strongswan/src/libcharon/sa/ike_sa_manager.c

2206 lines
53 KiB
C

/*
* Copyright (C) 2005-2011 Martin Willi
* Copyright (C) 2011 revosec AG
* Copyright (C) 2008-2012 Tobias Brunner
* Copyright (C) 2005 Jan Hutter
* Hochschule fuer Technik Rapperswil
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version. See <http://www.fsf.org/copyleft/gpl.txt>.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*/
#include <string.h>
#include "ike_sa_manager.h"
#include <daemon.h>
#include <sa/ike_sa_id.h>
#include <bus/bus.h>
#include <threading/condvar.h>
#include <threading/mutex.h>
#include <threading/rwlock.h>
#include <collections/linked_list.h>
#include <crypto/hashers/hasher.h>
#include <processing/jobs/delete_ike_sa_job.h>
/* the default size of the hash table (MUST be a power of 2) */
#define DEFAULT_HASHTABLE_SIZE 1
/* the maximum size of the hash table (MUST be a power of 2) */
#define MAX_HASHTABLE_SIZE (1 << 30)
/* the default number of segments (MUST be a power of 2) */
#define DEFAULT_SEGMENT_COUNT 1
typedef struct entry_t entry_t;
/**
* An entry in the linked list, contains IKE_SA, locking and lookup data.
*/
struct entry_t {
/**
* Number of threads waiting for this ike_sa_t object.
*/
int waiting_threads;
/**
* Condvar where threads can wait until ike_sa_t object is free for use again.
*/
condvar_t *condvar;
/**
* Is this ike_sa currently checked out?
*/
bool checked_out;
/**
* Does this SA drives out new threads?
*/
bool driveout_new_threads;
/**
* Does this SA drives out waiting threads?
*/
bool driveout_waiting_threads;
/**
* Identification of an IKE_SA (SPIs).
*/
ike_sa_id_t *ike_sa_id;
/**
* The contained ike_sa_t object.
*/
ike_sa_t *ike_sa;
/**
* hash of the IKE_SA_INIT message, used to detect retransmissions
*/
chunk_t init_hash;
/**
* remote host address, required for DoS detection and duplicate
* checking (host with same my_id and other_id is *not* considered
* a duplicate if the address family differs)
*/
host_t *other;
/**
* As responder: Is this SA half-open?
*/
bool half_open;
/**
* own identity, required for duplicate checking
*/
identification_t *my_id;
/**
* remote identity, required for duplicate checking
*/
identification_t *other_id;
/**
* message ID or hash of currently processing message, -1 if none
*/
u_int32_t processing;
};
/**
* Implementation of entry_t.destroy.
*/
static status_t entry_destroy(entry_t *this)
{
/* also destroy IKE SA */
this->ike_sa->destroy(this->ike_sa);
this->ike_sa_id->destroy(this->ike_sa_id);
chunk_free(&this->init_hash);
DESTROY_IF(this->other);
DESTROY_IF(this->my_id);
DESTROY_IF(this->other_id);
this->condvar->destroy(this->condvar);
free(this);
return SUCCESS;
}
/**
* Creates a new entry for the ike_sa_t list.
*/
static entry_t *entry_create()
{
entry_t *this;
INIT(this,
.condvar = condvar_create(CONDVAR_TYPE_DEFAULT),
.processing = -1,
);
return this;
}
/**
* Function that matches entry_t objects by ike_sa_id_t.
*/
static bool entry_match_by_id(entry_t *entry, ike_sa_id_t *id)
{
if (id->equals(id, entry->ike_sa_id))
{
return TRUE;
}
if ((id->get_responder_spi(id) == 0 ||
entry->ike_sa_id->get_responder_spi(entry->ike_sa_id) == 0) &&
id->get_initiator_spi(id) == entry->ike_sa_id->get_initiator_spi(entry->ike_sa_id))
{
/* this is TRUE for IKE_SAs that we initiated but have not yet received a response */
return TRUE;
}
return FALSE;
}
/**
* Function that matches entry_t objects by ike_sa_t pointers.
*/
static bool entry_match_by_sa(entry_t *entry, ike_sa_t *ike_sa)
{
return entry->ike_sa == ike_sa;
}
/**
* Hash function for ike_sa_id_t objects.
*/
static u_int ike_sa_id_hash(ike_sa_id_t *ike_sa_id)
{
/* IKEv2 does not mandate random SPIs (RFC 5996, 2.6), they just have to be
* locally unique, so we use our randomly allocated SPI whether we are
* initiator or responder to ensure a good distribution. The latter is not
* possible for IKEv1 as we don't know whether we are original initiator or
* not (based on the IKE header). But as RFC 2408, section 2.5.3 proposes
* SPIs (Cookies) to be allocated near random (we allocate them randomly
* anyway) it seems safe to always use the initiator SPI. */
if (ike_sa_id->get_ike_version(ike_sa_id) == IKEV1_MAJOR_VERSION ||
ike_sa_id->is_initiator(ike_sa_id))
{
return ike_sa_id->get_initiator_spi(ike_sa_id);
}
return ike_sa_id->get_responder_spi(ike_sa_id);
}
typedef struct half_open_t half_open_t;
/**
* Struct to manage half-open IKE_SAs per peer.
*/
struct half_open_t {
/** chunk of remote host address */
chunk_t other;
/** the number of half-open IKE_SAs with that host */
u_int count;
};
/**
* Destroys a half_open_t object.
*/
static void half_open_destroy(half_open_t *this)
{
chunk_free(&this->other);
free(this);
}
typedef struct connected_peers_t connected_peers_t;
struct connected_peers_t {
/** own identity */
identification_t *my_id;
/** remote identity */
identification_t *other_id;
/** ip address family of peer */
int family;
/** list of ike_sa_id_t objects of IKE_SAs between the two identities */
linked_list_t *sas;
};
static void connected_peers_destroy(connected_peers_t *this)
{
this->my_id->destroy(this->my_id);
this->other_id->destroy(this->other_id);
this->sas->destroy(this->sas);
free(this);
}
/**
* Function that matches connected_peers_t objects by the given ids.
*/
static inline bool connected_peers_match(connected_peers_t *connected_peers,
identification_t *my_id, identification_t *other_id,
int family)
{
return my_id->equals(my_id, connected_peers->my_id) &&
other_id->equals(other_id, connected_peers->other_id) &&
(!family || family == connected_peers->family);
}
typedef struct init_hash_t init_hash_t;
struct init_hash_t {
/** hash of IKE_SA_INIT or initial phase1 message (data is not cloned) */
chunk_t hash;
/** our SPI allocated for the IKE_SA based on this message */
u_int64_t our_spi;
};
typedef struct segment_t segment_t;
/**
* Struct to manage segments of the hash table.
*/
struct segment_t {
/** mutex to access a segment exclusively */
mutex_t *mutex;
/** the number of entries in this segment */
u_int count;
};
typedef struct shareable_segment_t shareable_segment_t;
/**
* Struct to manage segments of the "half-open" and "connected peers" hash tables.
*/
struct shareable_segment_t {
/** rwlock to access a segment non-/exclusively */
rwlock_t *lock;
/** the number of entries in this segment - in case of the "half-open table"
* it's the sum of all half_open_t.count in a segment. */
u_int count;
};
typedef struct table_item_t table_item_t;
/**
* Instead of using linked_list_t for each bucket we store the data in our own
* list to save memory.
*/
struct table_item_t {
/** data of this item */
void *value;
/** next item in the overflow list */
table_item_t *next;
};
typedef struct private_ike_sa_manager_t private_ike_sa_manager_t;
/**
* Additional private members of ike_sa_manager_t.
*/
struct private_ike_sa_manager_t {
/**
* Public interface of ike_sa_manager_t.
*/
ike_sa_manager_t public;
/**
* Hash table with entries for the ike_sa_t objects.
*/
table_item_t **ike_sa_table;
/**
* The size of the hash table.
*/
u_int table_size;
/**
* Mask to map the hashes to table rows.
*/
u_int table_mask;
/**
* Segments of the hash table.
*/
segment_t *segments;
/**
* The number of segments.
*/
u_int segment_count;
/**
* Mask to map a table row to a segment.
*/
u_int segment_mask;
/**
* Hash table with half_open_t objects.
*/
table_item_t **half_open_table;
/**
* Segments of the "half-open" hash table.
*/
shareable_segment_t *half_open_segments;
/**
* Hash table with connected_peers_t objects.
*/
table_item_t **connected_peers_table;
/**
* Segments of the "connected peers" hash table.
*/
shareable_segment_t *connected_peers_segments;
/**
* Hash table with init_hash_t objects.
*/
table_item_t **init_hashes_table;
/**
* Segments of the "hashes" hash table.
*/
segment_t *init_hashes_segments;
/**
* RNG to get random SPIs for our side
*/
rng_t *rng;
/**
* SHA1 hasher for IKE_SA_INIT retransmit detection
*/
hasher_t *hasher;
/**
* reuse existing IKE_SAs in checkout_by_config
*/
bool reuse_ikesa;
/**
* Configured IKE_SA limit, if any
*/
u_int ikesa_limit;
};
/**
* Acquire a lock to access the segment of the table row with the given index.
* It also works with the segment index directly.
*/
static inline void lock_single_segment(private_ike_sa_manager_t *this,
u_int index)
{
mutex_t *lock = this->segments[index & this->segment_mask].mutex;
lock->lock(lock);
}
/**
* Release the lock required to access the segment of the table row with the given index.
* It also works with the segment index directly.
*/
static inline void unlock_single_segment(private_ike_sa_manager_t *this,
u_int index)
{
mutex_t *lock = this->segments[index & this->segment_mask].mutex;
lock->unlock(lock);
}
/**
* Lock all segments
*/
static void lock_all_segments(private_ike_sa_manager_t *this)
{
u_int i;
for (i = 0; i < this->segment_count; i++)
{
this->segments[i].mutex->lock(this->segments[i].mutex);
}
}
/**
* Unlock all segments
*/
static void unlock_all_segments(private_ike_sa_manager_t *this)
{
u_int i;
for (i = 0; i < this->segment_count; i++)
{
this->segments[i].mutex->unlock(this->segments[i].mutex);
}
}
typedef struct private_enumerator_t private_enumerator_t;
/**
* hash table enumerator implementation
*/
struct private_enumerator_t {
/**
* implements enumerator interface
*/
enumerator_t enumerator;
/**
* associated ike_sa_manager_t
*/
private_ike_sa_manager_t *manager;
/**
* current segment index
*/
u_int segment;
/**
* currently enumerating entry
*/
entry_t *entry;
/**
* current table row index
*/
u_int row;
/**
* current table item
*/
table_item_t *current;
/**
* previous table item
*/
table_item_t *prev;
};
METHOD(enumerator_t, enumerate, bool,
private_enumerator_t *this, entry_t **entry, u_int *segment)
{
if (this->entry)
{
this->entry->condvar->signal(this->entry->condvar);
this->entry = NULL;
}
while (this->segment < this->manager->segment_count)
{
while (this->row < this->manager->table_size)
{
this->prev = this->current;
if (this->current)
{
this->current = this->current->next;
}
else
{
lock_single_segment(this->manager, this->segment);
this->current = this->manager->ike_sa_table[this->row];
}
if (this->current)
{
*entry = this->entry = this->current->value;
*segment = this->segment;
return TRUE;
}
unlock_single_segment(this->manager, this->segment);
this->row += this->manager->segment_count;
}
this->segment++;
this->row = this->segment;
}
return FALSE;
}
METHOD(enumerator_t, enumerator_destroy, void,
private_enumerator_t *this)
{
if (this->entry)
{
this->entry->condvar->signal(this->entry->condvar);
}
if (this->current)
{
unlock_single_segment(this->manager, this->segment);
}
free(this);
}
/**
* Creates an enumerator to enumerate the entries in the hash table.
*/
static enumerator_t* create_table_enumerator(private_ike_sa_manager_t *this)
{
private_enumerator_t *enumerator;
INIT(enumerator,
.enumerator = {
.enumerate = (void*)_enumerate,
.destroy = _enumerator_destroy,
},
.manager = this,
);
return &enumerator->enumerator;
}
/**
* Put an entry into the hash table.
* Note: The caller has to unlock the returned segment.
*/
static u_int put_entry(private_ike_sa_manager_t *this, entry_t *entry)
{
table_item_t *current, *item;
u_int row, segment;
INIT(item,
.value = entry,
);
row = ike_sa_id_hash(entry->ike_sa_id) & this->table_mask;
segment = row & this->segment_mask;
lock_single_segment(this, segment);
current = this->ike_sa_table[row];
if (current)
{ /* insert at the front of current bucket */
item->next = current;
}
this->ike_sa_table[row] = item;
this->segments[segment].count++;
return segment;
}
/**
* Remove an entry from the hash table.
* Note: The caller MUST have a lock on the segment of this entry.
*/
static void remove_entry(private_ike_sa_manager_t *this, entry_t *entry)
{
table_item_t *item, *prev = NULL;
u_int row, segment;
row = ike_sa_id_hash(entry->ike_sa_id) & this->table_mask;
segment = row & this->segment_mask;
item = this->ike_sa_table[row];
while (item)
{
if (item->value == entry)
{
if (prev)
{
prev->next = item->next;
}
else
{
this->ike_sa_table[row] = item->next;
}
this->segments[segment].count--;
free(item);
break;
}
prev = item;
item = item->next;
}
}
/**
* Remove the entry at the current enumerator position.
*/
static void remove_entry_at(private_enumerator_t *this)
{
this->entry = NULL;
if (this->current)
{
table_item_t *current = this->current;
this->manager->segments[this->segment].count--;
this->current = this->prev;
if (this->prev)
{
this->prev->next = current->next;
}
else
{
this->manager->ike_sa_table[this->row] = current->next;
unlock_single_segment(this->manager, this->segment);
}
free(current);
}
}
/**
* Find an entry using the provided match function to compare the entries for
* equality.
*/
static status_t get_entry_by_match_function(private_ike_sa_manager_t *this,
ike_sa_id_t *ike_sa_id, entry_t **entry, u_int *segment,
linked_list_match_t match, void *param)
{
table_item_t *item;
u_int row, seg;
row = ike_sa_id_hash(ike_sa_id) & this->table_mask;
seg = row & this->segment_mask;
lock_single_segment(this, seg);
item = this->ike_sa_table[row];
while (item)
{
if (match(item->value, param))
{
*entry = item->value;
*segment = seg;
/* the locked segment has to be unlocked by the caller */
return SUCCESS;
}
item = item->next;
}
unlock_single_segment(this, seg);
return NOT_FOUND;
}
/**
* Find an entry by ike_sa_id_t.
* Note: On SUCCESS, the caller has to unlock the segment.
*/
static status_t get_entry_by_id(private_ike_sa_manager_t *this,
ike_sa_id_t *ike_sa_id, entry_t **entry, u_int *segment)
{
return get_entry_by_match_function(this, ike_sa_id, entry, segment,
(linked_list_match_t)entry_match_by_id, ike_sa_id);
}
/**
* Find an entry by IKE_SA pointer.
* Note: On SUCCESS, the caller has to unlock the segment.
*/
static status_t get_entry_by_sa(private_ike_sa_manager_t *this,
ike_sa_id_t *ike_sa_id, ike_sa_t *ike_sa, entry_t **entry, u_int *segment)
{
return get_entry_by_match_function(this, ike_sa_id, entry, segment,
(linked_list_match_t)entry_match_by_sa, ike_sa);
}
/**
* Wait until no other thread is using an IKE_SA, return FALSE if entry not
* acquirable.
*/
static bool wait_for_entry(private_ike_sa_manager_t *this, entry_t *entry,
u_int segment)
{
if (entry->driveout_new_threads)
{
/* we are not allowed to get this */
return FALSE;
}
while (entry->checked_out && !entry->driveout_waiting_threads)
{
/* so wait until we can get it for us.
* we register us as waiting. */
entry->waiting_threads++;
entry->condvar->wait(entry->condvar, this->segments[segment].mutex);
entry->waiting_threads--;
}
/* hm, a deletion request forbids us to get this SA, get next one */
if (entry->driveout_waiting_threads)
{
/* we must signal here, others may be waiting on it, too */
entry->condvar->signal(entry->condvar);
return FALSE;
}
return TRUE;
}
/**
* Put a half-open SA into the hash table.
*/
static void put_half_open(private_ike_sa_manager_t *this, entry_t *entry)
{
table_item_t *item;
u_int row, segment;
rwlock_t *lock;
half_open_t *half_open;
chunk_t addr;
addr = entry->other->get_address(entry->other);
row = chunk_hash(addr) & this->table_mask;
segment = row & this->segment_mask;
lock = this->half_open_segments[segment].lock;
lock->write_lock(lock);
item = this->half_open_table[row];
while (item)
{
half_open = item->value;
if (chunk_equals(addr, half_open->other))
{
half_open->count++;
break;
}
item = item->next;
}
if (!item)
{
INIT(half_open,
.other = chunk_clone(addr),
.count = 1,
);
INIT(item,
.value = half_open,
.next = this->half_open_table[row],
);
this->half_open_table[row] = item;
}
this->half_open_segments[segment].count++;
lock->unlock(lock);
}
/**
* Remove a half-open SA from the hash table.
*/
static void remove_half_open(private_ike_sa_manager_t *this, entry_t *entry)
{
table_item_t *item, *prev = NULL;
u_int row, segment;
rwlock_t *lock;
chunk_t addr;
addr = entry->other->get_address(entry->other);
row = chunk_hash(addr) & this->table_mask;
segment = row & this->segment_mask;
lock = this->half_open_segments[segment].lock;
lock->write_lock(lock);
item = this->half_open_table[row];
while (item)
{
half_open_t *half_open = item->value;
if (chunk_equals(addr, half_open->other))
{
if (--half_open->count == 0)
{
if (prev)
{
prev->next = item->next;
}
else
{
this->half_open_table[row] = item->next;
}
half_open_destroy(half_open);
free(item);
}
this->half_open_segments[segment].count--;
break;
}
prev = item;
item = item->next;
}
lock->unlock(lock);
}
/**
* Put an SA between two peers into the hash table.
*/
static void put_connected_peers(private_ike_sa_manager_t *this, entry_t *entry)
{
table_item_t *item;
u_int row, segment;
rwlock_t *lock;
connected_peers_t *connected_peers;
chunk_t my_id, other_id;
int family;
my_id = entry->my_id->get_encoding(entry->my_id);
other_id = entry->other_id->get_encoding(entry->other_id);
family = entry->other->get_family(entry->other);
row = chunk_hash_inc(other_id, chunk_hash(my_id)) & this->table_mask;
segment = row & this->segment_mask;
lock = this->connected_peers_segments[segment].lock;
lock->write_lock(lock);
item = this->connected_peers_table[row];
while (item)
{
connected_peers = item->value;
if (connected_peers_match(connected_peers, entry->my_id,
entry->other_id, family))
{
if (connected_peers->sas->find_first(connected_peers->sas,
(linked_list_match_t)entry->ike_sa_id->equals,
NULL, entry->ike_sa_id) == SUCCESS)
{
lock->unlock(lock);
return;
}
break;
}
item = item->next;
}
if (!item)
{
INIT(connected_peers,
.my_id = entry->my_id->clone(entry->my_id),
.other_id = entry->other_id->clone(entry->other_id),
.family = family,
.sas = linked_list_create(),
);
INIT(item,
.value = connected_peers,
.next = this->connected_peers_table[row],
);
this->connected_peers_table[row] = item;
}
connected_peers->sas->insert_last(connected_peers->sas,
entry->ike_sa_id->clone(entry->ike_sa_id));
this->connected_peers_segments[segment].count++;
lock->unlock(lock);
}
/**
* Remove an SA between two peers from the hash table.
*/
static void remove_connected_peers(private_ike_sa_manager_t *this, entry_t *entry)
{
table_item_t *item, *prev = NULL;
u_int row, segment;
rwlock_t *lock;
chunk_t my_id, other_id;
int family;
my_id = entry->my_id->get_encoding(entry->my_id);
other_id = entry->other_id->get_encoding(entry->other_id);
family = entry->other->get_family(entry->other);
row = chunk_hash_inc(other_id, chunk_hash(my_id)) & this->table_mask;
segment = row & this->segment_mask;
lock = this->connected_peers_segments[segment].lock;
lock->write_lock(lock);
item = this->connected_peers_table[row];
while (item)
{
connected_peers_t *current = item->value;
if (connected_peers_match(current, entry->my_id, entry->other_id,
family))
{
enumerator_t *enumerator;
ike_sa_id_t *ike_sa_id;
enumerator = current->sas->create_enumerator(current->sas);
while (enumerator->enumerate(enumerator, &ike_sa_id))
{
if (ike_sa_id->equals(ike_sa_id, entry->ike_sa_id))
{
current->sas->remove_at(current->sas, enumerator);
ike_sa_id->destroy(ike_sa_id);
this->connected_peers_segments[segment].count--;
break;
}
}
enumerator->destroy(enumerator);
if (current->sas->get_count(current->sas) == 0)
{
if (prev)
{
prev->next = item->next;
}
else
{
this->connected_peers_table[row] = item->next;
}
connected_peers_destroy(current);
free(item);
}
break;
}
prev = item;
item = item->next;
}
lock->unlock(lock);
}
/**
* Get a random SPI for new IKE_SAs
*/
static u_int64_t get_spi(private_ike_sa_manager_t *this)
{
u_int64_t spi;
if (this->rng &&
this->rng->get_bytes(this->rng, sizeof(spi), (u_int8_t*)&spi))
{
return spi;
}
return 0;
}
/**
* Calculate the hash of the initial IKE message. Memory for the hash is
* allocated on success.
*
* @returns TRUE on success
*/
static bool get_init_hash(private_ike_sa_manager_t *this, message_t *message,
chunk_t *hash)
{
host_t *src;
if (!this->hasher)
{ /* this might be the case when flush() has been called */
return FALSE;
}
if (message->get_first_payload_type(message) == FRAGMENT_V1)
{ /* only hash the source IP, port and SPI for fragmented init messages */
u_int16_t port;
u_int64_t spi;
src = message->get_source(message);
if (!this->hasher->allocate_hash(this->hasher,
src->get_address(src), NULL))
{
return FALSE;
}
port = src->get_port(src);
if (!this->hasher->allocate_hash(this->hasher,
chunk_from_thing(port), NULL))
{
return FALSE;
}
spi = message->get_initiator_spi(message);
return this->hasher->allocate_hash(this->hasher,
chunk_from_thing(spi), hash);
}
if (message->get_exchange_type(message) == ID_PROT)
{ /* include the source for Main Mode as the hash will be the same if
* SPIs are reused by two initiators that use the same proposal */
src = message->get_source(message);
if (!this->hasher->allocate_hash(this->hasher,
src->get_address(src), NULL))
{
return FALSE;
}
}
return this->hasher->allocate_hash(this->hasher,
message->get_packet_data(message), hash);
}
/**
* Check if we already have created an IKE_SA based on the initial IKE message
* with the given hash.
* If not the hash is stored, the hash data is not(!) cloned.
*
* Also, the local SPI is returned. In case of a retransmit this is already
* stored together with the hash, otherwise it is newly allocated and should
* be used to create the IKE_SA.
*
* @returns ALREADY_DONE if the message with the given hash has been seen before
* NOT_FOUND if the message hash was not found
* FAILED if the SPI allocation failed
*/
static status_t check_and_put_init_hash(private_ike_sa_manager_t *this,
chunk_t init_hash, u_int64_t *our_spi)
{
table_item_t *item;
u_int row, segment;
mutex_t *mutex;
init_hash_t *init;
u_int64_t spi;
row = chunk_hash(init_hash) & this->table_mask;
segment = row & this->segment_mask;
mutex = this->init_hashes_segments[segment].mutex;
mutex->lock(mutex);
item = this->init_hashes_table[row];
while (item)
{
init_hash_t *current = item->value;
if (chunk_equals(init_hash, current->hash))
{
*our_spi = current->our_spi;
mutex->unlock(mutex);
return ALREADY_DONE;
}
item = item->next;
}
spi = get_spi(this);
if (!spi)
{
return FAILED;
}
INIT(init,
.hash = {
.len = init_hash.len,
.ptr = init_hash.ptr,
},
.our_spi = spi,
);
INIT(item,
.value = init,
.next = this->init_hashes_table[row],
);
this->init_hashes_table[row] = item;
*our_spi = init->our_spi;
mutex->unlock(mutex);
return NOT_FOUND;
}
/**
* Remove the hash of an initial IKE message from the cache.
*/
static void remove_init_hash(private_ike_sa_manager_t *this, chunk_t init_hash)
{
table_item_t *item, *prev = NULL;
u_int row, segment;
mutex_t *mutex;
row = chunk_hash(init_hash) & this->table_mask;
segment = row & this->segment_mask;
mutex = this->init_hashes_segments[segment].mutex;
mutex->lock(mutex);
item = this->init_hashes_table[row];
while (item)
{
init_hash_t *current = item->value;
if (chunk_equals(init_hash, current->hash))
{
if (prev)
{
prev->next = item->next;
}
else
{
this->init_hashes_table[row] = item->next;
}
free(current);
free(item);
break;
}
prev = item;
item = item->next;
}
mutex->unlock(mutex);
}
METHOD(ike_sa_manager_t, checkout, ike_sa_t*,
private_ike_sa_manager_t *this, ike_sa_id_t *ike_sa_id)
{
ike_sa_t *ike_sa = NULL;
entry_t *entry;
u_int segment;
DBG2(DBG_MGR, "checkout IKE_SA");
if (get_entry_by_id(this, ike_sa_id, &entry, &segment) == SUCCESS)
{
if (wait_for_entry(this, entry, segment))
{
entry->checked_out = TRUE;
ike_sa = entry->ike_sa;
DBG2(DBG_MGR, "IKE_SA %s[%u] successfully checked out",
ike_sa->get_name(ike_sa), ike_sa->get_unique_id(ike_sa));
}
unlock_single_segment(this, segment);
}
charon->bus->set_sa(charon->bus, ike_sa);
return ike_sa;
}
METHOD(ike_sa_manager_t, checkout_new, ike_sa_t*,
private_ike_sa_manager_t* this, ike_version_t version, bool initiator)
{
ike_sa_id_t *ike_sa_id;
ike_sa_t *ike_sa;
u_int8_t ike_version;
u_int64_t spi;
ike_version = version == IKEV1 ? IKEV1_MAJOR_VERSION : IKEV2_MAJOR_VERSION;
spi = get_spi(this);
if (!spi)
{
DBG1(DBG_MGR, "failed to allocate SPI for new IKE_SA");
return NULL;
}
if (initiator)
{
ike_sa_id = ike_sa_id_create(ike_version, spi, 0, TRUE);
}
else
{
ike_sa_id = ike_sa_id_create(ike_version, 0, spi, FALSE);
}
ike_sa = ike_sa_create(ike_sa_id, initiator, version);
ike_sa_id->destroy(ike_sa_id);
if (ike_sa)
{
DBG2(DBG_MGR, "created IKE_SA %s[%u]", ike_sa->get_name(ike_sa),
ike_sa->get_unique_id(ike_sa));
}
return ike_sa;
}
/**
* Get the message ID or message hash to detect early retransmissions
*/
static u_int32_t get_message_id_or_hash(message_t *message)
{
/* Use the message ID, or the message hash in IKEv1 Main/Aggressive mode */
if (message->get_major_version(message) == IKEV1_MAJOR_VERSION &&
message->get_message_id(message) == 0)
{
return chunk_hash(message->get_packet_data(message));
}
return message->get_message_id(message);
}
METHOD(ike_sa_manager_t, checkout_by_message, ike_sa_t*,
private_ike_sa_manager_t* this, message_t *message)
{
u_int segment;
entry_t *entry;
ike_sa_t *ike_sa = NULL;
ike_sa_id_t *id;
ike_version_t ike_version;
bool is_init = FALSE;
id = message->get_ike_sa_id(message);
/* clone the IKE_SA ID so we can modify the initiator flag */
id = id->clone(id);
id->switch_initiator(id);
DBG2(DBG_MGR, "checkout IKE_SA by message");
if (id->get_responder_spi(id) == 0)
{
if (message->get_major_version(message) == IKEV2_MAJOR_VERSION)
{
if (message->get_exchange_type(message) == IKE_SA_INIT &&
message->get_request(message))
{
ike_version = IKEV2;
is_init = TRUE;
}
}
else
{
if (message->get_exchange_type(message) == ID_PROT ||
message->get_exchange_type(message) == AGGRESSIVE)
{
ike_version = IKEV1;
is_init = TRUE;
if (id->is_initiator(id))
{ /* not set in IKEv1, switch back before applying to new SA */
id->switch_initiator(id);
}
}
}
}
if (is_init)
{
u_int64_t our_spi;
chunk_t hash;
if (!get_init_hash(this, message, &hash))
{
DBG1(DBG_MGR, "ignoring message, failed to hash message");
id->destroy(id);
return NULL;
}
/* ensure this is not a retransmit of an already handled init message */
switch (check_and_put_init_hash(this, hash, &our_spi))
{
case NOT_FOUND:
{ /* we've not seen this packet yet, create a new IKE_SA */
if (!this->ikesa_limit ||
this->public.get_count(&this->public) < this->ikesa_limit)
{
id->set_responder_spi(id, our_spi);
ike_sa = ike_sa_create(id, FALSE, ike_version);
if (ike_sa)
{
entry = entry_create();
entry->ike_sa = ike_sa;
entry->ike_sa_id = id;
segment = put_entry(this, entry);
entry->checked_out = TRUE;
unlock_single_segment(this, segment);
entry->processing = get_message_id_or_hash(message);
entry->init_hash = hash;
DBG2(DBG_MGR, "created IKE_SA %s[%u]",
ike_sa->get_name(ike_sa),
ike_sa->get_unique_id(ike_sa));
charon->bus->set_sa(charon->bus, ike_sa);
return ike_sa;
}
else
{
DBG1(DBG_MGR, "creating IKE_SA failed, ignoring message");
}
}
else
{
DBG1(DBG_MGR, "ignoring %N, hitting IKE_SA limit (%u)",
exchange_type_names, message->get_exchange_type(message),
this->ikesa_limit);
}
remove_init_hash(this, hash);
chunk_free(&hash);
id->destroy(id);
return NULL;
}
case FAILED:
{ /* we failed to allocate an SPI */
chunk_free(&hash);
id->destroy(id);
DBG1(DBG_MGR, "ignoring message, failed to allocate SPI");
return NULL;
}
case ALREADY_DONE:
default:
break;
}
/* it looks like we already handled this init message to some degree */
id->set_responder_spi(id, our_spi);
chunk_free(&hash);
}
if (get_entry_by_id(this, id, &entry, &segment) == SUCCESS)
{
/* only check out if we are not already processing it. */
if (entry->processing == get_message_id_or_hash(message))
{
DBG1(DBG_MGR, "ignoring request with ID %u, already processing",
entry->processing);
}
else if (wait_for_entry(this, entry, segment))
{
ike_sa_id_t *ike_id;
ike_id = entry->ike_sa->get_id(entry->ike_sa);
entry->checked_out = TRUE;
if (message->get_first_payload_type(message) != FRAGMENT_V1)
{
entry->processing = get_message_id_or_hash(message);
}
if (ike_id->get_responder_spi(ike_id) == 0)
{
ike_id->set_responder_spi(ike_id, id->get_responder_spi(id));
}
ike_sa = entry->ike_sa;
DBG2(DBG_MGR, "IKE_SA %s[%u] successfully checked out",
ike_sa->get_name(ike_sa), ike_sa->get_unique_id(ike_sa));
}
unlock_single_segment(this, segment);
}
else
{
charon->bus->alert(charon->bus, ALERT_INVALID_IKE_SPI, message);
}
id->destroy(id);
charon->bus->set_sa(charon->bus, ike_sa);
return ike_sa;
}
METHOD(ike_sa_manager_t, checkout_by_config, ike_sa_t*,
private_ike_sa_manager_t *this, peer_cfg_t *peer_cfg)
{
enumerator_t *enumerator;
entry_t *entry;
ike_sa_t *ike_sa = NULL;
peer_cfg_t *current_peer;
ike_cfg_t *current_ike;
u_int segment;
DBG2(DBG_MGR, "checkout IKE_SA by config");
if (!this->reuse_ikesa)
{ /* IKE_SA reuse disable by config */
ike_sa = checkout_new(this, peer_cfg->get_ike_version(peer_cfg), TRUE);
charon->bus->set_sa(charon->bus, ike_sa);
return ike_sa;
}
enumerator = create_table_enumerator(this);
while (enumerator->enumerate(enumerator, &entry, &segment))
{
if (!wait_for_entry(this, entry, segment))
{
continue;
}
if (entry->ike_sa->get_state(entry->ike_sa) == IKE_DELETING)
{ /* skip IKE_SAs which are not usable */
continue;
}
current_peer = entry->ike_sa->get_peer_cfg(entry->ike_sa);
if (current_peer && current_peer->equals(current_peer, peer_cfg))
{
current_ike = current_peer->get_ike_cfg(current_peer);
if (current_ike->equals(current_ike, peer_cfg->get_ike_cfg(peer_cfg)))
{
entry->checked_out = TRUE;
ike_sa = entry->ike_sa;
DBG2(DBG_MGR, "found existing IKE_SA %u with a '%s' config",
ike_sa->get_unique_id(ike_sa),
current_peer->get_name(current_peer));
break;
}
}
}
enumerator->destroy(enumerator);
if (!ike_sa)
{ /* no IKE_SA using such a config, hand out a new */
ike_sa = checkout_new(this, peer_cfg->get_ike_version(peer_cfg), TRUE);
}
charon->bus->set_sa(charon->bus, ike_sa);
return ike_sa;
}
METHOD(ike_sa_manager_t, checkout_by_id, ike_sa_t*,
private_ike_sa_manager_t *this, u_int32_t id, bool child)
{
enumerator_t *enumerator, *children;
entry_t *entry;
ike_sa_t *ike_sa = NULL;
child_sa_t *child_sa;
u_int segment;
DBG2(DBG_MGR, "checkout IKE_SA by ID");
enumerator = create_table_enumerator(this);
while (enumerator->enumerate(enumerator, &entry, &segment))
{
if (wait_for_entry(this, entry, segment))
{
/* look for a child with such a reqid ... */
if (child)
{
children = entry->ike_sa->create_child_sa_enumerator(entry->ike_sa);
while (children->enumerate(children, (void**)&child_sa))
{
if (child_sa->get_reqid(child_sa) == id)
{
ike_sa = entry->ike_sa;
break;
}
}
children->destroy(children);
}
else /* ... or for a IKE_SA with such a unique id */
{
if (entry->ike_sa->get_unique_id(entry->ike_sa) == id)
{
ike_sa = entry->ike_sa;
}
}
/* got one, return */
if (ike_sa)
{
entry->checked_out = TRUE;
DBG2(DBG_MGR, "IKE_SA %s[%u] successfully checked out",
ike_sa->get_name(ike_sa), ike_sa->get_unique_id(ike_sa));
break;
}
}
}
enumerator->destroy(enumerator);
charon->bus->set_sa(charon->bus, ike_sa);
return ike_sa;
}
METHOD(ike_sa_manager_t, checkout_by_name, ike_sa_t*,
private_ike_sa_manager_t *this, char *name, bool child)
{
enumerator_t *enumerator, *children;
entry_t *entry;
ike_sa_t *ike_sa = NULL;
child_sa_t *child_sa;
u_int segment;
enumerator = create_table_enumerator(this);
while (enumerator->enumerate(enumerator, &entry, &segment))
{
if (wait_for_entry(this, entry, segment))
{
/* look for a child with such a policy name ... */
if (child)
{
children = entry->ike_sa->create_child_sa_enumerator(entry->ike_sa);
while (children->enumerate(children, (void**)&child_sa))
{
if (streq(child_sa->get_name(child_sa), name))
{
ike_sa = entry->ike_sa;
break;
}
}
children->destroy(children);
}
else /* ... or for a IKE_SA with such a connection name */
{
if (streq(entry->ike_sa->get_name(entry->ike_sa), name))
{
ike_sa = entry->ike_sa;
}
}
/* got one, return */
if (ike_sa)
{
entry->checked_out = TRUE;
DBG2(DBG_MGR, "IKE_SA %s[%u] successfully checked out",
ike_sa->get_name(ike_sa), ike_sa->get_unique_id(ike_sa));
break;
}
}
}
enumerator->destroy(enumerator);
charon->bus->set_sa(charon->bus, ike_sa);
return ike_sa;
}
/**
* enumerator filter function, waiting variant
*/
static bool enumerator_filter_wait(private_ike_sa_manager_t *this,
entry_t **in, ike_sa_t **out, u_int *segment)
{
if (wait_for_entry(this, *in, *segment))
{
*out = (*in)->ike_sa;
charon->bus->set_sa(charon->bus, *out);
return TRUE;
}
return FALSE;
}
/**
* enumerator filter function, skipping variant
*/
static bool enumerator_filter_skip(private_ike_sa_manager_t *this,
entry_t **in, ike_sa_t **out, u_int *segment)
{
if (!(*in)->driveout_new_threads &&
!(*in)->driveout_waiting_threads &&
!(*in)->checked_out)
{
*out = (*in)->ike_sa;
charon->bus->set_sa(charon->bus, *out);
return TRUE;
}
return FALSE;
}
/**
* Reset threads SA after enumeration
*/
static void reset_sa(void *data)
{
charon->bus->set_sa(charon->bus, NULL);
}
METHOD(ike_sa_manager_t, create_enumerator, enumerator_t*,
private_ike_sa_manager_t* this, bool wait)
{
return enumerator_create_filter(create_table_enumerator(this),
wait ? (void*)enumerator_filter_wait : (void*)enumerator_filter_skip,
this, reset_sa);
}
METHOD(ike_sa_manager_t, checkin, void,
private_ike_sa_manager_t *this, ike_sa_t *ike_sa)
{
/* to check the SA back in, we look for the pointer of the ike_sa
* in all entries.
* The lookup is done by initiator SPI, so even if the SPI has changed (e.g.
* on reception of a IKE_SA_INIT response) the lookup will work but
* updating of the SPI MAY be necessary...
*/
entry_t *entry;
ike_sa_id_t *ike_sa_id;
host_t *other;
identification_t *my_id, *other_id;
u_int segment;
ike_sa_id = ike_sa->get_id(ike_sa);
my_id = ike_sa->get_my_id(ike_sa);
other_id = ike_sa->get_other_eap_id(ike_sa);
other = ike_sa->get_other_host(ike_sa);
DBG2(DBG_MGR, "checkin IKE_SA %s[%u]", ike_sa->get_name(ike_sa),
ike_sa->get_unique_id(ike_sa));
/* look for the entry */
if (get_entry_by_sa(this, ike_sa_id, ike_sa, &entry, &segment) == SUCCESS)
{
/* ike_sa_id must be updated */
entry->ike_sa_id->replace_values(entry->ike_sa_id, ike_sa->get_id(ike_sa));
/* signal waiting threads */
entry->checked_out = FALSE;
entry->processing = -1;
/* check if this SA is half-open */
if (entry->half_open && ike_sa->get_state(ike_sa) != IKE_CONNECTING)
{
/* not half open anymore */
entry->half_open = FALSE;
remove_half_open(this, entry);
}
else if (entry->half_open && !other->ip_equals(other, entry->other))
{
/* the other host's IP has changed, we must update the hash table */
remove_half_open(this, entry);
DESTROY_IF(entry->other);
entry->other = other->clone(other);
put_half_open(this, entry);
}
else if (!entry->half_open &&
!entry->ike_sa_id->is_initiator(entry->ike_sa_id) &&
ike_sa->get_state(ike_sa) == IKE_CONNECTING)
{
/* this is a new half-open SA */
entry->half_open = TRUE;
entry->other = other->clone(other);
put_half_open(this, entry);
}
DBG2(DBG_MGR, "check-in of IKE_SA successful.");
entry->condvar->signal(entry->condvar);
}
else
{
entry = entry_create();
entry->ike_sa_id = ike_sa_id->clone(ike_sa_id);
entry->ike_sa = ike_sa;
segment = put_entry(this, entry);
}
/* apply identities for duplicate test */
if ((ike_sa->get_state(ike_sa) == IKE_ESTABLISHED ||
ike_sa->get_state(ike_sa) == IKE_PASSIVE) &&
entry->my_id == NULL && entry->other_id == NULL)
{
if (ike_sa->get_version(ike_sa) == IKEV1)
{
/* If authenticated and received INITIAL_CONTACT,
* delete any existing IKE_SAs with that peer. */
if (ike_sa->has_condition(ike_sa, COND_INIT_CONTACT_SEEN))
{
this->public.check_uniqueness(&this->public, ike_sa, TRUE);
ike_sa->set_condition(ike_sa, COND_INIT_CONTACT_SEEN, FALSE);
}
}
entry->my_id = my_id->clone(my_id);
entry->other_id = other_id->clone(other_id);
if (!entry->other)
{
entry->other = other->clone(other);
}
put_connected_peers(this, entry);
}
unlock_single_segment(this, segment);
charon->bus->set_sa(charon->bus, NULL);
}
METHOD(ike_sa_manager_t, checkin_and_destroy, void,
private_ike_sa_manager_t *this, ike_sa_t *ike_sa)
{
/* deletion is a bit complex, we must ensure that no thread is waiting for
* this SA.
* We take this SA from the table, and start signaling while threads
* are in the condvar.
*/
entry_t *entry;
ike_sa_id_t *ike_sa_id;
u_int segment;
ike_sa_id = ike_sa->get_id(ike_sa);
DBG2(DBG_MGR, "checkin and destroy IKE_SA %s[%u]", ike_sa->get_name(ike_sa),
ike_sa->get_unique_id(ike_sa));
if (get_entry_by_sa(this, ike_sa_id, ike_sa, &entry, &segment) == SUCCESS)
{
if (entry->driveout_waiting_threads && entry->driveout_new_threads)
{ /* it looks like flush() has been called and the SA is being deleted
* anyway, just check it in */
DBG2(DBG_MGR, "ignored check-in and destroy of IKE_SA during shutdown");
entry->checked_out = FALSE;
entry->condvar->broadcast(entry->condvar);
unlock_single_segment(this, segment);
return;
}
/* drive out waiting threads, as we are in hurry */
entry->driveout_waiting_threads = TRUE;
/* mark it, so no new threads can get this entry */
entry->driveout_new_threads = TRUE;
/* wait until all workers have done their work */
while (entry->waiting_threads)
{
/* wake up all */
entry->condvar->broadcast(entry->condvar);
/* they will wake us again when their work is done */
entry->condvar->wait(entry->condvar, this->segments[segment].mutex);
}
remove_entry(this, entry);
unlock_single_segment(this, segment);
if (entry->half_open)
{
remove_half_open(this, entry);
}
if (entry->my_id && entry->other_id)
{
remove_connected_peers(this, entry);
}
if (entry->init_hash.ptr)
{
remove_init_hash(this, entry->init_hash);
}
entry_destroy(entry);
DBG2(DBG_MGR, "check-in and destroy of IKE_SA successful");
}
else
{
DBG1(DBG_MGR, "tried to check-in and delete nonexisting IKE_SA");
ike_sa->destroy(ike_sa);
}
charon->bus->set_sa(charon->bus, NULL);
}
/**
* Cleanup function for create_id_enumerator
*/
static void id_enumerator_cleanup(linked_list_t *ids)
{
ids->destroy_offset(ids, offsetof(ike_sa_id_t, destroy));
}
METHOD(ike_sa_manager_t, create_id_enumerator, enumerator_t*,
private_ike_sa_manager_t *this, identification_t *me,
identification_t *other, int family)
{
table_item_t *item;
u_int row, segment;
rwlock_t *lock;
linked_list_t *ids = NULL;
row = chunk_hash_inc(other->get_encoding(other),
chunk_hash(me->get_encoding(me))) & this->table_mask;
segment = row & this->segment_mask;
lock = this->connected_peers_segments[segment].lock;
lock->read_lock(lock);
item = this->connected_peers_table[row];
while (item)
{
connected_peers_t *current = item->value;
if (connected_peers_match(current, me, other, family))
{
ids = current->sas->clone_offset(current->sas,
offsetof(ike_sa_id_t, clone));
break;
}
item = item->next;
}
lock->unlock(lock);
if (!ids)
{
return enumerator_create_empty();
}
return enumerator_create_cleaner(ids->create_enumerator(ids),
(void*)id_enumerator_cleanup, ids);
}
/**
* Move all CHILD_SAs from old to new
*/
static void adopt_children(ike_sa_t *old, ike_sa_t *new)
{
enumerator_t *enumerator;
child_sa_t *child_sa;
enumerator = old->create_child_sa_enumerator(old);
while (enumerator->enumerate(enumerator, &child_sa))
{
old->remove_child_sa(old, enumerator);
new->add_child_sa(new, child_sa);
}
enumerator->destroy(enumerator);
}
/**
* Check if the replaced IKE_SA might get reauthenticated from host
*/
static bool is_ikev1_reauth(ike_sa_t *duplicate, host_t *host)
{
return duplicate->get_version(duplicate) == IKEV1 &&
host->equals(host, duplicate->get_other_host(duplicate));
}
/**
* Delete an existing IKE_SA due to a unique replace policy
*/
static status_t enforce_replace(private_ike_sa_manager_t *this,
ike_sa_t *duplicate, ike_sa_t *new,
identification_t *other, host_t *host)
{
charon->bus->alert(charon->bus, ALERT_UNIQUE_REPLACE);
if (is_ikev1_reauth(duplicate, host))
{
/* looks like a reauthentication attempt */
adopt_children(duplicate, new);
/* For IKEv1 we have to delay the delete for the old IKE_SA. Some
* peers need to complete the new SA first, otherwise the quick modes
* might get lost. */
lib->scheduler->schedule_job(lib->scheduler, (job_t*)
delete_ike_sa_job_create(duplicate->get_id(duplicate), TRUE), 10);
return SUCCESS;
}
DBG1(DBG_IKE, "deleting duplicate IKE_SA for peer '%Y' due to "
"uniqueness policy", other);
return duplicate->delete(duplicate);
}
METHOD(ike_sa_manager_t, check_uniqueness, bool,
private_ike_sa_manager_t *this, ike_sa_t *ike_sa, bool force_replace)
{
bool cancel = FALSE;
peer_cfg_t *peer_cfg;
unique_policy_t policy;
enumerator_t *enumerator;
ike_sa_id_t *id = NULL;
identification_t *me, *other;
host_t *other_host;
peer_cfg = ike_sa->get_peer_cfg(ike_sa);
policy = peer_cfg->get_unique_policy(peer_cfg);
if (policy == UNIQUE_NEVER || (policy == UNIQUE_NO && !force_replace))
{
return FALSE;
}
me = ike_sa->get_my_id(ike_sa);
other = ike_sa->get_other_eap_id(ike_sa);
other_host = ike_sa->get_other_host(ike_sa);
enumerator = create_id_enumerator(this, me, other,
other_host->get_family(other_host));
while (enumerator->enumerate(enumerator, &id))
{
status_t status = SUCCESS;
ike_sa_t *duplicate;
duplicate = checkout(this, id);
if (!duplicate)
{
continue;
}
if (force_replace)
{
DBG1(DBG_IKE, "destroying duplicate IKE_SA for peer '%Y', "
"received INITIAL_CONTACT", other);
charon->bus->ike_updown(charon->bus, duplicate, FALSE);
checkin_and_destroy(this, duplicate);
continue;
}
peer_cfg = duplicate->get_peer_cfg(duplicate);
if (peer_cfg && peer_cfg->equals(peer_cfg, ike_sa->get_peer_cfg(ike_sa)))
{
switch (duplicate->get_state(duplicate))
{
case IKE_ESTABLISHED:
case IKE_REKEYING:
switch (policy)
{
case UNIQUE_REPLACE:
status = enforce_replace(this, duplicate, ike_sa,
other, other_host);
break;
case UNIQUE_KEEP:
if (!is_ikev1_reauth(duplicate, other_host))
{
cancel = TRUE;
/* we keep the first IKE_SA and delete all
* other duplicates that might exist */
policy = UNIQUE_REPLACE;
}
break;
default:
break;
}
break;
default:
break;
}
}
if (status == DESTROY_ME)
{
checkin_and_destroy(this, duplicate);
}
else
{
checkin(this, duplicate);
}
}
enumerator->destroy(enumerator);
/* reset thread's current IKE_SA after checkin */
charon->bus->set_sa(charon->bus, ike_sa);
return cancel;
}
METHOD(ike_sa_manager_t, has_contact, bool,
private_ike_sa_manager_t *this, identification_t *me,
identification_t *other, int family)
{
table_item_t *item;
u_int row, segment;
rwlock_t *lock;
bool found = FALSE;
row = chunk_hash_inc(other->get_encoding(other),
chunk_hash(me->get_encoding(me))) & this->table_mask;
segment = row & this->segment_mask;
lock = this->connected_peers_segments[segment].lock;
lock->read_lock(lock);
item = this->connected_peers_table[row];
while (item)
{
if (connected_peers_match(item->value, me, other, family))
{
found = TRUE;
break;
}
item = item->next;
}
lock->unlock(lock);
return found;
}
METHOD(ike_sa_manager_t, get_count, u_int,
private_ike_sa_manager_t *this)
{
u_int segment, count = 0;
mutex_t *mutex;
for (segment = 0; segment < this->segment_count; segment++)
{
mutex = this->segments[segment & this->segment_mask].mutex;
mutex->lock(mutex);
count += this->segments[segment].count;
mutex->unlock(mutex);
}
return count;
}
METHOD(ike_sa_manager_t, get_half_open_count, u_int,
private_ike_sa_manager_t *this, host_t *ip)
{
table_item_t *item;
u_int row, segment;
rwlock_t *lock;
chunk_t addr;
u_int count = 0;
if (ip)
{
addr = ip->get_address(ip);
row = chunk_hash(addr) & this->table_mask;
segment = row & this->segment_mask;
lock = this->half_open_segments[segment].lock;
lock->read_lock(lock);
item = this->half_open_table[row];
while (item)
{
half_open_t *half_open = item->value;
if (chunk_equals(addr, half_open->other))
{
count = half_open->count;
break;
}
item = item->next;
}
lock->unlock(lock);
}
else
{
for (segment = 0; segment < this->segment_count; segment++)
{
lock = this->half_open_segments[segment].lock;
lock->read_lock(lock);
count += this->half_open_segments[segment].count;
lock->unlock(lock);
}
}
return count;
}
METHOD(ike_sa_manager_t, flush, void,
private_ike_sa_manager_t *this)
{
/* destroy all list entries */
enumerator_t *enumerator;
entry_t *entry;
u_int segment;
lock_all_segments(this);
DBG2(DBG_MGR, "going to destroy IKE_SA manager and all managed IKE_SA's");
/* Step 1: drive out all waiting threads */
DBG2(DBG_MGR, "set driveout flags for all stored IKE_SA's");
enumerator = create_table_enumerator(this);
while (enumerator->enumerate(enumerator, &entry, &segment))
{
/* do not accept new threads, drive out waiting threads */
entry->driveout_new_threads = TRUE;
entry->driveout_waiting_threads = TRUE;
}
enumerator->destroy(enumerator);
DBG2(DBG_MGR, "wait for all threads to leave IKE_SA's");
/* Step 2: wait until all are gone */
enumerator = create_table_enumerator(this);
while (enumerator->enumerate(enumerator, &entry, &segment))
{
while (entry->waiting_threads || entry->checked_out)
{
/* wake up all */
entry->condvar->broadcast(entry->condvar);
/* go sleeping until they are gone */
entry->condvar->wait(entry->condvar, this->segments[segment].mutex);
}
}
enumerator->destroy(enumerator);
DBG2(DBG_MGR, "delete all IKE_SA's");
/* Step 3: initiate deletion of all IKE_SAs */
enumerator = create_table_enumerator(this);
while (enumerator->enumerate(enumerator, &entry, &segment))
{
charon->bus->set_sa(charon->bus, entry->ike_sa);
if (entry->ike_sa->get_version(entry->ike_sa) == IKEV2)
{ /* as the delete never gets processed, fire down events */
switch (entry->ike_sa->get_state(entry->ike_sa))
{
case IKE_ESTABLISHED:
case IKE_REKEYING:
case IKE_DELETING:
charon->bus->ike_updown(charon->bus, entry->ike_sa, FALSE);
break;
default:
break;
}
}
entry->ike_sa->delete(entry->ike_sa);
}
enumerator->destroy(enumerator);
DBG2(DBG_MGR, "destroy all entries");
/* Step 4: destroy all entries */
enumerator = create_table_enumerator(this);
while (enumerator->enumerate(enumerator, &entry, &segment))
{
charon->bus->set_sa(charon->bus, entry->ike_sa);
if (entry->half_open)
{
remove_half_open(this, entry);
}
if (entry->my_id && entry->other_id)
{
remove_connected_peers(this, entry);
}
if (entry->init_hash.ptr)
{
remove_init_hash(this, entry->init_hash);
}
remove_entry_at((private_enumerator_t*)enumerator);
entry_destroy(entry);
}
enumerator->destroy(enumerator);
charon->bus->set_sa(charon->bus, NULL);
unlock_all_segments(this);
this->rng->destroy(this->rng);
this->rng = NULL;
this->hasher->destroy(this->hasher);
this->hasher = NULL;
}
METHOD(ike_sa_manager_t, destroy, void,
private_ike_sa_manager_t *this)
{
u_int i;
/* these are already cleared in flush() above */
free(this->ike_sa_table);
free(this->half_open_table);
free(this->connected_peers_table);
free(this->init_hashes_table);
for (i = 0; i < this->segment_count; i++)
{
this->segments[i].mutex->destroy(this->segments[i].mutex);
this->half_open_segments[i].lock->destroy(this->half_open_segments[i].lock);
this->connected_peers_segments[i].lock->destroy(this->connected_peers_segments[i].lock);
this->init_hashes_segments[i].mutex->destroy(this->init_hashes_segments[i].mutex);
}
free(this->segments);
free(this->half_open_segments);
free(this->connected_peers_segments);
free(this->init_hashes_segments);
free(this);
}
/**
* This function returns the next-highest power of two for the given number.
* The algorithm works by setting all bits on the right-hand side of the most
* significant 1 to 1 and then increments the whole number so it rolls over
* to the nearest power of two. Note: returns 0 for n == 0
*/
static u_int get_nearest_powerof2(u_int n)
{
u_int i;
--n;
for (i = 1; i < sizeof(u_int) * 8; i <<= 1)
{
n |= n >> i;
}
return ++n;
}
/*
* Described in header.
*/
ike_sa_manager_t *ike_sa_manager_create()
{
private_ike_sa_manager_t *this;
u_int i;
INIT(this,
.public = {
.checkout = _checkout,
.checkout_new = _checkout_new,
.checkout_by_message = _checkout_by_message,
.checkout_by_config = _checkout_by_config,
.checkout_by_id = _checkout_by_id,
.checkout_by_name = _checkout_by_name,
.check_uniqueness = _check_uniqueness,
.has_contact = _has_contact,
.create_enumerator = _create_enumerator,
.create_id_enumerator = _create_id_enumerator,
.checkin = _checkin,
.checkin_and_destroy = _checkin_and_destroy,
.get_count = _get_count,
.get_half_open_count = _get_half_open_count,
.flush = _flush,
.destroy = _destroy,
},
);
this->hasher = lib->crypto->create_hasher(lib->crypto, HASH_SHA1);
if (this->hasher == NULL)
{
DBG1(DBG_MGR, "manager initialization failed, no hasher supported");
free(this);
return NULL;
}
this->rng = lib->crypto->create_rng(lib->crypto, RNG_WEAK);
if (this->rng == NULL)
{
DBG1(DBG_MGR, "manager initialization failed, no RNG supported");
this->hasher->destroy(this->hasher);
free(this);
return NULL;
}
this->ikesa_limit = lib->settings->get_int(lib->settings,
"%s.ikesa_limit", 0, lib->ns);
this->table_size = get_nearest_powerof2(lib->settings->get_int(
lib->settings, "%s.ikesa_table_size",
DEFAULT_HASHTABLE_SIZE, lib->ns));
this->table_size = max(1, min(this->table_size, MAX_HASHTABLE_SIZE));
this->table_mask = this->table_size - 1;
this->segment_count = get_nearest_powerof2(lib->settings->get_int(
lib->settings, "%s.ikesa_table_segments",
DEFAULT_SEGMENT_COUNT, lib->ns));
this->segment_count = max(1, min(this->segment_count, this->table_size));
this->segment_mask = this->segment_count - 1;
this->ike_sa_table = calloc(this->table_size, sizeof(table_item_t*));
this->segments = (segment_t*)calloc(this->segment_count, sizeof(segment_t));
for (i = 0; i < this->segment_count; i++)
{
this->segments[i].mutex = mutex_create(MUTEX_TYPE_RECURSIVE);
this->segments[i].count = 0;
}
/* we use the same table parameters for the table to track half-open SAs */
this->half_open_table = calloc(this->table_size, sizeof(table_item_t*));
this->half_open_segments = calloc(this->segment_count, sizeof(shareable_segment_t));
for (i = 0; i < this->segment_count; i++)
{
this->half_open_segments[i].lock = rwlock_create(RWLOCK_TYPE_DEFAULT);
this->half_open_segments[i].count = 0;
}
/* also for the hash table used for duplicate tests */
this->connected_peers_table = calloc(this->table_size, sizeof(table_item_t*));
this->connected_peers_segments = calloc(this->segment_count, sizeof(shareable_segment_t));
for (i = 0; i < this->segment_count; i++)
{
this->connected_peers_segments[i].lock = rwlock_create(RWLOCK_TYPE_DEFAULT);
this->connected_peers_segments[i].count = 0;
}
/* and again for the table of hashes of seen initial IKE messages */
this->init_hashes_table = calloc(this->table_size, sizeof(table_item_t*));
this->init_hashes_segments = calloc(this->segment_count, sizeof(segment_t));
for (i = 0; i < this->segment_count; i++)
{
this->init_hashes_segments[i].mutex = mutex_create(MUTEX_TYPE_RECURSIVE);
this->init_hashes_segments[i].count = 0;
}
this->reuse_ikesa = lib->settings->get_bool(lib->settings,
"%s.reuse_ikesa", TRUE, lib->ns);
return &this->public;
}