strongswan/src/libcharon/plugins/socket_dynamic/socket_dynamic_socket.c

685 lines
15 KiB
C

/*
* Copyright (C) 2006-2013 Tobias Brunner
* Copyright (C) 2006 Daniel Roethlisberger
* Copyright (C) 2005-2010 Martin Willi
* Copyright (C) 2005 Jan Hutter
* Hochschule fuer Technik Rapperswil
* Copyright (C) 2010 revosec AG
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version. See <http://www.fsf.org/copyleft/gpl.txt>.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*/
/* for struct in6_pktinfo */
#define _GNU_SOURCE
#include "socket_dynamic_socket.h"
#include <sys/types.h>
#include <sys/socket.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>
#include <stdlib.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <netinet/in_systm.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/udp.h>
#include <net/if.h>
#include <hydra.h>
#include <daemon.h>
#include <threading/thread.h>
#include <threading/rwlock.h>
#include <collections/hashtable.h>
/* Maximum size of a packet */
#define MAX_PACKET 10000
/* these are not defined on some platforms */
#ifndef SOL_IP
#define SOL_IP IPPROTO_IP
#endif
#ifndef SOL_IPV6
#define SOL_IPV6 IPPROTO_IPV6
#endif
/* IPV6_RECVPKTINFO is defined in RFC 3542 which obsoletes RFC 2292 that
* previously defined IPV6_PKTINFO */
#ifndef IPV6_RECVPKTINFO
#define IPV6_RECVPKTINFO IPV6_PKTINFO
#endif
typedef struct private_socket_dynamic_socket_t private_socket_dynamic_socket_t;
typedef struct dynsock_t dynsock_t;
/**
* Private data of an socket_t object
*/
struct private_socket_dynamic_socket_t {
/**
* public functions
*/
socket_dynamic_socket_t public;
/**
* Hashtable of bound sockets
*/
hashtable_t *sockets;
/**
* Lock for sockets hashtable
*/
rwlock_t *lock;
/**
* Notification pipe to signal receiver
*/
int notify[2];
/**
* Maximum packet size to receive
*/
int max_packet;
};
/**
* Struct for a dynamically allocated socket
*/
struct dynsock_t {
/**
* File descriptor of socket
*/
int fd;
/**
* Address family
*/
int family;
/**
* Bound source port
*/
u_int16_t port;
};
/**
* Hash function for hashtable
*/
static u_int hash(dynsock_t *key)
{
return (key->family << 16) | key->port;
}
/**
* Equals function for hashtable
*/
static bool equals(dynsock_t *a, dynsock_t *b)
{
return a->family == b->family && a->port == b->port;
}
/**
* Create a fd_set from all bound sockets
*/
static int build_fds(private_socket_dynamic_socket_t *this, fd_set *fds)
{
enumerator_t *enumerator;
dynsock_t *key, *value;
int maxfd;
FD_ZERO(fds);
FD_SET(this->notify[0], fds);
maxfd = this->notify[0];
this->lock->read_lock(this->lock);
enumerator = this->sockets->create_enumerator(this->sockets);
while (enumerator->enumerate(enumerator, &key, &value))
{
FD_SET(value->fd, fds);
maxfd = max(maxfd, value->fd);
}
enumerator->destroy(enumerator);
this->lock->unlock(this->lock);
return maxfd + 1;
}
/**
* Find the socket select()ed
*/
static dynsock_t* scan_fds(private_socket_dynamic_socket_t *this, fd_set *fds)
{
enumerator_t *enumerator;
dynsock_t *key, *value, *selected = NULL;
this->lock->read_lock(this->lock);
enumerator = this->sockets->create_enumerator(this->sockets);
while (enumerator->enumerate(enumerator, &key, &value))
{
if (FD_ISSET(value->fd, fds))
{
selected = value;
break;
}
}
enumerator->destroy(enumerator);
this->lock->unlock(this->lock);
return selected;
}
/**
* Receive a packet from a given socket fd
*/
static packet_t *receive_packet(private_socket_dynamic_socket_t *this,
dynsock_t *skt)
{
host_t *source = NULL, *dest = NULL;
ssize_t len;
char buffer[this->max_packet];
chunk_t data;
packet_t *packet;
struct msghdr msg;
struct cmsghdr *cmsgptr;
struct iovec iov;
char ancillary[64];
union {
struct sockaddr_in in4;
struct sockaddr_in6 in6;
} src;
msg.msg_name = &src;
msg.msg_namelen = sizeof(src);
iov.iov_base = buffer;
iov.iov_len = this->max_packet;
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
msg.msg_control = ancillary;
msg.msg_controllen = sizeof(ancillary);
msg.msg_flags = 0;
len = recvmsg(skt->fd, &msg, 0);
if (len < 0)
{
DBG1(DBG_NET, "error reading socket: %s", strerror(errno));
return NULL;
}
if (msg.msg_flags & MSG_TRUNC)
{
DBG1(DBG_NET, "receive buffer too small, packet discarded");
return NULL;
}
DBG3(DBG_NET, "received packet %b", buffer, (u_int)len);
/* read ancillary data to get destination address */
for (cmsgptr = CMSG_FIRSTHDR(&msg); cmsgptr != NULL;
cmsgptr = CMSG_NXTHDR(&msg, cmsgptr))
{
if (cmsgptr->cmsg_len == 0)
{
DBG1(DBG_NET, "error reading ancillary data");
return NULL;
}
if (cmsgptr->cmsg_level == SOL_IPV6 &&
cmsgptr->cmsg_type == IPV6_PKTINFO)
{
struct in6_pktinfo *pktinfo;
struct sockaddr_in6 dst;
pktinfo = (struct in6_pktinfo*)CMSG_DATA(cmsgptr);
memset(&dst, 0, sizeof(dst));
memcpy(&dst.sin6_addr, &pktinfo->ipi6_addr, sizeof(dst.sin6_addr));
dst.sin6_family = AF_INET6;
dst.sin6_port = htons(skt->port);
dest = host_create_from_sockaddr((sockaddr_t*)&dst);
}
if (cmsgptr->cmsg_level == SOL_IP &&
cmsgptr->cmsg_type == IP_PKTINFO)
{
struct in_pktinfo *pktinfo;
struct sockaddr_in dst;
pktinfo = (struct in_pktinfo*)CMSG_DATA(cmsgptr);
memset(&dst, 0, sizeof(dst));
memcpy(&dst.sin_addr, &pktinfo->ipi_addr, sizeof(dst.sin_addr));
dst.sin_family = AF_INET;
dst.sin_port = htons(skt->port);
dest = host_create_from_sockaddr((sockaddr_t*)&dst);
}
if (dest)
{
break;
}
}
if (dest == NULL)
{
DBG1(DBG_NET, "error reading IP header");
return NULL;
}
source = host_create_from_sockaddr((sockaddr_t*)&src);
DBG2(DBG_NET, "received packet: from %#H to %#H", source, dest);
data = chunk_create(buffer, len);
packet = packet_create();
packet->set_source(packet, source);
packet->set_destination(packet, dest);
packet->set_data(packet, chunk_clone(data));
return packet;
}
METHOD(socket_t, receiver, status_t,
private_socket_dynamic_socket_t *this, packet_t **packet)
{
dynsock_t *selected;
packet_t *pkt;
bool oldstate;
fd_set fds;
int maxfd;
while (TRUE)
{
maxfd = build_fds(this, &fds);
DBG2(DBG_NET, "waiting for data on sockets");
oldstate = thread_cancelability(TRUE);
if (select(maxfd, &fds, NULL, NULL, NULL) <= 0)
{
thread_cancelability(oldstate);
return FAILED;
}
thread_cancelability(oldstate);
if (FD_ISSET(this->notify[0], &fds))
{ /* got notified, read garbage, rebuild fdset */
char buf[1];
ignore_result(read(this->notify[0], buf, sizeof(buf)));
DBG2(DBG_NET, "rebuilding fdset due to newly bound ports");
continue;
}
selected = scan_fds(this, &fds);
if (selected)
{
break;
}
}
pkt = receive_packet(this, selected);
if (pkt)
{
*packet = pkt;
return SUCCESS;
}
return FAILED;
}
/**
* Get the port allocated dynamically using bind()
*/
static bool get_dynamic_port(int fd, int family, u_int16_t *port)
{
union {
struct sockaddr_storage ss;
struct sockaddr s;
struct sockaddr_in sin;
struct sockaddr_in6 sin6;
} addr;
socklen_t addrlen;
addrlen = sizeof(addr);
if (getsockname(fd, &addr.s, &addrlen) != 0)
{
DBG1(DBG_NET, "unable to getsockname: %s", strerror(errno));
return FALSE;
}
switch (family)
{
case AF_INET:
if (addrlen != sizeof(addr.sin) || addr.sin.sin_family != family)
{
break;
}
*port = ntohs(addr.sin.sin_port);
return TRUE;
case AF_INET6:
if (addrlen != sizeof(addr.sin6) || addr.sin6.sin6_family != family)
{
break;
}
*port = ntohs(addr.sin6.sin6_port);
return TRUE;
default:
return FALSE;
}
DBG1(DBG_NET, "received invalid getsockname() result");
return FALSE;
}
/**
* open a socket to send and receive packets
*/
static int open_socket(private_socket_dynamic_socket_t *this,
int family, u_int16_t *port)
{
union {
struct sockaddr_storage ss;
struct sockaddr s;
struct sockaddr_in sin;
struct sockaddr_in6 sin6;
} addr;
int on = TRUE;
socklen_t addrlen;
u_int sol, pktinfo = 0;
int fd;
memset(&addr, 0, sizeof(addr));
/* precalculate constants depending on address family */
switch (family)
{
case AF_INET:
addr.sin.sin_family = AF_INET;
addr.sin.sin_addr.s_addr = INADDR_ANY;
addr.sin.sin_port = htons(*port);
addrlen = sizeof(addr.sin);
sol = SOL_IP;
pktinfo = IP_PKTINFO;
break;
case AF_INET6:
addr.sin6.sin6_family = AF_INET6;
memset(&addr.sin6.sin6_addr, 0, sizeof(addr.sin6.sin6_addr));
addr.sin6.sin6_port = htons(*port);
addrlen = sizeof(addr.sin6);
sol = SOL_IPV6;
pktinfo = IPV6_RECVPKTINFO;
break;
default:
return 0;
}
fd = socket(family, SOCK_DGRAM, IPPROTO_UDP);
if (fd < 0)
{
DBG1(DBG_NET, "could not open socket: %s", strerror(errno));
return 0;
}
if (setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (void*)&on, sizeof(on)) < 0)
{
DBG1(DBG_NET, "unable to set SO_REUSEADDR on socket: %s", strerror(errno));
close(fd);
return 0;
}
if (bind(fd, &addr.s, addrlen) < 0)
{
DBG1(DBG_NET, "unable to bind socket: %s", strerror(errno));
close(fd);
return 0;
}
if (*port == 0 && !get_dynamic_port(fd, family, port))
{
close(fd);
return 0;
}
/* get additional packet info on receive */
if (setsockopt(fd, sol, pktinfo, &on, sizeof(on)) < 0)
{
DBG1(DBG_NET, "unable to set IP_PKTINFO on socket: %s", strerror(errno));
close(fd);
return 0;
}
if (!hydra->kernel_interface->bypass_socket(hydra->kernel_interface,
fd, family))
{
DBG1(DBG_NET, "installing IKE bypass policy failed");
}
/* enable UDP decapsulation on each socket */
if (!hydra->kernel_interface->enable_udp_decap(hydra->kernel_interface,
fd, family, *port))
{
DBG1(DBG_NET, "enabling UDP decapsulation for %s on port %d failed",
family == AF_INET ? "IPv4" : "IPv6", *port);
}
return fd;
}
/**
* Get the first usable socket for an address family
*/
static dynsock_t *get_any_socket(private_socket_dynamic_socket_t *this,
int family)
{
dynsock_t *key, *value, *found = NULL;
enumerator_t *enumerator;
this->lock->read_lock(this->lock);
enumerator = this->sockets->create_enumerator(this->sockets);
while (enumerator->enumerate(enumerator, &key, &value))
{
if (value->family == family)
{
found = value;
break;
}
}
enumerator->destroy(enumerator);
this->lock->unlock(this->lock);
return found;
}
/**
* Find/Create a socket to send from host
*/
static dynsock_t *find_socket(private_socket_dynamic_socket_t *this,
int family, u_int16_t port)
{
dynsock_t *skt, lookup = {
.family = family,
.port = port,
};
char buf[] = {0x01};
int fd;
this->lock->read_lock(this->lock);
skt = this->sockets->get(this->sockets, &lookup);
this->lock->unlock(this->lock);
if (skt)
{
return skt;
}
if (!port)
{
skt = get_any_socket(this, family);
if (skt)
{
return skt;
}
}
fd = open_socket(this, family, &port);
if (!fd)
{
return NULL;
}
INIT(skt,
.family = family,
.port = port,
.fd = fd,
);
this->lock->write_lock(this->lock);
this->sockets->put(this->sockets, skt, skt);
this->lock->unlock(this->lock);
/* notify receiver thread to reread socket list */
ignore_result(write(this->notify[1], buf, sizeof(buf)));
return skt;
}
METHOD(socket_t, sender, status_t,
private_socket_dynamic_socket_t *this, packet_t *packet)
{
dynsock_t *skt;
host_t *src, *dst;
int family;
ssize_t len;
chunk_t data;
struct msghdr msg;
struct cmsghdr *cmsg;
struct iovec iov;
src = packet->get_source(packet);
dst = packet->get_destination(packet);
family = src->get_family(src);
skt = find_socket(this, family, src->get_port(src));
if (!skt)
{
return FAILED;
}
data = packet->get_data(packet);
DBG2(DBG_NET, "sending packet: from %#H to %#H", src, dst);
memset(&msg, 0, sizeof(struct msghdr));
msg.msg_name = dst->get_sockaddr(dst);;
msg.msg_namelen = *dst->get_sockaddr_len(dst);
iov.iov_base = data.ptr;
iov.iov_len = data.len;
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
msg.msg_flags = 0;
if (!src->is_anyaddr(src))
{
if (family == AF_INET)
{
struct in_addr *addr;
struct sockaddr_in *sin;
char buf[CMSG_SPACE(sizeof(struct in_pktinfo))];
struct in_pktinfo *pktinfo;
memset(buf, 0, sizeof(buf));
msg.msg_control = buf;
msg.msg_controllen = sizeof(buf);
cmsg = CMSG_FIRSTHDR(&msg);
cmsg->cmsg_level = SOL_IP;
cmsg->cmsg_type = IP_PKTINFO;
cmsg->cmsg_len = CMSG_LEN(sizeof(struct in_pktinfo));
pktinfo = (struct in_pktinfo*)CMSG_DATA(cmsg);
addr = &pktinfo->ipi_spec_dst;
sin = (struct sockaddr_in*)src->get_sockaddr(src);
memcpy(addr, &sin->sin_addr, sizeof(struct in_addr));
}
else
{
char buf[CMSG_SPACE(sizeof(struct in6_pktinfo))];
struct in6_pktinfo *pktinfo;
struct sockaddr_in6 *sin;
memset(buf, 0, sizeof(buf));
msg.msg_control = buf;
msg.msg_controllen = sizeof(buf);
cmsg = CMSG_FIRSTHDR(&msg);
cmsg->cmsg_level = SOL_IPV6;
cmsg->cmsg_type = IPV6_PKTINFO;
cmsg->cmsg_len = CMSG_LEN(sizeof(struct in6_pktinfo));
pktinfo = (struct in6_pktinfo*)CMSG_DATA(cmsg);
sin = (struct sockaddr_in6*)src->get_sockaddr(src);
memcpy(&pktinfo->ipi6_addr, &sin->sin6_addr, sizeof(struct in6_addr));
}
}
len = sendmsg(skt->fd, &msg, 0);
if (len != data.len)
{
DBG1(DBG_NET, "error writing to socket: %s", strerror(errno));
return FAILED;
}
return SUCCESS;
}
METHOD(socket_t, get_port, u_int16_t,
private_socket_dynamic_socket_t *this, bool nat_t)
{
/* we return 0 here for users that have no explicit port configured, the
* sender will default to the default port in this case */
return 0;
}
METHOD(socket_t, supported_families, socket_family_t,
private_socket_dynamic_socket_t *this)
{
/* we could return only the families of the opened sockets, but it could
* be that both families are supported even if no socket is yet open */
return SOCKET_FAMILY_BOTH;
}
METHOD(socket_t, destroy, void,
private_socket_dynamic_socket_t *this)
{
enumerator_t *enumerator;
dynsock_t *key, *value;
enumerator = this->sockets->create_enumerator(this->sockets);
while (enumerator->enumerate(enumerator, &key, &value))
{
close(value->fd);
free(value);
}
enumerator->destroy(enumerator);
this->sockets->destroy(this->sockets);
this->lock->destroy(this->lock);
close(this->notify[0]);
close(this->notify[1]);
free(this);
}
/*
* See header for description
*/
socket_dynamic_socket_t *socket_dynamic_socket_create()
{
private_socket_dynamic_socket_t *this;
INIT(this,
.public = {
.socket = {
.send = _sender,
.receive = _receiver,
.get_port = _get_port,
.supported_families = _supported_families,
.destroy = _destroy,
},
},
.lock = rwlock_create(RWLOCK_TYPE_DEFAULT),
.max_packet = lib->settings->get_int(lib->settings,
"%s.max_packet", MAX_PACKET, lib->ns),
);
if (pipe(this->notify) != 0)
{
DBG1(DBG_NET, "creating notify pipe for dynamic socket failed");
free(this);
return NULL;
}
this->sockets = hashtable_create((void*)hash, (void*)equals, 8);
return &this->public;
}