strongswan/src/pluto/ipsec_doi.c

5650 lines
153 KiB
C

/* IPsec DOI and Oakley resolution routines
* Copyright (C) 1997 Angelos D. Keromytis.
* Copyright (C) 1998-2002 D. Hugh Redelmeier.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version. See <http://www.fsf.org/copyleft/gpl.txt>.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* RCSID $Id: ipsec_doi.c,v 1.39 2006/04/22 21:59:20 as Exp $
*/
#include <stdio.h>
#include <string.h>
#include <stddef.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <resolv.h>
#include <arpa/nameser.h> /* missing from <resolv.h> on old systems */
#include <sys/queue.h>
#include <sys/time.h> /* for gettimeofday */
#include <freeswan.h>
#include <ipsec_policy.h>
#include "constants.h"
#include "defs.h"
#include "mp_defs.h"
#include "state.h"
#include "id.h"
#include "x509.h"
#include "crl.h"
#include "ca.h"
#include "certs.h"
#include "smartcard.h"
#include "connections.h"
#include "keys.h"
#include "packet.h"
#include "demux.h" /* needs packet.h */
#include "adns.h" /* needs <resolv.h> */
#include "dnskey.h" /* needs keys.h and adns.h */
#include "kernel.h"
#include "log.h"
#include "cookie.h"
#include "server.h"
#include "spdb.h"
#include "timer.h"
#include "rnd.h"
#include "ipsec_doi.h" /* needs demux.h and state.h */
#include "whack.h"
#include "fetch.h"
#include "pkcs7.h"
#include "asn1.h"
#include "sha1.h"
#include "md5.h"
#include "crypto.h" /* requires sha1.h and md5.h */
#include "vendor.h"
#include "alg_info.h"
#include "ike_alg.h"
#include "kernel_alg.h"
#ifdef NAT_TRAVERSAL
#include "nat_traversal.h"
#endif
#ifdef VIRTUAL_IP
#include "virtual.h"
#endif
/*
* are we sending Pluto's Vendor ID?
*/
#ifdef VENDORID
#define SEND_PLUTO_VID 1
#else /* !VENDORID */
#define SEND_PLUTO_VID 0
#endif /* !VENDORID */
/*
* are we sending an XAUTH VID (Cisco Mode Config Interoperability)?
*/
#ifdef XAUTH_VID
#define SEND_XAUTH_VID 1
#else /* !XAUTH_VID */
#define SEND_XAUTH_VID 0
#endif /* !XAUTH_VID */
/* MAGIC: perform f, a function that returns notification_t
* and return from the ENCLOSING stf_status returning function if it fails.
*/
#define RETURN_STF_FAILURE(f) \
{ int r = (f); if (r != NOTHING_WRONG) return STF_FAIL + r; }
/* create output HDR as replica of input HDR */
void
echo_hdr(struct msg_digest *md, bool enc, u_int8_t np)
{
struct isakmp_hdr r_hdr = md->hdr; /* mostly same as incoming header */
r_hdr.isa_flags &= ~ISAKMP_FLAG_COMMIT; /* we won't ever turn on this bit */
if (enc)
r_hdr.isa_flags |= ISAKMP_FLAG_ENCRYPTION;
/* some day, we may have to set r_hdr.isa_version */
r_hdr.isa_np = np;
if (!out_struct(&r_hdr, &isakmp_hdr_desc, &md->reply, &md->rbody))
impossible(); /* surely must have room and be well-formed */
}
/* Compute DH shared secret from our local secret and the peer's public value.
* We make the leap that the length should be that of the group
* (see quoted passage at start of ACCEPT_KE).
*/
static void
compute_dh_shared(struct state *st, const chunk_t g
, const struct oakley_group_desc *group)
{
MP_INT mp_g, mp_shared;
struct timeval tv0, tv1;
unsigned long tv_diff;
gettimeofday(&tv0, NULL);
passert(st->st_sec_in_use);
n_to_mpz(&mp_g, g.ptr, g.len);
mpz_init(&mp_shared);
mpz_powm(&mp_shared, &mp_g, &st->st_sec, group->modulus);
mpz_clear(&mp_g);
freeanychunk(st->st_shared); /* happens in odd error cases */
st->st_shared = mpz_to_n(&mp_shared, group->bytes);
mpz_clear(&mp_shared);
gettimeofday(&tv1, NULL);
tv_diff=(tv1.tv_sec - tv0.tv_sec) * 1000000 + (tv1.tv_usec - tv0.tv_usec);
DBG(DBG_CRYPT,
DBG_log("compute_dh_shared(): time elapsed (%s): %ld usec"
, enum_show(&oakley_group_names, st->st_oakley.group->group)
, tv_diff);
);
/* if took more than 200 msec ... */
if (tv_diff > 200000) {
loglog(RC_LOG_SERIOUS, "WARNING: compute_dh_shared(): for %s took "
"%ld usec"
, enum_show(&oakley_group_names, st->st_oakley.group->group)
, tv_diff);
}
DBG_cond_dump_chunk(DBG_CRYPT, "DH shared secret:\n", st->st_shared);
}
/* if we haven't already done so, compute a local DH secret (st->st_sec) and
* the corresponding public value (g). This is emitted as a KE payload.
*/
static bool
build_and_ship_KE(struct state *st, chunk_t *g
, const struct oakley_group_desc *group, pb_stream *outs, u_int8_t np)
{
if (!st->st_sec_in_use)
{
u_char tmp[LOCALSECRETSIZE];
MP_INT mp_g;
get_rnd_bytes(tmp, LOCALSECRETSIZE);
st->st_sec_in_use = TRUE;
n_to_mpz(&st->st_sec, tmp, LOCALSECRETSIZE);
mpz_init(&mp_g);
mpz_powm(&mp_g, &groupgenerator, &st->st_sec, group->modulus);
freeanychunk(*g); /* happens in odd error cases */
*g = mpz_to_n(&mp_g, group->bytes);
mpz_clear(&mp_g);
DBG(DBG_CRYPT,
DBG_dump("Local DH secret:\n", tmp, LOCALSECRETSIZE);
DBG_dump_chunk("Public DH value sent:\n", *g));
}
return out_generic_chunk(np, &isakmp_keyex_desc, outs, *g, "keyex value");
}
/* accept_ke
*
* Check and accept DH public value (Gi or Gr) from peer's message.
* According to RFC2409 "The Internet key exchange (IKE)" 5:
* The Diffie-Hellman public value passed in a KE payload, in either
* a phase 1 or phase 2 exchange, MUST be the length of the negotiated
* Diffie-Hellman group enforced, if necessary, by pre-pending the
* value with zeros.
*/
static notification_t
accept_KE(chunk_t *dest, const char *val_name
, const struct oakley_group_desc *gr
, pb_stream *pbs)
{
if (pbs_left(pbs) != gr->bytes)
{
loglog(RC_LOG_SERIOUS, "KE has %u byte DH public value; %u required"
, (unsigned) pbs_left(pbs), (unsigned) gr->bytes);
/* XXX Could send notification back */
return INVALID_KEY_INFORMATION;
}
clonereplacechunk(*dest, pbs->cur, pbs_left(pbs), val_name);
DBG_cond_dump_chunk(DBG_CRYPT, "DH public value received:\n", *dest);
return NOTHING_WRONG;
}
/* accept_PFS_KE
*
* Check and accept optional Quick Mode KE payload for PFS.
* Extends ACCEPT_PFS to check whether KE is allowed or required.
*/
static notification_t
accept_PFS_KE(struct msg_digest *md, chunk_t *dest
, const char *val_name, const char *msg_name)
{
struct state *st = md->st;
struct payload_digest *const ke_pd = md->chain[ISAKMP_NEXT_KE];
if (ke_pd == NULL)
{
if (st->st_pfs_group != NULL)
{
loglog(RC_LOG_SERIOUS, "missing KE payload in %s message", msg_name);
return INVALID_KEY_INFORMATION;
}
}
else
{
if (st->st_pfs_group == NULL)
{
loglog(RC_LOG_SERIOUS, "%s message KE payload requires a GROUP_DESCRIPTION attribute in SA"
, msg_name);
return INVALID_KEY_INFORMATION;
}
if (ke_pd->next != NULL)
{
loglog(RC_LOG_SERIOUS, "%s message contains several KE payloads; we accept at most one", msg_name);
return INVALID_KEY_INFORMATION; /* ??? */
}
return accept_KE(dest, val_name, st->st_pfs_group, &ke_pd->pbs);
}
return NOTHING_WRONG;
}
static bool
build_and_ship_nonce(chunk_t *n, pb_stream *outs, u_int8_t np
, const char *name)
{
freeanychunk(*n);
setchunk(*n, alloc_bytes(DEFAULT_NONCE_SIZE, name), DEFAULT_NONCE_SIZE);
get_rnd_bytes(n->ptr, DEFAULT_NONCE_SIZE);
return out_generic_chunk(np, &isakmp_nonce_desc, outs, *n, name);
}
static bool
collect_rw_ca_candidates(struct msg_digest *md, generalName_t **top)
{
struct connection *d = find_host_connection(&md->iface->addr
, pluto_port, (ip_address*)NULL, md->sender_port, LEMPTY);
for (; d != NULL; d = d->hp_next)
{
/* must be a road warrior connection */
if (d->kind == CK_TEMPLATE && !(d->policy & POLICY_OPPO)
&& d->spd.that.ca.ptr != NULL)
{
generalName_t *gn;
bool new_entry = TRUE;
for (gn = *top; gn != NULL; gn = gn->next)
{
if (same_dn(gn->name, d->spd.that.ca))
{
new_entry = FALSE;
break;
}
}
if (new_entry)
{
gn = alloc_thing(generalName_t, "generalName");
gn->kind = GN_DIRECTORY_NAME;
gn->name = d->spd.that.ca;
gn->next = *top;
*top = gn;
}
}
}
return *top != NULL;
}
static bool
build_and_ship_CR(u_int8_t type, chunk_t ca, pb_stream *outs, u_int8_t np)
{
pb_stream cr_pbs;
struct isakmp_cr cr_hd;
cr_hd.isacr_np = np;
cr_hd.isacr_type = type;
/* build CR header */
if (!out_struct(&cr_hd, &isakmp_ipsec_cert_req_desc, outs, &cr_pbs))
return FALSE;
if (ca.ptr != NULL)
{
/* build CR body containing the distinguished name of the CA */
if (!out_chunk(ca, &cr_pbs, "CA"))
return FALSE;
}
close_output_pbs(&cr_pbs);
return TRUE;
}
/* Send a notification to the peer. We could decide
* whether to send the notification, based on the type and the
* destination, if we care to.
*/
static void
send_notification(struct state *sndst, u_int16_t type, struct state *encst,
msgid_t msgid, u_char *icookie, u_char *rcookie,
u_char *spi, size_t spisize, u_char protoid)
{
u_char buffer[1024];
pb_stream pbs, r_hdr_pbs;
u_char *r_hashval = NULL; /* where in reply to jam hash value */
u_char *r_hash_start = NULL; /* start of what is to be hashed */
passert((sndst) && (sndst->st_connection));
plog("sending %snotification %s to %s:%u"
, encst ? "encrypted " : ""
, enum_name(&notification_names, type)
, ip_str(&sndst->st_connection->spd.that.host_addr)
, (unsigned)sndst->st_connection->spd.that.host_port);
memset(buffer, 0, sizeof(buffer));
init_pbs(&pbs, buffer, sizeof(buffer), "ISAKMP notify");
/* HDR* */
{
struct isakmp_hdr hdr;
hdr.isa_version = ISAKMP_MAJOR_VERSION << ISA_MAJ_SHIFT | ISAKMP_MINOR_VERSION;
hdr.isa_np = encst ? ISAKMP_NEXT_HASH : ISAKMP_NEXT_N;
hdr.isa_xchg = ISAKMP_XCHG_INFO;
hdr.isa_msgid = msgid;
hdr.isa_flags = encst ? ISAKMP_FLAG_ENCRYPTION : 0;
if (icookie)
memcpy(hdr.isa_icookie, icookie, COOKIE_SIZE);
if (rcookie)
memcpy(hdr.isa_rcookie, rcookie, COOKIE_SIZE);
if (!out_struct(&hdr, &isakmp_hdr_desc, &pbs, &r_hdr_pbs))
impossible();
}
/* HASH -- value to be filled later */
if (encst)
{
pb_stream hash_pbs;
if (!out_generic(ISAKMP_NEXT_N, &isakmp_hash_desc, &r_hdr_pbs,
&hash_pbs))
impossible();
r_hashval = hash_pbs.cur; /* remember where to plant value */
if (!out_zero(
encst->st_oakley.hasher->hash_digest_size, &hash_pbs, "HASH"))
impossible();
close_output_pbs(&hash_pbs);
r_hash_start = r_hdr_pbs.cur; /* hash from after HASH */
}
/* Notification Payload */
{
pb_stream not_pbs;
struct isakmp_notification isan;
isan.isan_doi = ISAKMP_DOI_IPSEC;
isan.isan_np = ISAKMP_NEXT_NONE;
isan.isan_type = type;
isan.isan_spisize = spisize;
isan.isan_protoid = protoid;
if (!out_struct(&isan, &isakmp_notification_desc, &r_hdr_pbs, &not_pbs)
|| !out_raw(spi, spisize, &not_pbs, "spi"))
impossible();
close_output_pbs(&not_pbs);
}
/* calculate hash value and patch into Hash Payload */
if (encst)
{
struct hmac_ctx ctx;
hmac_init_chunk(&ctx, encst->st_oakley.hasher, encst->st_skeyid_a);
hmac_update(&ctx, (u_char *) &msgid, sizeof(msgid_t));
hmac_update(&ctx, r_hash_start, r_hdr_pbs.cur-r_hash_start);
hmac_final(r_hashval, &ctx);
DBG(DBG_CRYPT,
DBG_log("HASH computed:");
DBG_dump("", r_hashval, ctx.hmac_digest_size);
)
}
/* Encrypt message (preserve st_iv and st_new_iv) */
if (encst)
{
u_char old_iv[MAX_DIGEST_LEN];
u_char new_iv[MAX_DIGEST_LEN];
u_int old_iv_len = encst->st_iv_len;
u_int new_iv_len = encst->st_new_iv_len;
if (old_iv_len > MAX_DIGEST_LEN || new_iv_len > MAX_DIGEST_LEN)
impossible();
memcpy(old_iv, encst->st_iv, old_iv_len);
memcpy(new_iv, encst->st_new_iv, new_iv_len);
if (!IS_ISAKMP_SA_ESTABLISHED(encst->st_state))
{
memcpy(encst->st_ph1_iv, encst->st_new_iv, encst->st_new_iv_len);
encst->st_ph1_iv_len = encst->st_new_iv_len;
}
init_phase2_iv(encst, &msgid);
if (!encrypt_message(&r_hdr_pbs, encst))
impossible();
/* restore preserved st_iv and st_new_iv */
memcpy(encst->st_iv, old_iv, old_iv_len);
memcpy(encst->st_new_iv, new_iv, new_iv_len);
encst->st_iv_len = old_iv_len;
encst->st_new_iv_len = new_iv_len;
}
else
{
close_output_pbs(&r_hdr_pbs);
}
/* Send packet (preserve st_tpacket) */
{
chunk_t saved_tpacket = sndst->st_tpacket;
setchunk(sndst->st_tpacket, pbs.start, pbs_offset(&pbs));
send_packet(sndst, "ISAKMP notify");
sndst->st_tpacket = saved_tpacket;
}
}
void
send_notification_from_state(struct state *st, enum state_kind state,
u_int16_t type)
{
struct state *p1st;
passert(st);
if (state == STATE_UNDEFINED)
state = st->st_state;
if (IS_QUICK(state)) {
p1st = find_phase1_state(st->st_connection, ISAKMP_SA_ESTABLISHED_STATES);
if ((p1st == NULL) || (!IS_ISAKMP_SA_ESTABLISHED(p1st->st_state))) {
loglog(RC_LOG_SERIOUS,
"no Phase1 state for Quick mode notification");
return;
}
send_notification(st, type, p1st, generate_msgid(p1st),
st->st_icookie, st->st_rcookie, NULL, 0, PROTO_ISAKMP);
}
else if (IS_ISAKMP_ENCRYPTED(state)) {
send_notification(st, type, st, generate_msgid(st),
st->st_icookie, st->st_rcookie, NULL, 0, PROTO_ISAKMP);
}
else {
/* no ISAKMP SA established - don't encrypt notification */
send_notification(st, type, NULL, 0,
st->st_icookie, st->st_rcookie, NULL, 0, PROTO_ISAKMP);
}
}
void
send_notification_from_md(struct msg_digest *md, u_int16_t type)
{
/**
* Create a dummy state to be able to use send_packet in
* send_notification
*
* we need to set:
* st_connection->that.host_addr
* st_connection->that.host_port
* st_connection->interface
*/
struct state st;
struct connection cnx;
passert(md);
memset(&st, 0, sizeof(st));
memset(&cnx, 0, sizeof(cnx));
st.st_connection = &cnx;
cnx.spd.that.host_addr = md->sender;
cnx.spd.that.host_port = md->sender_port;
cnx.interface = md->iface;
send_notification(&st, type, NULL, 0,
md->hdr.isa_icookie, md->hdr.isa_rcookie, NULL, 0, PROTO_ISAKMP);
}
/* Send a Delete Notification to announce deletion of ISAKMP SA or
* inbound IPSEC SAs. Does nothing if no such SAs are being deleted.
* Delete Notifications cannot announce deletion of outbound IPSEC/ISAKMP SAs.
*/
void
send_delete(struct state *st)
{
pb_stream reply_pbs;
pb_stream r_hdr_pbs;
msgid_t msgid;
u_char buffer[8192];
struct state *p1st;
ip_said said[EM_MAXRELSPIS];
ip_said *ns = said;
u_char
*r_hashval, /* where in reply to jam hash value */
*r_hash_start; /* start of what is to be hashed */
bool isakmp_sa = FALSE;
if (IS_IPSEC_SA_ESTABLISHED(st->st_state))
{
p1st = find_phase1_state(st->st_connection, ISAKMP_SA_ESTABLISHED_STATES);
if (p1st == NULL)
{
DBG(DBG_CONTROL, DBG_log("no Phase 1 state for Delete"));
return;
}
if (st->st_ah.present)
{
ns->spi = st->st_ah.our_spi;
ns->dst = st->st_connection->spd.this.host_addr;
ns->proto = PROTO_IPSEC_AH;
ns++;
}
if (st->st_esp.present)
{
ns->spi = st->st_esp.our_spi;
ns->dst = st->st_connection->spd.this.host_addr;
ns->proto = PROTO_IPSEC_ESP;
ns++;
}
passert(ns != said); /* there must be some SAs to delete */
}
else if (IS_ISAKMP_SA_ESTABLISHED(st->st_state))
{
p1st = st;
isakmp_sa = TRUE;
}
else
{
return; /* nothing to do */
}
msgid = generate_msgid(p1st);
zero(buffer);
init_pbs(&reply_pbs, buffer, sizeof(buffer), "delete msg");
/* HDR* */
{
struct isakmp_hdr hdr;
hdr.isa_version = ISAKMP_MAJOR_VERSION << ISA_MAJ_SHIFT | ISAKMP_MINOR_VERSION;
hdr.isa_np = ISAKMP_NEXT_HASH;
hdr.isa_xchg = ISAKMP_XCHG_INFO;
hdr.isa_msgid = msgid;
hdr.isa_flags = ISAKMP_FLAG_ENCRYPTION;
memcpy(hdr.isa_icookie, p1st->st_icookie, COOKIE_SIZE);
memcpy(hdr.isa_rcookie, p1st->st_rcookie, COOKIE_SIZE);
if (!out_struct(&hdr, &isakmp_hdr_desc, &reply_pbs, &r_hdr_pbs))
impossible();
}
/* HASH -- value to be filled later */
{
pb_stream hash_pbs;
if (!out_generic(ISAKMP_NEXT_D, &isakmp_hash_desc, &r_hdr_pbs, &hash_pbs))
impossible();
r_hashval = hash_pbs.cur; /* remember where to plant value */
if (!out_zero(p1st->st_oakley.hasher->hash_digest_size, &hash_pbs, "HASH(1)"))
impossible();
close_output_pbs(&hash_pbs);
r_hash_start = r_hdr_pbs.cur; /* hash from after HASH(1) */
}
/* Delete Payloads */
if (isakmp_sa)
{
pb_stream del_pbs;
struct isakmp_delete isad;
u_char isakmp_spi[2*COOKIE_SIZE];
isad.isad_doi = ISAKMP_DOI_IPSEC;
isad.isad_np = ISAKMP_NEXT_NONE;
isad.isad_spisize = (2 * COOKIE_SIZE);
isad.isad_protoid = PROTO_ISAKMP;
isad.isad_nospi = 1;
memcpy(isakmp_spi, st->st_icookie, COOKIE_SIZE);
memcpy(isakmp_spi+COOKIE_SIZE, st->st_rcookie, COOKIE_SIZE);
if (!out_struct(&isad, &isakmp_delete_desc, &r_hdr_pbs, &del_pbs)
|| !out_raw(&isakmp_spi, (2*COOKIE_SIZE), &del_pbs, "delete payload"))
impossible();
close_output_pbs(&del_pbs);
}
else
{
while (ns != said)
{
pb_stream del_pbs;
struct isakmp_delete isad;
ns--;
isad.isad_doi = ISAKMP_DOI_IPSEC;
isad.isad_np = ns == said? ISAKMP_NEXT_NONE : ISAKMP_NEXT_D;
isad.isad_spisize = sizeof(ipsec_spi_t);
isad.isad_protoid = ns->proto;
isad.isad_nospi = 1;
if (!out_struct(&isad, &isakmp_delete_desc, &r_hdr_pbs, &del_pbs)
|| !out_raw(&ns->spi, sizeof(ipsec_spi_t), &del_pbs, "delete payload"))
impossible();
close_output_pbs(&del_pbs);
}
}
/* calculate hash value and patch into Hash Payload */
{
struct hmac_ctx ctx;
hmac_init_chunk(&ctx, p1st->st_oakley.hasher, p1st->st_skeyid_a);
hmac_update(&ctx, (u_char *) &msgid, sizeof(msgid_t));
hmac_update(&ctx, r_hash_start, r_hdr_pbs.cur-r_hash_start);
hmac_final(r_hashval, &ctx);
DBG(DBG_CRYPT,
DBG_log("HASH(1) computed:");
DBG_dump("", r_hashval, ctx.hmac_digest_size);
)
}
/* Do a dance to avoid needing a new state object.
* We use the Phase 1 State. This is the one with right
* IV, for one thing.
* The tricky bits are:
* - we need to preserve (save/restore) st_iv (but not st_iv_new)
* - we need to preserve (save/restore) st_tpacket.
*/
{
u_char old_iv[MAX_DIGEST_LEN];
chunk_t saved_tpacket = p1st->st_tpacket;
memcpy(old_iv, p1st->st_iv, p1st->st_iv_len);
init_phase2_iv(p1st, &msgid);
if (!encrypt_message(&r_hdr_pbs, p1st))
impossible();
setchunk(p1st->st_tpacket, reply_pbs.start, pbs_offset(&reply_pbs));
send_packet(p1st, "delete notify");
p1st->st_tpacket = saved_tpacket;
/* get back old IV for this state */
memcpy(p1st->st_iv, old_iv, p1st->st_iv_len);
}
}
void
accept_delete(struct state *st, struct msg_digest *md, struct payload_digest *p)
{
struct isakmp_delete *d = &(p->payload.delete);
size_t sizespi;
int i;
if (!md->encrypted)
{
loglog(RC_LOG_SERIOUS, "ignoring Delete SA payload: not encrypted");
return;
}
if (!IS_ISAKMP_SA_ESTABLISHED(st->st_state))
{
/* can't happen (if msg is encrypt), but just to be sure */
loglog(RC_LOG_SERIOUS, "ignoring Delete SA payload: "
"ISAKMP SA not established");
return;
}
if (d->isad_nospi == 0)
{
loglog(RC_LOG_SERIOUS, "ignoring Delete SA payload: no SPI");
return;
}
switch (d->isad_protoid)
{
case PROTO_ISAKMP:
sizespi = 2 * COOKIE_SIZE;
break;
case PROTO_IPSEC_AH:
case PROTO_IPSEC_ESP:
sizespi = sizeof(ipsec_spi_t);
break;
case PROTO_IPCOMP:
/* nothing interesting to delete */
return;
default:
loglog(RC_LOG_SERIOUS
, "ignoring Delete SA payload: unknown Protocol ID (%s)"
, enum_show(&protocol_names, d->isad_protoid));
return;
}
if (d->isad_spisize != sizespi)
{
loglog(RC_LOG_SERIOUS
, "ignoring Delete SA payload: bad SPI size (%d) for %s"
, d->isad_spisize, enum_show(&protocol_names, d->isad_protoid));
return;
}
if (pbs_left(&p->pbs) != d->isad_nospi * sizespi)
{
loglog(RC_LOG_SERIOUS
, "ignoring Delete SA payload: invalid payload size");
return;
}
for (i = 0; i < d->isad_nospi; i++)
{
u_char *spi = p->pbs.cur + (i * sizespi);
if (d->isad_protoid == PROTO_ISAKMP)
{
/**
* ISAKMP
*/
struct state *dst = find_state(spi /*iCookie*/
, spi+COOKIE_SIZE /*rCookie*/
, &st->st_connection->spd.that.host_addr
, MAINMODE_MSGID);
if (dst == NULL)
{
loglog(RC_LOG_SERIOUS, "ignoring Delete SA payload: "
"ISAKMP SA not found (maybe expired)");
}
else if (!same_peer_ids(st->st_connection, dst->st_connection, NULL))
{
/* we've not authenticated the relevant identities */
loglog(RC_LOG_SERIOUS, "ignoring Delete SA payload: "
"ISAKMP SA used to convey Delete has different IDs from ISAKMP SA it deletes");
}
else
{
struct connection *oldc;
oldc = cur_connection;
set_cur_connection(dst->st_connection);
#ifdef NAT_TRAVERSAL
if (nat_traversal_enabled)
nat_traversal_change_port_lookup(md, dst);
#endif
loglog(RC_LOG_SERIOUS, "received Delete SA payload: "
"deleting ISAKMP State #%lu", dst->st_serialno);
delete_state(dst);
set_cur_connection(oldc);
}
}
else
{
/**
* IPSEC (ESP/AH)
*/
bool bogus;
struct state *dst = find_phase2_state_to_delete(st
, d->isad_protoid
, *(ipsec_spi_t *)spi /* network order */
, &bogus);
if (dst == NULL)
{
loglog(RC_LOG_SERIOUS
, "ignoring Delete SA payload: %s SA(0x%08lx) not found (%s)"
, enum_show(&protocol_names, d->isad_protoid)
, (unsigned long)ntohl((unsigned long)*(ipsec_spi_t *)spi)
, bogus ? "our SPI - bogus implementation" : "maybe expired");
}
else
{
struct connection *rc = dst->st_connection;
struct connection *oldc;
oldc = cur_connection;
set_cur_connection(rc);
#ifdef NAT_TRAVERSAL
if (nat_traversal_enabled)
nat_traversal_change_port_lookup(md, dst);
#endif
if (rc->newest_ipsec_sa == dst->st_serialno
&& (rc->policy & POLICY_UP))
{
/* Last IPSec SA for a permanent connection that we
* have initiated. Replace it in a few seconds.
*
* Useful if the other peer is rebooting.
*/
#define DELETE_SA_DELAY EVENT_RETRANSMIT_DELAY_0
if (dst->st_event != NULL
&& dst->st_event->ev_type == EVENT_SA_REPLACE
&& dst->st_event->ev_time <= DELETE_SA_DELAY + now())
{
/* Patch from Angus Lees to ignore retransmited
* Delete SA.
*/
loglog(RC_LOG_SERIOUS, "received Delete SA payload: "
"already replacing IPSEC State #%lu in %d seconds"
, dst->st_serialno, (int)(dst->st_event->ev_time - now()));
}
else
{
loglog(RC_LOG_SERIOUS, "received Delete SA payload: "
"replace IPSEC State #%lu in %d seconds"
, dst->st_serialno, DELETE_SA_DELAY);
dst->st_margin = DELETE_SA_DELAY;
delete_event(dst);
event_schedule(EVENT_SA_REPLACE, DELETE_SA_DELAY, dst);
}
}
else
{
loglog(RC_LOG_SERIOUS, "received Delete SA(0x%08lx) payload: "
"deleting IPSEC State #%lu"
, (unsigned long)ntohl((unsigned long)*(ipsec_spi_t *)spi)
, dst->st_serialno);
delete_state(dst);
}
/* reset connection */
set_cur_connection(oldc);
}
}
}
}
/* The whole message must be a multiple of 4 octets.
* I'm not sure where this is spelled out, but look at
* rfc2408 3.6 Transform Payload.
* Note: it talks about 4 BYTE boundaries!
*/
void
close_message(pb_stream *pbs)
{
size_t padding = pad_up(pbs_offset(pbs), 4);
if (padding != 0)
(void) out_zero(padding, pbs, "message padding");
close_output_pbs(pbs);
}
/* Initiate an Oakley Main Mode exchange.
* --> HDR;SA
* Note: this is not called from demux.c
*/
static stf_status
main_outI1(int whack_sock, struct connection *c, struct state *predecessor
, lset_t policy, unsigned long try)
{
struct state *st = new_state();
pb_stream reply; /* not actually a reply, but you know what I mean */
pb_stream rbody;
int vids_to_send = 0;
/* set up new state */
st->st_connection = c;
set_cur_state(st); /* we must reset before exit */
st->st_policy = policy & ~POLICY_IPSEC_MASK;
st->st_whack_sock = whack_sock;
st->st_try = try;
st->st_state = STATE_MAIN_I1;
/* determine how many Vendor ID payloads we will be sending */
if (SEND_PLUTO_VID)
vids_to_send++;
if (SEND_XAUTH_VID)
vids_to_send++;
if (c->spd.this.cert.type == CERT_PGP)
vids_to_send++;
/* always send DPD Vendor ID */
vids_to_send++;
#ifdef NAT_TRAVERSAL
if (nat_traversal_enabled)
vids_to_send++;
#endif
get_cookie(TRUE, st->st_icookie, COOKIE_SIZE, &c->spd.that.host_addr);
insert_state(st); /* needs cookies, connection, and msgid (0) */
if (HAS_IPSEC_POLICY(policy))
add_pending(dup_any(whack_sock), st, c, policy, 1
, predecessor == NULL? SOS_NOBODY : predecessor->st_serialno);
if (predecessor == NULL)
plog("initiating Main Mode");
else
plog("initiating Main Mode to replace #%lu", predecessor->st_serialno);
/* set up reply */
init_pbs(&reply, reply_buffer, sizeof(reply_buffer), "reply packet");
/* HDR out */
{
struct isakmp_hdr hdr;
zero(&hdr); /* default to 0 */
hdr.isa_version = ISAKMP_MAJOR_VERSION << ISA_MAJ_SHIFT | ISAKMP_MINOR_VERSION;
hdr.isa_np = ISAKMP_NEXT_SA;
hdr.isa_xchg = ISAKMP_XCHG_IDPROT;
memcpy(hdr.isa_icookie, st->st_icookie, COOKIE_SIZE);
/* R-cookie, flags and MessageID are left zero */
if (!out_struct(&hdr, &isakmp_hdr_desc, &reply, &rbody))
{
reset_cur_state();
return STF_INTERNAL_ERROR;
}
}
/* SA out */
{
u_char *sa_start = rbody.cur;
lset_t auth_policy = policy & POLICY_ID_AUTH_MASK;
if (!out_sa(&rbody, &oakley_sadb[auth_policy >> POLICY_ISAKMP_SHIFT]
, st, TRUE, vids_to_send-- ? ISAKMP_NEXT_VID : ISAKMP_NEXT_NONE))
{
reset_cur_state();
return STF_INTERNAL_ERROR;
}
/* save initiator SA for later HASH */
passert(st->st_p1isa.ptr == NULL); /* no leak! (MUST be first time) */
clonetochunk(st->st_p1isa, sa_start, rbody.cur - sa_start
, "sa in main_outI1");
}
/* if enabled send Pluto Vendor ID */
if (SEND_PLUTO_VID)
{
if (!out_vendorid(vids_to_send-- ? ISAKMP_NEXT_VID : ISAKMP_NEXT_NONE
, &rbody, VID_STRONGSWAN))
{
reset_cur_state();
return STF_INTERNAL_ERROR;
}
}
/* if enabled send XAUTH Vendor ID */
if (SEND_XAUTH_VID)
{
if (!out_vendorid(vids_to_send-- ? ISAKMP_NEXT_VID : ISAKMP_NEXT_NONE
, &rbody, VID_MISC_XAUTH))
{
reset_cur_state();
return STF_INTERNAL_ERROR;
}
}
/* if we have an OpenPGP certificate we assume an
* OpenPGP peer and have to send the Vendor ID
*/
if (c->spd.this.cert.type == CERT_PGP)
{
if (!out_vendorid(vids_to_send-- ? ISAKMP_NEXT_VID : ISAKMP_NEXT_NONE
, &rbody, VID_OPENPGP))
{
reset_cur_state();
return STF_INTERNAL_ERROR;
}
}
/* Announce our ability to do Dead Peer Detection to the peer */
{
if (!out_vendorid(vids_to_send-- ? ISAKMP_NEXT_VID : ISAKMP_NEXT_NONE
, &rbody, VID_MISC_DPD))
{
reset_cur_state();
return STF_INTERNAL_ERROR;
}
}
#ifdef NAT_TRAVERSAL
if (nat_traversal_enabled)
{
/* Add supported NAT-Traversal VID */
if (!nat_traversal_add_vid(vids_to_send-- ? ISAKMP_NEXT_VID : ISAKMP_NEXT_NONE
, &rbody))
{
reset_cur_state();
return STF_INTERNAL_ERROR;
}
}
#endif
close_message(&rbody);
close_output_pbs(&reply);
clonetochunk(st->st_tpacket, reply.start, pbs_offset(&reply)
, "reply packet for main_outI1");
/* Transmit */
send_packet(st, "main_outI1");
/* Set up a retransmission event, half a minute henceforth */
delete_event(st);
event_schedule(EVENT_RETRANSMIT, EVENT_RETRANSMIT_DELAY_0, st);
if (predecessor != NULL)
{
update_pending(predecessor, st);
whack_log(RC_NEW_STATE + STATE_MAIN_I1
, "%s: initiate, replacing #%lu"
, enum_name(&state_names, st->st_state)
, predecessor->st_serialno);
}
else
{
whack_log(RC_NEW_STATE + STATE_MAIN_I1
, "%s: initiate", enum_name(&state_names, st->st_state));
}
reset_cur_state();
return STF_OK;
}
void
ipsecdoi_initiate(int whack_sock
, struct connection *c
, lset_t policy
, unsigned long try
, so_serial_t replacing)
{
/* If there's already an ISAKMP SA established, use that and
* go directly to Quick Mode. We are even willing to use one
* that is still being negotiated, but only if we are the Initiator
* (thus we can be sure that the IDs are not going to change;
* other issues around intent might matter).
* Note: there is no way to initiate with a Road Warrior.
*/
struct state *st = find_phase1_state(c
, ISAKMP_SA_ESTABLISHED_STATES | PHASE1_INITIATOR_STATES);
if (st == NULL)
{
(void) main_outI1(whack_sock, c, NULL, policy, try);
}
else if (HAS_IPSEC_POLICY(policy))
{
if (!IS_ISAKMP_SA_ESTABLISHED(st->st_state))
{
/* leave our Phase 2 negotiation pending */
add_pending(whack_sock, st, c, policy, try, replacing);
}
else
{
/* ??? we assume that peer_nexthop_sin isn't important:
* we already have it from when we negotiated the ISAKMP SA!
* It isn't clear what to do with the error return.
*/
(void) quick_outI1(whack_sock, st, c, policy, try, replacing);
}
}
else
{
close_any(whack_sock);
}
}
/* Replace SA with a fresh one that is similar
*
* Shares some logic with ipsecdoi_initiate, but not the same!
* - we must not reuse the ISAKMP SA if we are trying to replace it!
* - if trying to replace IPSEC SA, use ipsecdoi_initiate to build
* ISAKMP SA if needed.
* - duplicate whack fd, if live.
* Does not delete the old state -- someone else will do that.
*/
void
ipsecdoi_replace(struct state *st, unsigned long try)
{
int whack_sock = dup_any(st->st_whack_sock);
lset_t policy = st->st_policy;
if (IS_PHASE1(st->st_state))
{
passert(!HAS_IPSEC_POLICY(policy));
(void) main_outI1(whack_sock, st->st_connection, st, policy, try);
}
else
{
/* Add features of actual old state to policy. This ensures
* that rekeying doesn't downgrade security. I admit that
* this doesn't capture everything.
*/
if (st->st_pfs_group != NULL)
policy |= POLICY_PFS;
if (st->st_ah.present)
{
policy |= POLICY_AUTHENTICATE;
if (st->st_ah.attrs.encapsulation == ENCAPSULATION_MODE_TUNNEL)
policy |= POLICY_TUNNEL;
}
if (st->st_esp.present && st->st_esp.attrs.transid != ESP_NULL)
{
policy |= POLICY_ENCRYPT;
if (st->st_esp.attrs.encapsulation == ENCAPSULATION_MODE_TUNNEL)
policy |= POLICY_TUNNEL;
}
if (st->st_ipcomp.present)
{
policy |= POLICY_COMPRESS;
if (st->st_ipcomp.attrs.encapsulation == ENCAPSULATION_MODE_TUNNEL)
policy |= POLICY_TUNNEL;
}
passert(HAS_IPSEC_POLICY(policy));
ipsecdoi_initiate(whack_sock, st->st_connection, policy, try
, st->st_serialno);
}
}
/* SKEYID for preshared keys.
* See draft-ietf-ipsec-ike-01.txt 4.1
*/
static bool
skeyid_preshared(struct state *st)
{
const chunk_t *pss = get_preshared_secret(st->st_connection);
if (pss == NULL)
{
loglog(RC_LOG_SERIOUS, "preshared secret disappeared!");
return FALSE;
}
else
{
struct hmac_ctx ctx;
hmac_init_chunk(&ctx, st->st_oakley.hasher, *pss);
hmac_update_chunk(&ctx, st->st_ni);
hmac_update_chunk(&ctx, st->st_nr);
hmac_final_chunk(st->st_skeyid, "st_skeyid in skeyid_preshared()", &ctx);
return TRUE;
}
}
static bool
skeyid_digisig(struct state *st)
{
struct hmac_ctx ctx;
chunk_t nir;
/* We need to hmac_init with the concatenation of Ni_b and Nr_b,
* so we have to build a temporary concatentation.
*/
nir.len = st->st_ni.len + st->st_nr.len;
nir.ptr = alloc_bytes(nir.len, "Ni + Nr in skeyid_digisig");
memcpy(nir.ptr, st->st_ni.ptr, st->st_ni.len);
memcpy(nir.ptr+st->st_ni.len, st->st_nr.ptr, st->st_nr.len);
hmac_init_chunk(&ctx, st->st_oakley.hasher, nir);
pfree(nir.ptr);
hmac_update_chunk(&ctx, st->st_shared);
hmac_final_chunk(st->st_skeyid, "st_skeyid in skeyid_digisig()", &ctx);
return TRUE;
}
/* Generate the SKEYID_* and new IV
* See draft-ietf-ipsec-ike-01.txt 4.1
*/
static bool
generate_skeyids_iv(struct state *st)
{
/* Generate the SKEYID */
switch (st->st_oakley.auth)
{
case OAKLEY_PRESHARED_KEY:
if (!skeyid_preshared(st))
return FALSE;
break;
case OAKLEY_RSA_SIG:
if (!skeyid_digisig(st))
return FALSE;
break;
case OAKLEY_DSS_SIG:
/* XXX */
case OAKLEY_RSA_ENC:
case OAKLEY_RSA_ENC_REV:
case OAKLEY_ELGAMAL_ENC:
case OAKLEY_ELGAMAL_ENC_REV:
/* XXX */
default:
bad_case(st->st_oakley.auth);
}
/* generate SKEYID_* from SKEYID */
{
struct hmac_ctx ctx;
hmac_init_chunk(&ctx, st->st_oakley.hasher, st->st_skeyid);
/* SKEYID_D */
hmac_update_chunk(&ctx, st->st_shared);
hmac_update(&ctx, st->st_icookie, COOKIE_SIZE);
hmac_update(&ctx, st->st_rcookie, COOKIE_SIZE);
hmac_update(&ctx, "\0", 1);
hmac_final_chunk(st->st_skeyid_d, "st_skeyid_d in generate_skeyids_iv()", &ctx);
/* SKEYID_A */
hmac_reinit(&ctx);
hmac_update_chunk(&ctx, st->st_skeyid_d);
hmac_update_chunk(&ctx, st->st_shared);
hmac_update(&ctx, st->st_icookie, COOKIE_SIZE);
hmac_update(&ctx, st->st_rcookie, COOKIE_SIZE);
hmac_update(&ctx, "\1", 1);
hmac_final_chunk(st->st_skeyid_a, "st_skeyid_a in generate_skeyids_iv()", &ctx);
/* SKEYID_E */
hmac_reinit(&ctx);
hmac_update_chunk(&ctx, st->st_skeyid_a);
hmac_update_chunk(&ctx, st->st_shared);
hmac_update(&ctx, st->st_icookie, COOKIE_SIZE);
hmac_update(&ctx, st->st_rcookie, COOKIE_SIZE);
hmac_update(&ctx, "\2", 1);
hmac_final_chunk(st->st_skeyid_e, "st_skeyid_e in generate_skeyids_iv()", &ctx);
}
/* generate IV */
{
union hash_ctx hash_ctx;
const struct hash_desc *h = st->st_oakley.hasher;
st->st_new_iv_len = h->hash_digest_size;
passert(st->st_new_iv_len <= sizeof(st->st_new_iv));
DBG(DBG_CRYPT,
DBG_dump_chunk("DH_i:", st->st_gi);
DBG_dump_chunk("DH_r:", st->st_gr);
);
h->hash_init(&hash_ctx);
h->hash_update(&hash_ctx, st->st_gi.ptr, st->st_gi.len);
h->hash_update(&hash_ctx, st->st_gr.ptr, st->st_gr.len);
h->hash_final(st->st_new_iv, &hash_ctx);
}
/* Oakley Keying Material
* Derived from Skeyid_e: if it is not big enough, generate more
* using the PRF.
* See RFC 2409 "IKE" Appendix B
*/
{
/* const size_t keysize = st->st_oakley.encrypter->keydeflen/BITS_PER_BYTE; */
const size_t keysize = st->st_oakley.enckeylen/BITS_PER_BYTE;
u_char keytemp[MAX_OAKLEY_KEY_LEN + MAX_DIGEST_LEN];
u_char *k = st->st_skeyid_e.ptr;
if (keysize > st->st_skeyid_e.len)
{
struct hmac_ctx ctx;
size_t i = 0;
hmac_init_chunk(&ctx, st->st_oakley.hasher, st->st_skeyid_e);
hmac_update(&ctx, "\0", 1);
for (;;)
{
hmac_final(&keytemp[i], &ctx);
i += ctx.hmac_digest_size;
if (i >= keysize)
break;
hmac_reinit(&ctx);
hmac_update(&ctx, &keytemp[i - ctx.hmac_digest_size], ctx.hmac_digest_size);
}
k = keytemp;
}
clonereplacechunk(st->st_enc_key, k, keysize, "st_enc_key");
}
DBG(DBG_CRYPT,
DBG_dump_chunk("Skeyid: ", st->st_skeyid);
DBG_dump_chunk("Skeyid_d:", st->st_skeyid_d);
DBG_dump_chunk("Skeyid_a:", st->st_skeyid_a);
DBG_dump_chunk("Skeyid_e:", st->st_skeyid_e);
DBG_dump_chunk("enc key:", st->st_enc_key);
DBG_dump("IV:", st->st_new_iv, st->st_new_iv_len));
return TRUE;
}
/* Generate HASH_I or HASH_R for ISAKMP Phase I.
* This will *not* generate other hash payloads (eg. Phase II or Quick Mode,
* New Group Mode, or ISAKMP Informational Exchanges).
* If the hashi argument is TRUE, generate HASH_I; if FALSE generate HASH_R.
* If hashus argument is TRUE, we're generating a hash for our end.
* See RFC2409 IKE 5.
*
* Generating the SIG_I and SIG_R for DSS is an odd perversion of this:
* Most of the logic is the same, but SHA-1 is used in place of HMAC-whatever.
* The extensive common logic is embodied in main_mode_hash_body().
* See draft-ietf-ipsec-ike-01.txt 4.1 and 6.1.1.2
*/
typedef void (*hash_update_t)(union hash_ctx *, const u_char *, size_t) ;
static void
main_mode_hash_body(struct state *st
, bool hashi /* Initiator? */
, const pb_stream *idpl /* ID payload, as PBS */
, union hash_ctx *ctx
, void (*hash_update_void)(void *, const u_char *input, size_t))
{
#define HASH_UPDATE_T (union hash_ctx *, const u_char *input, unsigned int len)
hash_update_t hash_update=(hash_update_t) hash_update_void;
#if 0 /* if desperate to debug hashing */
# define hash_update(ctx, input, len) { \
DBG_dump("hash input", input, len); \
(hash_update)(ctx, input, len); \
}
#endif
# define hash_update_chunk(ctx, ch) hash_update((ctx), (ch).ptr, (ch).len)
if (hashi)
{
hash_update_chunk(ctx, st->st_gi);
hash_update_chunk(ctx, st->st_gr);
hash_update(ctx, st->st_icookie, COOKIE_SIZE);
hash_update(ctx, st->st_rcookie, COOKIE_SIZE);
}
else
{
hash_update_chunk(ctx, st->st_gr);
hash_update_chunk(ctx, st->st_gi);
hash_update(ctx, st->st_rcookie, COOKIE_SIZE);
hash_update(ctx, st->st_icookie, COOKIE_SIZE);
}
DBG(DBG_CRYPT, DBG_log("hashing %lu bytes of SA"
, (unsigned long) (st->st_p1isa.len - sizeof(struct isakmp_generic))));
/* SA_b */
hash_update(ctx, st->st_p1isa.ptr + sizeof(struct isakmp_generic)
, st->st_p1isa.len - sizeof(struct isakmp_generic));
/* Hash identification payload, without generic payload header.
* We used to reconstruct ID Payload for this purpose, but now
* we use the bytes as they appear on the wire to avoid
* "spelling problems".
*/
hash_update(ctx
, idpl->start + sizeof(struct isakmp_generic)
, pbs_offset(idpl) - sizeof(struct isakmp_generic));
# undef hash_update_chunk
# undef hash_update
}
static size_t /* length of hash */
main_mode_hash(struct state *st
, u_char *hash_val /* resulting bytes */
, bool hashi /* Initiator? */
, const pb_stream *idpl) /* ID payload, as PBS; cur must be at end */
{
struct hmac_ctx ctx;
hmac_init_chunk(&ctx, st->st_oakley.hasher, st->st_skeyid);
main_mode_hash_body(st, hashi, idpl, &ctx.hash_ctx, ctx.h->hash_update);
hmac_final(hash_val, &ctx);
return ctx.hmac_digest_size;
}
#if 0 /* only needed for DSS */
static void
main_mode_sha1(struct state *st
, u_char *hash_val /* resulting bytes */
, size_t *hash_len /* length of hash */
, bool hashi /* Initiator? */
, const pb_stream *idpl) /* ID payload, as PBS */
{
union hash_ctx ctx;
SHA1Init(&ctx.ctx_sha1);
SHA1Update(&ctx.ctx_sha1, st->st_skeyid.ptr, st->st_skeyid.len);
*hash_len = SHA1_DIGEST_SIZE;
main_mode_hash_body(st, hashi, idpl, &ctx
, (void (*)(union hash_ctx *, const u_char *, unsigned int))&SHA1Update);
SHA1Final(hash_val, &ctx.ctx_sha1);
}
#endif
/* Create an RSA signature of a hash.
* Poorly specified in draft-ietf-ipsec-ike-01.txt 6.1.1.2.
* Use PKCS#1 version 1.5 encryption of hash (called
* RSAES-PKCS1-V1_5) in PKCS#2.
*/
static size_t
RSA_sign_hash(struct connection *c
, u_char sig_val[RSA_MAX_OCTETS]
, const u_char *hash_val, size_t hash_len)
{
size_t sz = 0;
smartcard_t *sc = c->spd.this.sc;
if (sc == NULL) /* no smartcard */
{
const struct RSA_private_key *k = get_RSA_private_key(c);
if (k == NULL)
return 0; /* failure: no key to use */
sz = k->pub.k;
passert(RSA_MIN_OCTETS <= sz && 4 + hash_len < sz && sz <= RSA_MAX_OCTETS);
sign_hash(k, hash_val, hash_len, sig_val, sz);
}
else if (sc->valid) /* if valid pin then sign hash on the smartcard */
{
lock_certs_and_keys("RSA_sign_hash");
if (!scx_establish_context(sc) || !scx_login(sc))
{
scx_release_context(sc);
unlock_certs_and_keys("RSA_sign_hash");
return 0;
}
sz = scx_get_keylength(sc);
if (sz == 0)
{
plog("failed to get keylength from smartcard");
scx_release_context(sc);
unlock_certs_and_keys("RSA_sign_hash");
return 0;
}
DBG(DBG_CONTROL | DBG_CRYPT,
DBG_log("signing hash with RSA key from smartcard (slot: %d, id: %s)"
, (int)sc->slot, sc->id)
)
sz = scx_sign_hash(sc, hash_val, hash_len, sig_val, sz) ? sz : 0;
if (!pkcs11_keep_state)
scx_release_context(sc);
unlock_certs_and_keys("RSA_sign_hash");
}
return sz;
}
/* Check a Main Mode RSA Signature against computed hash using RSA public key k.
*
* As a side effect, on success, the public key is copied into the
* state object to record the authenticator.
*
* Can fail because wrong public key is used or because hash disagrees.
* We distinguish because diagnostics should also.
*
* The result is NULL if the Signature checked out.
* Otherwise, the first character of the result indicates
* how far along failure occurred. A greater character signifies
* greater progress.
*
* Classes:
* 0 reserved for caller
* 1 SIG length doesn't match key length -- wrong key
* 2-8 malformed ECB after decryption -- probably wrong key
* 9 decrypted hash != computed hash -- probably correct key
*
* Although the math should be the same for generating and checking signatures,
* it is not: the knowledge of the private key allows more efficient (i.e.
* different) computation for encryption.
*/
static err_t
try_RSA_signature(const u_char hash_val[MAX_DIGEST_LEN], size_t hash_len
, const pb_stream *sig_pbs, pubkey_t *kr
, struct state *st)
{
const u_char *sig_val = sig_pbs->cur;
size_t sig_len = pbs_left(sig_pbs);
u_char s[RSA_MAX_OCTETS]; /* for decrypted sig_val */
u_char *hash_in_s = &s[sig_len - hash_len];
const struct RSA_public_key *k = &kr->u.rsa;
/* decrypt the signature -- reversing RSA_sign_hash */
if (sig_len != k->k)
{
/* XXX notification: INVALID_KEY_INFORMATION */
return "1" "SIG length does not match public key length";
}
/* actual exponentiation; see PKCS#1 v2.0 5.1 */
{
chunk_t temp_s;
mpz_t c;
n_to_mpz(c, sig_val, sig_len);
mpz_powm(c, c, &k->e, &k->n);
temp_s = mpz_to_n(c, sig_len); /* back to octets */
memcpy(s, temp_s.ptr, sig_len);
pfree(temp_s.ptr);
mpz_clear(c);
}
/* sanity check on signature: see if it matches
* PKCS#1 v1.5 8.1 encryption-block formatting
*/
{
err_t ugh = NULL;
if (s[0] != 0x00)
ugh = "2" "no leading 00";
else if (hash_in_s[-1] != 0x00)
ugh = "3" "00 separator not present";
else if (s[1] == 0x01)
{
const u_char *p;
for (p = &s[2]; p != hash_in_s - 1; p++)
{
if (*p != 0xFF)
{
ugh = "4" "invalid Padding String";
break;
}
}
}
else if (s[1] == 0x02)
{
const u_char *p;
for (p = &s[2]; p != hash_in_s - 1; p++)
{
if (*p == 0x00)
{
ugh = "5" "invalid Padding String";
break;
}
}
}
else
ugh = "6" "Block Type not 01 or 02";
if (ugh != NULL)
{
/* note: it might be a good idea to make sure that
* an observer cannot tell what kind of failure happened.
* I don't know what this means in practice.
*/
/* We probably selected the wrong public key for peer:
* SIG Payload decrypted into malformed ECB
*/
/* XXX notification: INVALID_KEY_INFORMATION */
return ugh;
}
}
/* We have the decoded hash: see if it matches. */
if (memcmp(hash_val, hash_in_s, hash_len) != 0)
{
/* good: header, hash, signature, and other payloads well-formed
* good: we could find an RSA Sig key for the peer.
* bad: hash doesn't match
* Guess: sides disagree about key to be used.
*/
DBG_cond_dump(DBG_CRYPT, "decrypted SIG", s, sig_len);
DBG_cond_dump(DBG_CRYPT, "computed HASH", hash_val, hash_len);
/* XXX notification: INVALID_HASH_INFORMATION */
return "9" "authentication failure: received SIG does not match computed HASH, but message is well-formed";
}
/* Success: copy successful key into state.
* There might be an old one if we previously aborted this
* state transition.
*/
unreference_key(&st->st_peer_pubkey);
st->st_peer_pubkey = reference_key(kr);
return NULL; /* happy happy */
}
/* Check signature against all RSA public keys we can find.
* If we need keys from DNS KEY records, and they haven't been fetched,
* return STF_SUSPEND to ask for asynch DNS lookup.
*
* Note: parameter keys_from_dns contains results of DNS lookup for key
* or is NULL indicating lookup not yet tried.
*
* take_a_crack is a helper function. Mostly forensic.
* If only we had coroutines.
*/
struct tac_state {
/* RSA_check_signature's args that take_a_crack needs */
struct state *st;
const u_char *hash_val;
size_t hash_len;
const pb_stream *sig_pbs;
/* state carried between calls */
err_t best_ugh; /* most successful failure */
int tried_cnt; /* number of keys tried */
char tried[50]; /* keyids of tried public keys */
char *tn; /* roof of tried[] */
};
static bool
take_a_crack(struct tac_state *s
, pubkey_t *kr
, const char *story USED_BY_DEBUG)
{
err_t ugh = try_RSA_signature(s->hash_val, s->hash_len, s->sig_pbs
, kr, s->st);
const struct RSA_public_key *k = &kr->u.rsa;
s->tried_cnt++;
if (ugh == NULL)
{
DBG(DBG_CRYPT | DBG_CONTROL
, DBG_log("an RSA Sig check passed with *%s [%s]"
, k->keyid, story));
return TRUE;
}
else
{
DBG(DBG_CRYPT
, DBG_log("an RSA Sig check failure %s with *%s [%s]"
, ugh + 1, k->keyid, story));
if (s->best_ugh == NULL || s->best_ugh[0] < ugh[0])
s->best_ugh = ugh;
if (ugh[0] > '0'
&& s->tn - s->tried + KEYID_BUF + 2 < (ptrdiff_t)sizeof(s->tried))
{
strcpy(s->tn, " *");
strcpy(s->tn + 2, k->keyid);
s->tn += strlen(s->tn);
}
return FALSE;
}
}
static stf_status
RSA_check_signature(const struct id* peer
, struct state *st
, const u_char hash_val[MAX_DIGEST_LEN]
, size_t hash_len
, const pb_stream *sig_pbs
#ifdef USE_KEYRR
, const pubkey_list_t *keys_from_dns
#endif /* USE_KEYRR */
, const struct gw_info *gateways_from_dns
)
{
const struct connection *c = st->st_connection;
struct tac_state s;
err_t dns_ugh = NULL;
s.st = st;
s.hash_val = hash_val;
s.hash_len = hash_len;
s.sig_pbs = sig_pbs;
s.best_ugh = NULL;
s.tried_cnt = 0;
s.tn = s.tried;
/* try all gateway records hung off c */
if (c->policy & POLICY_OPPO)
{
struct gw_info *gw;
for (gw = c->gw_info; gw != NULL; gw = gw->next)
{
/* only consider entries that have a key and are for our peer */
if (gw->gw_key_present
&& same_id(&gw->gw_id, &c->spd.that.id)
&& take_a_crack(&s, gw->key, "key saved from DNS TXT"))
return STF_OK;
}
}
/* try all appropriate Public keys */
{
pubkey_list_t *p, **pp;
pp = &pubkeys;
for (p = pubkeys; p != NULL; p = *pp)
{
pubkey_t *key = p->key;
if (key->alg == PUBKEY_ALG_RSA && same_id(peer, &key->id))
{
time_t now = time(NULL);
/* check if found public key has expired */
if (key->until_time != UNDEFINED_TIME && key->until_time < now)
{
loglog(RC_LOG_SERIOUS,
"cached RSA public key has expired and has been deleted");
*pp = free_public_keyentry(p);
continue; /* continue with next public key */
}
if (take_a_crack(&s, key, "preloaded key"))
return STF_OK;
}
pp = &p->next;
}
}
/* if no key was found (evidenced by best_ugh == NULL)
* and that side of connection is key_from_DNS_on_demand
* then go search DNS for keys for peer.
*/
if (s.best_ugh == NULL && c->spd.that.key_from_DNS_on_demand)
{
if (gateways_from_dns != NULL)
{
/* TXT keys */
const struct gw_info *gwp;
for (gwp = gateways_from_dns; gwp != NULL; gwp = gwp->next)
if (gwp->gw_key_present
&& take_a_crack(&s, gwp->key, "key from DNS TXT"))
return STF_OK;
}
#ifdef USE_KEYRR
else if (keys_from_dns != NULL)
{
/* KEY keys */
const pubkey_list_t *kr;
for (kr = keys_from_dns; kr != NULL; kr = kr->next)
if (kr->key->alg == PUBKEY_ALG_RSA
&& take_a_crack(&s, kr->key, "key from DNS KEY"))
return STF_OK;
}
#endif /* USE_KEYRR */
else
{
/* nothing yet: ask for asynch DNS lookup */
return STF_SUSPEND;
}
}
/* no acceptable key was found: diagnose */
{
char id_buf[BUF_LEN]; /* arbitrary limit on length of ID reported */
(void) idtoa(&st->st_connection->spd.that.id, id_buf, sizeof(id_buf));
if (s.best_ugh == NULL)
{
if (dns_ugh == NULL)
loglog(RC_LOG_SERIOUS, "no RSA public key known for '%s'"
, id_buf);
else
loglog(RC_LOG_SERIOUS, "no RSA public key known for '%s'"
"; DNS search for KEY failed (%s)"
, id_buf, dns_ugh);
/* ??? is this the best code there is? */
return STF_FAIL + INVALID_KEY_INFORMATION;
}
if (s.best_ugh[0] == '9')
{
loglog(RC_LOG_SERIOUS, "%s", s.best_ugh + 1);
/* XXX Could send notification back */
return STF_FAIL + INVALID_HASH_INFORMATION;
}
else
{
if (s.tried_cnt == 1)
{
loglog(RC_LOG_SERIOUS
, "Signature check (on %s) failed (wrong key?); tried%s"
, id_buf, s.tried);
DBG(DBG_CONTROL,
DBG_log("public key for %s failed:"
" decrypted SIG payload into a malformed ECB (%s)"
, id_buf, s.best_ugh + 1));
}
else
{
loglog(RC_LOG_SERIOUS
, "Signature check (on %s) failed:"
" tried%s keys but none worked."
, id_buf, s.tried);
DBG(DBG_CONTROL,
DBG_log("all %d public keys for %s failed:"
" best decrypted SIG payload into a malformed ECB (%s)"
, s.tried_cnt, id_buf, s.best_ugh + 1));
}
return STF_FAIL + INVALID_KEY_INFORMATION;
}
}
}
static notification_t
accept_nonce(struct msg_digest *md, chunk_t *dest, const char *name)
{
pb_stream *nonce_pbs = &md->chain[ISAKMP_NEXT_NONCE]->pbs;
size_t len = pbs_left(nonce_pbs);
if (len < MINIMUM_NONCE_SIZE || MAXIMUM_NONCE_SIZE < len)
{
loglog(RC_LOG_SERIOUS, "%s length not between %d and %d"
, name , MINIMUM_NONCE_SIZE, MAXIMUM_NONCE_SIZE);
return PAYLOAD_MALFORMED; /* ??? */
}
clonereplacechunk(*dest, nonce_pbs->cur, len, "nonce");
return NOTHING_WRONG;
}
/* encrypt message, sans fixed part of header
* IV is fetched from st->st_new_iv and stored into st->st_iv.
* The theory is that there will be no "backing out", so we commit to IV.
* We also close the pbs.
*/
bool
encrypt_message(pb_stream *pbs, struct state *st)
{
const struct encrypt_desc *e = st->st_oakley.encrypter;
u_int8_t *enc_start = pbs->start + sizeof(struct isakmp_hdr);
size_t enc_len = pbs_offset(pbs) - sizeof(struct isakmp_hdr);
DBG_cond_dump(DBG_CRYPT | DBG_RAW, "encrypting:\n", enc_start, enc_len);
/* Pad up to multiple of encryption blocksize.
* See the description associated with the definition of
* struct isakmp_hdr in packet.h.
*/
{
size_t padding = pad_up(enc_len, e->enc_blocksize);
if (padding != 0)
{
if (!out_zero(padding, pbs, "encryption padding"))
return FALSE;
enc_len += padding;
}
}
DBG(DBG_CRYPT, DBG_log("encrypting using %s", enum_show(&oakley_enc_names, st->st_oakley.encrypt)));
/* e->crypt(TRUE, enc_start, enc_len, st); */
crypto_cbc_encrypt(e, TRUE, enc_start, enc_len, st);
update_iv(st);
DBG_cond_dump(DBG_CRYPT, "next IV:", st->st_iv, st->st_iv_len);
close_message(pbs);
return TRUE;
}
/* Compute HASH(1), HASH(2) of Quick Mode.
* HASH(1) is part of Quick I1 message.
* HASH(2) is part of Quick R1 message.
* Used by: quick_outI1, quick_inI1_outR1 (twice), quick_inR1_outI2
* (see RFC 2409 "IKE" 5.5, pg. 18 or draft-ietf-ipsec-ike-01.txt 6.2 pg 25)
*/
static size_t
quick_mode_hash12(u_char *dest, const u_char *start, const u_char *roof
, const struct state *st, const msgid_t *msgid, bool hash2)
{
struct hmac_ctx ctx;
#if 0 /* if desperate to debug hashing */
# define hmac_update(ctx, ptr, len) { \
DBG_dump("hash input", (ptr), (len)); \
(hmac_update)((ctx), (ptr), (len)); \
}
DBG_dump("hash key", st->st_skeyid_a.ptr, st->st_skeyid_a.len);
#endif
hmac_init_chunk(&ctx, st->st_oakley.hasher, st->st_skeyid_a);
hmac_update(&ctx, (const void *) msgid, sizeof(msgid_t));
if (hash2)
hmac_update_chunk(&ctx, st->st_ni); /* include Ni_b in the hash */
hmac_update(&ctx, start, roof-start);
hmac_final(dest, &ctx);
DBG(DBG_CRYPT,
DBG_log("HASH(%d) computed:", hash2 + 1);
DBG_dump("", dest, ctx.hmac_digest_size));
return ctx.hmac_digest_size;
# undef hmac_update
}
/* Compute HASH(3) in Quick Mode (part of Quick I2 message).
* Used by: quick_inR1_outI2, quick_inI2
* See RFC2409 "The Internet Key Exchange (IKE)" 5.5.
* NOTE: this hash (unlike HASH(1) and HASH(2)) ONLY covers the
* Message ID and Nonces. This is a mistake.
*/
static size_t
quick_mode_hash3(u_char *dest, struct state *st)
{
struct hmac_ctx ctx;
hmac_init_chunk(&ctx, st->st_oakley.hasher, st->st_skeyid_a);
hmac_update(&ctx, "\0", 1);
hmac_update(&ctx, (u_char *) &st->st_msgid, sizeof(st->st_msgid));
hmac_update_chunk(&ctx, st->st_ni);
hmac_update_chunk(&ctx, st->st_nr);
hmac_final(dest, &ctx);
DBG_cond_dump(DBG_CRYPT, "HASH(3) computed:", dest, ctx.hmac_digest_size);
return ctx.hmac_digest_size;
}
/* Compute Phase 2 IV.
* Uses Phase 1 IV from st_iv; puts result in st_new_iv.
*/
void
init_phase2_iv(struct state *st, const msgid_t *msgid)
{
const struct hash_desc *h = st->st_oakley.hasher;
union hash_ctx ctx;
DBG_cond_dump(DBG_CRYPT, "last Phase 1 IV:"
, st->st_ph1_iv, st->st_ph1_iv_len);
st->st_new_iv_len = h->hash_digest_size;
passert(st->st_new_iv_len <= sizeof(st->st_new_iv));
h->hash_init(&ctx);
h->hash_update(&ctx, st->st_ph1_iv, st->st_ph1_iv_len);
passert(*msgid != 0);
h->hash_update(&ctx, (const u_char *)msgid, sizeof(*msgid));
h->hash_final(st->st_new_iv, &ctx);
DBG_cond_dump(DBG_CRYPT, "computed Phase 2 IV:"
, st->st_new_iv, st->st_new_iv_len);
}
/* Initiate quick mode.
* --> HDR*, HASH(1), SA, Nr [, KE ] [, IDci, IDcr ]
* (see RFC 2409 "IKE" 5.5)
* Note: this is not called from demux.c
*/
static bool
emit_subnet_id(ip_subnet *net
, u_int8_t np, u_int8_t protoid, u_int16_t port, pb_stream *outs)
{
struct isakmp_ipsec_id id;
pb_stream id_pbs;
ip_address ta;
const unsigned char *tbp;
size_t tal;
id.isaiid_np = np;
id.isaiid_idtype = subnetishost(net)
? aftoinfo(subnettypeof(net))->id_addr
: aftoinfo(subnettypeof(net))->id_subnet;
id.isaiid_protoid = protoid;
id.isaiid_port = port;
if (!out_struct(&id, &isakmp_ipsec_identification_desc, outs, &id_pbs))
return FALSE;
networkof(net, &ta);
tal = addrbytesptr(&ta, &tbp);
if (!out_raw(tbp, tal, &id_pbs, "client network"))
return FALSE;
if (!subnetishost(net))
{
maskof(net, &ta);
tal = addrbytesptr(&ta, &tbp);
if (!out_raw(tbp, tal, &id_pbs, "client mask"))
return FALSE;
}
close_output_pbs(&id_pbs);
return TRUE;
}
stf_status
quick_outI1(int whack_sock
, struct state *isakmp_sa
, struct connection *c
, lset_t policy
, unsigned long try
, so_serial_t replacing)
{
struct state *st = duplicate_state(isakmp_sa);
pb_stream reply; /* not really a reply */
pb_stream rbody;
u_char /* set by START_HASH_PAYLOAD: */
*r_hashval, /* where in reply to jam hash value */
*r_hash_start; /* start of what is to be hashed */
bool has_client = c->spd.this.has_client || c->spd.that.has_client ||
c->spd.this.protocol || c->spd.that.protocol ||
c->spd.this.port || c->spd.that.port;
bool send_natoa = FALSE;
u_int8_t np = ISAKMP_NEXT_NONE;
st->st_whack_sock = whack_sock;
st->st_connection = c;
set_cur_state(st); /* we must reset before exit */
st->st_policy = policy;
st->st_try = try;
st->st_myuserprotoid = c->spd.this.protocol;
st->st_peeruserprotoid = c->spd.that.protocol;
st->st_myuserport = c->spd.this.port;
st->st_peeruserport = c->spd.that.port;
st->st_msgid = generate_msgid(isakmp_sa);
st->st_state = STATE_QUICK_I1;
insert_state(st); /* needs cookies, connection, and msgid */
if (replacing == SOS_NOBODY)
plog("initiating Quick Mode %s {using isakmp#%lu}"
, prettypolicy(policy)
, isakmp_sa->st_serialno);
else
plog("initiating Quick Mode %s to replace #%lu {using isakmp#%lu}"
, prettypolicy(policy)
, replacing
, isakmp_sa->st_serialno);
#ifdef NAT_TRAVERSAL
if (isakmp_sa->nat_traversal & NAT_T_DETECTED)
{
/* Duplicate nat_traversal status in new state */
st->nat_traversal = isakmp_sa->nat_traversal;
if (isakmp_sa->nat_traversal & LELEM(NAT_TRAVERSAL_NAT_BHND_ME))
has_client = TRUE;
nat_traversal_change_port_lookup(NULL, st);
}
else
st->nat_traversal = 0;
/* are we going to send a NAT-OA payload? */
if ((st->nat_traversal & NAT_T_WITH_NATOA)
&& !(st->st_policy & POLICY_TUNNEL)
&& (st->nat_traversal & LELEM(NAT_TRAVERSAL_NAT_BHND_ME)))
{
send_natoa = TRUE;
np = (st->nat_traversal & NAT_T_WITH_RFC_VALUES) ?
ISAKMP_NEXT_NATOA_RFC : ISAKMP_NEXT_NATOA_DRAFTS;
}
#endif
/* set up reply */
init_pbs(&reply, reply_buffer, sizeof(reply_buffer), "reply packet");
/* HDR* out */
{
struct isakmp_hdr hdr;
hdr.isa_version = ISAKMP_MAJOR_VERSION << ISA_MAJ_SHIFT | ISAKMP_MINOR_VERSION;
hdr.isa_np = ISAKMP_NEXT_HASH;
hdr.isa_xchg = ISAKMP_XCHG_QUICK;
hdr.isa_msgid = st->st_msgid;
hdr.isa_flags = ISAKMP_FLAG_ENCRYPTION;
memcpy(hdr.isa_icookie, st->st_icookie, COOKIE_SIZE);
memcpy(hdr.isa_rcookie, st->st_rcookie, COOKIE_SIZE);
if (!out_struct(&hdr, &isakmp_hdr_desc, &reply, &rbody))
{
reset_cur_state();
return STF_INTERNAL_ERROR;
}
}
/* HASH(1) -- create and note space to be filled later */
START_HASH_PAYLOAD(rbody, ISAKMP_NEXT_SA);
/* SA out */
/*
* See if pfs_group has been specified for this conn,
* if not, fallback to old use-same-as-P1 behaviour
*/
#ifndef NO_IKE_ALG
if (st->st_connection)
st->st_pfs_group = ike_alg_pfsgroup(st->st_connection, policy);
if (!st->st_pfs_group)
#endif
/* If PFS specified, use the same group as during Phase 1:
* since no negotiation is possible, we pick one that is
* very likely supported.
*/
st->st_pfs_group = policy & POLICY_PFS? isakmp_sa->st_oakley.group : NULL;
/* Emit SA payload based on a subset of the policy bits.
* POLICY_COMPRESS is considered iff we can do IPcomp.
*/
{
lset_t pm = POLICY_ENCRYPT | POLICY_AUTHENTICATE;
if (can_do_IPcomp)
pm |= POLICY_COMPRESS;
if (!out_sa(&rbody
, &ipsec_sadb[(st->st_policy & pm) >> POLICY_IPSEC_SHIFT]
, st, FALSE, ISAKMP_NEXT_NONCE))
{
reset_cur_state();
return STF_INTERNAL_ERROR;
}
}
/* Ni out */
if (!build_and_ship_nonce(&st->st_ni, &rbody
, policy & POLICY_PFS? ISAKMP_NEXT_KE : has_client? ISAKMP_NEXT_ID : np
, "Ni"))
{
reset_cur_state();
return STF_INTERNAL_ERROR;
}
/* [ KE ] out (for PFS) */
if (st->st_pfs_group != NULL)
{
if (!build_and_ship_KE(st, &st->st_gi, st->st_pfs_group
, &rbody, has_client? ISAKMP_NEXT_ID : np))
{
reset_cur_state();
return STF_INTERNAL_ERROR;
}
}
/* [ IDci, IDcr ] out */
if (has_client)
{
/* IDci (we are initiator), then IDcr (peer is responder) */
if (!emit_subnet_id(&c->spd.this.client
, ISAKMP_NEXT_ID, st->st_myuserprotoid, st->st_myuserport, &rbody)
|| !emit_subnet_id(&c->spd.that.client
, np, st->st_peeruserprotoid, st->st_peeruserport, &rbody))
{
reset_cur_state();
return STF_INTERNAL_ERROR;
}
}
#ifdef NAT_TRAVERSAL
/* Send NAT-OA if our address is NATed */
if (send_natoa)
{
if (!nat_traversal_add_natoa(ISAKMP_NEXT_NONE, &rbody, st))
{
reset_cur_state();
return STF_INTERNAL_ERROR;
}
}
#endif
/* finish computing HASH(1), inserting it in output */
(void) quick_mode_hash12(r_hashval, r_hash_start, rbody.cur
, st, &st->st_msgid, FALSE);
/* encrypt message, except for fixed part of header */
init_phase2_iv(isakmp_sa, &st->st_msgid);
st->st_new_iv_len = isakmp_sa->st_new_iv_len;
memcpy(st->st_new_iv, isakmp_sa->st_new_iv, st->st_new_iv_len);
if (!encrypt_message(&rbody, st))
{
reset_cur_state();
return STF_INTERNAL_ERROR;
}
/* save packet, now that we know its size */
clonetochunk(st->st_tpacket, reply.start, pbs_offset(&reply)
, "reply packet from quick_outI1");
/* send the packet */
send_packet(st, "quick_outI1");
delete_event(st);
event_schedule(EVENT_RETRANSMIT, EVENT_RETRANSMIT_DELAY_0, st);
if (replacing == SOS_NOBODY)
whack_log(RC_NEW_STATE + STATE_QUICK_I1
, "%s: initiate"
, enum_name(&state_names, st->st_state));
else
whack_log(RC_NEW_STATE + STATE_QUICK_I1
, "%s: initiate to replace #%lu"
, enum_name(&state_names, st->st_state)
, replacing);
reset_cur_state();
return STF_OK;
}
/*
* Decode the CERT payload of Phase 1.
*/
static void
decode_cert(struct msg_digest *md)
{
struct payload_digest *p;
for (p = md->chain[ISAKMP_NEXT_CERT]; p != NULL; p = p->next)
{
struct isakmp_cert *const cert = &p->payload.cert;
chunk_t blob;
time_t valid_until;
blob.ptr = p->pbs.cur;
blob.len = pbs_left(&p->pbs);
if (cert->isacert_type == CERT_X509_SIGNATURE)
{
x509cert_t cert = empty_x509cert;
if (parse_x509cert(blob, 0, &cert))
{
if (verify_x509cert(&cert, strict_crl_policy, &valid_until))
{
DBG(DBG_PARSING,
DBG_log("Public key validated")
)
add_x509_public_key(&cert, valid_until, DAL_SIGNED);
}
else
{
plog("X.509 certificate rejected");
}
free_generalNames(cert.subjectAltName, FALSE);
free_generalNames(cert.crlDistributionPoints, FALSE);
}
else
plog("Syntax error in X.509 certificate");
}
else if (cert->isacert_type == CERT_PKCS7_WRAPPED_X509)
{
x509cert_t *cert = NULL;
if (pkcs7_parse_signedData(blob, NULL, &cert, NULL, NULL))
store_x509certs(&cert, strict_crl_policy);
else
plog("Syntax error in PKCS#7 wrapped X.509 certificates");
}
else
{
loglog(RC_LOG_SERIOUS, "ignoring %s certificate payload",
enum_show(&cert_type_names, cert->isacert_type));
DBG_cond_dump_chunk(DBG_PARSING, "CERT:\n", blob);
}
}
}
/*
* Decode the CR payload of Phase 1.
*/
static void
decode_cr(struct msg_digest *md, struct connection *c)
{
struct payload_digest *p;
for (p = md->chain[ISAKMP_NEXT_CR]; p != NULL; p = p->next)
{
struct isakmp_cr *const cr = &p->payload.cr;
chunk_t ca_name;
ca_name.len = pbs_left(&p->pbs);
ca_name.ptr = (ca_name.len > 0)? p->pbs.cur : NULL;
DBG_cond_dump_chunk(DBG_PARSING, "CR", ca_name);
if (cr->isacr_type == CERT_X509_SIGNATURE)
{
char buf[BUF_LEN];
if (ca_name.len > 0)
{
generalName_t *gn;
if (!is_asn1(ca_name))
continue;
gn = alloc_thing(generalName_t, "generalName");
clonetochunk(ca_name, ca_name.ptr,ca_name.len, "ca name");
gn->kind = GN_DIRECTORY_NAME;
gn->name = ca_name;
gn->next = c->requested_ca;
c->requested_ca = gn;
}
c->got_certrequest = TRUE;
DBG(DBG_PARSING | DBG_CONTROL,
dntoa_or_null(buf, BUF_LEN, ca_name, "%any");
DBG_log("requested CA: '%s'", buf);
)
}
else
loglog(RC_LOG_SERIOUS, "ignoring %s certificate request payload",
enum_show(&cert_type_names, cr->isacr_type));
}
}
/* Decode the ID payload of Phase 1 (main_inI3_outR3 and main_inR3)
* Note: we may change connections as a result.
* We must be called before SIG or HASH are decoded since we
* may change the peer's RSA key or ID.
*/
static bool
decode_peer_id(struct msg_digest *md, struct id *peer)
{
struct state *const st = md->st;
struct payload_digest *const id_pld = md->chain[ISAKMP_NEXT_ID];
const pb_stream *const id_pbs = &id_pld->pbs;
struct isakmp_id *const id = &id_pld->payload.id;
/* I think that RFC2407 (IPSEC DOI) 4.6.2 is confused.
* It talks about the protocol ID and Port fields of the ID
* Payload, but they don't exist as such in Phase 1.
* We use more appropriate names.
* isaid_doi_specific_a is in place of Protocol ID.
* isaid_doi_specific_b is in place of Port.
* Besides, there is no good reason for allowing these to be
* other than 0 in Phase 1.
*/
#ifdef NAT_TRAVERSAL
if ((st->nat_traversal & NAT_T_WITH_PORT_FLOATING)
&& id->isaid_doi_specific_a == IPPROTO_UDP
&& (id->isaid_doi_specific_b == 0 || id->isaid_doi_specific_b == NAT_T_IKE_FLOAT_PORT))
{
DBG_log("protocol/port in Phase 1 ID Payload is %d/%d. "
"accepted with port_floating NAT-T",
id->isaid_doi_specific_a, id->isaid_doi_specific_b);
}
else
#endif
if (!(id->isaid_doi_specific_a == 0 && id->isaid_doi_specific_b == 0)
&& !(id->isaid_doi_specific_a == IPPROTO_UDP && id->isaid_doi_specific_b == IKE_UDP_PORT))
{
loglog(RC_LOG_SERIOUS, "protocol/port in Phase 1 ID Payload must be 0/0 or %d/%d"
" but are %d/%d"
, IPPROTO_UDP, IKE_UDP_PORT
, id->isaid_doi_specific_a, id->isaid_doi_specific_b);
return FALSE;
}
peer->kind = id->isaid_idtype;
switch (peer->kind)
{
case ID_IPV4_ADDR:
case ID_IPV6_ADDR:
/* failure mode for initaddr is probably inappropriate address length */
{
err_t ugh = initaddr(id_pbs->cur, pbs_left(id_pbs)
, peer->kind == ID_IPV4_ADDR? AF_INET : AF_INET6
, &peer->ip_addr);
if (ugh != NULL)
{
loglog(RC_LOG_SERIOUS, "improper %s identification payload: %s"
, enum_show(&ident_names, peer->kind), ugh);
/* XXX Could send notification back */
return FALSE;
}
}
break;
case ID_USER_FQDN:
if (memchr(id_pbs->cur, '@', pbs_left(id_pbs)) == NULL)
{
loglog(RC_LOG_SERIOUS, "peer's ID_USER_FQDN contains no @");
return FALSE;
}
/* FALLTHROUGH */
case ID_FQDN:
if (memchr(id_pbs->cur, '\0', pbs_left(id_pbs)) != NULL)
{
loglog(RC_LOG_SERIOUS, "Phase 1 ID Payload of type %s contains a NUL"
, enum_show(&ident_names, peer->kind));
return FALSE;
}
/* ??? ought to do some more sanity check, but what? */
setchunk(peer->name, id_pbs->cur, pbs_left(id_pbs));
break;
case ID_KEY_ID:
setchunk(peer->name, id_pbs->cur, pbs_left(id_pbs));
DBG(DBG_PARSING,
DBG_dump_chunk("KEY ID:", peer->name));
break;
case ID_DER_ASN1_DN:
setchunk(peer->name, id_pbs->cur, pbs_left(id_pbs));
DBG(DBG_PARSING,
DBG_dump_chunk("DER ASN1 DN:", peer->name));
break;
default:
/* XXX Could send notification back */
loglog(RC_LOG_SERIOUS, "Unacceptable identity type (%s) in Phase 1 ID Payload"
, enum_show(&ident_names, peer->kind));
return FALSE;
}
{
char buf[BUF_LEN];
idtoa(peer, buf, sizeof(buf));
plog("Peer ID is %s: '%s'",
enum_show(&ident_names, id->isaid_idtype), buf);
}
/* check for certificates */
decode_cert(md);
return TRUE;
}
/* Now that we've decoded the ID payload, let's see if we
* need to switch connections.
* We must not switch horses if we initiated:
* - if the initiation was explicit, we'd be ignoring user's intent
* - if opportunistic, we'll lose our HOLD info
*/
static bool
switch_connection(struct msg_digest *md, struct id *peer, bool initiator)
{
struct state *const st = md->st;
struct connection *c = st->st_connection;
chunk_t peer_ca = (st->st_peer_pubkey != NULL)
? st->st_peer_pubkey->issuer : empty_chunk;
DBG(DBG_CONTROL,
char buf[BUF_LEN];
dntoa_or_null(buf, BUF_LEN, peer_ca, "%none");
DBG_log("peer CA: '%s'", buf);
)
if (initiator)
{
int pathlen;
if (!same_id(&c->spd.that.id, peer))
{
char expect[BUF_LEN]
, found[BUF_LEN];
idtoa(&c->spd.that.id, expect, sizeof(expect));
idtoa(peer, found, sizeof(found));
loglog(RC_LOG_SERIOUS
, "we require peer to have ID '%s', but peer declares '%s'"
, expect, found);
return FALSE;
}
DBG(DBG_CONTROL,
char buf[BUF_LEN];
dntoa_or_null(buf, BUF_LEN, c->spd.this.ca, "%none");
DBG_log("required CA: '%s'", buf);
)
if (!trusted_ca(peer_ca, c->spd.that.ca, &pathlen))
{
loglog(RC_LOG_SERIOUS
, "we don't accept the peer's CA");
return FALSE;
}
}
else
{
struct connection *r;
/* check for certificate requests */
decode_cr(md, c);
r = refine_host_connection(st, peer, peer_ca);
/* delete the collected certificate requests */
free_generalNames(c->requested_ca, TRUE);
c->requested_ca = NULL;
if (r == NULL)
{
char buf[BUF_LEN];
idtoa(peer, buf, sizeof(buf));
loglog(RC_LOG_SERIOUS, "no suitable connection for peer '%s'", buf);
return FALSE;
}
DBG(DBG_CONTROL,
char buf[BUF_LEN];
dntoa_or_null(buf, BUF_LEN, r->spd.this.ca, "%none");
DBG_log("offered CA: '%s'", buf);
)
if (r != c)
{
/* apparently, r is an improvement on c -- replace */
DBG(DBG_CONTROL
, DBG_log("switched from \"%s\" to \"%s\"", c->name, r->name));
if (r->kind == CK_TEMPLATE)
{
/* instantiate it, filling in peer's ID */
r = rw_instantiate(r, &c->spd.that.host_addr,
#ifdef NAT_TRAVERSAL
c->spd.that.host_port,
#endif
#ifdef VIRTUAL_IP
NULL,
#endif
peer);
}
/* copy certificate request info */
r->got_certrequest = c->got_certrequest;
st->st_connection = r; /* kill reference to c */
set_cur_connection(r);
connection_discard(c);
}
else if (c->spd.that.has_id_wildcards)
{
free_id_content(&c->spd.that.id);
c->spd.that.id = *peer;
c->spd.that.has_id_wildcards = FALSE;
unshare_id_content(&c->spd.that.id);
}
}
return TRUE;
}
/* Decode the variable part of an ID packet (during Quick Mode).
* This is designed for packets that identify clients, not peers.
* Rejects 0.0.0.0/32 or IPv6 equivalent because
* (1) it is wrong and (2) we use this value for inband signalling.
*/
static bool
decode_net_id(struct isakmp_ipsec_id *id
, pb_stream *id_pbs
, ip_subnet *net
, const char *which)
{
const struct af_info *afi = NULL;
/* Note: the following may be a pointer into static memory
* that may be recycled, but only if the type is not known.
* That case is disposed of very early -- in the first switch.
*/
const char *idtypename = enum_show(&ident_names, id->isaiid_idtype);
switch (id->isaiid_idtype)
{
case ID_IPV4_ADDR:
case ID_IPV4_ADDR_SUBNET:
case ID_IPV4_ADDR_RANGE:
afi = &af_inet4_info;
break;
case ID_IPV6_ADDR:
case ID_IPV6_ADDR_SUBNET:
case ID_IPV6_ADDR_RANGE:
afi = &af_inet6_info;
break;
case ID_FQDN:
return TRUE;
default:
/* XXX support more */
loglog(RC_LOG_SERIOUS, "unsupported ID type %s"
, idtypename);
/* XXX Could send notification back */
return FALSE;
}
switch (id->isaiid_idtype)
{
case ID_IPV4_ADDR:
case ID_IPV6_ADDR:
{
ip_address temp_address;
err_t ugh;
ugh = initaddr(id_pbs->cur, pbs_left(id_pbs), afi->af, &temp_address);
if (ugh != NULL)
{
loglog(RC_LOG_SERIOUS, "%s ID payload %s has wrong length in Quick I1 (%s)"
, which, idtypename, ugh);
/* XXX Could send notification back */
return FALSE;
}
if (isanyaddr(&temp_address))
{
loglog(RC_LOG_SERIOUS, "%s ID payload %s is invalid (%s) in Quick I1"
, which, idtypename, ip_str(&temp_address));
/* XXX Could send notification back */
return FALSE;
}
happy(addrtosubnet(&temp_address, net));
DBG(DBG_PARSING | DBG_CONTROL
, DBG_log("%s is %s", which, ip_str(&temp_address)));
break;
}
case ID_IPV4_ADDR_SUBNET:
case ID_IPV6_ADDR_SUBNET:
{
ip_address temp_address, temp_mask;
err_t ugh;
if (pbs_left(id_pbs) != 2 * afi->ia_sz)
{
loglog(RC_LOG_SERIOUS, "%s ID payload %s wrong length in Quick I1"
, which, idtypename);
/* XXX Could send notification back */
return FALSE;
}
ugh = initaddr(id_pbs->cur
, afi->ia_sz, afi->af, &temp_address);
if (ugh == NULL)
ugh = initaddr(id_pbs->cur + afi->ia_sz
, afi->ia_sz, afi->af, &temp_mask);
if (ugh == NULL)
ugh = initsubnet(&temp_address, masktocount(&temp_mask)
, '0', net);
if (ugh == NULL && subnetisnone(net))
ugh = "contains only anyaddr";
if (ugh != NULL)
{
loglog(RC_LOG_SERIOUS, "%s ID payload %s bad subnet in Quick I1 (%s)"
, which, idtypename, ugh);
/* XXX Could send notification back */
return FALSE;
}
DBG(DBG_PARSING | DBG_CONTROL,
{
char temp_buff[SUBNETTOT_BUF];
subnettot(net, 0, temp_buff, sizeof(temp_buff));
DBG_log("%s is subnet %s", which, temp_buff);
});
break;
}
case ID_IPV4_ADDR_RANGE:
case ID_IPV6_ADDR_RANGE:
{
ip_address temp_address_from, temp_address_to;
err_t ugh;
if (pbs_left(id_pbs) != 2 * afi->ia_sz)
{
loglog(RC_LOG_SERIOUS, "%s ID payload %s wrong length in Quick I1"
, which, idtypename);
/* XXX Could send notification back */
return FALSE;
}
ugh = initaddr(id_pbs->cur, afi->ia_sz, afi->af, &temp_address_from);
if (ugh == NULL)
ugh = initaddr(id_pbs->cur + afi->ia_sz
, afi->ia_sz, afi->af, &temp_address_to);
if (ugh != NULL)
{
loglog(RC_LOG_SERIOUS, "%s ID payload %s malformed (%s) in Quick I1"
, which, idtypename, ugh);
/* XXX Could send notification back */
return FALSE;
}
ugh = rangetosubnet(&temp_address_from, &temp_address_to, net);
if (ugh == NULL && subnetisnone(net))
ugh = "contains only anyaddr";
if (ugh != NULL)
{
char temp_buff1[ADDRTOT_BUF], temp_buff2[ADDRTOT_BUF];
addrtot(&temp_address_from, 0, temp_buff1, sizeof(temp_buff1));
addrtot(&temp_address_to, 0, temp_buff2, sizeof(temp_buff2));
loglog(RC_LOG_SERIOUS, "%s ID payload in Quick I1, %s"
" %s - %s unacceptable: %s"
, which, idtypename, temp_buff1, temp_buff2, ugh);
return FALSE;
}
DBG(DBG_PARSING | DBG_CONTROL,
{
char temp_buff[SUBNETTOT_BUF];
subnettot(net, 0, temp_buff, sizeof(temp_buff));
DBG_log("%s is subnet %s (received as range)"
, which, temp_buff);
});
break;
}
}
/* set the port selector */
setportof(htons(id->isaiid_port), &net->addr);
DBG(DBG_PARSING | DBG_CONTROL,
DBG_log("%s protocol/port is %d/%d", which, id->isaiid_protoid, id->isaiid_port)
)
return TRUE;
}
/* like decode, but checks that what is received matches what was sent */
static bool
check_net_id(struct isakmp_ipsec_id *id
, pb_stream *id_pbs
, u_int8_t *protoid
, u_int16_t *port
, ip_subnet *net
, const char *which)
{
ip_subnet net_temp;
if (!decode_net_id(id, id_pbs, &net_temp, which))
return FALSE;
if (!samesubnet(net, &net_temp)
|| *protoid != id->isaiid_protoid || *port != id->isaiid_port)
{
loglog(RC_LOG_SERIOUS, "%s ID returned doesn't match my proposal", which);
return FALSE;
}
return TRUE;
}
/*
* look for the existence of a non-expiring preloaded public key
*/
static bool
has_preloaded_public_key(struct state *st)
{
struct connection *c = st->st_connection;
/* do not consider rw connections since
* the peer's identity must be known
*/
if (c->kind == CK_PERMANENT)
{
pubkey_list_t *p;
/* look for a matching RSA public key */
for (p = pubkeys; p != NULL; p = p->next)
{
pubkey_t *key = p->key;
if (key->alg == PUBKEY_ALG_RSA &&
same_id(&c->spd.that.id, &key->id) &&
key->until_time == UNDEFINED_TIME)
{
/* found a preloaded public key */
return TRUE;
}
}
}
return FALSE;
}
/*
* Produce the new key material of Quick Mode.
* RFC 2409 "IKE" section 5.5
* specifies how this is to be done.
*/
static void
compute_proto_keymat(struct state *st
, u_int8_t protoid
, struct ipsec_proto_info *pi)
{
size_t needed_len; /* bytes of keying material needed */
/* Add up the requirements for keying material
* (It probably doesn't matter if we produce too much!)
*/
switch (protoid)
{
case PROTO_IPSEC_ESP:
switch (pi->attrs.transid)
{
case ESP_NULL:
needed_len = 0;
break;
case ESP_DES:
needed_len = DES_CBC_BLOCK_SIZE;
break;
case ESP_3DES:
needed_len = DES_CBC_BLOCK_SIZE * 3;
break;
default:
#ifndef NO_KERNEL_ALG
if((needed_len=kernel_alg_esp_enc_keylen(pi->attrs.transid))>0) {
/* XXX: check key_len "coupling with kernel.c's */
if (pi->attrs.key_len) {
needed_len=pi->attrs.key_len/8;
DBG(DBG_PARSING, DBG_log("compute_proto_keymat:"
"key_len=%d from peer",
(int)needed_len));
}
break;
}
#endif
bad_case(pi->attrs.transid);
}
#ifndef NO_KERNEL_ALG
DBG(DBG_PARSING, DBG_log("compute_proto_keymat:"
"needed_len (after ESP enc)=%d",
(int)needed_len));
if (kernel_alg_esp_auth_ok(pi->attrs.auth, NULL)) {
needed_len += kernel_alg_esp_auth_keylen(pi->attrs.auth);
} else
#endif
switch (pi->attrs.auth)
{
case AUTH_ALGORITHM_NONE:
break;
case AUTH_ALGORITHM_HMAC_MD5:
needed_len += HMAC_MD5_KEY_LEN;
break;
case AUTH_ALGORITHM_HMAC_SHA1:
needed_len += HMAC_SHA1_KEY_LEN;
break;
case AUTH_ALGORITHM_DES_MAC:
default:
bad_case(pi->attrs.auth);
}
DBG(DBG_PARSING, DBG_log("compute_proto_keymat:"
"needed_len (after ESP auth)=%d",
(int)needed_len));
break;
case PROTO_IPSEC_AH:
switch (pi->attrs.transid)
{
case AH_MD5:
needed_len = HMAC_MD5_KEY_LEN;
break;
case AH_SHA:
needed_len = HMAC_SHA1_KEY_LEN;
break;
default:
bad_case(pi->attrs.transid);
}
break;
default:
bad_case(protoid);
}
pi->keymat_len = needed_len;
/* Allocate space for the keying material.
* Although only needed_len bytes are desired, we
* must round up to a multiple of ctx.hmac_digest_size
* so that our buffer isn't overrun.
*/
{
struct hmac_ctx ctx_me, ctx_peer;
size_t needed_space; /* space needed for keying material (rounded up) */
size_t i;
hmac_init_chunk(&ctx_me, st->st_oakley.hasher, st->st_skeyid_d);
ctx_peer = ctx_me; /* duplicate initial conditions */
needed_space = needed_len + pad_up(needed_len, ctx_me.hmac_digest_size);
replace(pi->our_keymat, alloc_bytes(needed_space, "keymat in compute_keymat()"));
replace(pi->peer_keymat, alloc_bytes(needed_space, "peer_keymat in quick_inI1_outR1()"));
for (i = 0;; )
{
if (st->st_shared.ptr != NULL)
{
/* PFS: include the g^xy */
hmac_update_chunk(&ctx_me, st->st_shared);
hmac_update_chunk(&ctx_peer, st->st_shared);
}
hmac_update(&ctx_me, &protoid, sizeof(protoid));
hmac_update(&ctx_peer, &protoid, sizeof(protoid));
hmac_update(&ctx_me, (u_char *)&pi->our_spi, sizeof(pi->our_spi));
hmac_update(&ctx_peer, (u_char *)&pi->attrs.spi, sizeof(pi->attrs.spi));
hmac_update_chunk(&ctx_me, st->st_ni);
hmac_update_chunk(&ctx_peer, st->st_ni);
hmac_update_chunk(&ctx_me, st->st_nr);
hmac_update_chunk(&ctx_peer, st->st_nr);
hmac_final(pi->our_keymat + i, &ctx_me);
hmac_final(pi->peer_keymat + i, &ctx_peer);
i += ctx_me.hmac_digest_size;
if (i >= needed_space)
break;
/* more keying material needed: prepare to go around again */
hmac_reinit(&ctx_me);
hmac_reinit(&ctx_peer);
hmac_update(&ctx_me, pi->our_keymat + i - ctx_me.hmac_digest_size
, ctx_me.hmac_digest_size);
hmac_update(&ctx_peer, pi->peer_keymat + i - ctx_peer.hmac_digest_size
, ctx_peer.hmac_digest_size);
}
}
DBG(DBG_CRYPT,
DBG_dump("KEYMAT computed:\n", pi->our_keymat, pi->keymat_len);
DBG_dump("Peer KEYMAT computed:\n", pi->peer_keymat, pi->keymat_len));
}
static void
compute_keymats(struct state *st)
{
if (st->st_ah.present)
compute_proto_keymat(st, PROTO_IPSEC_AH, &st->st_ah);
if (st->st_esp.present)
compute_proto_keymat(st, PROTO_IPSEC_ESP, &st->st_esp);
}
/* State Transition Functions.
*
* The definition of state_microcode_table in demux.c is a good
* overview of these routines.
*
* - Called from process_packet; result handled by complete_state_transition
* - struct state_microcode member "processor" points to these
* - these routine definitionss are in state order
* - these routines must be restartable from any point of error return:
* beware of memory allocated before any error.
* - output HDR is usually emitted by process_packet (if state_microcode
* member first_out_payload isn't ISAKMP_NEXT_NONE).
*
* The transition functions' functions include:
* - process and judge payloads
* - update st_iv (result of decryption is in st_new_iv)
* - build reply packet
*/
/* Handle a Main Mode Oakley first packet (responder side).
* HDR;SA --> HDR;SA
*/
stf_status
main_inI1_outR1(struct msg_digest *md)
{
struct payload_digest *const sa_pd = md->chain[ISAKMP_NEXT_SA];
struct state *st;
struct connection *c = find_host_connection(&md->iface->addr, pluto_port
, &md->sender, md->sender_port, LEMPTY);
struct isakmp_proposal proposal;
pb_stream proposal_pbs;
pb_stream r_sa_pbs;
u_int32_t ipsecdoisit;
lset_t policy = LEMPTY;
int vids_to_send = 0;
RETURN_STF_FAILURE(preparse_isakmp_sa_body(&sa_pd->payload.sa
, &sa_pd->pbs, &ipsecdoisit, &proposal_pbs, &proposal));
#ifdef NAT_TRAVERSAL
if (c == NULL && md->iface->ike_float)
{
c = find_host_connection(&md->iface->addr, NAT_T_IKE_FLOAT_PORT
, &md->sender, md->sender_port, LEMPTY);
}
#endif
if (c == NULL)
{
/* See if a wildcarded connection can be found.
* We cannot pick the right connection, so we're making a guess.
* All Road Warrior connections are fair game:
* we pick the first we come across (if any).
* If we don't find any, we pick the first opportunistic
* with the smallest subnet that includes the peer.
* There is, of course, no necessary relationship between
* an Initiator's address and that of its client,
* but Food Groups kind of assumes one.
*/
{
struct connection *d;
backup_pbs(&proposal_pbs);
RETURN_STF_FAILURE(parse_isakmp_policy(&proposal_pbs
, proposal.isap_notrans, &policy));
restore_pbs(&proposal_pbs);
d = find_host_connection(&md->iface->addr
, pluto_port, (ip_address*)NULL, md->sender_port, policy);
for (; d != NULL; d = d->hp_next)
{
if (d->kind == CK_GROUP)
{
/* ignore */
}
else
{
if (d->kind == CK_TEMPLATE && !(d->policy & POLICY_OPPO))
{
/* must be Road Warrior: we have a winner */
c = d;
break;
}
/* Opportunistic or Shunt: pick tightest match */
if (addrinsubnet(&md->sender, &d->spd.that.client)
&& (c == NULL || !subnetinsubnet(&c->spd.that.client, &d->spd.that.client)))
c = d;
}
}
}
if (c == NULL)
{
loglog(RC_LOG_SERIOUS, "initial Main Mode message received on %s:%u"
" but no connection has been authorized%s%s"
, ip_str(&md->iface->addr), ntohs(portof(&md->iface->addr))
, (policy != LEMPTY) ? " with policy=" : ""
, (policy != LEMPTY) ? bitnamesof(sa_policy_bit_names, policy) : "");
/* XXX notification is in order! */
return STF_IGNORE;
}
else if (c->kind != CK_TEMPLATE)
{
loglog(RC_LOG_SERIOUS, "initial Main Mode message received on %s:%u"
" but \"%s\" forbids connection"
, ip_str(&md->iface->addr), pluto_port, c->name);
/* XXX notification is in order! */
return STF_IGNORE;
}
else
{
/* Create a temporary connection that is a copy of this one.
* His ID isn't declared yet.
*/
c = rw_instantiate(c, &md->sender,
#ifdef NAT_TRAVERSAL
md->sender_port,
#endif
#ifdef VIRTUAL_IP
NULL,
#endif
NULL);
}
}
/* Set up state */
md->st = st = new_state();
st->st_connection = c;
set_cur_state(st); /* (caller will reset cur_state) */
st->st_try = 0; /* not our job to try again from start */
st->st_policy = c->policy & ~POLICY_IPSEC_MASK; /* only as accurate as connection */
memcpy(st->st_icookie, md->hdr.isa_icookie, COOKIE_SIZE);
get_cookie(FALSE, st->st_rcookie, COOKIE_SIZE, &md->sender);
insert_state(st); /* needs cookies, connection, and msgid (0) */
st->st_doi = ISAKMP_DOI_IPSEC;
st->st_situation = SIT_IDENTITY_ONLY; /* We only support this */
if ((c->kind == CK_INSTANCE) && (c->spd.that.host_port != pluto_port))
{
plog("responding to Main Mode from unknown peer %s:%u"
, ip_str(&c->spd.that.host_addr), c->spd.that.host_port);
}
else if (c->kind == CK_INSTANCE)
{
plog("responding to Main Mode from unknown peer %s"
, ip_str(&c->spd.that.host_addr));
}
else
{
plog("responding to Main Mode");
}
/* parse_isakmp_sa also spits out a winning SA into our reply,
* so we have to build our md->reply and emit HDR before calling it.
*/
/* determine how many Vendor ID payloads we will be sending */
if (SEND_PLUTO_VID)
vids_to_send++;
if (SEND_XAUTH_VID)
vids_to_send++;
if (md->openpgp)
vids_to_send++;
/* always send DPD Vendor ID */
vids_to_send++;
#ifdef NAT_TRAVERSAL
if (md->nat_traversal_vid && nat_traversal_enabled)
vids_to_send++;
#endif
/* HDR out.
* We can't leave this to comm_handle() because we must
* fill in the cookie.
*/
{
struct isakmp_hdr r_hdr = md->hdr;
r_hdr.isa_flags &= ~ISAKMP_FLAG_COMMIT; /* we won't ever turn on this bit */
memcpy(r_hdr.isa_rcookie, st->st_rcookie, COOKIE_SIZE);
r_hdr.isa_np = ISAKMP_NEXT_SA;
if (!out_struct(&r_hdr, &isakmp_hdr_desc, &md->reply, &md->rbody))
return STF_INTERNAL_ERROR;
}
/* start of SA out */
{
struct isakmp_sa r_sa = sa_pd->payload.sa;
r_sa.isasa_np = vids_to_send-- ? ISAKMP_NEXT_VID : ISAKMP_NEXT_NONE;
if (!out_struct(&r_sa, &isakmp_sa_desc, &md->rbody, &r_sa_pbs))
return STF_INTERNAL_ERROR;
}
/* SA body in and out */
RETURN_STF_FAILURE(parse_isakmp_sa_body(ipsecdoisit, &proposal_pbs
,&proposal, &r_sa_pbs, st));
/* if enabled send Pluto Vendor ID */
if (SEND_PLUTO_VID)
{
if (!out_vendorid(vids_to_send-- ? ISAKMP_NEXT_VID : ISAKMP_NEXT_NONE
, &md->rbody, VID_STRONGSWAN))
{
return STF_INTERNAL_ERROR;
}
}
/* if enabled send XAUTH Vendor ID */
if (SEND_XAUTH_VID)
{
if (!out_vendorid(vids_to_send-- ? ISAKMP_NEXT_VID : ISAKMP_NEXT_NONE
, &md->rbody, VID_MISC_XAUTH))
{
return STF_INTERNAL_ERROR;
}
}
/*
* if the peer sent an OpenPGP Vendor ID we offer the same capability
*/
if (md->openpgp)
{
if (!out_vendorid(vids_to_send-- ? ISAKMP_NEXT_VID : ISAKMP_NEXT_NONE
, &md->rbody, VID_OPENPGP))
{
return STF_INTERNAL_ERROR;
}
}
/* Announce our ability to do Dead Peer Detection to the peer */
{
if (!out_vendorid(vids_to_send-- ? ISAKMP_NEXT_VID : ISAKMP_NEXT_NONE
, &md->rbody, VID_MISC_DPD))
{
return STF_INTERNAL_ERROR;
}
}
#ifdef NAT_TRAVERSAL
DBG(DBG_CONTROLMORE,
DBG_log("sender checking NAT-t: %d and %d"
, nat_traversal_enabled, md->nat_traversal_vid)
)
if (md->nat_traversal_vid && nat_traversal_enabled)
{
/* reply if NAT-Traversal draft is supported */
st->nat_traversal = nat_traversal_vid_to_method(md->nat_traversal_vid);
if (st->nat_traversal
&& !out_vendorid(vids_to_send-- ? ISAKMP_NEXT_VID : ISAKMP_NEXT_NONE
, &md->rbody, md->nat_traversal_vid))
{
return STF_INTERNAL_ERROR;
}
}
#endif
close_message(&md->rbody);
/* save initiator SA for HASH */
clonereplacechunk(st->st_p1isa, sa_pd->pbs.start, pbs_room(&sa_pd->pbs), "sa in main_inI1_outR1()");
return STF_OK;
}
/* STATE_MAIN_I1: HDR, SA --> auth dependent
* PSK_AUTH, DS_AUTH: --> HDR, KE, Ni
*
* The following are not yet implemented:
* PKE_AUTH: --> HDR, KE, [ HASH(1), ] <IDi1_b>PubKey_r, <Ni_b>PubKey_r
* RPKE_AUTH: --> HDR, [ HASH(1), ] <Ni_b>Pubkey_r, <KE_b>Ke_i,
* <IDi1_b>Ke_i [,<<Cert-I_b>Ke_i]
*
* We must verify that the proposal received matches one we sent.
*/
stf_status
main_inR1_outI2(struct msg_digest *md)
{
struct state *const st = md->st;
u_int8_t np = ISAKMP_NEXT_NONE;
/* verify echoed SA */
{
u_int32_t ipsecdoisit;
pb_stream proposal_pbs;
struct isakmp_proposal proposal;
struct payload_digest *const sapd = md->chain[ISAKMP_NEXT_SA];
RETURN_STF_FAILURE(preparse_isakmp_sa_body(&sapd->payload.sa
,&sapd->pbs, &ipsecdoisit, &proposal_pbs, &proposal));
if (proposal.isap_notrans != 1)
{
loglog(RC_LOG_SERIOUS, "a single Transform is required in a selecting Oakley Proposal; found %u"
, (unsigned)proposal.isap_notrans);
RETURN_STF_FAILURE(BAD_PROPOSAL_SYNTAX);
}
RETURN_STF_FAILURE(parse_isakmp_sa_body(ipsecdoisit
, &proposal_pbs, &proposal, NULL, st));
}
#ifdef NAT_TRAVERSAL
DBG(DBG_CONTROLMORE,
DBG_log("sender checking NAT-t: %d and %d"
, nat_traversal_enabled, md->nat_traversal_vid)
)
if (nat_traversal_enabled && md->nat_traversal_vid)
{
st->nat_traversal = nat_traversal_vid_to_method(md->nat_traversal_vid);
plog("enabling possible NAT-traversal with method %s"
, bitnamesof(natt_type_bitnames, st->nat_traversal));
}
if (st->nat_traversal & NAT_T_WITH_NATD)
{
np = (st->nat_traversal & NAT_T_WITH_RFC_VALUES) ?
ISAKMP_NEXT_NATD_RFC : ISAKMP_NEXT_NATD_DRAFTS;
}
#endif
/**************** build output packet HDR;KE;Ni ****************/
/* HDR out.
* We can't leave this to comm_handle() because the isa_np
* depends on the type of Auth (eventually).
*/
echo_hdr(md, FALSE, ISAKMP_NEXT_KE);
/* KE out */
if (!build_and_ship_KE(st, &st->st_gi, st->st_oakley.group
, &md->rbody, ISAKMP_NEXT_NONCE))
return STF_INTERNAL_ERROR;
#ifdef DEBUG
/* Ni out */
if (!build_and_ship_nonce(&st->st_ni, &md->rbody
, (cur_debugging & IMPAIR_BUST_MI2)? ISAKMP_NEXT_VID : np, "Ni"))
return STF_INTERNAL_ERROR;
if (cur_debugging & IMPAIR_BUST_MI2)
{
/* generate a pointless large VID payload to push message over MTU */
pb_stream vid_pbs;
if (!out_generic(np, &isakmp_vendor_id_desc, &md->rbody, &vid_pbs))
return STF_INTERNAL_ERROR;
if (!out_zero(1500 /*MTU?*/, &vid_pbs, "Filler VID"))
return STF_INTERNAL_ERROR;
close_output_pbs(&vid_pbs);
}
#else
/* Ni out */
if (!build_and_ship_nonce(&st->st_ni, &md->rbody, np, "Ni"))
return STF_INTERNAL_ERROR;
#endif
#ifdef NAT_TRAVERSAL
if (st->nat_traversal & NAT_T_WITH_NATD)
{
if (!nat_traversal_add_natd(ISAKMP_NEXT_NONE, &md->rbody, md))
return STF_INTERNAL_ERROR;
}
#endif
/* finish message */
close_message(&md->rbody);
/* Reinsert the state, using the responder cookie we just received */
unhash_state(st);
memcpy(st->st_rcookie, md->hdr.isa_rcookie, COOKIE_SIZE);
insert_state(st); /* needs cookies, connection, and msgid (0) */
return STF_OK;
}
/* STATE_MAIN_R1:
* PSK_AUTH, DS_AUTH: HDR, KE, Ni --> HDR, KE, Nr
*
* The following are not yet implemented:
* PKE_AUTH: HDR, KE, [ HASH(1), ] <IDi1_b>PubKey_r, <Ni_b>PubKey_r
* --> HDR, KE, <IDr1_b>PubKey_i, <Nr_b>PubKey_i
* RPKE_AUTH:
* HDR, [ HASH(1), ] <Ni_b>Pubkey_r, <KE_b>Ke_i, <IDi1_b>Ke_i [,<<Cert-I_b>Ke_i]
* --> HDR, <Nr_b>PubKey_i, <KE_b>Ke_r, <IDr1_b>Ke_r
*/
stf_status
main_inI2_outR2(struct msg_digest *md)
{
struct state *const st = md->st;
pb_stream *keyex_pbs = &md->chain[ISAKMP_NEXT_KE]->pbs;
/* send CR if auth is RSA and no preloaded RSA public key exists*/
bool send_cr = !no_cr_send && (st->st_oakley.auth == OAKLEY_RSA_SIG) &&
!has_preloaded_public_key(st);
u_int8_t np = ISAKMP_NEXT_NONE;
/* KE in */
RETURN_STF_FAILURE(accept_KE(&st->st_gi, "Gi", st->st_oakley.group, keyex_pbs));
/* Ni in */
RETURN_STF_FAILURE(accept_nonce(md, &st->st_ni, "Ni"));
#ifdef NAT_TRAVERSAL
DBG(DBG_CONTROLMORE,
DBG_log("inI2: checking NAT-t: %d and %d"
, nat_traversal_enabled, st->nat_traversal)
)
if (st->nat_traversal & NAT_T_WITH_NATD)
{
nat_traversal_natd_lookup(md);
np = (st->nat_traversal & NAT_T_WITH_RFC_VALUES) ?
ISAKMP_NEXT_NATD_RFC : ISAKMP_NEXT_NATD_DRAFTS;
}
if (st->nat_traversal)
{
nat_traversal_show_result(st->nat_traversal, md->sender_port);
}
if (st->nat_traversal & NAT_T_WITH_KA)
{
nat_traversal_new_ka_event();
}
#endif
/* decode certificate requests */
st->st_connection->got_certrequest = FALSE;
decode_cr(md, st->st_connection);
/**************** build output packet HDR;KE;Nr ****************/
/* HDR out done */
/* KE out */
if (!build_and_ship_KE(st, &st->st_gr, st->st_oakley.group
, &md->rbody, ISAKMP_NEXT_NONCE))
return STF_INTERNAL_ERROR;
#ifdef DEBUG
/* Nr out */
if (!build_and_ship_nonce(&st->st_nr, &md->rbody
, (cur_debugging & IMPAIR_BUST_MR2)? ISAKMP_NEXT_VID
: (send_cr? ISAKMP_NEXT_CR : np), "Nr"))
return STF_INTERNAL_ERROR;
if (cur_debugging & IMPAIR_BUST_MR2)
{
/* generate a pointless large VID payload to push message over MTU */
pb_stream vid_pbs;
if (!out_generic((send_cr)? ISAKMP_NEXT_CR : np,
&isakmp_vendor_id_desc, &md->rbody, &vid_pbs))
return STF_INTERNAL_ERROR;
if (!out_zero(1500 /*MTU?*/, &vid_pbs, "Filler VID"))
return STF_INTERNAL_ERROR;
close_output_pbs(&vid_pbs);
}
#else
/* Nr out */
if (!build_and_ship_nonce(&st->st_nr, &md->rbody,
(send_cr)? ISAKMP_NEXT_CR : np, "Nr"))
return STF_INTERNAL_ERROR;
#endif
/* CR out */
if (send_cr)
{
if (st->st_connection->kind == CK_PERMANENT)
{
if (!build_and_ship_CR(CERT_X509_SIGNATURE
, st->st_connection->spd.that.ca
, &md->rbody, np))
return STF_INTERNAL_ERROR;
}
else
{
generalName_t *ca = NULL;
if (collect_rw_ca_candidates(md, &ca))
{
generalName_t *gn;
for (gn = ca; gn != NULL; gn = gn->next)
{
if (!build_and_ship_CR(CERT_X509_SIGNATURE, gn->name
, &md->rbody
, gn->next == NULL ? np : ISAKMP_NEXT_CR))
return STF_INTERNAL_ERROR;
}
free_generalNames(ca, FALSE);
}
else
{
if (!build_and_ship_CR(CERT_X509_SIGNATURE, empty_chunk
, &md->rbody, np))
return STF_INTERNAL_ERROR;
}
}
}
#ifdef NAT_TRAVERSAL
if (st->nat_traversal & NAT_T_WITH_NATD)
{
if (!nat_traversal_add_natd(ISAKMP_NEXT_NONE, &md->rbody, md))
return STF_INTERNAL_ERROR;
}
#endif
/* finish message */
close_message(&md->rbody);
/* next message will be encrypted, but not this one.
* We could defer this calculation.
*/
compute_dh_shared(st, st->st_gi, st->st_oakley.group);
if (!generate_skeyids_iv(st))
return STF_FAIL + AUTHENTICATION_FAILED;
update_iv(st);
return STF_OK;
}
/* STATE_MAIN_I2:
* SMF_PSK_AUTH: HDR, KE, Nr --> HDR*, IDi1, HASH_I
* SMF_DS_AUTH: HDR, KE, Nr --> HDR*, IDi1, [ CERT, ] SIG_I
*
* The following are not yet implemented.
* SMF_PKE_AUTH: HDR, KE, <IDr1_b>PubKey_i, <Nr_b>PubKey_i
* --> HDR*, HASH_I
* SMF_RPKE_AUTH: HDR, <Nr_b>PubKey_i, <KE_b>Ke_r, <IDr1_b>Ke_r
* --> HDR*, HASH_I
*/
stf_status
main_inR2_outI3(struct msg_digest *md)
{
struct state *const st = md->st;
pb_stream *const keyex_pbs = &md->chain[ISAKMP_NEXT_KE]->pbs;
int auth_payload = st->st_oakley.auth == OAKLEY_PRESHARED_KEY
? ISAKMP_NEXT_HASH : ISAKMP_NEXT_SIG;
pb_stream id_pbs; /* ID Payload; also used for hash calculation */
certpolicy_t cert_policy = st->st_connection->spd.this.sendcert;
cert_t mycert = st->st_connection->spd.this.cert;
bool requested, send_cert, send_cr;
/* KE in */
RETURN_STF_FAILURE(accept_KE(&st->st_gr, "Gr", st->st_oakley.group, keyex_pbs));
/* Nr in */
RETURN_STF_FAILURE(accept_nonce(md, &st->st_nr, "Nr"));
/* decode certificate requests */
st->st_connection->got_certrequest = FALSE;
decode_cr(md, st->st_connection);
/* free collected certificate requests since as initiator
* we don't heed them anyway
*/
free_generalNames(st->st_connection->requested_ca, TRUE);
st->st_connection->requested_ca = NULL;
/* send certificate if auth is RSA, we have one and we want
* or are requested to send it
*/
requested = cert_policy == CERT_SEND_IF_ASKED
&& st->st_connection->got_certrequest;
send_cert = st->st_oakley.auth == OAKLEY_RSA_SIG
&& mycert.type != CERT_NONE
&& (cert_policy == CERT_ALWAYS_SEND || requested);
/* send certificate request if we don't have a preloaded RSA public key */
send_cr = !no_cr_send && send_cert && !has_preloaded_public_key(st);
/* done parsing; initialize crypto */
compute_dh_shared(st, st->st_gr, st->st_oakley.group);
if (!generate_skeyids_iv(st))
return STF_FAIL + AUTHENTICATION_FAILED;
#ifdef NAT_TRAVERSAL
if (st->nat_traversal & NAT_T_WITH_NATD) {
nat_traversal_natd_lookup(md);
}
if (st->nat_traversal) {
nat_traversal_show_result(st->nat_traversal, md->sender_port);
}
if (st->nat_traversal & NAT_T_WITH_KA) {
nat_traversal_new_ka_event();
}
#endif
/*************** build output packet HDR*;IDii;HASH/SIG_I ***************/
/* ??? NOTE: this is almost the same as main_inI3_outR3's code */
/* HDR* out done */
/* IDii out */
{
struct isakmp_ipsec_id id_hd;
chunk_t id_b;
build_id_payload(&id_hd, &id_b, &st->st_connection->spd.this);
id_hd.isaiid_np = (send_cert)? ISAKMP_NEXT_CERT : auth_payload;
if (!out_struct(&id_hd, &isakmp_ipsec_identification_desc, &md->rbody, &id_pbs)
|| !out_chunk(id_b, &id_pbs, "my identity"))
return STF_INTERNAL_ERROR;
close_output_pbs(&id_pbs);
}
/* CERT out */
if ( st->st_oakley.auth == OAKLEY_RSA_SIG)
{
DBG(DBG_CONTROL,
DBG_log("our certificate policy is %s"
, enum_name(&cert_policy_names, cert_policy))
)
if (mycert.type != CERT_NONE)
{
const char *request_text = "";
if (cert_policy == CERT_SEND_IF_ASKED)
request_text = (send_cert)? "upon request":"without request";
plog("we have a cert %s sending it %s"
, send_cert? "and are":"but are not", request_text);
}
else
{
plog("we don't have a cert");
}
}
if (send_cert)
{
pb_stream cert_pbs;
struct isakmp_cert cert_hd;
cert_hd.isacert_np = (send_cr)? ISAKMP_NEXT_CR : ISAKMP_NEXT_SIG;
cert_hd.isacert_type = mycert.type;
if (!out_struct(&cert_hd, &isakmp_ipsec_certificate_desc, &md->rbody, &cert_pbs))
return STF_INTERNAL_ERROR;
if (!out_chunk(get_mycert(mycert), &cert_pbs, "CERT"))
return STF_INTERNAL_ERROR;
close_output_pbs(&cert_pbs);
}
/* CR out */
if (send_cr)
{
if (!build_and_ship_CR(mycert.type, st->st_connection->spd.that.ca
, &md->rbody, ISAKMP_NEXT_SIG))
return STF_INTERNAL_ERROR;
}
/* HASH_I or SIG_I out */
{
u_char hash_val[MAX_DIGEST_LEN];
size_t hash_len = main_mode_hash(st, hash_val, TRUE, &id_pbs);
if (auth_payload == ISAKMP_NEXT_HASH)
{
/* HASH_I out */
if (!out_generic_raw(ISAKMP_NEXT_NONE, &isakmp_hash_desc, &md->rbody
, hash_val, hash_len, "HASH_I"))
return STF_INTERNAL_ERROR;
}
else
{
/* SIG_I out */
u_char sig_val[RSA_MAX_OCTETS];
size_t sig_len = RSA_sign_hash(st->st_connection
, sig_val, hash_val, hash_len);
if (sig_len == 0)
{
loglog(RC_LOG_SERIOUS, "unable to locate my private key for RSA Signature");
return STF_FAIL + AUTHENTICATION_FAILED;
}
if (!out_generic_raw(ISAKMP_NEXT_NONE, &isakmp_signature_desc
, &md->rbody, sig_val, sig_len, "SIG_I"))
return STF_INTERNAL_ERROR;
}
}
/* encrypt message, except for fixed part of header */
/* st_new_iv was computed by generate_skeyids_iv */
if (!encrypt_message(&md->rbody, st))
return STF_INTERNAL_ERROR; /* ??? we may be partly committed */
return STF_OK;
}
/* Shared logic for asynchronous lookup of DNS KEY records.
* Used for STATE_MAIN_R2 and STATE_MAIN_I3.
*/
enum key_oppo_step {
kos_null,
kos_his_txt
#ifdef USE_KEYRR
, kos_his_key
#endif
};
struct key_continuation {
struct adns_continuation ac; /* common prefix */
struct msg_digest *md;
enum key_oppo_step step;
bool failure_ok;
err_t last_ugh;
};
typedef stf_status (key_tail_fn)(struct msg_digest *md
, struct key_continuation *kc);
static void
report_key_dns_failure(struct id *id, err_t ugh)
{
char id_buf[BUF_LEN]; /* arbitrary limit on length of ID reported */
(void) idtoa(id, id_buf, sizeof(id_buf));
loglog(RC_LOG_SERIOUS, "no RSA public key known for '%s'"
"; DNS search for KEY failed (%s)", id_buf, ugh);
}
/* Processs the Main Mode ID Payload and the Authenticator
* (Hash or Signature Payload).
* If a DNS query is still needed to get the other host's public key,
* the query is initiated and STF_SUSPEND is returned.
* Note: parameter kc is a continuation containing the results from
* the previous DNS query, or NULL indicating no query has been issued.
*/
static stf_status
main_id_and_auth(struct msg_digest *md
, bool initiator /* are we the Initiator? */
, cont_fn_t cont_fn /* continuation function */
, const struct key_continuation *kc /* current state, can be NULL */
)
{
struct state *st = md->st;
u_char hash_val[MAX_DIGEST_LEN];
size_t hash_len;
struct id peer;
stf_status r = STF_OK;
/* ID Payload in */
if (!decode_peer_id(md, &peer))
return STF_FAIL + INVALID_ID_INFORMATION;
/* Hash the ID Payload.
* main_mode_hash requires idpl->cur to be at end of payload
* so we temporarily set if so.
*/
{
pb_stream *idpl = &md->chain[ISAKMP_NEXT_ID]->pbs;
u_int8_t *old_cur = idpl->cur;
idpl->cur = idpl->roof;
hash_len = main_mode_hash(st, hash_val, !initiator, idpl);
idpl->cur = old_cur;
}
switch (st->st_oakley.auth)
{
case OAKLEY_PRESHARED_KEY:
{
pb_stream *const hash_pbs = &md->chain[ISAKMP_NEXT_HASH]->pbs;
if (pbs_left(hash_pbs) != hash_len
|| memcmp(hash_pbs->cur, hash_val, hash_len) != 0)
{
DBG_cond_dump(DBG_CRYPT, "received HASH:"
, hash_pbs->cur, pbs_left(hash_pbs));
loglog(RC_LOG_SERIOUS, "received Hash Payload does not match computed value");
/* XXX Could send notification back */
r = STF_FAIL + INVALID_HASH_INFORMATION;
}
}
break;
case OAKLEY_RSA_SIG:
r = RSA_check_signature(&peer, st, hash_val, hash_len
, &md->chain[ISAKMP_NEXT_SIG]->pbs
#ifdef USE_KEYRR
, kc == NULL? NULL : kc->ac.keys_from_dns
#endif /* USE_KEYRR */
, kc == NULL? NULL : kc->ac.gateways_from_dns
);
if (r == STF_SUSPEND)
{
/* initiate/resume asynchronous DNS lookup for key */
struct key_continuation *nkc
= alloc_thing(struct key_continuation, "key continuation");
enum key_oppo_step step_done = kc == NULL? kos_null : kc->step;
err_t ugh;
/* Record that state is used by a suspended md */
passert(st->st_suspended_md == NULL);
st->st_suspended_md = md;
nkc->failure_ok = FALSE;
nkc->md = md;
switch (step_done)
{
case kos_null:
/* first try: look for the TXT records */
nkc->step = kos_his_txt;
#ifdef USE_KEYRR
nkc->failure_ok = TRUE;
#endif
ugh = start_adns_query(&peer
, &peer /* SG itself */
, T_TXT
, cont_fn
, &nkc->ac);
break;
#ifdef USE_KEYRR
case kos_his_txt:
/* second try: look for the KEY records */
nkc->step = kos_his_key;
ugh = start_adns_query(&peer
, NULL /* no sgw for KEY */
, T_KEY
, cont_fn
, &nkc->ac);
break;
#endif /* USE_KEYRR */
default:
bad_case(step_done);
}
if (ugh != NULL)
{
report_key_dns_failure(&peer, ugh);
st->st_suspended_md = NULL;
r = STF_FAIL + INVALID_KEY_INFORMATION;
}
}
break;
default:
bad_case(st->st_oakley.auth);
}
if (r != STF_OK)
return r;
DBG(DBG_CRYPT, DBG_log("authentication succeeded"));
/*
* With the peer ID known, let's see if we need to switch connections.
*/
if (!switch_connection(md, &peer, initiator))
return STF_FAIL + INVALID_ID_INFORMATION;
return r;
}
/* This continuation is called as part of either
* the main_inI3_outR3 state or main_inR3 state.
*
* The "tail" function is the corresponding tail
* function main_inI3_outR3_tail | main_inR3_tail,
* either directly when the state is started, or via
* adns continuation.
*
* Basically, we go around in a circle:
* main_in?3* -> key_continue
* ^ \
* / V
* adns main_in?3*_tail
* ^ |
* \ V
* main_id_and_auth
*
* until such time as main_id_and_auth is able
* to find authentication, or we run out of things
* to try.
*/
static void
key_continue(struct adns_continuation *cr
, err_t ugh
, key_tail_fn *tail)
{
struct key_continuation *kc = (void *)cr;
struct state *st = kc->md->st;
passert(cur_state == NULL);
/* if st == NULL, our state has been deleted -- just clean up */
if (st != NULL)
{
stf_status r;
passert(st->st_suspended_md == kc->md);
st->st_suspended_md = NULL; /* no longer connected or suspended */
cur_state = st;
if (!kc->failure_ok && ugh != NULL)
{
report_key_dns_failure(&st->st_connection->spd.that.id, ugh);
r = STF_FAIL + INVALID_KEY_INFORMATION;
}
else
{
#ifdef USE_KEYRR
passert(kc->step == kos_his_txt || kc->step == kos_his_key);
#else
passert(kc->step == kos_his_txt);
#endif
kc->last_ugh = ugh; /* record previous error in case we need it */
r = (*tail)(kc->md, kc);
}
complete_state_transition(&kc->md, r);
}
if (kc->md != NULL)
release_md(kc->md);
cur_state = NULL;
}
/* STATE_MAIN_R2:
* PSK_AUTH: HDR*, IDi1, HASH_I --> HDR*, IDr1, HASH_R
* DS_AUTH: HDR*, IDi1, [ CERT, ] SIG_I --> HDR*, IDr1, [ CERT, ] SIG_R
* PKE_AUTH, RPKE_AUTH: HDR*, HASH_I --> HDR*, HASH_R
*
* Broken into parts to allow asynchronous DNS lookup.
*
* - main_inI3_outR3 to start
* - main_inI3_outR3_tail to finish or suspend for DNS lookup
* - main_inI3_outR3_continue to start main_inI3_outR3_tail again
*/
static key_tail_fn main_inI3_outR3_tail; /* forward */
stf_status
main_inI3_outR3(struct msg_digest *md)
{
return main_inI3_outR3_tail(md, NULL);
}
static void
main_inI3_outR3_continue(struct adns_continuation *cr, err_t ugh)
{
key_continue(cr, ugh, main_inI3_outR3_tail);
}
static stf_status
main_inI3_outR3_tail(struct msg_digest *md
, struct key_continuation *kc)
{
struct state *const st = md->st;
u_int8_t auth_payload;
pb_stream r_id_pbs; /* ID Payload; also used for hash calculation */
certpolicy_t cert_policy;
cert_t mycert;
bool send_cert;
bool requested;
/* ID and HASH_I or SIG_I in
* Note: this may switch the connection being used!
*/
{
stf_status r = main_id_and_auth(md, FALSE
, main_inI3_outR3_continue
, kc);
if (r != STF_OK)
return r;
}
/* send certificate if auth is RSA, we have one and we want
* or are requested to send it
*/
cert_policy = st->st_connection->spd.this.sendcert;
mycert = st->st_connection->spd.this.cert;
requested = cert_policy == CERT_SEND_IF_ASKED
&& st->st_connection->got_certrequest;
send_cert = st->st_oakley.auth == OAKLEY_RSA_SIG
&& mycert.type != CERT_NONE
&& (cert_policy == CERT_ALWAYS_SEND || requested);
/*************** build output packet HDR*;IDir;HASH/SIG_R ***************/
/* proccess_packet() would automatically generate the HDR*
* payload if smc->first_out_payload is not ISAKMP_NEXT_NONE.
* We don't do this because we wish there to be no partially
* built output packet if we need to suspend for asynch DNS.
*/
/* ??? NOTE: this is almost the same as main_inR2_outI3's code */
/* HDR* out
* If auth were PKE_AUTH or RPKE_AUTH, ISAKMP_NEXT_HASH would
* be first payload.
*/
echo_hdr(md, TRUE, ISAKMP_NEXT_ID);
auth_payload = st->st_oakley.auth == OAKLEY_PRESHARED_KEY
? ISAKMP_NEXT_HASH : ISAKMP_NEXT_SIG;
/* IDir out */
{
/* id_hd should be struct isakmp_id, but struct isakmp_ipsec_id
* allows build_id_payload() to work for both phases.
*/
struct isakmp_ipsec_id id_hd;
chunk_t id_b;
build_id_payload(&id_hd, &id_b, &st->st_connection->spd.this);
id_hd.isaiid_np = (send_cert)? ISAKMP_NEXT_CERT : auth_payload;
if (!out_struct(&id_hd, &isakmp_ipsec_identification_desc, &md->rbody, &r_id_pbs)
|| !out_chunk(id_b, &r_id_pbs, "my identity"))
return STF_INTERNAL_ERROR;
close_output_pbs(&r_id_pbs);
}
/* CERT out */
if (st->st_oakley.auth == OAKLEY_RSA_SIG)
{
DBG(DBG_CONTROL,
DBG_log("our certificate policy is %s"
, enum_name(&cert_policy_names, cert_policy))
)
if (mycert.type != CERT_NONE)
{
const char *request_text = "";
if (cert_policy == CERT_SEND_IF_ASKED)
request_text = (send_cert)? "upon request":"without request";
plog("we have a cert %s sending it %s"
, send_cert? "and are":"but are not", request_text);
}
else
{
plog("we don't have a cert");
}
}
if (send_cert)
{
pb_stream cert_pbs;
struct isakmp_cert cert_hd;
cert_hd.isacert_np = ISAKMP_NEXT_SIG;
cert_hd.isacert_type = mycert.type;
if (!out_struct(&cert_hd, &isakmp_ipsec_certificate_desc, &md->rbody, &cert_pbs))
return STF_INTERNAL_ERROR;
if (!out_chunk(get_mycert(mycert), &cert_pbs, "CERT"))
return STF_INTERNAL_ERROR;
close_output_pbs(&cert_pbs);
}
/* HASH_R or SIG_R out */
{
u_char hash_val[MAX_DIGEST_LEN];
size_t hash_len = main_mode_hash(st, hash_val, FALSE, &r_id_pbs);
if (auth_payload == ISAKMP_NEXT_HASH)
{
/* HASH_R out */
if (!out_generic_raw(ISAKMP_NEXT_NONE, &isakmp_hash_desc, &md->rbody
, hash_val, hash_len, "HASH_R"))
return STF_INTERNAL_ERROR;
}
else
{
/* SIG_R out */
u_char sig_val[RSA_MAX_OCTETS];
size_t sig_len = RSA_sign_hash(st->st_connection
, sig_val, hash_val, hash_len);
if (sig_len == 0)
{
loglog(RC_LOG_SERIOUS, "unable to locate my private key for RSA Signature");
return STF_FAIL + AUTHENTICATION_FAILED;
}
if (!out_generic_raw(ISAKMP_NEXT_NONE, &isakmp_signature_desc
, &md->rbody, sig_val, sig_len, "SIG_R"))
return STF_INTERNAL_ERROR;
}
}
/* encrypt message, sans fixed part of header */
if (!encrypt_message(&md->rbody, st))
return STF_INTERNAL_ERROR; /* ??? we may be partly committed */
/* Last block of Phase 1 (R3), kept for Phase 2 IV generation */
DBG_cond_dump(DBG_CRYPT, "last encrypted block of Phase 1:"
, st->st_new_iv, st->st_new_iv_len);
ISAKMP_SA_established(st->st_connection, st->st_serialno);
/* Save Phase 1 IV */
st->st_ph1_iv_len = st->st_new_iv_len;
set_ph1_iv(st, st->st_new_iv);
return STF_OK;
}
/* STATE_MAIN_I3:
* Handle HDR*;IDir;HASH/SIG_R from responder.
*
* Broken into parts to allow asynchronous DNS for KEY records.
*
* - main_inR3 to start
* - main_inR3_tail to finish or suspend for DNS lookup
* - main_inR3_continue to start main_inR3_tail again
*/
static key_tail_fn main_inR3_tail; /* forward */
stf_status
main_inR3(struct msg_digest *md)
{
return main_inR3_tail(md, NULL);
}
static void
main_inR3_continue(struct adns_continuation *cr, err_t ugh)
{
key_continue(cr, ugh, main_inR3_tail);
}
static stf_status
main_inR3_tail(struct msg_digest *md
, struct key_continuation *kc)
{
struct state *const st = md->st;
/* ID and HASH_R or SIG_R in
* Note: this may switch the connection being used!
*/
{
stf_status r = main_id_and_auth(md, TRUE, main_inR3_continue, kc);
if (r != STF_OK)
return r;
}
/**************** done input ****************/
ISAKMP_SA_established(st->st_connection, st->st_serialno);
/* Save Phase 1 IV */
st->st_ph1_iv_len = st->st_new_iv_len;
set_ph1_iv(st, st->st_new_iv);
update_iv(st); /* finalize our Phase 1 IV */
return STF_OK;
}
/* Handle first message of Phase 2 -- Quick Mode.
* HDR*, HASH(1), SA, Ni [, KE ] [, IDci, IDcr ] -->
* HDR*, HASH(2), SA, Nr [, KE ] [, IDci, IDcr ]
* (see RFC 2409 "IKE" 5.5)
* Installs inbound IPsec SAs.
* Although this seems early, we know enough to do so, and
* this way we know that it is soon enough to catch all
* packets that other side could send using this IPsec SA.
*
* Broken into parts to allow asynchronous DNS for TXT records:
*
* - quick_inI1_outR1 starts the ball rolling.
* It checks and parses enough to learn the Phase 2 IDs
*
* - quick_inI1_outR1_tail does the rest of the job
* unless DNS must be consulted. In that case,
* it starts a DNS query, salts away what is needed
* to continue, and suspends. Calls
* + quick_inI1_outR1_start_query
* + quick_inI1_outR1_process_answer
*
* - quick_inI1_outR1_continue will restart quick_inI1_outR1_tail
* when DNS comes back with an answer.
*
* A big chunk of quick_inI1_outR1_tail is executed twice.
* This is necessary because the set of connections
* might change while we are awaiting DNS.
* When first called, gateways_from_dns == NULL. If DNS is
* consulted asynchronously, gateways_from_dns != NULL the second time.
* Remember that our state object might disappear too!
*
*
* If the connection is opportunistic, we must verify delegation.
*
* 1. Check that we are authorized to be SG for
* our client. We look for the TXT record that
* delegates us. We also check that the public
* key (if present) matches the private key we used.
* Eventually, we should probably require DNSsec
* authentication for our side.
*
* 2. If our client TXT record did not include a
* public key, check the KEY record indicated
* by the identity in the TXT record.
*
* 3. If the peer's client is the peer itself, we
* consider it authenticated. Otherwise, we check
* the TXT record for the client to see that
* the identity of the SG matches the peer and
* that some public key (if present in the TXT)
* matches. We need not check the public key if
* it isn't in the TXT record.
*
* Since p isn't yet instantiated, we need to look
* in c for description of peer.
*
* We cannot afford to block waiting for a DNS query.
* The code here is structured as two halves:
* - process the result of just completed
* DNS query (if any)
* - if another query is needed, initiate the next
* DNS query and suspend
*/
enum verify_oppo_step {
vos_fail,
vos_start,
vos_our_client,
vos_our_txt,
#ifdef USE_KEYRR
vos_our_key,
#endif /* USE_KEYRR */
vos_his_client,
vos_done
};
static const char *const verify_step_name[] = {
"vos_fail",
"vos_start",
"vos_our_client",
"vos_our_txt",
#ifdef USE_KEYRR
"vos_our_key",
#endif /* USE_KEYRR */
"vos_his_client",
"vos_done"
};
/* hold anything we can handle of a Phase 2 ID */
struct p2id {
ip_subnet net;
u_int8_t proto;
u_int16_t port;
};
struct verify_oppo_bundle {
enum verify_oppo_step step;
bool failure_ok; /* if true, quick_inI1_outR1_continue will try
* other things on DNS failure */
struct msg_digest *md;
struct p2id my, his;
unsigned int new_iv_len; /* p1st's might change */
u_char new_iv[MAX_DIGEST_LEN];
/* int whackfd; */ /* not needed because we are Responder */
};
struct verify_oppo_continuation {
struct adns_continuation ac; /* common prefix */
struct verify_oppo_bundle b;
};
static stf_status quick_inI1_outR1_tail(struct verify_oppo_bundle *b
, struct adns_continuation *ac);
stf_status
quick_inI1_outR1(struct msg_digest *md)
{
const struct state *const p1st = md->st;
struct connection *c = p1st->st_connection;
struct payload_digest *const id_pd = md->chain[ISAKMP_NEXT_ID];
struct verify_oppo_bundle b;
/* HASH(1) in */
CHECK_QUICK_HASH(md
, quick_mode_hash12(hash_val, hash_pbs->roof, md->message_pbs.roof
, p1st, &md->hdr.isa_msgid, FALSE)
, "HASH(1)", "Quick I1");
/* [ IDci, IDcr ] in
* We do this now (probably out of physical order) because
* we wish to select the correct connection before we consult
* it for policy.
*/
if (id_pd != NULL)
{
/* ??? we are assuming IPSEC_DOI */
/* IDci (initiator is peer) */
if (!decode_net_id(&id_pd->payload.ipsec_id, &id_pd->pbs
, &b.his.net, "peer client"))
return STF_FAIL + INVALID_ID_INFORMATION;
/* Hack for MS 818043 NAT-T Update */
if (id_pd->payload.ipsec_id.isaiid_idtype == ID_FQDN)
happy(addrtosubnet(&c->spd.that.host_addr, &b.his.net));
/* End Hack for MS 818043 NAT-T Update */
b.his.proto = id_pd->payload.ipsec_id.isaiid_protoid;
b.his.port = id_pd->payload.ipsec_id.isaiid_port;
b.his.net.addr.u.v4.sin_port = htons(b.his.port);
/* IDcr (we are responder) */
if (!decode_net_id(&id_pd->next->payload.ipsec_id, &id_pd->next->pbs
, &b.my.net, "our client"))
return STF_FAIL + INVALID_ID_INFORMATION;
b.my.proto = id_pd->next->payload.ipsec_id.isaiid_protoid;
b.my.port = id_pd->next->payload.ipsec_id.isaiid_port;
b.my.net.addr.u.v4.sin_port = htons(b.my.port);
}
else
{
/* implicit IDci and IDcr: peer and self */
if (!sameaddrtype(&c->spd.this.host_addr, &c->spd.that.host_addr))
return STF_FAIL;
happy(addrtosubnet(&c->spd.this.host_addr, &b.my.net));
happy(addrtosubnet(&c->spd.that.host_addr, &b.his.net));
b.his.proto = b.my.proto = 0;
b.his.port = b.my.port = 0;
}
b.step = vos_start;
b.md = md;
b.new_iv_len = p1st->st_new_iv_len;
memcpy(b.new_iv, p1st->st_new_iv, p1st->st_new_iv_len);
return quick_inI1_outR1_tail(&b, NULL);
}
static void
report_verify_failure(struct verify_oppo_bundle *b, err_t ugh)
{
struct state *st = b->md->st;
char fgwb[ADDRTOT_BUF]
, cb[ADDRTOT_BUF];
ip_address client;
err_t which;
switch (b->step)
{
case vos_our_client:
case vos_our_txt:
#ifdef USE_KEYRR
case vos_our_key:
#endif /* USE_KEYRR */
which = "our";
networkof(&b->my.net, &client);
break;
case vos_his_client:
which = "his";
networkof(&b->his.net, &client);
break;
case vos_start:
case vos_done:
case vos_fail:
default:
bad_case(b->step);
}
addrtot(&st->st_connection->spd.that.host_addr, 0, fgwb, sizeof(fgwb));
addrtot(&client, 0, cb, sizeof(cb));
loglog(RC_OPPOFAILURE
, "gateway %s wants connection with %s as %s client, but DNS fails to confirm delegation: %s"
, fgwb, cb, which, ugh);
}
static void
quick_inI1_outR1_continue(struct adns_continuation *cr, err_t ugh)
{
stf_status r;
struct verify_oppo_continuation *vc = (void *)cr;
struct verify_oppo_bundle *b = &vc->b;
struct state *st = b->md->st;
passert(cur_state == NULL);
/* if st == NULL, our state has been deleted -- just clean up */
if (st != NULL)
{
passert(st->st_suspended_md == b->md);
st->st_suspended_md = NULL; /* no longer connected or suspended */
cur_state = st;
if (!b->failure_ok && ugh != NULL)
{
report_verify_failure(b, ugh);
r = STF_FAIL + INVALID_ID_INFORMATION;
}
else
{
r = quick_inI1_outR1_tail(b, cr);
}
complete_state_transition(&b->md, r);
}
if (b->md != NULL)
release_md(b->md);
cur_state = NULL;
}
static stf_status
quick_inI1_outR1_start_query(struct verify_oppo_bundle *b
, enum verify_oppo_step next_step)
{
struct msg_digest *md = b->md;
struct state *p1st = md->st;
struct connection *c = p1st->st_connection;
struct verify_oppo_continuation *vc
= alloc_thing(struct verify_oppo_continuation, "verify continuation");
struct id id /* subject of query */
, *our_id /* needed for myid playing */
, our_id_space; /* ephemeral: no need for unshare_id_content */
ip_address client;
err_t ugh;
/* Record that state is used by a suspended md */
b->step = next_step; /* not just vc->b.step */
vc->b = *b;
passert(p1st->st_suspended_md == NULL);
p1st->st_suspended_md = b->md;
DBG(DBG_CONTROL,
{
char ours[SUBNETTOT_BUF];
char his[SUBNETTOT_BUF];
subnettot(&c->spd.this.client, 0, ours, sizeof(ours));
subnettot(&c->spd.that.client, 0, his, sizeof(his));
DBG_log("responding with DNS query - from %s to %s new state: %s"
, ours, his, verify_step_name[b->step]);
});
/* Resolve %myid in a cheesy way.
* We have to do the resolution because start_adns_query
* et al have insufficient information to do so.
* If %myid is already known, we'll use that value
* (XXX this may be a mistake: it could be stale).
* If %myid is unknown, we should check to see if
* there are credentials for the IP address or the FQDN.
* Instead, we'll just assume the IP address since we are
* acting as the responder and only the IP address would
* have gotten it to us.
* We don't even try to do this for the other side:
* %myid makes no sense for the other side (but it is syntactically
* legal).
*/
our_id = resolve_myid(&c->spd.this.id);
if (our_id->kind == ID_NONE)
{
iptoid(&c->spd.this.host_addr, &our_id_space);
our_id = &our_id_space;
}
switch (next_step)
{
case vos_our_client:
networkof(&b->my.net, &client);
iptoid(&client, &id);
vc->b.failure_ok = b->failure_ok = FALSE;
ugh = start_adns_query(&id
, our_id
, T_TXT
, quick_inI1_outR1_continue
, &vc->ac);
break;
case vos_our_txt:
vc->b.failure_ok = b->failure_ok = TRUE;
ugh = start_adns_query(our_id
, our_id /* self as SG */
, T_TXT
, quick_inI1_outR1_continue
, &vc->ac);
break;
#ifdef USE_KEYRR
case vos_our_key:
vc->b.failure_ok = b->failure_ok = FALSE;
ugh = start_adns_query(our_id
, NULL
, T_KEY
, quick_inI1_outR1_continue
, &vc->ac);
break;
#endif
case vos_his_client:
networkof(&b->his.net, &client);
iptoid(&client, &id);
vc->b.failure_ok = b->failure_ok = FALSE;
ugh = start_adns_query(&id
, &c->spd.that.id
, T_TXT
, quick_inI1_outR1_continue
, &vc->ac);
break;
default:
bad_case(next_step);
}
if (ugh != NULL)
{
/* note: we'd like to use vc->b but vc has been freed
* so we have to use b. This is why we plunked next_state
* into b, not just vc->b.
*/
report_verify_failure(b, ugh);
p1st->st_suspended_md = NULL;
return STF_FAIL + INVALID_ID_INFORMATION;
}
else
{
return STF_SUSPEND;
}
}
static enum verify_oppo_step
quick_inI1_outR1_process_answer(struct verify_oppo_bundle *b
, struct adns_continuation *ac
, struct state *p1st)
{
struct connection *c = p1st->st_connection;
enum verify_oppo_step next_step;
err_t ugh = NULL;
DBG(DBG_CONTROL,
{
char ours[SUBNETTOT_BUF];
char his[SUBNETTOT_BUF];
subnettot(&c->spd.this.client, 0, ours, sizeof(ours));
subnettot(&c->spd.that.client, 0, his, sizeof(his));
DBG_log("responding on demand from %s to %s state: %s"
, ours, his, verify_step_name[b->step]);
});
/* process just completed DNS query (if any) */
switch (b->step)
{
case vos_start:
/* no query to digest */
next_step = vos_our_client;
break;
case vos_our_client:
next_step = vos_his_client;
{
const struct RSA_private_key *pri = get_RSA_private_key(c);
struct gw_info *gwp;
if (pri == NULL)
{
ugh = "we don't know our own key";
break;
}
ugh = "our client does not delegate us as its Security Gateway";
for (gwp = ac->gateways_from_dns; gwp != NULL; gwp = gwp->next)
{
ugh = "our client delegates us as its Security Gateway but with the wrong public key";
/* If there is no key in the TXT record,
* we count it as a win, but we will have
* to separately fetch and check the KEY record.
* If there is a key from the TXT record,
* we count it as a win if we match the key.
*/
if (!gwp->gw_key_present)
{
next_step = vos_our_txt;
ugh = NULL; /* good! */
break;
}
else if (same_RSA_public_key(&pri->pub, &gwp->key->u.rsa))
{
ugh = NULL; /* good! */
break;
}
}
}
break;
case vos_our_txt:
next_step = vos_his_client;
{
const struct RSA_private_key *pri = get_RSA_private_key(c);
if (pri == NULL)
{
ugh = "we don't know our own key";
break;
}
{
struct gw_info *gwp;
for (gwp = ac->gateways_from_dns; gwp != NULL; gwp = gwp->next)
{
#ifdef USE_KEYRR
/* not an error yet, because we have to check KEY RR as well */
ugh = NULL;
#else
ugh = "our client delegation depends on our " RRNAME " record, but it has the wrong public key";
#endif
if (gwp->gw_key_present
&& same_RSA_public_key(&pri->pub, &gwp->key->u.rsa))
{
ugh = NULL; /* good! */
break;
}
#ifdef USE_KEYRR
next_step = vos_our_key;
#endif
}
}
}
break;
#ifdef USE_KEYRR
case vos_our_key:
next_step = vos_his_client;
{
const struct RSA_private_key *pri = get_RSA_private_key(c);
if (pri == NULL)
{
ugh = "we don't know our own key";
break;
}
{
pubkey_list_t *kp;
ugh = "our client delegation depends on our missing " RRNAME " record";
for (kp = ac->keys_from_dns; kp != NULL; kp = kp->next)
{
ugh = "our client delegation depends on our " RRNAME " record, but it has the wrong public key";
if (same_RSA_public_key(&pri->pub, &kp->key->u.rsa))
{
/* do this only once a day */
if (!logged_txt_warning)
{
loglog(RC_LOG_SERIOUS, "found KEY RR but not TXT RR. See http://www.freeswan.org/err/txt-change.html.");
logged_txt_warning = TRUE;
}
ugh = NULL; /* good! */
break;
}
}
}
}
break;
#endif /* USE_KEYRR */
case vos_his_client:
next_step = vos_done;
{
struct gw_info *gwp;
/* check that the public key that authenticated
* the ISAKMP SA (p1st) will do for this gateway.
*/
ugh = "peer's client does not delegate to peer";
for (gwp = ac->gateways_from_dns; gwp != NULL; gwp = gwp->next)
{
ugh = "peer and its client disagree about public key";
/* If there is a key from the TXT record,
* we count it as a win if we match the key.
* If there was no key, we claim a match since
* it implies fetching a KEY from the same
* place we must have gotten it.
*/
if (!gwp->gw_key_present
|| same_RSA_public_key(&p1st->st_peer_pubkey->u.rsa
, &gwp->key->u.rsa))
{
ugh = NULL; /* good! */
break;
}
}
}
break;
default:
bad_case(b->step);
}
if (ugh != NULL)
{
report_verify_failure(b, ugh);
next_step = vos_fail;
}
return next_step;
}
static stf_status
quick_inI1_outR1_tail(struct verify_oppo_bundle *b
, struct adns_continuation *ac)
{
struct msg_digest *md = b->md;
struct state *const p1st = md->st;
struct connection *c = p1st->st_connection;
struct payload_digest *const id_pd = md->chain[ISAKMP_NEXT_ID];
ip_subnet *our_net = &b->my.net
, *his_net = &b->his.net;
u_char /* set by START_HASH_PAYLOAD: */
*r_hashval, /* where in reply to jam hash value */
*r_hash_start; /* from where to start hashing */
/* Now that we have identities of client subnets, we must look for
* a suitable connection (our current one only matches for hosts).
*/
{
struct connection *p = find_client_connection(c
, our_net, his_net, b->my.proto, b->my.port, b->his.proto, b->his.port);
if (p == NULL)
{
/* This message occurs in very puzzling circumstances
* so we must add as much information and beauty as we can.
*/
struct end
me = c->spd.this,
he = c->spd.that;
char buf[2*SUBNETTOT_BUF + 2*ADDRTOT_BUF + 2*BUF_LEN + 2*ADDRTOT_BUF + 12]; /* + 12 for separating */
size_t l;
me.client = *our_net;
me.has_client = !subnetisaddr(our_net, &me.host_addr);
me.protocol = b->my.proto;
me.port = b->my.port;
he.client = *his_net;
he.has_client = !subnetisaddr(his_net, &he.host_addr);
he.protocol = b->his.proto;
he.port = b->his.port;
l = format_end(buf, sizeof(buf), &me, NULL, TRUE, LEMPTY);
l += snprintf(buf + l, sizeof(buf) - l, "...");
(void)format_end(buf + l, sizeof(buf) - l, &he, NULL, FALSE, LEMPTY);
plog("cannot respond to IPsec SA request"
" because no connection is known for %s"
, buf);
return STF_FAIL + INVALID_ID_INFORMATION;
}
else if (p != c)
{
/* We've got a better connection: it can support the
* specified clients. But it may need instantiation.
*/
if (p->kind == CK_TEMPLATE)
{
/* Yup, it needs instantiation. How much?
* Is it a Road Warrior connection (simple)
* or is it an Opportunistic connection (needing gw validation)?
*/
if (p->policy & POLICY_OPPO)
{
/* Opportunistic case: delegation must be verified.
* Here be dragons.
*/
enum verify_oppo_step next_step;
ip_address our_client, his_client;
passert(subnetishost(our_net) && subnetishost(his_net));
networkof(our_net, &our_client);
networkof(his_net, &his_client);
next_step = quick_inI1_outR1_process_answer(b, ac, p1st);
if (next_step == vos_fail)
return STF_FAIL + INVALID_ID_INFORMATION;
/* short circuit: if peer's client is self,
* accept that we've verified delegation in Phase 1
*/
if (next_step == vos_his_client
&& sameaddr(&c->spd.that.host_addr, &his_client))
next_step = vos_done;
/* the second chunk: initiate the next DNS query (if any) */
DBG(DBG_CONTROL,
{
char ours[SUBNETTOT_BUF];
char his[SUBNETTOT_BUF];
subnettot(&c->spd.this.client, 0, ours, sizeof(ours));
subnettot(&c->spd.that.client, 0, his, sizeof(his));
DBG_log("responding on demand from %s to %s new state: %s"
, ours, his, verify_step_name[next_step]);
});
/* start next DNS query and suspend (if necessary) */
if (next_step != vos_done)
return quick_inI1_outR1_start_query(b, next_step);
/* Instantiate inbound Opportunistic connection,
* carrying over authenticated peer ID
* and filling in a few more details.
* We used to include gateways_from_dns, but that
* seems pointless at this stage of negotiation.
* We should record DNS sec use, if any -- belongs in
* state during perhaps.
*/
p = oppo_instantiate(p, &c->spd.that.host_addr, &c->spd.that.id
, NULL, &our_client, &his_client);
}
else
{
/* Plain Road Warrior:
* instantiate, carrying over authenticated peer ID
*/
p = rw_instantiate(p, &c->spd.that.host_addr,
#ifdef NAT_TRAVERSAL
md->sender_port,
#endif
#ifdef VIRTUAL_IP
his_net,
#endif
&c->spd.that.id);
}
}
#ifdef DEBUG
/* temporarily bump up cur_debugging to get "using..." message
* printed if we'd want it with new connection.
*/
{
lset_t old_cur_debugging = cur_debugging;
cur_debugging |= p->extra_debugging;
DBG(DBG_CONTROL, DBG_log("using connection \"%s\"", p->name));
cur_debugging = old_cur_debugging;
}
#endif
c = p;
}
/* fill in the client's true ip address/subnet */
if (p->spd.that.has_client_wildcard)
{
p->spd.that.client = *his_net;
p->spd.that.has_client_wildcard = FALSE;
}
#ifdef VIRTUAL_IP
else if (is_virtual_connection(c))
{
c->spd.that.client = *his_net;
c->spd.that.virt = NULL;
if (subnetishost(his_net) && addrinsubnet(&c->spd.that.host_addr, his_net))
c->spd.that.has_client = FALSE;
}
#endif
/* fill in the client's true port */
if (p->spd.that.has_port_wildcard)
{
int port = htons(b->his.port);
setportof(port, &p->spd.that.host_addr);
setportof(port, &p->spd.that.client.addr);
p->spd.that.port = b->his.port;
p->spd.that.has_port_wildcard = FALSE;
}
}
/* now that we are sure of our connection, create our new state */
{
struct state *const st = duplicate_state(p1st);
/* first: fill in missing bits of our new state object
* note: we don't copy over st_peer_pubkey, the public key
* that authenticated the ISAKMP SA. We only need it in this
* routine, so we can "reach back" to p1st to get it.
*/
if (st->st_connection != c)
{
struct connection *t = st->st_connection;
st->st_connection = c;
set_cur_connection(c);
connection_discard(t);
}
st->st_try = 0; /* not our job to try again from start */
st->st_msgid = md->hdr.isa_msgid;
st->st_new_iv_len = b->new_iv_len;
memcpy(st->st_new_iv, b->new_iv, b->new_iv_len);
set_cur_state(st); /* (caller will reset) */
md->st = st; /* feed back new state */
st->st_peeruserprotoid = b->his.proto;
st->st_peeruserport = b->his.port;
st->st_myuserprotoid = b->my.proto;
st->st_myuserport = b->my.port;
insert_state(st); /* needs cookies, connection, and msgid */
/* copy the connection's
* IPSEC policy into our state. The ISAKMP policy is water under
* the bridge, I think. It will reflect the ISAKMP SA that we
* are using.
*/
st->st_policy = (p1st->st_policy & POLICY_ISAKMP_MASK)
| (c->policy & ~POLICY_ISAKMP_MASK);
#ifdef NAT_TRAVERSAL
if (p1st->nat_traversal & NAT_T_DETECTED)
{
st->nat_traversal = p1st->nat_traversal;
nat_traversal_change_port_lookup(md, md->st);
}
else
{
st->nat_traversal = 0;
}
if ((st->nat_traversal & NAT_T_DETECTED) &&
(st->nat_traversal & NAT_T_WITH_NATOA))
{
nat_traversal_natoa_lookup(md);
}
#endif
/* Start the output packet.
*
* proccess_packet() would automatically generate the HDR*
* payload if smc->first_out_payload is not ISAKMP_NEXT_NONE.
* We don't do this because we wish there to be no partially
* built output packet if we need to suspend for asynch DNS.
*
* We build the reply packet as we parse the message since
* the parse_ipsec_sa_body emits the reply SA
*/
/* HDR* out */
echo_hdr(md, TRUE, ISAKMP_NEXT_HASH);
/* HASH(2) out -- first pass */
START_HASH_PAYLOAD(md->rbody, ISAKMP_NEXT_SA);
/* process SA (in and out) */
{
struct payload_digest *const sapd = md->chain[ISAKMP_NEXT_SA];
pb_stream r_sa_pbs;
struct isakmp_sa sa = sapd->payload.sa;
/* sa header is unchanged -- except for np */
sa.isasa_np = ISAKMP_NEXT_NONCE;
if (!out_struct(&sa, &isakmp_sa_desc, &md->rbody, &r_sa_pbs))
return STF_INTERNAL_ERROR;
/* parse and accept body */
st->st_pfs_group = &unset_group;
RETURN_STF_FAILURE(parse_ipsec_sa_body(&sapd->pbs
, &sapd->payload.sa, &r_sa_pbs, FALSE, st));
}
passert(st->st_pfs_group != &unset_group);
if ((st->st_policy & POLICY_PFS) && st->st_pfs_group == NULL)
{
loglog(RC_LOG_SERIOUS, "we require PFS but Quick I1 SA specifies no GROUP_DESCRIPTION");
return STF_FAIL + NO_PROPOSAL_CHOSEN; /* ??? */
}
/* Ni in */
RETURN_STF_FAILURE(accept_nonce(md, &st->st_ni, "Ni"));
/* [ KE ] in (for PFS) */
RETURN_STF_FAILURE(accept_PFS_KE(md, &st->st_gi, "Gi", "Quick Mode I1"));
plog("responding to Quick Mode");
/**** finish reply packet: Nr [, KE ] [, IDci, IDcr ] ****/
/* Nr out */
if (!build_and_ship_nonce(&st->st_nr, &md->rbody
, st->st_pfs_group != NULL? ISAKMP_NEXT_KE : id_pd != NULL? ISAKMP_NEXT_ID : ISAKMP_NEXT_NONE
, "Nr"))
return STF_INTERNAL_ERROR;
/* [ KE ] out (for PFS) */
if (st->st_pfs_group != NULL)
{
if (!build_and_ship_KE(st, &st->st_gr, st->st_pfs_group
, &md->rbody, id_pd != NULL? ISAKMP_NEXT_ID : ISAKMP_NEXT_NONE))
return STF_INTERNAL_ERROR;
/* MPZ-Operations might be done after sending the packet... */
compute_dh_shared(st, st->st_gi, st->st_pfs_group);
}
/* [ IDci, IDcr ] out */
if (id_pd != NULL)
{
struct isakmp_ipsec_id *p = (void *)md->rbody.cur; /* UGH! */
if (!out_raw(id_pd->pbs.start, pbs_room(&id_pd->pbs), &md->rbody, "IDci"))
return STF_INTERNAL_ERROR;
p->isaiid_np = ISAKMP_NEXT_ID;
p = (void *)md->rbody.cur; /* UGH! */
if (!out_raw(id_pd->next->pbs.start, pbs_room(&id_pd->next->pbs), &md->rbody, "IDcr"))
return STF_INTERNAL_ERROR;
p->isaiid_np = ISAKMP_NEXT_NONE;
}
#ifdef NAT_TRAVERSAL
if ((st->nat_traversal & NAT_T_WITH_NATOA)
&& (st->nat_traversal & LELEM(NAT_TRAVERSAL_NAT_BHND_ME))
&& (st->st_esp.attrs.encapsulation == ENCAPSULATION_MODE_TRANSPORT))
{
/** Send NAT-OA if our address is NATed and if we use Transport Mode */
if (!nat_traversal_add_natoa(ISAKMP_NEXT_NONE, &md->rbody, md->st))
{
return STF_INTERNAL_ERROR;
}
}
if ((st->nat_traversal & NAT_T_DETECTED)
&& (st->st_esp.attrs.encapsulation == ENCAPSULATION_MODE_TRANSPORT)
&& (c->spd.that.has_client))
{
/** Remove client **/
addrtosubnet(&c->spd.that.host_addr, &c->spd.that.client);
c->spd.that.has_client = FALSE;
}
#endif
/* Compute reply HASH(2) and insert in output */
(void)quick_mode_hash12(r_hashval, r_hash_start, md->rbody.cur
, st, &st->st_msgid, TRUE);
/* Derive new keying material */
compute_keymats(st);
/* Tell the kernel to establish the new inbound SA
* (unless the commit bit is set -- which we don't support).
* We do this before any state updating so that
* failure won't look like success.
*/
if (!install_inbound_ipsec_sa(st))
return STF_INTERNAL_ERROR; /* ??? we may be partly committed */
/* encrypt message, except for fixed part of header */
if (!encrypt_message(&md->rbody, st))
return STF_INTERNAL_ERROR; /* ??? we may be partly committed */
return STF_OK;
}
}
/*
* Initialize RFC 3706 Dead Peer Detection
*/
static void
dpd_init(struct state *st)
{
struct state *p1st = find_state(st->st_icookie, st->st_rcookie
, &st->st_connection->spd.that.host_addr, 0);
if (p1st == NULL)
loglog(RC_LOG_SERIOUS, "could not find phase 1 state for DPD");
else if (p1st->st_dpd)
{
plog("Dead Peer Detection (RFC 3706) enabled");
/* randomize the first DPD event */
event_schedule(EVENT_DPD
, (0.5 + rand()/(RAND_MAX + 1.E0)) * st->st_connection->dpd_delay
, st);
}
}
/* Handle (the single) message from Responder in Quick Mode.
* HDR*, HASH(2), SA, Nr [, KE ] [, IDci, IDcr ] -->
* HDR*, HASH(3)
* (see RFC 2409 "IKE" 5.5)
* Installs inbound and outbound IPsec SAs, routing, etc.
*/
stf_status
quick_inR1_outI2(struct msg_digest *md)
{
struct state *const st = md->st;
const struct connection *c = st->st_connection;
/* HASH(2) in */
CHECK_QUICK_HASH(md
, quick_mode_hash12(hash_val, hash_pbs->roof, md->message_pbs.roof
, st, &st->st_msgid, TRUE)
, "HASH(2)", "Quick R1");
/* SA in */
{
struct payload_digest *const sa_pd = md->chain[ISAKMP_NEXT_SA];
RETURN_STF_FAILURE(parse_ipsec_sa_body(&sa_pd->pbs
, &sa_pd->payload.sa, NULL, TRUE, st));
}
/* Nr in */
RETURN_STF_FAILURE(accept_nonce(md, &st->st_nr, "Nr"));
/* [ KE ] in (for PFS) */
RETURN_STF_FAILURE(accept_PFS_KE(md, &st->st_gr, "Gr", "Quick Mode R1"));
if (st->st_pfs_group != NULL)
compute_dh_shared(st, st->st_gr, st->st_pfs_group);
/* [ IDci, IDcr ] in; these must match what we sent */
{
struct payload_digest *const id_pd = md->chain[ISAKMP_NEXT_ID];
if (id_pd != NULL)
{
/* ??? we are assuming IPSEC_DOI */
/* IDci (we are initiator) */
if (!check_net_id(&id_pd->payload.ipsec_id, &id_pd->pbs
, &st->st_myuserprotoid, &st->st_myuserport
, &st->st_connection->spd.this.client
, "our client"))
return STF_FAIL + INVALID_ID_INFORMATION;
/* IDcr (responder is peer) */
if (!check_net_id(&id_pd->next->payload.ipsec_id, &id_pd->next->pbs
, &st->st_peeruserprotoid, &st->st_peeruserport
, &st->st_connection->spd.that.client
, "peer client"))
return STF_FAIL + INVALID_ID_INFORMATION;
}
else
{
/* no IDci, IDcr: we must check that the defaults match our proposal */
if (!subnetisaddr(&c->spd.this.client, &c->spd.this.host_addr)
|| !subnetisaddr(&c->spd.that.client, &c->spd.that.host_addr))
{
loglog(RC_LOG_SERIOUS, "IDci, IDcr payloads missing in message"
" but default does not match proposal");
return STF_FAIL + INVALID_ID_INFORMATION;
}
}
}
/* check the peer's group attributes */
{
const ietfAttrList_t *peer_list = NULL;
get_peer_ca_and_groups(st->st_connection, &peer_list);
if (!group_membership(peer_list, st->st_connection->name
, st->st_connection->spd.that.groups))
{
char buf[BUF_LEN];
format_groups(st->st_connection->spd.that.groups, buf, BUF_LEN);
loglog(RC_LOG_SERIOUS, "peer is not member of one of the groups: %s"
, buf);
return STF_FAIL + INVALID_ID_INFORMATION;
}
}
#ifdef NAT_TRAVERSAL
if ((st->nat_traversal & NAT_T_DETECTED)
&& (st->nat_traversal & NAT_T_WITH_NATOA))
{
nat_traversal_natoa_lookup(md);
}
#endif
/* ??? We used to copy the accepted proposal into the state, but it was
* never used. From sa_pd->pbs.start, length pbs_room(&sa_pd->pbs).
*/
/**************** build reply packet HDR*, HASH(3) ****************/
/* HDR* out done */
/* HASH(3) out -- since this is the only content, no passes needed */
{
u_char /* set by START_HASH_PAYLOAD: */
*r_hashval, /* where in reply to jam hash value */
*r_hash_start; /* start of what is to be hashed */
START_HASH_PAYLOAD(md->rbody, ISAKMP_NEXT_NONE);
(void)quick_mode_hash3(r_hashval, st);
}
/* Derive new keying material */
compute_keymats(st);
/* Tell the kernel to establish the inbound, outbound, and routing part
* of the new SA (unless the commit bit is set -- which we don't support).
* We do this before any state updating so that
* failure won't look like success.
*/
if (!install_ipsec_sa(st, TRUE))
return STF_INTERNAL_ERROR;
/* encrypt message, except for fixed part of header */
if (!encrypt_message(&md->rbody, st))
return STF_INTERNAL_ERROR; /* ??? we may be partly committed */
{
DBG(DBG_CONTROLMORE, DBG_log("inR1_outI2: instance %s[%ld], setting newest_ipsec_sa to #%ld (was #%ld) (spd.eroute=#%ld)"
, st->st_connection->name
, st->st_connection->instance_serial
, st->st_serialno
, st->st_connection->newest_ipsec_sa
, st->st_connection->spd.eroute_owner));
}
st->st_connection->newest_ipsec_sa = st->st_serialno;
/* note (presumed) success */
if (c->gw_info != NULL)
c->gw_info->key->last_worked_time = now();
/* If we want DPD on this connection then initialize it */
if (st->st_connection->dpd_action != DPD_ACTION_NONE)
dpd_init(st);
return STF_OK;
}
/* Handle last message of Quick Mode.
* HDR*, HASH(3) -> done
* (see RFC 2409 "IKE" 5.5)
* Installs outbound IPsec SAs, routing, etc.
*/
stf_status
quick_inI2(struct msg_digest *md)
{
struct state *const st = md->st;
/* HASH(3) in */
CHECK_QUICK_HASH(md, quick_mode_hash3(hash_val, st)
, "HASH(3)", "Quick I2");
/* Tell the kernel to establish the outbound and routing part of the new SA
* (the previous state established inbound)
* (unless the commit bit is set -- which we don't support).
* We do this before any state updating so that
* failure won't look like success.
*/
if (!install_ipsec_sa(st, FALSE))
return STF_INTERNAL_ERROR;
{
DBG(DBG_CONTROLMORE, DBG_log("inI2: instance %s[%ld], setting newest_ipsec_sa to #%ld (was #%ld) (spd.eroute=#%ld)"
, st->st_connection->name
, st->st_connection->instance_serial
, st->st_serialno
, st->st_connection->newest_ipsec_sa
, st->st_connection->spd.eroute_owner));
}
st->st_connection->newest_ipsec_sa = st->st_serialno;
update_iv(st); /* not actually used, but tidy */
/* note (presumed) success */
{
struct gw_info *gw = st->st_connection->gw_info;
if (gw != NULL)
gw->key->last_worked_time = now();
}
/* If we want DPD on this connection then initialize it */
if (st->st_connection->dpd_action != DPD_ACTION_NONE)
dpd_init(st);
return STF_OK;
}
static stf_status
send_isakmp_notification(struct state *st, u_int16_t type
, const void *data, size_t len)
{
msgid_t msgid;
pb_stream reply;
pb_stream rbody;
u_char
*r_hashval, /* where in reply to jam hash value */
*r_hash_start; /* start of what is to be hashed */
msgid = generate_msgid(st);
init_pbs(&reply, reply_buffer, sizeof(reply_buffer), "ISAKMP notify");
/* HDR* */
{
struct isakmp_hdr hdr;
hdr.isa_version = ISAKMP_MAJOR_VERSION << ISA_MAJ_SHIFT | ISAKMP_MINOR_VERSION;
hdr.isa_np = ISAKMP_NEXT_HASH;
hdr.isa_xchg = ISAKMP_XCHG_INFO;
hdr.isa_msgid = msgid;
hdr.isa_flags = ISAKMP_FLAG_ENCRYPTION;
memcpy(hdr.isa_icookie, st->st_icookie, COOKIE_SIZE);
memcpy(hdr.isa_rcookie, st->st_rcookie, COOKIE_SIZE);
if (!out_struct(&hdr, &isakmp_hdr_desc, &reply, &rbody))
impossible();
}
/* HASH -- create and note space to be filled later */
START_HASH_PAYLOAD(rbody, ISAKMP_NEXT_N);
/* NOTIFY */
{
pb_stream notify_pbs;
struct isakmp_notification isan;
isan.isan_np = ISAKMP_NEXT_NONE;
isan.isan_doi = ISAKMP_DOI_IPSEC;
isan.isan_protoid = PROTO_ISAKMP;
isan.isan_spisize = COOKIE_SIZE * 2;
isan.isan_type = type;
if (!out_struct(&isan, &isakmp_notification_desc, &rbody, &notify_pbs))
return STF_INTERNAL_ERROR;
if (!out_raw(st->st_icookie, COOKIE_SIZE, &notify_pbs, "notify icookie"))
return STF_INTERNAL_ERROR;
if (!out_raw(st->st_rcookie, COOKIE_SIZE, &notify_pbs, "notify rcookie"))
return STF_INTERNAL_ERROR;
if (data != NULL && len > 0)
if (!out_raw(data, len, &notify_pbs, "notify data"))
return STF_INTERNAL_ERROR;
close_output_pbs(&notify_pbs);
}
{
/* finish computing HASH */
struct hmac_ctx ctx;
hmac_init_chunk(&ctx, st->st_oakley.hasher, st->st_skeyid_a);
hmac_update(&ctx, (const u_char *) &msgid, sizeof(msgid_t));
hmac_update(&ctx, r_hash_start, rbody.cur-r_hash_start);
hmac_final(r_hashval, &ctx);
DBG(DBG_CRYPT,
DBG_log("HASH computed:");
DBG_dump("", r_hashval, ctx.hmac_digest_size));
}
/* Encrypt message (preserve st_iv and st_new_iv) */
{
u_char old_iv[MAX_DIGEST_LEN];
u_char new_iv[MAX_DIGEST_LEN];
u_int old_iv_len = st->st_iv_len;
u_int new_iv_len = st->st_new_iv_len;
if (old_iv_len > MAX_DIGEST_LEN || new_iv_len > MAX_DIGEST_LEN)
return STF_INTERNAL_ERROR;
memcpy(old_iv, st->st_iv, old_iv_len);
memcpy(new_iv, st->st_new_iv, new_iv_len);
init_phase2_iv(st, &msgid);
if (!encrypt_message(&rbody, st))
return STF_INTERNAL_ERROR;
/* restore preserved st_iv and st_new_iv */
memcpy(st->st_iv, old_iv, old_iv_len);
memcpy(st->st_new_iv, new_iv, new_iv_len);
st->st_iv_len = old_iv_len;
st->st_new_iv_len = new_iv_len;
}
/* Send packet (preserve st_tpacket) */
{
chunk_t saved_tpacket = st->st_tpacket;
setchunk(st->st_tpacket, reply.start, pbs_offset(&reply));
send_packet(st, "ISAKMP notify");
st->st_tpacket = saved_tpacket;
}
return STF_IGNORE;
}
/*
* DPD Out Initiator
*/
void
dpd_outI(struct state *p2st)
{
struct state *st;
u_int32_t seqno;
time_t tm;
time_t idle_time;
time_t delay = p2st->st_connection->dpd_delay;
time_t timeout = p2st->st_connection->dpd_timeout;
/* find the newest related Phase 1 state */
st = find_phase1_state(p2st->st_connection, ISAKMP_SA_ESTABLISHED_STATES);
if (st == NULL)
{
loglog(RC_LOG_SERIOUS, "DPD: Could not find newest phase 1 state");
return;
}
/* If no DPD, then get out of here */
if (!st->st_dpd)
return;
/* schedule the next periodic DPD event */
event_schedule(EVENT_DPD, delay, p2st);
/* Current time */
tm = now();
/* Make sure we really need to invoke DPD */
if (!was_eroute_idle(p2st, delay, &idle_time))
{
DBG(DBG_CONTROL,
DBG_log("recent eroute activity %u seconds ago, "
"no need to send DPD notification"
, (int)idle_time)
)
st->st_last_dpd = tm;
delete_dpd_event(st);
return;
}
/* If an R_U_THERE has been sent or received recently, or if a
* companion Phase 2 SA has shown eroute activity,
* then we don't need to invoke DPD.
*/
if (tm < st->st_last_dpd + delay)
{
DBG(DBG_CONTROL,
DBG_log("recent DPD activity %u seconds ago, "
"no need to send DPD notification"
, (int)(tm - st->st_last_dpd))
)
return;
}
if (!IS_ISAKMP_SA_ESTABLISHED(st->st_state))
return;
if (!st->st_dpd_seqno)
{
/* Get a non-zero random value that has room to grow */
get_rnd_bytes((u_char *)&st->st_dpd_seqno, sizeof(st->st_dpd_seqno));
st->st_dpd_seqno &= 0x7fff;
st->st_dpd_seqno++;
}
seqno = htonl(st->st_dpd_seqno);
if (send_isakmp_notification(st, R_U_THERE, &seqno, sizeof(seqno)) != STF_IGNORE)
{
loglog(RC_LOG_SERIOUS, "DPD: Could not send R_U_THERE");
return;
}
DBG(DBG_CONTROL,
DBG_log("sent DPD notification R_U_THERE with seqno = %u", st->st_dpd_seqno)
)
st->st_dpd_expectseqno = st->st_dpd_seqno++;
st->st_last_dpd = tm;
/* Only schedule a new timeout if there isn't one currently,
* or if it would be sooner than the current timeout. */
if (st->st_dpd_event == NULL
|| st->st_dpd_event->ev_time > tm + timeout)
{
delete_dpd_event(st);
event_schedule(EVENT_DPD_TIMEOUT, timeout, st);
}
}
/*
* DPD in Initiator, out Responder
*/
stf_status
dpd_inI_outR(struct state *st, struct isakmp_notification *const n, pb_stream *pbs)
{
time_t tm = now();
u_int32_t seqno;
if (!IS_ISAKMP_SA_ESTABLISHED(st->st_state))
{
loglog(RC_LOG_SERIOUS, "DPD: Received R_U_THERE for unestablished ISKAMP SA");
return STF_IGNORE;
}
if (n->isan_spisize != COOKIE_SIZE * 2 || pbs_left(pbs) < COOKIE_SIZE * 2)
{
loglog(RC_LOG_SERIOUS, "DPD: R_U_THERE has invalid SPI length (%d)", n->isan_spisize);
return STF_FAIL + PAYLOAD_MALFORMED;
}
if (memcmp(pbs->cur, st->st_icookie, COOKIE_SIZE) != 0)
{
#ifdef APPLY_CRISCO
/* Ignore it, cisco sends odd icookies */
#else
loglog(RC_LOG_SERIOUS, "DPD: R_U_THERE has invalid icookie (broken Cisco?)");
return STF_FAIL + INVALID_COOKIE;
#endif
}
pbs->cur += COOKIE_SIZE;
if (memcmp(pbs->cur, st->st_rcookie, COOKIE_SIZE) != 0)
{
loglog(RC_LOG_SERIOUS, "DPD: R_U_THERE has invalid rcookie (broken Cisco?)");
return STF_FAIL + INVALID_COOKIE;
}
pbs->cur += COOKIE_SIZE;
if (pbs_left(pbs) != sizeof(seqno))
{
loglog(RC_LOG_SERIOUS, "DPD: R_U_THERE has invalid data length (%d)"
, (int) pbs_left(pbs));
return STF_FAIL + PAYLOAD_MALFORMED;
}
seqno = ntohl(*(u_int32_t *)pbs->cur);
DBG(DBG_CONTROL,
DBG_log("received DPD notification R_U_THERE with seqno = %u", seqno)
)
if (st->st_dpd_peerseqno && seqno <= st->st_dpd_peerseqno) {
loglog(RC_LOG_SERIOUS, "DPD: Received old or duplicate R_U_THERE");
return STF_IGNORE;
}
st->st_dpd_peerseqno = seqno;
delete_dpd_event(st);
if (send_isakmp_notification(st, R_U_THERE_ACK, pbs->cur, pbs_left(pbs)) != STF_IGNORE)
{
loglog(RC_LOG_SERIOUS, "DPD Info: could not send R_U_THERE_ACK");
return STF_IGNORE;
}
DBG(DBG_CONTROL,
DBG_log("sent DPD notification R_U_THERE_ACK with seqno = %u", seqno)
)
st->st_last_dpd = tm;
return STF_IGNORE;
}
/*
* DPD out Responder
*/
stf_status
dpd_inR(struct state *st, struct isakmp_notification *const n, pb_stream *pbs)
{
u_int32_t seqno;
if (!IS_ISAKMP_SA_ESTABLISHED(st->st_state))
{
loglog(RC_LOG_SERIOUS
, "DPD: Received R_U_THERE_ACK for unestablished ISKAMP SA");
return STF_FAIL;
}
if (n->isan_spisize != COOKIE_SIZE * 2 || pbs_left(pbs) < COOKIE_SIZE * 2)
{
loglog(RC_LOG_SERIOUS
, "DPD: R_U_THERE_ACK has invalid SPI length (%d)"
, n->isan_spisize);
return STF_FAIL + PAYLOAD_MALFORMED;
}
if (memcmp(pbs->cur, st->st_icookie, COOKIE_SIZE) != 0)
{
#ifdef APPLY_CRISCO
/* Ignore it, cisco sends odd icookies */
#else
loglog(RC_LOG_SERIOUS, "DPD: R_U_THERE_ACK has invalid icookie");
return STF_FAIL + INVALID_COOKIE;
#endif
}
pbs->cur += COOKIE_SIZE;
if (memcmp(pbs->cur, st->st_rcookie, COOKIE_SIZE) != 0)
{
#ifdef APPLY_CRISCO
/* Ignore it, cisco sends odd icookies */
#else
loglog(RC_LOG_SERIOUS, "DPD: R_U_THERE_ACK has invalid rcookie");
return STF_FAIL + INVALID_COOKIE;
#endif
}
pbs->cur += COOKIE_SIZE;
if (pbs_left(pbs) != sizeof(seqno))
{
loglog(RC_LOG_SERIOUS
, " DPD: R_U_THERE_ACK has invalid data length (%d)"
, (int) pbs_left(pbs));
return STF_FAIL + PAYLOAD_MALFORMED;
}
seqno = ntohl(*(u_int32_t *)pbs->cur);
DBG(DBG_CONTROL,
DBG_log("received DPD notification R_U_THERE_ACK with seqno = %u"
, seqno)
)
if (!st->st_dpd_expectseqno && seqno != st->st_dpd_expectseqno)
{
loglog(RC_LOG_SERIOUS
, "DPD: R_U_THERE_ACK has unexpected sequence number");
return STF_FAIL + PAYLOAD_MALFORMED;
}
st->st_dpd_expectseqno = 0;
delete_dpd_event(st);
return STF_IGNORE;
}
/*
* DPD Timeout Function
*
* This function is called when a timeout DPD_EVENT occurs. We set clear/trap
* both the SA and the eroutes, depending on what the connection definition
* tells us (either 'hold' or 'clear')
*/
void
dpd_timeout(struct state *st)
{
struct state *newest_phase1_st;
struct connection *c = st->st_connection;
int action = st->st_connection->dpd_action;
passert(action == DPD_ACTION_HOLD
|| action == DPD_ACTION_CLEAR
|| DPD_ACTION_RESTART);
/* is there a newer phase1_state? */
newest_phase1_st = find_phase1_state(c, ISAKMP_SA_ESTABLISHED_STATES);
if (newest_phase1_st != NULL && newest_phase1_st != st)
{
plog("DPD: Phase1 state #%ld has been superseded by #%ld"
" - timeout ignored"
, st->st_serialno, newest_phase1_st->st_serialno);
return;
}
loglog(RC_LOG_SERIOUS, "DPD: No response from peer - declaring peer dead");
/* delete the state, which is probably in phase 2 */
set_cur_connection(c);
plog("DPD: Terminating all SAs using this connection");
delete_states_by_connection(c, TRUE);
reset_cur_connection();
switch (action)
{
case DPD_ACTION_HOLD:
/* dpdaction=hold - Wipe the SA's but %trap the eroute so we don't
* leak traffic. Also, being in %trap means new packets will
* force an initiation of the conn again.
*/
loglog(RC_LOG_SERIOUS, "DPD: Putting connection into %%trap");
break;
case DPD_ACTION_CLEAR:
/* dpdaction=clear - Wipe the SA & eroute - everything */
loglog(RC_LOG_SERIOUS, "DPD: Clearing connection");
unroute_connection(c);
break;
case DPD_ACTION_RESTART:
/* dpdaction=restart - Restart connection,
* except if roadwarrior connection
*/
loglog(RC_LOG_SERIOUS, "DPD: Restarting connection");
unroute_connection(c);
initiate_connection(c->name, NULL_FD);
break;
default:
loglog(RC_LOG_SERIOUS, "DPD: unknown action");
}
}