_t spi,
u_int8_t protocol, u_int32_t reqid)
{
unsigned char request[PFKEY_BUFFER_SIZE];
struct sadb_msg *msg, *out;
struct sadb_sa *sa;
struct sadb_x_satype *satype;
size_t len;
memset(&request, 0, sizeof(request));
DBG2(DBG_KNL, "grouping SAs with SPI %.8x and reqid {%d}", ntohl(spi), reqid);
msg = (struct sadb_msg*)request;
msg->sadb_msg_version = PF_KEY_V2;
msg->sadb_msg_type = SADB_X_GRPSA;
msg->sadb_msg_satype = SADB_X_SATYPE_IPIP;
msg->sadb_msg_len = PFKEY_LEN(sizeof(struct sadb_msg));
sa = (struct sadb_sa*)PFKEY_EXT_ADD_NEXT(msg);
sa->sadb_sa_exttype = SADB_EXT_SA;
sa->sadb_sa_len = PFKEY_LEN(sizeof(struct sadb_sa));
sa->sadb_sa_spi = spi;
sa->sadb_sa_state = SADB_SASTATE_MATURE;
PFKEY_EXT_ADD(msg, sa);
add_addr_ext(msg, dst, SADB_EXT_ADDRESS_DST);
satype = (struct sadb_x_satype*)PFKEY_EXT_ADD_NEXT(msg);
satype->sadb_x_satype_exttype = SADB_X_EXT_SATYPE2;
satype->sadb_x_satype_len = PFKEY_LEN(sizeof(struct sadb_x_satype));
satype->sadb_x_satype_satype = proto2satype(protocol);
PFKEY_EXT_ADD(msg, satype);
sa = (struct sadb_sa*)PFKEY_EXT_ADD_NEXT(msg);
sa->sadb_sa_exttype = SADB_X_EXT_SA2;
sa->sadb_sa_len = PFKEY_LEN(sizeof(struct sadb_sa));
sa->sadb_sa_spi = spi;
sa->sadb_sa_state = SADB_SASTATE_MATURE;
PFKEY_EXT_ADD(msg, sa);
add_addr_ext(msg, dst, SADB_X_EXT_ADDRESS_DST2);
if (pfkey_send(this, msg, &out, &len) != SUCCESS)
{
DBG1(DBG_KNL, "unable to group SAs with SPI %.8x", ntohl(spi));
return FAILED;
}
else if (out->sadb_msg_errno)
{
DBG1(DBG_KNL, "unable to group SAs with SPI %.8x: %s (%d)",
ntohl(spi), strerror(out->sadb_msg_errno), out->sadb_msg_errno);
free(out);
return FAILED;
}
free(out);
return SUCCESS;
}
METHOD(kernel_ipsec_t, add_sa, status_t,
private_kernel_klips_ipsec_t *this, host_t *src, host_t *dst, u_int32_t spi,
u_int8_t protocol, u_int32_t reqid, mark_t mark, u_int32_t tfc,
lifetime_cfg_t *lifetime, u_int16_t enc_alg, chunk_t enc_key,
u_int16_t int_alg, chunk_t int_key, ipsec_mode_t mode,
u_int16_t ipcomp, u_int16_t cpi, bool encap, bool esn, bool inbound,
traffic_selector_t *src_ts, traffic_selector_t *dst_ts)
{
unsigned char request[PFKEY_BUFFER_SIZE];
struct sadb_msg *msg, *out;
struct sadb_sa *sa;
struct sadb_key *key;
size_t len;
if (inbound)
{
/* for inbound SAs we allocated an SPI via get_spi, so we first check
* whether that SPI has already expired (race condition) */
sa_entry_t *alloc_spi;
this->mutex->lock(this->mutex);
if (this->allocated_spis->find_first(this->allocated_spis,
(linked_list_match_t)sa_entry_match_byid, (void**)&alloc_spi,
&protocol, &spi, &reqid) != SUCCESS)
{
this->mutex->unlock(this->mutex);
DBG1(DBG_KNL, "allocated SPI %.8x has already expired", ntohl(spi));
return FAILED;
}
else
{
this->allocated_spis->remove(this->allocated_spis, alloc_spi, NULL);
sa_entry_destroy(alloc_spi);
}
this->mutex->unlock(this->mutex);
}
memset(&request, 0, sizeof(request));
DBG2(DBG_KNL, "adding SAD entry with SPI %.8x and reqid {%d}", ntohl(spi), reqid);
msg = (struct sadb_msg*)request;
msg->sadb_msg_version = PF_KEY_V2;
msg->sadb_msg_type = SADB_ADD;
msg->sadb_msg_satype = proto2satype(protocol);
msg->sadb_msg_len = PFKEY_LEN(sizeof(struct sadb_msg));
sa = (struct sadb_sa*)PFKEY_EXT_ADD_NEXT(msg);
sa->sadb_sa_exttype = SADB_EXT_SA;
sa->sadb_sa_len = PFKEY_LEN(sizeof(struct sadb_sa));
sa->sadb_sa_spi = spi;
sa->sadb_sa_state = SADB_SASTATE_MATURE;
sa->sadb_sa_replay = (protocol == IPPROTO_COMP) ? 0 : 32;
sa->sadb_sa_auth = lookup_algorithm(integrity_algs, int_alg);
sa->sadb_sa_encrypt = lookup_algorithm(encryption_algs, enc_alg);
PFKEY_EXT_ADD(msg, sa);
add_addr_ext(msg, src, SADB_EXT_ADDRESS_SRC);
add_addr_ext(msg, dst, SADB_EXT_ADDRESS_DST);
if (enc_alg != ENCR_UNDEFINED)
{
if (!sa->sadb_sa_encrypt)
{
DBG1(DBG_KNL, "algorithm %N not supported by kernel!",
encryption_algorithm_names, enc_alg);
return FAILED;
}
DBG2(DBG_KNL, " using encryption algorithm %N with key size %d",
encryption_algorithm_names, enc_alg, enc_key.len * 8);
key = (struct sadb_key*)PFKEY_EXT_ADD_NEXT(msg);
key->sadb_key_exttype = SADB_EXT_KEY_ENCRYPT;
key->sadb_key_bits = enc_key.len * 8;
key->sadb_key_len = PFKEY_LEN(sizeof(struct sadb_key) + enc_key.len);
memcpy(key + 1, enc_key.ptr, enc_key.len);
PFKEY_EXT_ADD(msg, key);
}
if (int_alg != AUTH_UNDEFINED)
{
if (!sa->sadb_sa_auth)
{
DBG1(DBG_KNL, "algorithm %N not supported by kernel!",
integrity_algorithm_names, int_alg);
return FAILED;
}
DBG2(DBG_KNL, " using integrity algorithm %N with key size %d",
integrity_algorithm_names, int_alg, int_key.len * 8);
key = (struct sadb_key*)PFKEY_EXT_ADD_NEXT(msg);
key->sadb_key_exttype = SADB_EXT_KEY_AUTH;
key->sadb_key_bits = int_key.len * 8;
key->sadb_key_len = PFKEY_LEN(sizeof(struct sadb_key) + int_key.len);
memcpy(key + 1, int_key.ptr, int_key.len);
PFKEY_EXT_ADD(msg, key);
}
if (ipcomp != IPCOMP_NONE)
{
/*TODO*/
}
if (encap)
{
add_encap_ext(msg, src, dst, FALSE);
}
if (pfkey_send(this, msg, &out, &len) != SUCCESS)
{
DBG1(DBG_KNL, "unable to add SAD entry with SPI %.8x", ntohl(spi));
return FAILED;
}
else if (out->sadb_msg_errno)
{
DBG1(DBG_KNL, "unable to add SAD entry with SPI %.8x: %s (%d)",
ntohl(spi), strerror(out->sadb_msg_errno), out->sadb_msg_errno);
free(out);
return FAILED;
}
free(out);
/* for tunnel mode SAs we have to install an additional IPIP SA and
* group the two SAs together */
if (mode == MODE_TUNNEL)
{
if (add_ipip_sa(this, src, dst, spi, reqid) != SUCCESS ||
group_ipip_sa(this, src, dst, spi, protocol, reqid) != SUCCESS)
{
DBG1(DBG_KNL, "unable to add SAD entry with SPI %.8x", ntohl(spi));
return FAILED;
}
}
this->mutex->lock(this->mutex);
/* we cache this SA for two reasons:
* - in case an SADB_X_NAT_T_MAPPING_NEW event occurs (we need to find the reqid then)
* - to decide if an expired SA is still installed */
this->installed_sas->insert_last(this->installed_sas,
create_sa_entry(protocol, spi, reqid, src, dst, encap, inbound));
this->mutex->unlock(this->mutex);
/* Although KLIPS supports SADB_EXT_LIFETIME_SOFT/HARD, we handle the lifetime
* of SAs manually in the plugin. Refer to the comments in receive_events()
* for details. */
if (lifetime->time.rekey)
{
schedule_expire(this, protocol, spi, reqid, EXPIRE_TYPE_SOFT, lifetime->time.rekey);
}
if (lifetime->time.life)
{
schedule_expire(this, protocol, spi, reqid, EXPIRE_TYPE_HARD, lifetime->time.life);
}
return SUCCESS;
}
METHOD(kernel_ipsec_t, update_sa, status_t,
private_kernel_klips_ipsec_t *this, u_int32_t spi, u_int8_t protocol,
u_int16_t cpi, host_t *src, host_t *dst, host_t *new_src, host_t *new_dst,
bool encap, bool new_encap, mark_t mark)
{
unsigned char request[PFKEY_BUFFER_SIZE];
struct sadb_msg *msg, *out;
struct sadb_sa *sa;
size_t len;
/* we can't update the SA if any of the ip addresses have changed.
* that's because we can't use SADB_UPDATE and by deleting and readding the
* SA the sequence numbers would get lost */
if (!src->ip_equals(src, new_src) ||
!dst->ip_equals(dst, new_dst))
{
DBG1(DBG_KNL, "unable to update SAD entry with SPI %.8x: address changes"
" are not supported", ntohl(spi));
return NOT_SUPPORTED;
}
/* because KLIPS does not allow us to change the NAT-T type in an SADB_UPDATE,
* we can't update the SA if the encap flag has changed since installing it */
if (encap != new_encap)
{
DBG1(DBG_KNL, "unable to update SAD entry with SPI %.8x: change of UDP"
" encapsulation is not supported", ntohl(spi));
return NOT_SUPPORTED;
}
DBG2(DBG_KNL, "updating SAD entry with SPI %.8x from %#H..%#H to %#H..%#H",
ntohl(spi), src, dst, new_src, new_dst);
memset(&request, 0, sizeof(request));
msg = (struct sadb_msg*)request;
msg->sadb_msg_version = PF_KEY_V2;
msg->sadb_msg_type = SADB_UPDATE;
msg->sadb_msg_satype = proto2satype(protocol);
msg->sadb_msg_len = PFKEY_LEN(sizeof(struct sadb_msg));
sa = (struct sadb_sa*)PFKEY_EXT_ADD_NEXT(msg);
sa->sadb_sa_exttype = SADB_EXT_SA;
sa->sadb_sa_len = PFKEY_LEN(sizeof(struct sadb_sa));
sa->sadb_sa_spi = spi;
sa->sadb_sa_encrypt = SADB_EALG_AESCBC; /* ignored */
sa->sadb_sa_auth = SADB_AALG_SHA1HMAC; /* ignored */
sa->sadb_sa_state = SADB_SASTATE_MATURE;
PFKEY_EXT_ADD(msg, sa);
add_addr_ext(msg, src, SADB_EXT_ADDRESS_SRC);
add_addr_ext(msg, dst, SADB_EXT_ADDRESS_DST);
add_encap_ext(msg, new_src, new_dst, TRUE);
if (pfkey_send(this, msg, &out, &len) != SUCCESS)
{
DBG1(DBG_KNL, "unable to update SAD entry with SPI %.8x", ntohl(spi));
return FAILED;
}
else if (out->sadb_msg_errno)
{
DBG1(DBG_KNL, "unable to update SAD entry with SPI %.8x: %s (%d)",
ntohl(spi), strerror(out->sadb_msg_errno), out->sadb_msg_errno);
free(out);
return FAILED;
}
free(out);
return SUCCESS;
}
METHOD(kernel_ipsec_t, query_sa, status_t,
private_kernel_klips_ipsec_t *this, host_t *src, host_t *dst,
u_int32_t spi, u_int8_t protocol, mark_t mark, u_int64_t *bytes)
{
return NOT_SUPPORTED; /* TODO */
}
METHOD(kernel_ipsec_t, del_sa, status_t,
private_kernel_klips_ipsec_t *this, host_t *src, host_t *dst,
u_int32_t spi, u_int8_t protocol, u_int16_t cpi, mark_t mark)
{
unsigned char request[PFKEY_BUFFER_SIZE];
struct sadb_msg *msg, *out;
struct sadb_sa *sa;
sa_entry_t *cached_sa;
size_t len;
memset(&request, 0, sizeof(request));
/* all grouped SAs are automatically deleted by KLIPS as soon as
* one of them is deleted, therefore we delete only the main one */
DBG2(DBG_KNL, "deleting SAD entry with SPI %.8x", ntohl(spi));
this->mutex->lock(this->mutex);
/* this should not fail, but we don't care if it does, let the kernel decide
* whether this SA exists or not */
if (this->installed_sas->find_first(this->installed_sas,
(linked_list_match_t)sa_entry_match_bydst, (void**)&cached_sa,
&protocol, &spi, dst) == SUCCESS)
{
this->installed_sas->remove(this->installed_sas, cached_sa, NULL);
sa_entry_destroy(cached_sa);
}
this->mutex->unlock(this->mutex);
msg = (struct sadb_msg*)request;
msg->sadb_msg_version = PF_KEY_V2;
msg->sadb_msg_type = SADB_DELETE;
msg->sadb_msg_satype = proto2satype(protocol);
msg->sadb_msg_len = PFKEY_LEN(sizeof(struct sadb_msg));
sa = (struct sadb_sa*)PFKEY_EXT_ADD_NEXT(msg);
sa->sadb_sa_exttype = SADB_EXT_SA;
sa->sadb_sa_len = PFKEY_LEN(sizeof(struct sadb_sa));
sa->sadb_sa_spi = spi;
PFKEY_EXT_ADD(msg, sa);
/* the kernel wants an SADB_EXT_ADDRESS_SRC to be present even though
* it is not used for anything. */
add_anyaddr_ext(msg, dst->get_family(dst), SADB_EXT_ADDRESS_SRC);
add_addr_ext(msg, dst, SADB_EXT_ADDRESS_DST);
if (pfkey_send(this, msg, &out, &len) != SUCCESS)
{
DBG1(DBG_KNL, "unable to delete SAD entry with SPI %.8x", ntohl(spi));
return FAILED;
}
else if (out->sadb_msg_errno)
{
DBG1(DBG_KNL, "unable to delete SAD entry with SPI %.8x: %s (%d)",
ntohl(spi), strerror(out->sadb_msg_errno), out->sadb_msg_errno);
free(out);
return FAILED;
}
DBG2(DBG_KNL, "deleted SAD entry with SPI %.8x", ntohl(spi));
free(out);
return SUCCESS;
}
METHOD(kernel_ipsec_t, add_policy, status_t,
private_kernel_klips_ipsec_t *this, host_t *src, host_t *dst,
traffic_selector_t *src_ts, traffic_selector_t *dst_ts,
policy_dir_t direction, policy_type_t type, ipsec_sa_cfg_t *sa,
mark_t mark, bool routed)
{
unsigned char request[PFKEY_BUFFER_SIZE];
struct sadb_msg *msg, *out;
policy_entry_t *policy, *found = NULL;
u_int32_t spi;
u_int8_t satype;
size_t len;
if (direction == POLICY_FWD)
{
/* no forward policies for KLIPS */
return SUCCESS;
}
/* tunnel mode policies direct the packets into the pseudo IPIP SA */
satype = (sa->mode == MODE_TUNNEL) ? SADB_X_SATYPE_IPIP
: proto2satype(sa->esp.use ? IPPROTO_ESP
: IPPROTO_AH);
spi = sa->esp.use ? sa->esp.spi : sa->ah.spi;
/* create a policy */
policy = create_policy_entry(src_ts, dst_ts, direction);
/* find a matching policy */
this->mutex->lock(this->mutex);
if (this->policies->find_first(this->policies,
(linked_list_match_t)policy_entry_equals, (void**)&found, policy) == SUCCESS)
{
/* use existing policy */
DBG2(DBG_KNL, "policy %R === %R %N already exists, increasing"
" refcount", src_ts, dst_ts,
policy_dir_names, direction);
policy_entry_destroy(policy);
policy = found;
}
else
{
/* apply the new one, if we have no such policy */
this->policies->insert_last(this->policies, policy);
}
if (routed)
{
/* we install this as a %trap eroute in the kernel, later to be
* triggered by packets matching the policy (-> ACQUIRE). */
spi = htonl(SPI_TRAP);
satype = SADB_X_SATYPE_INT;
/* the reqid is always set to the latest child SA that trapped this
* policy. we will need this reqid upon receiving an acquire. */
policy->reqid = sa->reqid;
/* increase the trap counter */
policy->trapcount++;
if (policy->activecount)
{
/* we do not replace the current policy in the kernel while a
* policy is actively used */
this->mutex->unlock(this->mutex);
return SUCCESS;
}
}
else
{
/* increase the reference counter */
policy->activecount++;
}
DBG2(DBG_KNL, "adding policy %R === %R %N", src_ts, dst_ts,
policy_dir_names, direction);
memset(&request, 0, sizeof(request));
msg = (struct sadb_msg*)request;
/* FIXME: SADB_X_SAFLAGS_INFLOW may be required, if we add an inbound policy for an IPIP SA */
build_addflow(msg, satype, spi, routed ? NULL : src, routed ? NULL : dst,
policy->src.net, policy->src.mask, policy->dst.net, policy->dst.mask,
policy->src.proto, found != NULL);
this->mutex->unlock(this->mutex);
if (pfkey_send(this, msg, &out, &len) != SUCCESS)
{
DBG1(DBG_KNL, "unable to add policy %R === %R %N", src_ts, dst_ts,
policy_dir_names, direction);
return FAILED;
}
else if (out->sadb_msg_errno)
{
DBG1(DBG_KNL, "unable to add policy %R === %R %N: %s (%d)", src_ts, dst_ts,
policy_dir_names, direction,
strerror(out->sadb_msg_errno), out->sadb_msg_errno);
free(out);
return FAILED;
}
free(out);
this->mutex->lock(this->mutex);
/* we try to find the policy again and install the route if needed */
if (this->policies->find_last(this->policies, NULL, (void**)&policy) != SUCCESS)
{
this->mutex->unlock(this->mutex);
DBG2(DBG_KNL, "the policy %R === %R %N is already gone, ignoring",
src_ts, dst_ts, policy_dir_names, direction);
return SUCCESS;
}
/* KLIPS requires a special route that directs traffic that matches this
* policy to one of the virtual ipsec interfaces. The virtual interface
* has to be attached to the physical one the traffic runs over.
* This is a special case of the source route we install in other kernel
* interfaces.
* In the following cases we do NOT install a source route (but just a
* regular route):
* - we are not in tunnel mode
* - we are using IPv6 (does not work correctly yet!)
* - routing is disabled via strongswan.conf
*/
if (policy->route == NULL && direction == POLICY_OUT)
{
char *iface;
ipsec_dev_t *dev;
route_entry_t *route = malloc_thing(route_entry_t);
route->src_ip = NULL;
if (sa->mode != MODE_TRANSPORT && src->get_family(src) != AF_INET6 &&
this->install_routes)
{
hydra->kernel_interface->get_address_by_ts(hydra->kernel_interface,
src_ts, &route->src_ip);
}
if (!route->src_ip)
{
route->src_ip = host_create_any(src->get_family(src));
}
/* find the virtual interface */
iface = hydra->kernel_interface->get_interface(hydra->kernel_interface,
src);
if (find_ipsec_dev(this, iface, &dev) == SUCCESS)
{
/* above, we got either the name of a virtual or a physical
* interface. for both cases it means we already have the devices
* properly attached (assuming that we are exclusively attaching
* ipsec devices). */
dev->refcount++;
}
else
{
/* there is no record of a mapping with the returned interface.
* thus, we attach the first free virtual interface we find to
* it. As above we assume we are the only client fiddling with
* ipsec devices. */
if (this->ipsec_devices->find_first(this->ipsec_devices,
(linked_list_match_t)ipsec_dev_match_free,
(void**)&dev) == SUCCESS)
{
if (attach_ipsec_dev(dev->name, iface) == SUCCESS)
{
strncpy(dev->phys_name, iface, IFNAMSIZ);
dev->refcount = 1;
}
else
{
DBG1(DBG_KNL, "failed to attach virtual interface %s"
" to %s", dev->name, iface);
this->mutex->unlock(this->mutex);
free(iface);
return FAILED;
}
}
else
{
this->mutex->unlock(this->mutex);
DBG1(DBG_KNL, "failed to attach a virtual interface to %s: no"
" virtual interfaces left", iface);
free(iface);
return FAILED;
}
}
free(iface);
route->if_name = strdup(dev->name);
/* get the nexthop to dst */
route->gateway = hydra->kernel_interface->get_nexthop(
hydra->kernel_interface, dst);
route->dst_net = chunk_clone(policy->dst.net->get_address(policy->dst.net));
route->prefixlen = policy->dst.mask;
switch (hydra->kernel_interface->add_route(hydra->kernel_interface,
route->dst_net, route->prefixlen, route->gateway,
route->src_ip, route->if_name))
{
default:
DBG1(DBG_KNL, "unable to install route for policy %R === %R",
src_ts, dst_ts);
/* FALL */
case ALREADY_DONE:
/* route exists, do not uninstall */
route_entry_destroy(route);
break;
case SUCCESS:
/* cache the installed route */
policy->route = route;
break;
}
}
this->mutex->unlock(this->mutex);
return SUCCESS;
}
METHOD(kernel_ipsec_t, query_policy, status_t,
private_kernel_klips_ipsec_t *this, traffic_selector_t *src_ts,
traffic_selector_t *dst_ts, policy_dir_t direction, mark_t mark,
u_int32_t *use_time)
{
#define IDLE_PREFIX "idle="
static const char *path_eroute = "/proc/net/ipsec_eroute";
static const char *path_spi = "/proc/net/ipsec_spi";
FILE *file;
char line[1024], src[INET6_ADDRSTRLEN + 9], dst[INET6_ADDRSTRLEN + 9];
char *said = NULL, *pos;
policy_entry_t *policy, *found = NULL;
status_t status = FAILED;
if (direction == POLICY_FWD)
{
/* we do not install forward policies */
return FAILED;
}
DBG2(DBG_KNL, "querying policy %R === %R %N", src_ts, dst_ts,
policy_dir_names, direction);
/* create a policy */
policy = create_policy_entry(src_ts, dst_ts, direction);
/* find a matching policy */
this->mutex->lock(this->mutex);
if (this->policies->find_first(this->policies,
(linked_list_match_t)policy_entry_equals, (void**)&found, policy) != SUCCESS)
{
this->mutex->unlock(this->mutex);
DBG1(DBG_KNL, "querying policy %R === %R %N failed, not found", src_ts,
dst_ts, policy_dir_names, direction);
policy_entry_destroy(policy);
return NOT_FOUND;
}
policy_entry_destroy(policy);
policy = found;
/* src and dst selectors in KLIPS are of the form NET_ADDR/NETBITS:PROTO */
snprintf(src, sizeof(src), "%H/%d:%d", policy->src.net, policy->src.mask,
policy->src.proto);
src[sizeof(src) - 1] = '\0';
snprintf(dst, sizeof(dst), "%H/%d:%d", policy->dst.net, policy->dst.mask,
policy->dst.proto);
dst[sizeof(dst) - 1] = '\0';
this->mutex->unlock(this->mutex);
/* we try to find the matching eroute first */
file = fopen(path_eroute, "r");
if (file == NULL)
{
DBG1(DBG_KNL, "unable to query policy %R === %R %N: %s (%d)", src_ts,
dst_ts, policy_dir_names, direction, strerror(errno), errno);
return FAILED;
}
/* read line by line where each line looks like:
* packets src -> dst => said */
while (fgets(line, sizeof(line), file))
{
enumerator_t *enumerator;
char *token;
int i = 0;
enumerator = enumerator_create_token(line, " \t", " \t\n");
while (enumerator->enumerate(enumerator, &token))
{
switch (i++)
{
case 0: /* packets */
continue;
case 1: /* src */
if (streq(token, src))
{
continue;
}
break;
case 2: /* -> */
continue;
case 3: /* dst */
if (streq(token, dst))
{
continue;
}
break;
case 4: /* => */
continue;
case 5: /* said */
said = strdup(token);
break;
}
break;
}
enumerator->destroy(enumerator);
if (i == 5)
{
/* eroute matched */
break;
}
}
fclose(file);
if (said == NULL)
{
DBG1(DBG_KNL, "unable to query policy %R === %R %N: found no matching"
" eroute", src_ts, dst_ts, policy_dir_names, direction);
return FAILED;
}
/* compared with the one in the spi entry the SA ID from the eroute entry
* has an additional ":PROTO" appended, which we need to cut off */
pos = strrchr(said, ':');
*pos = '\0';
/* now we try to find the matching spi entry */
file = fopen(path_spi, "r");
if (file == NULL)
{
DBG1(DBG_KNL, "unable to query policy %R === %R %N: %s (%d)", src_ts,
dst_ts, policy_dir_names, direction, strerror(errno), errno);
return FAILED;
}
while (fgets(line, sizeof(line), file))
{
if (strneq(line, said, strlen(said)))
{
/* fine we found the correct line, now find the idle time */
u_int32_t idle_time;
pos = strstr(line, IDLE_PREFIX);
if (pos == NULL)
{
/* no idle time, i.e. this SA has not been used yet */
break;
}
if (sscanf(pos, IDLE_PREFIX"%u", &idle_time) <= 0)
{
/* idle time not valid */
break;
}
*use_time = time_monotonic(NULL) - idle_time;
status = SUCCESS;
break;
}
}
fclose(file);
free(said);
return status;
}
METHOD(kernel_ipsec_t, del_policy, status_t,
private_kernel_klips_ipsec_t *this, traffic_selector_t *src_ts,
traffic_selector_t *dst_ts, policy_dir_t direction, u_int32_t reqid,
mark_t mark, bool unrouted)
{
unsigned char request[PFKEY_BUFFER_SIZE];
struct sadb_msg *msg = (struct sadb_msg*)request, *out;
policy_entry_t *policy, *found = NULL;
route_entry_t *route;
size_t len;
if (direction == POLICY_FWD)
{
/* no forward policies for KLIPS */
return SUCCESS;
}
DBG2(DBG_KNL, "deleting policy %R === %R %N", src_ts, dst_ts,
policy_dir_names, direction);
/* create a policy */
policy = create_policy_entry(src_ts, dst_ts, direction);
/* find a matching policy */
this->mutex->lock(this->mutex);
if (this->policies->find_first(this->policies,
(linked_list_match_t)policy_entry_equals, (void**)&found, policy) != SUCCESS)
{
this->mutex->unlock(this->mutex);
DBG1(DBG_KNL, "deleting policy %R === %R %N failed, not found", src_ts,
dst_ts, policy_dir_names, direction);
policy_entry_destroy(policy);
return NOT_FOUND;
}
policy_entry_destroy(policy);
/* decrease appropriate counter */
unrouted ? found->trapcount-- : found->activecount--;
if (found->trapcount == 0)
{
/* if this policy is finally unrouted, we reset the reqid because it
* may still be actively used and there might be a pending acquire for
* this policy. */
found->reqid = 0;
}
if (found->activecount > 0)
{
/* is still used by SAs, keep in kernel */
this->mutex->unlock(this->mutex);
DBG2(DBG_KNL, "policy still used by another CHILD_SA, not removed");
return SUCCESS;
}
else if (found->activecount == 0 && found->trapcount > 0)
{
/* for a policy that is not used actively anymore, but is still trapped
* by another child SA we replace the current eroute with a %trap eroute */
DBG2(DBG_KNL, "policy still routed by another CHILD_SA, not removed");
memset(&request, 0, sizeof(request));
build_addflow(msg, SADB_X_SATYPE_INT, htonl(SPI_TRAP), NULL, NULL,
found->src.net, found->src.mask, found->dst.net,
found->dst.mask, found->src.proto, TRUE);
this->mutex->unlock(this->mutex);
return pfkey_send_ack(this, msg);
}
/* remove if last reference */
this->policies->remove(this->policies, found, NULL);
policy = found;
this->mutex->unlock(this->mutex);
memset(&request, 0, sizeof(request));
build_delflow(msg, 0, policy->src.net, policy->src.mask, policy->dst.net,
policy->dst.mask, policy->src.proto);
route = policy->route;
policy->route = NULL;
policy_entry_destroy(policy);
if (pfkey_send(this, msg, &out, &len) != SUCCESS)
{
DBG1(DBG_KNL, "unable to delete policy %R === %R %N", src_ts, dst_ts,
policy_dir_names, direction);
return FAILED;
}
else if (out->sadb_msg_errno)
{
DBG1(DBG_KNL, "unable to delete policy %R === %R %N: %s (%d)", src_ts,
dst_ts, policy_dir_names, direction,
strerror(out->sadb_msg_errno), out->sadb_msg_errno);
free(out);
return FAILED;
}
free(out);
if (route)
{
ipsec_dev_t *dev;
if (hydra->kernel_interface->del_route(hydra->kernel_interface,
route->dst_net, route->prefixlen, route->gateway,
route->src_ip, route->if_name) != SUCCESS)
{
DBG1(DBG_KNL, "error uninstalling route installed with"
" policy %R === %R %N", src_ts, dst_ts,
policy_dir_names, direction);
}
/* we have to detach the ipsec interface from the physical one over which
* this SA ran (if it is not used by any other) */
this->mutex->lock(this->mutex);
if (find_ipsec_dev(this, route->if_name, &dev) == SUCCESS)
{
/* fine, we found a matching device object, let's check if we have
* to detach it. */
if (--dev->refcount == 0)
{
if (detach_ipsec_dev(dev->name, dev->phys_name) != SUCCESS)
{
DBG1(DBG_KNL, "failed to detach virtual interface %s"
" from %s", dev->name, dev->phys_name);
}
dev->phys_name[0] = '\0';
}
}
this->mutex->unlock(this->mutex);
route_entry_destroy(route);
}
return SUCCESS;
}
/**
* Initialize the list of ipsec devices
*/
static void init_ipsec_devices(private_kernel_klips_ipsec_t *this)
{
int i, count = lib->settings->get_int(lib->settings,
"%s.plugins.kernel-klips.ipsec_dev_count",
DEFAULT_IPSEC_DEV_COUNT, hydra->daemon);
for (i = 0; i < count; ++i)
{
ipsec_dev_t *dev = malloc_thing(ipsec_dev_t);
snprintf(dev->name, IFNAMSIZ, IPSEC_DEV_PREFIX"%d", i);
dev->name[IFNAMSIZ - 1] = '\0';
dev->phys_name[0] = '\0';
dev->refcount = 0;
this->ipsec_devices->insert_last(this->ipsec_devices, dev);
/* detach any previously attached ipsec device */
detach_ipsec_dev(dev->name, dev->phys_name);
}
}
/**
* Register a socket for ACQUIRE/EXPIRE messages
*/
static status_t register_pfkey_socket(private_kernel_klips_ipsec_t *this, u_int8_t satype)
{
unsigned char request[PFKEY_BUFFER_SIZE];
struct sadb_msg *msg, *out;
size_t len;
memset(&request, 0, sizeof(request));
msg = (struct sadb_msg*)request;
msg->sadb_msg_version = PF_KEY_V2;
msg->sadb_msg_type = SADB_REGISTER;
msg->sadb_msg_satype = satype;
msg->sadb_msg_len = PFKEY_LEN(sizeof(struct sadb_msg));
if (pfkey_send_socket(this, this->socket_events, msg, &out, &len) != SUCCESS)
{
DBG1(DBG_KNL, "unable to register PF_KEY socket");
return FAILED;
}
else if (out->sadb_msg_errno)
{
DBG1(DBG_KNL, "unable to register PF_KEY socket: %s (%d)",
strerror(out->sadb_msg_errno), out->sadb_msg_errno);
free(out);
return FAILED;
}
free(out);
return SUCCESS;
}
METHOD(kernel_ipsec_t, bypass_socket, bool,
private_kernel_klips_ipsec_t *this, int fd, int family)
{
/* KLIPS does not need a bypass policy for IKE */
return TRUE;
}
METHOD(kernel_ipsec_t, destroy, void,
private_kernel_klips_ipsec_t *this)
{
if (this->job)
{
this->job->cancel(this->job);
}
if (this->socket > 0)
{
close(this->socket);
}
if (this->socket_events > 0)
{
close(this->socket_events);
}
this->mutex_pfkey->destroy(this->mutex_pfkey);
this->mutex->destroy(this->mutex);
this->ipsec_devices->destroy_function(this->ipsec_devices, (void*)ipsec_dev_destroy);
this->installed_sas->destroy_function(this->installed_sas, (void*)sa_entry_destroy);
this->allocated_spis->destroy_function(this->allocated_spis, (void*)sa_entry_destroy);
this->policies->destroy_function(this->policies, (void*)policy_entry_destroy);
free(this);
}
/*
* Described in header.
*/
kernel_klips_ipsec_t *kernel_klips_ipsec_create()
{
private_kernel_klips_ipsec_t *this;
INIT(this,
.public = {
.interface = {
.get_spi = _get_spi,
.get_cpi = _get_cpi,
.add_sa = _add_sa,
.update_sa = _update_sa,
.query_sa = _query_sa,
.del_sa = _del_sa,
.add_policy = _add_policy,
.query_policy = _query_policy,
.del_policy = _del_policy,
.bypass_socket = _bypass_socket,
.destroy = _destroy,
},
},
.policies = linked_list_create(),
.allocated_spis = linked_list_create(),
.installed_sas = linked_list_create(),
.ipsec_devices = linked_list_create(),
.mutex = mutex_create(MUTEX_TYPE_DEFAULT),
.mutex_pfkey = mutex_create(MUTEX_TYPE_DEFAULT),
.install_routes = lib->settings->get_bool(lib->settings,
"%s.install_routes", TRUE,
hydra->daemon),
);
/* initialize ipsec devices */
init_ipsec_devices(this);
/* create a PF_KEY socket to communicate with the kernel */
this->socket = socket(PF_KEY, SOCK_RAW, PF_KEY_V2);
if (this->socket <= 0)
{
DBG1(DBG_KNL, "unable to create PF_KEY socket");
destroy(this);
return NULL;
}
/* create a PF_KEY socket for ACQUIRE & EXPIRE */
this->socket_events = socket(PF_KEY, SOCK_RAW, PF_KEY_V2);
if (this->socket_events <= 0)
{
DBG1(DBG_KNL, "unable to create PF_KEY event socket");
destroy(this);
return NULL;
}
/* register the event socket */
if (register_pfkey_socket(this, SADB_SATYPE_ESP) != SUCCESS ||
register_pfkey_socket(this, SADB_SATYPE_AH) != SUCCESS)
{
DBG1(DBG_KNL, "unable to register PF_KEY event socket");
destroy(this);
return NULL;
}
this->job = callback_job_create_with_prio((callback_job_cb_t)receive_events,
this, NULL, NULL, JOB_PRIO_CRITICAL);
lib->processor->queue_job(lib->processor, (job_t*)this->job);
return &this->public;
}