strongswan/src/charon/sa/ike_sa.c

2683 lines
70 KiB
C

/*
* Copyright (C) 2006-2008 Tobias Brunner
* Copyright (C) 2006 Daniel Roethlisberger
* Copyright (C) 2005-2006 Martin Willi
* Copyright (C) 2005 Jan Hutter
* Hochschule fuer Technik Rapperswil
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version. See <http://www.fsf.org/copyleft/gpl.txt>.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* $Id$
*/
#include <sys/time.h>
#include <string.h>
#include <printf.h>
#include <sys/stat.h>
#include <errno.h>
#include "ike_sa.h"
#include <library.h>
#include <daemon.h>
#include <utils/linked_list.h>
#include <utils/lexparser.h>
#include <crypto/diffie_hellman.h>
#include <crypto/prf_plus.h>
#include <crypto/crypters/crypter.h>
#include <crypto/hashers/hasher.h>
#include <encoding/payloads/sa_payload.h>
#include <encoding/payloads/nonce_payload.h>
#include <encoding/payloads/ke_payload.h>
#include <encoding/payloads/delete_payload.h>
#include <encoding/payloads/transform_substructure.h>
#include <encoding/payloads/transform_attribute.h>
#include <encoding/payloads/ts_payload.h>
#include <sa/task_manager.h>
#include <sa/tasks/ike_init.h>
#include <sa/tasks/ike_natd.h>
#include <sa/tasks/ike_mobike.h>
#include <sa/tasks/ike_auth.h>
#include <sa/tasks/ike_auth_lifetime.h>
#include <sa/tasks/ike_config.h>
#include <sa/tasks/ike_cert_pre.h>
#include <sa/tasks/ike_cert_post.h>
#include <sa/tasks/ike_rekey.h>
#include <sa/tasks/ike_reauth.h>
#include <sa/tasks/ike_delete.h>
#include <sa/tasks/ike_dpd.h>
#include <sa/tasks/child_create.h>
#include <sa/tasks/child_delete.h>
#include <sa/tasks/child_rekey.h>
#include <processing/jobs/retransmit_job.h>
#include <processing/jobs/delete_ike_sa_job.h>
#include <processing/jobs/send_dpd_job.h>
#include <processing/jobs/send_keepalive_job.h>
#include <processing/jobs/rekey_ike_sa_job.h>
#ifdef ME
#include <sa/tasks/ike_me.h>
#include <processing/jobs/initiate_mediation_job.h>
#endif
#ifndef RESOLV_CONF
#define RESOLV_CONF "/etc/resolv.conf"
#endif
ENUM(ike_sa_state_names, IKE_CREATED, IKE_DESTROYING,
"CREATED",
"CONNECTING",
"ESTABLISHED",
"REKEYING",
"DELETING",
"DESTROYING",
);
typedef struct private_ike_sa_t private_ike_sa_t;
/**
* Private data of an ike_sa_t object.
*/
struct private_ike_sa_t {
/**
* Public members
*/
ike_sa_t public;
/**
* Identifier for the current IKE_SA.
*/
ike_sa_id_t *ike_sa_id;
/**
* unique numerical ID for this IKE_SA.
*/
u_int32_t unique_id;
/**
* Current state of the IKE_SA
*/
ike_sa_state_t state;
/**
* IKE configuration used to set up this IKE_SA
*/
ike_cfg_t *ike_cfg;
/**
* Peer and authentication information to establish IKE_SA.
*/
peer_cfg_t *peer_cfg;
/**
* associated authentication/authorization info for local peer
*/
auth_info_t *my_auth;
/**
* associated authentication/authorization info for remote peer
*/
auth_info_t *other_auth;
/**
* Juggles tasks to process messages
*/
task_manager_t *task_manager;
/**
* Address of local host
*/
host_t *my_host;
/**
* Address of remote host
*/
host_t *other_host;
#ifdef ME
/**
* Are we mediation server
*/
bool is_mediation_server;
/**
* Server reflexive host
*/
host_t *server_reflexive_host;
/**
* Connect ID
*/
chunk_t connect_id;
#endif /* ME */
/**
* Identification used for us
*/
identification_t *my_id;
/**
* Identification used for other
*/
identification_t *other_id;
/**
* EAP Identity exchange in EAP-Identity method
*/
identification_t *eap_identity;;
/**
* set of extensions the peer supports
*/
ike_extension_t extensions;
/**
* set of condition flags currently enabled for this IKE_SA
*/
ike_condition_t conditions;
/**
* Linked List containing the child sa's of the current IKE_SA.
*/
linked_list_t *child_sas;
/**
* String describing the selected IKE proposal
*/
char *selected_proposal;
/**
* crypter for inbound traffic
*/
crypter_t *crypter_in;
/**
* crypter for outbound traffic
*/
crypter_t *crypter_out;
/**
* Signer for inbound traffic
*/
signer_t *signer_in;
/**
* Signer for outbound traffic
*/
signer_t *signer_out;
/**
* Multi purpose prf, set key, use it, forget it
*/
prf_t *prf;
/**
* Prf function for derivating keymat child SAs
*/
prf_t *child_prf;
/**
* Key to build outging authentication data (SKp)
*/
chunk_t skp_build;
/**
* Key to verify incoming authentication data (SKp)
*/
chunk_t skp_verify;
/**
* Virtual IP on local host, if any
*/
host_t *my_virtual_ip;
/**
* Virtual IP on remote host, if any
*/
host_t *other_virtual_ip;
/**
* List of DNS servers installed by us
*/
linked_list_t *dns_servers;
/**
* list of peers additional addresses, transmitted via MOBIKE
*/
linked_list_t *additional_addresses;
/**
* previously value of received DESTINATION_IP hash
*/
chunk_t nat_detection_dest;
/**
* number pending UPDATE_SA_ADDRESS (MOBIKE)
*/
u_int32_t pending_updates;
/**
* NAT keep alive interval
*/
u_int32_t keepalive_interval;
/**
* Timestamps for this IKE_SA
*/
struct {
/** last IKE message received */
u_int32_t inbound;
/** last IKE message sent */
u_int32_t outbound;
/** when IKE_SA became established */
u_int32_t established;
/** when IKE_SA gets rekeyed */
u_int32_t rekey;
/** when IKE_SA gets reauthenticated */
u_int32_t reauth;
/** when IKE_SA gets deleted */
u_int32_t delete;
} time;
/**
* how many times we have retried so far (keyingtries)
*/
u_int32_t keyingtry;
/**
* are we the initiator of this IKE_SA (rekeying does not affect this flag)
*/
bool ike_initiator;
};
/**
* get the time of the latest traffic processed by the kernel
*/
static time_t get_use_time(private_ike_sa_t* this, bool inbound)
{
iterator_t *iterator;
child_sa_t *child_sa;
time_t latest = 0, use_time;
iterator = this->child_sas->create_iterator(this->child_sas, TRUE);
while (iterator->iterate(iterator, (void**)&child_sa))
{
if (child_sa->get_use_time(child_sa, inbound, &use_time) == SUCCESS)
{
latest = max(latest, use_time);
}
}
iterator->destroy(iterator);
if (inbound)
{
return max(this->time.inbound, latest);
}
else
{
return max(this->time.outbound, latest);
}
}
/**
* Implementation of ike_sa_t.get_unique_id
*/
static u_int32_t get_unique_id(private_ike_sa_t *this)
{
return this->unique_id;
}
/**
* Implementation of ike_sa_t.get_name.
*/
static char *get_name(private_ike_sa_t *this)
{
if (this->peer_cfg)
{
return this->peer_cfg->get_name(this->peer_cfg);
}
return "(unnamed)";
}
/**
* Implementation of ike_sa_t.get_statistic.
*/
static u_int32_t get_statistic(private_ike_sa_t *this, statistic_t kind)
{
time_t now = time(NULL);
switch (kind)
{
case STAT_REKEY_TIME:
if (this->time.rekey > now)
{
return this->time.rekey - now;
}
break;
case STAT_REAUTH_TIME:
if (this->time.reauth > now)
{
return this->time.reauth - now;
}
break;
default:
break;
}
return 0;
}
/**
* Implementation of ike_sa_t.get_my_host.
*/
static host_t *get_my_host(private_ike_sa_t *this)
{
return this->my_host;
}
/**
* Implementation of ike_sa_t.set_my_host.
*/
static void set_my_host(private_ike_sa_t *this, host_t *me)
{
DESTROY_IF(this->my_host);
this->my_host = me;
}
/**
* Implementation of ike_sa_t.get_other_host.
*/
static host_t *get_other_host(private_ike_sa_t *this)
{
return this->other_host;
}
/**
* Implementation of ike_sa_t.set_other_host.
*/
static void set_other_host(private_ike_sa_t *this, host_t *other)
{
DESTROY_IF(this->other_host);
this->other_host = other;
}
/**
* Implementation of ike_sa_t.get_peer_cfg
*/
static peer_cfg_t* get_peer_cfg(private_ike_sa_t *this)
{
return this->peer_cfg;
}
/**
* Implementation of ike_sa_t.set_peer_cfg
*/
static void set_peer_cfg(private_ike_sa_t *this, peer_cfg_t *peer_cfg)
{
DESTROY_IF(this->peer_cfg);
peer_cfg->get_ref(peer_cfg);
this->peer_cfg = peer_cfg;
if (this->ike_cfg == NULL)
{
this->ike_cfg = peer_cfg->get_ike_cfg(peer_cfg);
this->ike_cfg->get_ref(this->ike_cfg);
}
/* apply IDs if they are not already set */
if (this->my_id->contains_wildcards(this->my_id))
{
DESTROY_IF(this->my_id);
this->my_id = this->peer_cfg->get_my_id(this->peer_cfg);
this->my_id = this->my_id->clone(this->my_id);
}
if (this->other_id->contains_wildcards(this->other_id))
{
DESTROY_IF(this->other_id);
this->other_id = this->peer_cfg->get_other_id(this->peer_cfg);
this->other_id = this->other_id->clone(this->other_id);
}
}
/**
* Implementation of ike_sa_t.get_my_auth.
*/
static auth_info_t* get_my_auth(private_ike_sa_t *this)
{
return this->my_auth;
}
/**
* Implementation of ike_sa_t.get_other_auth.
*/
static auth_info_t* get_other_auth(private_ike_sa_t *this)
{
return this->other_auth;
}
/**
* Implementation of ike_sa_t.send_keepalive
*/
static void send_keepalive(private_ike_sa_t *this)
{
send_keepalive_job_t *job;
time_t last_out, now, diff;
if (!(this->conditions & COND_NAT_HERE) || this->keepalive_interval == 0)
{ /* disable keep alives if we are not NATed anymore */
return;
}
last_out = get_use_time(this, FALSE);
now = time(NULL);
diff = now - last_out;
if (diff >= this->keepalive_interval)
{
packet_t *packet;
chunk_t data;
packet = packet_create();
packet->set_source(packet, this->my_host->clone(this->my_host));
packet->set_destination(packet, this->other_host->clone(this->other_host));
data.ptr = malloc(1);
data.ptr[0] = 0xFF;
data.len = 1;
packet->set_data(packet, data);
DBG1(DBG_IKE, "sending keep alive");
charon->sender->send(charon->sender, packet);
diff = 0;
}
job = send_keepalive_job_create(this->ike_sa_id);
charon->scheduler->schedule_job(charon->scheduler, (job_t*)job,
(this->keepalive_interval - diff) * 1000);
}
/**
* Implementation of ike_sa_t.get_ike_cfg
*/
static ike_cfg_t *get_ike_cfg(private_ike_sa_t *this)
{
return this->ike_cfg;
}
/**
* Implementation of ike_sa_t.set_ike_cfg
*/
static void set_ike_cfg(private_ike_sa_t *this, ike_cfg_t *ike_cfg)
{
ike_cfg->get_ref(ike_cfg);
this->ike_cfg = ike_cfg;
}
/**
* Implementation of ike_sa_t.is_ike_initiator
*/
static bool is_ike_initiator(private_ike_sa_t *this)
{
return this->ike_initiator;
}
/**
* Implementation of ike_sa_t.enable_extension.
*/
static void enable_extension(private_ike_sa_t *this, ike_extension_t extension)
{
this->extensions |= extension;
}
/**
* Implementation of ike_sa_t.has_extension.
*/
static bool supports_extension(private_ike_sa_t *this, ike_extension_t extension)
{
return (this->extensions & extension) != FALSE;
}
/**
* Implementation of ike_sa_t.has_condition.
*/
static bool has_condition(private_ike_sa_t *this, ike_condition_t condition)
{
return (this->conditions & condition) != FALSE;
}
/**
* Implementation of ike_sa_t.enable_condition.
*/
static void set_condition(private_ike_sa_t *this, ike_condition_t condition,
bool enable)
{
if (has_condition(this, condition) != enable)
{
if (enable)
{
this->conditions |= condition;
switch (condition)
{
case COND_NAT_HERE:
DBG1(DBG_IKE, "local host is behind NAT, sending keep alives");
this->conditions |= COND_NAT_ANY;
send_keepalive(this);
break;
case COND_NAT_THERE:
DBG1(DBG_IKE, "remote host is behind NAT");
this->conditions |= COND_NAT_ANY;
break;
case COND_NAT_FAKE:
DBG1(DBG_IKE, "faking NAT situation to enforce UDP encapsulation");
this->conditions |= COND_NAT_ANY;
break;
default:
break;
}
}
else
{
this->conditions &= ~condition;
switch (condition)
{
case COND_NAT_HERE:
case COND_NAT_FAKE:
case COND_NAT_THERE:
set_condition(this, COND_NAT_ANY,
has_condition(this, COND_NAT_HERE) ||
has_condition(this, COND_NAT_THERE) ||
has_condition(this, COND_NAT_FAKE));
break;
default:
break;
}
}
}
}
/**
* Implementation of ike_sa_t.send_dpd
*/
static status_t send_dpd(private_ike_sa_t *this)
{
send_dpd_job_t *job;
time_t diff, delay;
delay = this->peer_cfg->get_dpd(this->peer_cfg);
if (delay == 0)
{
/* DPD disabled */
return SUCCESS;
}
if (this->task_manager->busy(this->task_manager))
{
/* an exchange is in the air, no need to start a DPD check */
diff = 0;
}
else
{
/* check if there was any inbound traffic */
time_t last_in, now;
last_in = get_use_time(this, TRUE);
now = time(NULL);
diff = now - last_in;
if (diff >= delay)
{
/* to long ago, initiate dead peer detection */
task_t *task;
ike_mobike_t *mobike;
if (supports_extension(this, EXT_MOBIKE) &&
has_condition(this, COND_NAT_HERE))
{
/* use mobike enabled DPD to detect NAT mapping changes */
mobike = ike_mobike_create(&this->public, TRUE);
mobike->dpd(mobike);
task = &mobike->task;
}
else
{
task = (task_t*)ike_dpd_create(TRUE);
}
diff = 0;
DBG1(DBG_IKE, "sending DPD request");
this->task_manager->queue_task(this->task_manager, task);
this->task_manager->initiate(this->task_manager);
}
}
/* recheck in "interval" seconds */
job = send_dpd_job_create(this->ike_sa_id);
charon->scheduler->schedule_job(charon->scheduler, (job_t*)job,
(delay - diff) * 1000);
return SUCCESS;
}
/**
* Implementation of ike_sa_t.get_state.
*/
static ike_sa_state_t get_state(private_ike_sa_t *this)
{
return this->state;
}
/**
* Implementation of ike_sa_t.set_state.
*/
static void set_state(private_ike_sa_t *this, ike_sa_state_t state)
{
DBG2(DBG_IKE, "IKE_SA %s[%d] state change: %N => %N",
get_name(this), this->unique_id,
ike_sa_state_names, this->state,
ike_sa_state_names, state);
switch (state)
{
case IKE_ESTABLISHED:
{
if (this->state == IKE_CONNECTING)
{
job_t *job;
u_int32_t t;
/* calculate rekey, reauth and lifetime */
this->time.established = time(NULL);
/* schedule rekeying if we have a time which is smaller than
* an already scheduled rekeying */
t = this->peer_cfg->get_rekey_time(this->peer_cfg);
if (t && (this->time.rekey == 0 ||
(this->time.rekey > t + this->time.established)))
{
this->time.rekey = t + this->time.established;
job = (job_t*)rekey_ike_sa_job_create(this->ike_sa_id, FALSE);
charon->scheduler->schedule_job(charon->scheduler,
job, t * 1000);
DBG1(DBG_IKE, "scheduling rekeying in %ds", t);
}
t = this->peer_cfg->get_reauth_time(this->peer_cfg);
if (t && (this->time.reauth == 0 ||
(this->time.reauth > t + this->time.established)))
{
this->time.reauth = t + this->time.established;
job = (job_t*)rekey_ike_sa_job_create(this->ike_sa_id, TRUE);
charon->scheduler->schedule_job(charon->scheduler,
job, t * 1000);
DBG1(DBG_IKE, "scheduling reauthentication in %ds", t);
}
t = this->peer_cfg->get_over_time(this->peer_cfg);
if (this->time.rekey || this->time.reauth)
{
if (this->time.reauth == 0)
{
this->time.delete = this->time.rekey;
}
else if (this->time.rekey == 0)
{
this->time.delete = this->time.reauth;
}
else
{
this->time.delete = min(this->time.rekey, this->time.reauth);
}
this->time.delete += t;
t = this->time.delete - this->time.established;
job = (job_t*)delete_ike_sa_job_create(this->ike_sa_id, TRUE);
charon->scheduler->schedule_job(charon->scheduler, job,
t * 1000);
DBG1(DBG_IKE, "maximum IKE_SA lifetime %ds", t);
}
/* start DPD checks */
send_dpd(this);
}
break;
}
case IKE_DELETING:
{
/* delete may fail if a packet gets lost, so set a timeout */
job_t *job = (job_t*)delete_ike_sa_job_create(this->ike_sa_id, TRUE);
charon->scheduler->schedule_job(charon->scheduler, job,
HALF_OPEN_IKE_SA_TIMEOUT);
break;
}
default:
break;
}
charon->bus->ike_state_change(charon->bus, &this->public, state);
this->state = state;
}
/**
* Implementation of ike_sa_t.reset
*/
static void reset(private_ike_sa_t *this)
{
/* the responder ID is reset, as peer may choose another one */
if (this->ike_sa_id->is_initiator(this->ike_sa_id))
{
this->ike_sa_id->set_responder_spi(this->ike_sa_id, 0);
}
set_state(this, IKE_CREATED);
this->task_manager->reset(this->task_manager);
}
/**
* Implementation of ike_sa_t.set_virtual_ip
*/
static void set_virtual_ip(private_ike_sa_t *this, bool local, host_t *ip)
{
if (local)
{
DBG1(DBG_IKE, "installing new virtual IP %H", ip);
if (charon->kernel_interface->add_ip(charon->kernel_interface, ip,
this->my_host) == SUCCESS)
{
if (this->my_virtual_ip)
{
DBG1(DBG_IKE, "removing old virtual IP %H", this->my_virtual_ip);
charon->kernel_interface->del_ip(charon->kernel_interface,
this->my_virtual_ip);
}
DESTROY_IF(this->my_virtual_ip);
this->my_virtual_ip = ip->clone(ip);
}
else
{
DBG1(DBG_IKE, "installing virtual IP %H failed", ip);
this->my_virtual_ip = NULL;
}
}
else
{
DESTROY_IF(this->other_virtual_ip);
this->other_virtual_ip = ip->clone(ip);
}
}
/**
* Implementation of ike_sa_t.get_virtual_ip
*/
static host_t* get_virtual_ip(private_ike_sa_t *this, bool local)
{
if (local)
{
return this->my_virtual_ip;
}
else
{
return this->other_virtual_ip;
}
}
/**
* Implementation of ike_sa_t.add_additional_address.
*/
static void add_additional_address(private_ike_sa_t *this, host_t *host)
{
this->additional_addresses->insert_last(this->additional_addresses, host);
}
/**
* Implementation of ike_sa_t.create_additional_address_iterator.
*/
static iterator_t* create_additional_address_iterator(private_ike_sa_t *this)
{
return this->additional_addresses->create_iterator(
this->additional_addresses, TRUE);
}
/**
* Implementation of ike_sa_t.has_mapping_changed
*/
static bool has_mapping_changed(private_ike_sa_t *this, chunk_t hash)
{
if (this->nat_detection_dest.ptr == NULL)
{
this->nat_detection_dest = chunk_clone(hash);
return FALSE;
}
if (chunk_equals(hash, this->nat_detection_dest))
{
return FALSE;
}
free(this->nat_detection_dest.ptr);
this->nat_detection_dest = chunk_clone(hash);
return TRUE;
}
/**
* Implementation of ike_sa_t.set_pending_updates.
*/
static void set_pending_updates(private_ike_sa_t *this, u_int32_t updates)
{
this->pending_updates = updates;
}
/**
* Implementation of ike_sa_t.get_pending_updates.
*/
static u_int32_t get_pending_updates(private_ike_sa_t *this)
{
return this->pending_updates;
}
/**
* Update hosts, as addresses may change (NAT)
*/
static void update_hosts(private_ike_sa_t *this, host_t *me, host_t *other)
{
bool update = FALSE;
if (me == NULL)
{
me = this->my_host;
}
if (other == NULL)
{
other = this->other_host;
}
/* apply hosts on first received message */
if (this->my_host->is_anyaddr(this->my_host) ||
this->other_host->is_anyaddr(this->other_host))
{
set_my_host(this, me->clone(me));
set_other_host(this, other->clone(other));
update = TRUE;
}
else
{
/* update our address in any case */
if (!me->equals(me, this->my_host))
{
set_my_host(this, me->clone(me));
update = TRUE;
}
if (!other->equals(other, this->other_host))
{
/* update others adress if we are NOT NATed,
* and allow port changes if we are NATed */
if (!has_condition(this, COND_NAT_HERE) ||
other->ip_equals(other, this->other_host))
{
set_other_host(this, other->clone(other));
update = TRUE;
}
}
}
/* update all associated CHILD_SAs, if required */
if (update)
{
iterator_t *iterator;
child_sa_t *child_sa;
iterator = this->child_sas->create_iterator(this->child_sas, TRUE);
while (iterator->iterate(iterator, (void**)&child_sa))
{
child_sa->update_hosts(child_sa, this->my_host, this->other_host,
this->my_virtual_ip, has_condition(this, COND_NAT_ANY));
}
iterator->destroy(iterator);
}
}
/**
* Implementation of ike_sa_t.generate
*/
static status_t generate_message(private_ike_sa_t *this, message_t *message,
packet_t **packet)
{
this->time.outbound = time(NULL);
message->set_ike_sa_id(message, this->ike_sa_id);
return message->generate(message, this->crypter_out, this->signer_out, packet);
}
/**
* send a notify back to the sender
*/
static void send_notify_response(private_ike_sa_t *this, message_t *request,
notify_type_t type)
{
message_t *response;
packet_t *packet;
response = message_create();
response->set_exchange_type(response, request->get_exchange_type(request));
response->set_request(response, FALSE);
response->set_message_id(response, request->get_message_id(request));
response->add_notify(response, FALSE, type, chunk_empty);
if (this->my_host->is_anyaddr(this->my_host))
{
this->my_host->destroy(this->my_host);
this->my_host = request->get_destination(request);
this->my_host = this->my_host->clone(this->my_host);
}
if (this->other_host->is_anyaddr(this->other_host))
{
this->other_host->destroy(this->other_host);
this->other_host = request->get_source(request);
this->other_host = this->other_host->clone(this->other_host);
}
response->set_source(response, this->my_host->clone(this->my_host));
response->set_destination(response, this->other_host->clone(this->other_host));
if (generate_message(this, response, &packet) == SUCCESS)
{
charon->sender->send(charon->sender, packet);
}
response->destroy(response);
}
#ifdef ME
/**
* Implementation of ike_sa_t.act_as_mediation_server.
*/
static void act_as_mediation_server(private_ike_sa_t *this)
{
charon->mediation_manager->update_sa_id(charon->mediation_manager,
this->other_id, this->ike_sa_id);
this->is_mediation_server = TRUE;
}
/**
* Implementation of ike_sa_t.get_server_reflexive_host.
*/
static host_t *get_server_reflexive_host(private_ike_sa_t *this)
{
return this->server_reflexive_host;
}
/**
* Implementation of ike_sa_t.set_server_reflexive_host.
*/
static void set_server_reflexive_host(private_ike_sa_t *this, host_t *host)
{
DESTROY_IF(this->server_reflexive_host);
this->server_reflexive_host = host;
}
/**
* Implementation of ike_sa_t.get_connect_id.
*/
static chunk_t get_connect_id(private_ike_sa_t *this)
{
return this->connect_id;
}
/**
* Implementation of ike_sa_t.respond
*/
static status_t respond(private_ike_sa_t *this, identification_t *peer_id,
chunk_t connect_id)
{
ike_me_t *task = ike_me_create(&this->public, TRUE);
task->respond(task, peer_id, connect_id);
this->task_manager->queue_task(this->task_manager, (task_t*)task);
return this->task_manager->initiate(this->task_manager);
}
/**
* Implementation of ike_sa_t.callback
*/
static status_t callback(private_ike_sa_t *this, identification_t *peer_id)
{
ike_me_t *task = ike_me_create(&this->public, TRUE);
task->callback(task, peer_id);
this->task_manager->queue_task(this->task_manager, (task_t*)task);
return this->task_manager->initiate(this->task_manager);
}
/**
* Implementation of ike_sa_t.relay
*/
static status_t relay(private_ike_sa_t *this, identification_t *requester,
chunk_t connect_id, chunk_t connect_key, linked_list_t *endpoints, bool response)
{
ike_me_t *task = ike_me_create(&this->public, TRUE);
task->relay(task, requester, connect_id, connect_key, endpoints, response);
this->task_manager->queue_task(this->task_manager, (task_t*)task);
return this->task_manager->initiate(this->task_manager);
}
/**
* Implementation of ike_sa_t.initiate_mediation
*/
static status_t initiate_mediation(private_ike_sa_t *this, peer_cfg_t *mediated_cfg)
{
ike_me_t *task = ike_me_create(&this->public, TRUE);
task->connect(task, mediated_cfg->get_peer_id(mediated_cfg));
this->task_manager->queue_task(this->task_manager, (task_t*)task);
return this->task_manager->initiate(this->task_manager);
}
/**
* Implementation of ike_sa_t.initiate_mediated
*/
static status_t initiate_mediated(private_ike_sa_t *this, host_t *me, host_t *other,
chunk_t connect_id)
{
set_my_host(this, me->clone(me));
set_other_host(this, other->clone(other));
chunk_free(&this->connect_id);
this->connect_id = chunk_clone(connect_id);
return this->task_manager->initiate(this->task_manager);
}
#endif /* ME */
/**
* Resolve DNS host in configuration
*/
static void resolve_hosts(private_ike_sa_t *this)
{
host_t *host;
host = host_create_from_dns(this->ike_cfg->get_other_addr(this->ike_cfg),
0, IKEV2_UDP_PORT);
if (host)
{
set_other_host(this, host);
}
host = host_create_from_dns(this->ike_cfg->get_my_addr(this->ike_cfg),
this->my_host->get_family(this->my_host),
IKEV2_UDP_PORT);
if (host && host->is_anyaddr(host) &&
!this->other_host->is_anyaddr(this->other_host))
{
host->destroy(host);
host = charon->kernel_interface->get_source_addr(
charon->kernel_interface, this->other_host, NULL);
if (host)
{
host->set_port(host, IKEV2_UDP_PORT);
}
}
if (host)
{
set_my_host(this, host);
}
}
/**
* Initiates a CHILD_SA using the appropriate reqid
*/
static status_t initiate_with_reqid(private_ike_sa_t *this, child_cfg_t *child_cfg, u_int32_t reqid)
{
task_t *task;
if (this->state == IKE_CREATED)
{
resolve_hosts(this);
if (this->other_host->is_anyaddr(this->other_host)
#ifdef ME
&& !this->peer_cfg->get_mediated_by(this->peer_cfg)
#endif /* ME */
)
{
child_cfg->destroy(child_cfg);
DBG1(DBG_IKE, "unable to initiate to %%any");
return DESTROY_ME;
}
this->ike_initiator = TRUE;
task = (task_t*)ike_init_create(&this->public, TRUE, NULL);
this->task_manager->queue_task(this->task_manager, task);
task = (task_t*)ike_natd_create(&this->public, TRUE);
this->task_manager->queue_task(this->task_manager, task);
task = (task_t*)ike_cert_pre_create(&this->public, TRUE);
this->task_manager->queue_task(this->task_manager, task);
task = (task_t*)ike_auth_create(&this->public, TRUE);
this->task_manager->queue_task(this->task_manager, task);
task = (task_t*)ike_cert_post_create(&this->public, TRUE);
this->task_manager->queue_task(this->task_manager, task);
task = (task_t*)ike_config_create(&this->public, TRUE);
this->task_manager->queue_task(this->task_manager, task);
task = (task_t*)ike_auth_lifetime_create(&this->public, TRUE);
this->task_manager->queue_task(this->task_manager, task);
if (this->peer_cfg->use_mobike(this->peer_cfg))
{
task = (task_t*)ike_mobike_create(&this->public, TRUE);
this->task_manager->queue_task(this->task_manager, task);
}
#ifdef ME
task = (task_t*)ike_me_create(&this->public, TRUE);
this->task_manager->queue_task(this->task_manager, task);
#endif /* ME */
}
#ifdef ME
if (this->peer_cfg->is_mediation(this->peer_cfg))
{ /* mediation connection is already established, retrigger state change
* to notify bus listeners */
DBG1(DBG_IKE, "mediation connection is already up");
set_state(this, IKE_ESTABLISHED);
DESTROY_IF(child_cfg);
}
else
#endif /* ME */
{
/* normal IKE_SA with CHILD_SA */
task = (task_t*)child_create_create(&this->public, child_cfg);
child_cfg->destroy(child_cfg);
if (reqid)
{
child_create_t *child_create = (child_create_t*)task;
child_create->use_reqid(child_create, reqid);
}
this->task_manager->queue_task(this->task_manager, task);
#ifdef ME
if (this->peer_cfg->get_mediated_by(this->peer_cfg))
{
/* mediated connection, initiate mediation process */
job_t *job = (job_t*)initiate_mediation_job_create(this->ike_sa_id);
charon->processor->queue_job(charon->processor, job);
return SUCCESS;
}
#endif /* ME */
}
return this->task_manager->initiate(this->task_manager);
}
/**
* Implementation of ike_sa_t.initiate.
*/
static status_t initiate(private_ike_sa_t *this, child_cfg_t *child_cfg)
{
return initiate_with_reqid(this, child_cfg, 0);
}
/**
* Implementation of ike_sa_t.acquire.
*/
static status_t acquire(private_ike_sa_t *this, u_int32_t reqid)
{
child_cfg_t *child_cfg;
iterator_t *iterator;
child_sa_t *current, *child_sa = NULL;
if (this->state == IKE_DELETING)
{
DBG1(DBG_IKE, "acquiring CHILD_SA {reqid %d} failed: "
"IKE_SA is deleting", reqid);
return FAILED;
}
/* find CHILD_SA */
iterator = this->child_sas->create_iterator(this->child_sas, TRUE);
while (iterator->iterate(iterator, (void**)&current))
{
if (current->get_reqid(current) == reqid)
{
child_sa = current;
break;
}
}
iterator->destroy(iterator);
if (!child_sa)
{
DBG1(DBG_IKE, "acquiring CHILD_SA {reqid %d} failed: "
"CHILD_SA not found", reqid);
return FAILED;
}
child_cfg = child_sa->get_config(child_sa);
child_cfg->get_ref(child_cfg);
return initiate_with_reqid(this, child_cfg, reqid);
}
/**
* Implementation of ike_sa_t.route.
*/
static status_t route(private_ike_sa_t *this, child_cfg_t *child_cfg)
{
child_sa_t *child_sa;
iterator_t *iterator;
linked_list_t *my_ts, *other_ts;
host_t *me, *other;
status_t status;
/* check if not already routed*/
iterator = this->child_sas->create_iterator(this->child_sas, TRUE);
while (iterator->iterate(iterator, (void**)&child_sa))
{
if (child_sa->get_state(child_sa) == CHILD_ROUTED &&
streq(child_sa->get_name(child_sa), child_cfg->get_name(child_cfg)))
{
iterator->destroy(iterator);
DBG1(DBG_IKE, "routing CHILD_SA failed: already routed");
return FAILED;
}
}
iterator->destroy(iterator);
switch (this->state)
{
case IKE_DELETING:
case IKE_REKEYING:
DBG1(DBG_IKE, "routing CHILD_SA failed: IKE_SA is %N",
ike_sa_state_names, this->state);
return FAILED;
case IKE_CREATED:
case IKE_CONNECTING:
case IKE_ESTABLISHED:
default:
break;
}
resolve_hosts(this);
/* install kernel policies */
child_sa = child_sa_create(this->my_host, this->other_host,
child_cfg, 0, FALSE);
me = this->my_host;
if (this->my_virtual_ip)
{
me = this->my_virtual_ip;
}
other = this->other_host;
if (this->other_virtual_ip)
{
other = this->other_virtual_ip;
}
my_ts = child_cfg->get_traffic_selectors(child_cfg, TRUE, NULL, me);
other_ts = child_cfg->get_traffic_selectors(child_cfg, FALSE, NULL, other);
status = child_sa->add_policies(child_sa, my_ts, other_ts,
child_cfg->get_mode(child_cfg), PROTO_NONE);
my_ts->destroy_offset(my_ts, offsetof(traffic_selector_t, destroy));
other_ts->destroy_offset(other_ts, offsetof(traffic_selector_t, destroy));
if (status == SUCCESS)
{
this->child_sas->insert_last(this->child_sas, child_sa);
DBG1(DBG_IKE, "CHILD_SA routed");
}
else
{
DBG1(DBG_IKE, "routing CHILD_SA failed");
}
return status;
}
/**
* Implementation of ike_sa_t.unroute.
*/
static status_t unroute(private_ike_sa_t *this, u_int32_t reqid)
{
iterator_t *iterator;
child_sa_t *child_sa;
bool found = FALSE;
/* find CHILD_SA in ROUTED state */
iterator = this->child_sas->create_iterator(this->child_sas, TRUE);
while (iterator->iterate(iterator, (void**)&child_sa))
{
if (child_sa->get_state(child_sa) == CHILD_ROUTED &&
child_sa->get_reqid(child_sa) == reqid)
{
iterator->remove(iterator);
DBG1(DBG_IKE, "CHILD_SA unrouted");
child_sa->destroy(child_sa);
found = TRUE;
break;
}
}
iterator->destroy(iterator);
if (!found)
{
DBG1(DBG_IKE, "unrouting CHILD_SA failed: reqid %d not found", reqid);
return FAILED;
}
/* if we are not established, and we have no more routed childs, remove whole SA */
if (this->state == IKE_CREATED &&
this->child_sas->get_count(this->child_sas) == 0)
{
return DESTROY_ME;
}
return SUCCESS;
}
/**
* Implementation of ike_sa_t.process_message.
*/
static status_t process_message(private_ike_sa_t *this, message_t *message)
{
status_t status;
bool is_request;
is_request = message->get_request(message);
status = message->parse_body(message, this->crypter_in, this->signer_in);
if (status != SUCCESS)
{
if (is_request)
{
switch (status)
{
case NOT_SUPPORTED:
DBG1(DBG_IKE, "ciritcal unknown payloads found");
if (is_request)
{
send_notify_response(this, message, UNSUPPORTED_CRITICAL_PAYLOAD);
}
break;
case PARSE_ERROR:
DBG1(DBG_IKE, "message parsing failed");
if (is_request)
{
send_notify_response(this, message, INVALID_SYNTAX);
}
break;
case VERIFY_ERROR:
DBG1(DBG_IKE, "message verification failed");
if (is_request)
{
send_notify_response(this, message, INVALID_SYNTAX);
}
break;
case FAILED:
DBG1(DBG_IKE, "integrity check failed");
/* ignored */
break;
case INVALID_STATE:
DBG1(DBG_IKE, "found encrypted message, but no keys available");
if (is_request)
{
send_notify_response(this, message, INVALID_SYNTAX);
}
default:
break;
}
}
DBG1(DBG_IKE, "%N %s with message ID %d processing failed",
exchange_type_names, message->get_exchange_type(message),
message->get_request(message) ? "request" : "response",
message->get_message_id(message));
return status;
}
else
{
host_t *me, *other;
private_ike_sa_t *new;
iterator_t *iterator;
child_sa_t *child;
bool has_routed = FALSE;
me = message->get_destination(message);
other = message->get_source(message);
/* if this IKE_SA is virgin, we check for a config */
if (this->ike_cfg == NULL)
{
job_t *job;
this->ike_cfg = charon->backends->get_ike_cfg(charon->backends,
me, other);
if (this->ike_cfg == NULL)
{
/* no config found for these hosts, destroy */
DBG1(DBG_IKE, "no IKE config found for %H...%H, sending %N",
me, other, notify_type_names, NO_PROPOSAL_CHOSEN);
send_notify_response(this, message, NO_PROPOSAL_CHOSEN);
return DESTROY_ME;
}
/* add a timeout if peer does not establish it completely */
job = (job_t*)delete_ike_sa_job_create(this->ike_sa_id, FALSE);
charon->scheduler->schedule_job(charon->scheduler, job,
HALF_OPEN_IKE_SA_TIMEOUT);
}
this->time.inbound = time(NULL);
/* check if message is trustworthy, and update host information */
if (this->state == IKE_CREATED || this->state == IKE_CONNECTING ||
message->get_exchange_type(message) != IKE_SA_INIT)
{
if (!supports_extension(this, EXT_MOBIKE))
{ /* with MOBIKE, we do no implicit updates */
update_hosts(this, me, other);
}
}
status = this->task_manager->process_message(this->task_manager, message);
if (status != DESTROY_ME)
{
return status;
}
/* if IKE_SA gets closed for any reasons, reroute routed children */
iterator = this->child_sas->create_iterator(this->child_sas, TRUE);
while (iterator->iterate(iterator, (void**)&child))
{
if (child->get_state(child) == CHILD_ROUTED)
{
has_routed = TRUE;
break;
}
}
iterator->destroy(iterator);
if (!has_routed)
{
return status;
}
/* move routed children to a new IKE_SA, apply connection info */
new = (private_ike_sa_t*)charon->ike_sa_manager->checkout_new(
charon->ike_sa_manager, TRUE);
set_peer_cfg(new, this->peer_cfg);
new->other_host->destroy(new->other_host);
new->other_host = this->other_host->clone(this->other_host);
if (!has_condition(this, COND_NAT_THERE))
{
new->other_host->set_port(new->other_host, IKEV2_UDP_PORT);
}
if (this->my_virtual_ip)
{
set_virtual_ip(new, TRUE, this->my_virtual_ip);
}
iterator = this->child_sas->create_iterator(this->child_sas, TRUE);
while (iterator->iterate(iterator, (void**)&child))
{
if (child->get_state(child) == CHILD_ROUTED)
{
route(new, child->get_config(child));
}
}
iterator->destroy(iterator);
charon->ike_sa_manager->checkin(charon->ike_sa_manager, &new->public);
return status;
}
}
/**
* Implementation of ike_sa_t.get_prf.
*/
static prf_t *get_prf(private_ike_sa_t *this)
{
return this->prf;
}
/**
* Implementation of ike_sa_t.get_prf.
*/
static prf_t *get_child_prf(private_ike_sa_t *this)
{
return this->child_prf;
}
/**
* Implementation of ike_sa_t.get_skp_bild
*/
static chunk_t get_skp_build(private_ike_sa_t *this)
{
return this->skp_build;
}
/**
* Implementation of ike_sa_t.get_skp_verify
*/
static chunk_t get_skp_verify(private_ike_sa_t *this)
{
return this->skp_verify;
}
/**
* Implementation of ike_sa_t.get_id.
*/
static ike_sa_id_t* get_id(private_ike_sa_t *this)
{
return this->ike_sa_id;
}
/**
* Implementation of ike_sa_t.get_my_id.
*/
static identification_t* get_my_id(private_ike_sa_t *this)
{
return this->my_id;
}
/**
* Implementation of ike_sa_t.set_my_id.
*/
static void set_my_id(private_ike_sa_t *this, identification_t *me)
{
DESTROY_IF(this->my_id);
this->my_id = me;
}
/**
* Implementation of ike_sa_t.get_other_id.
*/
static identification_t* get_other_id(private_ike_sa_t *this)
{
return this->other_id;
}
/**
* Implementation of ike_sa_t.set_other_id.
*/
static void set_other_id(private_ike_sa_t *this, identification_t *other)
{
DESTROY_IF(this->other_id);
this->other_id = other;
}
/**
* Implementation of ike_sa_t.get_eap_identity.
*/
static identification_t* get_eap_identity(private_ike_sa_t *this)
{
return this->eap_identity;
}
/**
* Implementation of ike_sa_t.set_eap_identity.
*/
static void set_eap_identity(private_ike_sa_t *this, identification_t *id)
{
DESTROY_IF(this->eap_identity);
this->eap_identity = id;
}
/**
* Implementation of ike_sa_t.derive_keys.
*/
static status_t derive_keys(private_ike_sa_t *this,
proposal_t *proposal, chunk_t secret,
chunk_t nonce_i, chunk_t nonce_r,
bool initiator, prf_t *child_prf, prf_t *old_prf)
{
prf_plus_t *prf_plus;
chunk_t skeyseed, key, full_nonce, fixed_nonce, prf_plus_seed;
u_int16_t alg, key_size;
crypter_t *crypter_i, *crypter_r;
signer_t *signer_i, *signer_r;
u_int8_t spi_i_buf[sizeof(u_int64_t)], spi_r_buf[sizeof(u_int64_t)];
chunk_t spi_i = chunk_from_buf(spi_i_buf);
chunk_t spi_r = chunk_from_buf(spi_r_buf);
/* Create SAs general purpose PRF first, we may use it here */
if (!proposal->get_algorithm(proposal, PSEUDO_RANDOM_FUNCTION, &alg, NULL))
{
DBG1(DBG_IKE, "no %N selected",
transform_type_names, PSEUDO_RANDOM_FUNCTION);
return FAILED;
}
this->prf = lib->crypto->create_prf(lib->crypto, alg);
if (this->prf == NULL)
{
DBG1(DBG_IKE, "%N %N not supported!",
transform_type_names, PSEUDO_RANDOM_FUNCTION,
pseudo_random_function_names, alg);
return FAILED;
}
DBG4(DBG_IKE, "shared Diffie Hellman secret %B", &secret);
/* full nonce is used as seed for PRF+ ... */
full_nonce = chunk_cat("cc", nonce_i, nonce_r);
/* but the PRF may need a fixed key which only uses the first bytes of
* the nonces. */
switch (alg)
{
case PRF_AES128_XCBC:
/* while rfc4434 defines variable keys for AES-XCBC, rfc3664 does
* not and therefore fixed key semantics apply to XCBC for key
* derivation. */
nonce_i.len = min(nonce_i.len, this->prf->get_key_size(this->prf)/2);
nonce_r.len = min(nonce_r.len, this->prf->get_key_size(this->prf)/2);
break;
default:
/* all other algorithms use variable key length, full nonce */
break;
}
fixed_nonce = chunk_cat("cc", nonce_i, nonce_r);
*((u_int64_t*)spi_i.ptr) = this->ike_sa_id->get_initiator_spi(this->ike_sa_id);
*((u_int64_t*)spi_r.ptr) = this->ike_sa_id->get_responder_spi(this->ike_sa_id);
prf_plus_seed = chunk_cat("ccc", full_nonce, spi_i, spi_r);
/* KEYMAT = prf+ (SKEYSEED, Ni | Nr | SPIi | SPIr)
*
* if we are rekeying, SKEYSEED is built on another way
*/
if (child_prf == NULL) /* not rekeying */
{
/* SKEYSEED = prf(Ni | Nr, g^ir) */
this->prf->set_key(this->prf, fixed_nonce);
this->prf->allocate_bytes(this->prf, secret, &skeyseed);
DBG4(DBG_IKE, "SKEYSEED %B", &skeyseed);
this->prf->set_key(this->prf, skeyseed);
chunk_clear(&skeyseed);
chunk_clear(&secret);
prf_plus = prf_plus_create(this->prf, prf_plus_seed);
}
else
{
/* SKEYSEED = prf(SK_d (old), [g^ir (new)] | Ni | Nr)
* use OLD SAs PRF functions for both prf_plus and prf */
secret = chunk_cat("mc", secret, full_nonce);
child_prf->allocate_bytes(child_prf, secret, &skeyseed);
DBG4(DBG_IKE, "SKEYSEED %B", &skeyseed);
old_prf->set_key(old_prf, skeyseed);
chunk_clear(&skeyseed);
chunk_clear(&secret);
prf_plus = prf_plus_create(old_prf, prf_plus_seed);
}
chunk_free(&full_nonce);
chunk_free(&fixed_nonce);
chunk_clear(&prf_plus_seed);
/* KEYMAT = SK_d | SK_ai | SK_ar | SK_ei | SK_er | SK_pi | SK_pr */
/* SK_d is used for generating CHILD_SA key mat => child_prf */
proposal->get_algorithm(proposal, PSEUDO_RANDOM_FUNCTION, &alg, NULL);
this->child_prf = lib->crypto->create_prf(lib->crypto, alg);
key_size = this->child_prf->get_key_size(this->child_prf);
prf_plus->allocate_bytes(prf_plus, key_size, &key);
DBG4(DBG_IKE, "Sk_d secret %B", &key);
this->child_prf->set_key(this->child_prf, key);
chunk_clear(&key);
/* SK_ai/SK_ar used for integrity protection => signer_in/signer_out */
if (!proposal->get_algorithm(proposal, INTEGRITY_ALGORITHM, &alg, NULL))
{
DBG1(DBG_IKE, "no %N selected",
transform_type_names, INTEGRITY_ALGORITHM);
return FAILED;
}
signer_i = lib->crypto->create_signer(lib->crypto, alg);
signer_r = lib->crypto->create_signer(lib->crypto, alg);
if (signer_i == NULL || signer_r == NULL)
{
DBG1(DBG_IKE, "%N %N not supported!",
transform_type_names, INTEGRITY_ALGORITHM,
integrity_algorithm_names ,alg);
prf_plus->destroy(prf_plus);
return FAILED;
}
key_size = signer_i->get_key_size(signer_i);
prf_plus->allocate_bytes(prf_plus, key_size, &key);
DBG4(DBG_IKE, "Sk_ai secret %B", &key);
signer_i->set_key(signer_i, key);
chunk_clear(&key);
prf_plus->allocate_bytes(prf_plus, key_size, &key);
DBG4(DBG_IKE, "Sk_ar secret %B", &key);
signer_r->set_key(signer_r, key);
chunk_clear(&key);
if (initiator)
{
this->signer_in = signer_r;
this->signer_out = signer_i;
}
else
{
this->signer_in = signer_i;
this->signer_out = signer_r;
}
/* SK_ei/SK_er used for encryption => crypter_in/crypter_out */
if (!proposal->get_algorithm(proposal, ENCRYPTION_ALGORITHM, &alg, &key_size))
{
DBG1(DBG_IKE, "no %N selected",
transform_type_names, ENCRYPTION_ALGORITHM);
prf_plus->destroy(prf_plus);
return FAILED;
}
crypter_i = lib->crypto->create_crypter(lib->crypto, alg, key_size / 8);
crypter_r = lib->crypto->create_crypter(lib->crypto, alg, key_size / 8);
if (crypter_i == NULL || crypter_r == NULL)
{
DBG1(DBG_IKE, "%N %N (key size %d) not supported!",
transform_type_names, ENCRYPTION_ALGORITHM,
encryption_algorithm_names, alg, key_size);
prf_plus->destroy(prf_plus);
return FAILED;
}
key_size = crypter_i->get_key_size(crypter_i);
prf_plus->allocate_bytes(prf_plus, key_size, &key);
DBG4(DBG_IKE, "Sk_ei secret %B", &key);
crypter_i->set_key(crypter_i, key);
chunk_clear(&key);
prf_plus->allocate_bytes(prf_plus, key_size, &key);
DBG4(DBG_IKE, "Sk_er secret %B", &key);
crypter_r->set_key(crypter_r, key);
chunk_clear(&key);
if (initiator)
{
this->crypter_in = crypter_r;
this->crypter_out = crypter_i;
}
else
{
this->crypter_in = crypter_i;
this->crypter_out = crypter_r;
}
/* SK_pi/SK_pr used for authentication => stored for later */
key_size = this->prf->get_key_size(this->prf);
prf_plus->allocate_bytes(prf_plus, key_size, &key);
DBG4(DBG_IKE, "Sk_pi secret %B", &key);
if (initiator)
{
this->skp_build = key;
}
else
{
this->skp_verify = key;
}
prf_plus->allocate_bytes(prf_plus, key_size, &key);
DBG4(DBG_IKE, "Sk_pr secret %B", &key);
if (initiator)
{
this->skp_verify = key;
}
else
{
this->skp_build = key;
}
/* all done, prf_plus not needed anymore */
prf_plus->destroy(prf_plus);
return SUCCESS;
}
/**
* Implementation of ike_sa_t.get_proposal.
*/
static char* get_proposal(private_ike_sa_t *this)
{
return this->selected_proposal;
}
/**
* Implementation of ike_sa_t.set_proposal.
*/
static void set_proposal(private_ike_sa_t *this, char *proposal)
{
free(this->selected_proposal);
this->selected_proposal = strdup(proposal);
}
/**
* Implementation of ike_sa_t.add_child_sa.
*/
static void add_child_sa(private_ike_sa_t *this, child_sa_t *child_sa)
{
this->child_sas->insert_last(this->child_sas, child_sa);
}
/**
* Implementation of ike_sa_t.get_child_sa.
*/
static child_sa_t* get_child_sa(private_ike_sa_t *this, protocol_id_t protocol,
u_int32_t spi, bool inbound)
{
iterator_t *iterator;
child_sa_t *current, *found = NULL;
iterator = this->child_sas->create_iterator(this->child_sas, TRUE);
while (iterator->iterate(iterator, (void**)&current))
{
if (current->get_spi(current, inbound) == spi &&
current->get_protocol(current) == protocol)
{
found = current;
}
}
iterator->destroy(iterator);
return found;
}
/**
* Implementation of ike_sa_t.create_child_sa_iterator.
*/
static iterator_t* create_child_sa_iterator(private_ike_sa_t *this)
{
return this->child_sas->create_iterator(this->child_sas, TRUE);
}
/**
* Implementation of ike_sa_t.rekey_child_sa.
*/
static status_t rekey_child_sa(private_ike_sa_t *this, protocol_id_t protocol, u_int32_t spi)
{
child_sa_t *child_sa;
child_rekey_t *child_rekey;
child_sa = get_child_sa(this, protocol, spi, TRUE);
if (child_sa)
{
child_rekey = child_rekey_create(&this->public, child_sa);
this->task_manager->queue_task(this->task_manager, &child_rekey->task);
return this->task_manager->initiate(this->task_manager);
}
return FAILED;
}
/**
* Implementation of ike_sa_t.delete_child_sa.
*/
static status_t delete_child_sa(private_ike_sa_t *this, protocol_id_t protocol, u_int32_t spi)
{
child_sa_t *child_sa;
child_delete_t *child_delete;
child_sa = get_child_sa(this, protocol, spi, TRUE);
if (child_sa)
{
child_delete = child_delete_create(&this->public, child_sa);
this->task_manager->queue_task(this->task_manager, &child_delete->task);
return this->task_manager->initiate(this->task_manager);
}
return FAILED;
}
/**
* Implementation of ike_sa_t.destroy_child_sa.
*/
static status_t destroy_child_sa(private_ike_sa_t *this, protocol_id_t protocol,
u_int32_t spi)
{
iterator_t *iterator;
child_sa_t *child_sa;
status_t status = NOT_FOUND;
iterator = this->child_sas->create_iterator(this->child_sas, TRUE);
while (iterator->iterate(iterator, (void**)&child_sa))
{
if (child_sa->get_protocol(child_sa) == protocol &&
child_sa->get_spi(child_sa, TRUE) == spi)
{
child_sa->destroy(child_sa);
iterator->remove(iterator);
status = SUCCESS;
break;
}
}
iterator->destroy(iterator);
return status;
}
/**
* Implementation of public_ike_sa_t.delete.
*/
static status_t delete_(private_ike_sa_t *this)
{
ike_delete_t *ike_delete;
switch (this->state)
{
case IKE_ESTABLISHED:
case IKE_REKEYING:
ike_delete = ike_delete_create(&this->public, TRUE);
this->task_manager->queue_task(this->task_manager, &ike_delete->task);
return this->task_manager->initiate(this->task_manager);
case IKE_CREATED:
DBG1(DBG_IKE, "deleting unestablished IKE_SA");
break;
default:
DBG1(DBG_IKE, "destroying IKE_SA in state %N "
"without notification", ike_sa_state_names, this->state);
break;
}
return DESTROY_ME;
}
/**
* Implementation of ike_sa_t.rekey.
*/
static status_t rekey(private_ike_sa_t *this)
{
ike_rekey_t *ike_rekey;
ike_rekey = ike_rekey_create(&this->public, TRUE);
this->task_manager->queue_task(this->task_manager, &ike_rekey->task);
return this->task_manager->initiate(this->task_manager);
}
/**
* Implementation of ike_sa_t.reauth
*/
static status_t reauth(private_ike_sa_t *this)
{
task_t *task;
/* we can't reauthenticate as responder when we use EAP or virtual IPs.
* If the peer does not support RFC4478, there is no way to keep the
* IKE_SA up. */
if (!this->ike_initiator)
{
DBG1(DBG_IKE, "initiator did not reauthenticate as requested");
if (this->other_virtual_ip != NULL ||
has_condition(this, COND_EAP_AUTHENTICATED)
#ifdef ME
/* if we are mediation server we too cannot reauth the IKE_SA */
|| this->is_mediation_server
#endif /* ME */
)
{
time_t now = time(NULL);
DBG1(DBG_IKE, "IKE_SA will timeout in %#V", &now, &this->time.delete);
return FAILED;
}
else
{
DBG1(DBG_IKE, "reauthenticating actively");
}
}
task = (task_t*)ike_reauth_create(&this->public);
this->task_manager->queue_task(this->task_manager, task);
return this->task_manager->initiate(this->task_manager);
}
/**
* Implementation of ike_sa_t.reestablish
*/
static status_t reestablish(private_ike_sa_t *this)
{
ike_sa_t *new;
host_t *host;
action_t action;
iterator_t *iterator;
child_sa_t *child_sa;
child_cfg_t *child_cfg;
bool required = FALSE;
status_t status = FAILED;
/* check if we have children to keep up at all*/
iterator = create_child_sa_iterator(this);
while (iterator->iterate(iterator, (void**)&child_sa))
{
child_cfg = child_sa->get_config(child_sa);
if (this->state == IKE_DELETING)
{
action = child_cfg->get_close_action(child_cfg);
}
else
{
action = child_cfg->get_dpd_action(child_cfg);
}
switch (action)
{
case ACTION_RESTART:
case ACTION_ROUTE:
required = TRUE;
default:
break;
}
}
iterator->destroy(iterator);
#ifdef ME
/* we initiate the new IKE_SA of the mediation connection without CHILD_SA */
if (this->peer_cfg->is_mediation(this->peer_cfg))
{
required = TRUE;
}
#endif /* ME */
if (!required)
{
return FAILED;
}
/* check if we are able to reestablish this IKE_SA */
if (!this->ike_initiator &&
(this->other_virtual_ip != NULL ||
has_condition(this, COND_EAP_AUTHENTICATED)
#ifdef ME
|| this->is_mediation_server
#endif /* ME */
))
{
DBG1(DBG_IKE, "unable to reestablish IKE_SA due asymetric setup");
return FAILED;
}
new = charon->ike_sa_manager->checkout_new(charon->ike_sa_manager, TRUE);
new->set_peer_cfg(new, this->peer_cfg);
host = this->other_host;
new->set_other_host(new, host->clone(host));
host = this->my_host;
new->set_my_host(new, host->clone(host));
/* if we already have a virtual IP, we reuse it */
host = this->my_virtual_ip;
if (host)
{
new->set_virtual_ip(new, TRUE, host);
}
#ifdef ME
if (this->peer_cfg->is_mediation(this->peer_cfg))
{
status = new->initiate(new, NULL);
}
else
#endif /* ME */
{
iterator = create_child_sa_iterator(this);
while (iterator->iterate(iterator, (void**)&child_sa))
{
child_cfg = child_sa->get_config(child_sa);
if (this->state == IKE_DELETING)
{
action = child_cfg->get_close_action(child_cfg);
}
else
{
action = child_cfg->get_dpd_action(child_cfg);
}
switch (action)
{
case ACTION_RESTART:
DBG1(DBG_IKE, "restarting CHILD_SA %s",
child_cfg->get_name(child_cfg));
child_cfg->get_ref(child_cfg);
status = new->initiate(new, child_cfg);
break;
case ACTION_ROUTE:
status = new->route(new, child_cfg);
break;
default:
continue;
}
if (status == DESTROY_ME)
{
break;
}
}
iterator->destroy(iterator);
}
if (status == DESTROY_ME)
{
charon->ike_sa_manager->checkin_and_destroy(charon->ike_sa_manager, new);
return FAILED;
}
else
{
charon->ike_sa_manager->checkin(charon->ike_sa_manager, new);
return SUCCESS;
}
}
/**
* Implementation of ike_sa_t.retransmit.
*/
static status_t retransmit(private_ike_sa_t *this, u_int32_t message_id)
{
this->time.outbound = time(NULL);
if (this->task_manager->retransmit(this->task_manager, message_id) != SUCCESS)
{
/* send a proper signal to brief interested bus listeners */
switch (this->state)
{
case IKE_CONNECTING:
{
/* retry IKE_SA_INIT if we have multiple keyingtries */
u_int32_t tries = this->peer_cfg->get_keyingtries(this->peer_cfg);
this->keyingtry++;
if (tries == 0 || tries > this->keyingtry)
{
DBG1(DBG_IKE, "peer not responding, trying again (%d/%d)",
this->keyingtry + 1, tries);
reset(this);
return this->task_manager->initiate(this->task_manager);
}
DBG1(DBG_IKE, "establishing IKE_SA failed, peer not responding");
break;
}
case IKE_DELETING:
DBG1(DBG_IKE, "proper IKE_SA delete failed, peer not responding");
break;
case IKE_REKEYING:
DBG1(DBG_IKE, "rekeying IKE_SA failed, peer not responding");
/* FALL */
default:
reestablish(this);
break;
}
return DESTROY_ME;
}
return SUCCESS;
}
/**
* Implementation of ike_sa_t.set_auth_lifetime.
*/
static void set_auth_lifetime(private_ike_sa_t *this, u_int32_t lifetime)
{
u_int32_t reduction = this->peer_cfg->get_over_time(this->peer_cfg);
u_int32_t reauth_time = time(NULL) + lifetime - reduction;
if (lifetime < reduction)
{
DBG1(DBG_IKE, "received AUTH_LIFETIME of %ds, starting reauthentication",
lifetime);
charon->processor->queue_job(charon->processor,
(job_t*)rekey_ike_sa_job_create(this->ike_sa_id, TRUE));
}
else if (this->time.reauth == 0 || this->time.reauth > reauth_time)
{
this->time.reauth = reauth_time;
DBG1(DBG_IKE, "received AUTH_LIFETIME of %ds, scheduling reauthentication"
" in %ds", lifetime, lifetime - reduction);
charon->scheduler->schedule_job(charon->scheduler,
(job_t*)rekey_ike_sa_job_create(this->ike_sa_id, TRUE),
(lifetime - reduction) * 1000);
}
else
{
DBG1(DBG_IKE, "received AUTH_LIFETIME of %ds, reauthentication already "
"scheduled in %ds", lifetime, this->time.reauth - time(NULL));
}
}
/**
* Implementation of ike_sa_t.roam.
*/
static status_t roam(private_ike_sa_t *this, bool address)
{
host_t *src;
ike_mobike_t *mobike;
switch (this->state)
{
case IKE_CREATED:
case IKE_DELETING:
return SUCCESS;
default:
break;
}
/* responder just updates the peer about changed address config */
if (!this->ike_sa_id->is_initiator(this->ike_sa_id))
{
if (supports_extension(this, EXT_MOBIKE) && address)
{
DBG1(DBG_IKE, "sending address list update using MOBIKE");
mobike = ike_mobike_create(&this->public, TRUE);
this->task_manager->queue_task(this->task_manager, (task_t*)mobike);
return this->task_manager->initiate(this->task_manager);
}
return SUCCESS;
}
/* keep existing path if possible */
src = charon->kernel_interface->get_source_addr(charon->kernel_interface,
this->other_host, this->my_host);
if (src)
{
if (src->ip_equals(src, this->my_host))
{
DBG2(DBG_IKE, "keeping connection path %H - %H",
src, this->other_host);
src->destroy(src);
return SUCCESS;
}
src->destroy(src);
}
/* update addresses with mobike, if supported ... */
if (supports_extension(this, EXT_MOBIKE))
{
DBG1(DBG_IKE, "requesting address change using MOBIKE");
mobike = ike_mobike_create(&this->public, TRUE);
mobike->roam(mobike, address);
this->task_manager->queue_task(this->task_manager, (task_t*)mobike);
return this->task_manager->initiate(this->task_manager);
}
DBG1(DBG_IKE, "reauthenticating IKE_SA due to address change");
/* ... reauth if not */
return reauth(this);
}
/**
* Implementation of ike_sa_t.inherit.
*/
static status_t inherit(private_ike_sa_t *this, private_ike_sa_t *other)
{
child_sa_t *child_sa;
host_t *ip;
/* apply hosts and ids */
this->my_host->destroy(this->my_host);
this->other_host->destroy(this->other_host);
this->my_id->destroy(this->my_id);
this->other_id->destroy(this->other_id);
this->my_host = other->my_host->clone(other->my_host);
this->other_host = other->other_host->clone(other->other_host);
this->my_id = other->my_id->clone(other->my_id);
this->other_id = other->other_id->clone(other->other_id);
this->ike_initiator = other->ike_initiator;
/* apply virtual assigned IPs... */
if (other->my_virtual_ip)
{
this->my_virtual_ip = other->my_virtual_ip;
other->my_virtual_ip = NULL;
}
if (other->other_virtual_ip)
{
this->other_virtual_ip = other->other_virtual_ip;
other->other_virtual_ip = NULL;
}
/* ... and DNS servers */
while (other->dns_servers->remove_last(other->dns_servers,
(void**)&ip) == SUCCESS)
{
this->dns_servers->insert_first(this->dns_servers, ip);
}
/* inherit NAT-T conditions */
this->conditions = other->conditions;
if (this->conditions & COND_NAT_HERE)
{
send_keepalive(this);
}
#ifdef ME
if (other->is_mediation_server)
{
act_as_mediation_server(this);
}
else if (other->server_reflexive_host)
{
this->server_reflexive_host = other->server_reflexive_host->clone(
other->server_reflexive_host);
}
#endif /* ME */
/* adopt all children */
while (other->child_sas->remove_last(other->child_sas,
(void**)&child_sa) == SUCCESS)
{
this->child_sas->insert_first(this->child_sas, (void*)child_sa);
}
/* move pending tasks to the new IKE_SA */
this->task_manager->adopt_tasks(this->task_manager, other->task_manager);
/* reauthentication timeout survives a rekeying */
if (other->time.reauth)
{
time_t reauth, delete, now = time(NULL);
this->time.reauth = other->time.reauth;
reauth = this->time.reauth - now;
delete = reauth + this->peer_cfg->get_over_time(this->peer_cfg);
this->time.delete = this->time.reauth + delete;
DBG1(DBG_IKE, "rescheduling reauthentication in %ds after rekeying, "
"lifetime reduced to %ds", reauth, delete);
charon->scheduler->schedule_job(charon->scheduler,
(job_t*)rekey_ike_sa_job_create(this->ike_sa_id, TRUE),
reauth * 1000);
charon->scheduler->schedule_job(charon->scheduler,
(job_t*)delete_ike_sa_job_create(this->ike_sa_id, TRUE),
delete * 1000);
}
/* we have to initate here, there may be new tasks to handle */
return this->task_manager->initiate(this->task_manager);
}
/**
* Implementation of ike_sa_t.remove_dns_server
*/
static void remove_dns_servers(private_ike_sa_t *this)
{
FILE *file;
struct stat stats;
chunk_t contents, line, orig_line, token;
char string[INET6_ADDRSTRLEN];
host_t *ip;
iterator_t *iterator;
if (this->dns_servers->get_count(this->dns_servers) == 0)
{
/* don't touch anything if we have no nameservers installed */
return;
}
file = fopen(RESOLV_CONF, "r");
if (file == NULL || stat(RESOLV_CONF, &stats) != 0)
{
DBG1(DBG_IKE, "unable to open DNS configuration file %s: %s",
RESOLV_CONF, strerror(errno));
return;
}
contents = chunk_alloca((size_t)stats.st_size);
if (fread(contents.ptr, 1, contents.len, file) != contents.len)
{
DBG1(DBG_IKE, "unable to read DNS configuration file: %s", strerror(errno));
fclose(file);
return;
}
fclose(file);
file = fopen(RESOLV_CONF, "w");
if (file == NULL)
{
DBG1(DBG_IKE, "unable to open DNS configuration file %s: %s",
RESOLV_CONF, strerror(errno));
return;
}
iterator = this->dns_servers->create_iterator(this->dns_servers, TRUE);
while (fetchline(&contents, &line))
{
bool found = FALSE;
orig_line = line;
if (extract_token(&token, ' ', &line) &&
strncasecmp(token.ptr, "nameserver", token.len) == 0)
{
if (!extract_token(&token, ' ', &line))
{
token = line;
}
iterator->reset(iterator);
while (iterator->iterate(iterator, (void**)&ip))
{
snprintf(string, sizeof(string), "%H", ip);
if (strlen(string) == token.len &&
strncmp(token.ptr, string, token.len) == 0)
{
iterator->remove(iterator);
ip->destroy(ip);
found = TRUE;
break;
}
}
}
if (!found)
{
/* write line untouched back to file */
fwrite(orig_line.ptr, orig_line.len, 1, file);
fprintf(file, "\n");
}
}
iterator->destroy(iterator);
fclose(file);
}
/**
* Implementation of ike_sa_t.add_dns_server
*/
static void add_dns_server(private_ike_sa_t *this, host_t *dns)
{
FILE *file;
struct stat stats;
chunk_t contents;
DBG1(DBG_IKE, "installing DNS server %H", dns);
file = fopen(RESOLV_CONF, "a+");
if (file == NULL || stat(RESOLV_CONF, &stats) != 0)
{
DBG1(DBG_IKE, "unable to open DNS configuration file %s: %s",
RESOLV_CONF, strerror(errno));
return;
}
contents = chunk_alloca(stats.st_size);
if (fread(contents.ptr, 1, contents.len, file) != contents.len)
{
DBG1(DBG_IKE, "unable to read DNS configuration file: %s", strerror(errno));
fclose(file);
return;
}
fclose(file);
file = fopen(RESOLV_CONF, "w");
if (file == NULL)
{
DBG1(DBG_IKE, "unable to open DNS configuration file %s: %s",
RESOLV_CONF, strerror(errno));
return;
}
if (fprintf(file, "nameserver %H # added by strongSwan, assigned by %D\n",
dns, this->other_id) < 0)
{
DBG1(DBG_IKE, "unable to write DNS configuration: %s", strerror(errno));
}
else
{
this->dns_servers->insert_last(this->dns_servers, dns->clone(dns));
}
fwrite(contents.ptr, contents.len, 1, file);
fclose(file);
}
/**
* Implementation of ike_sa_t.destroy.
*/
static void destroy(private_ike_sa_t *this)
{
set_state(this, IKE_DESTROYING);
this->child_sas->destroy_offset(this->child_sas, offsetof(child_sa_t, destroy));
/* unset SA after here to avoid usage by the listeners */
charon->bus->set_sa(charon->bus, NULL);
this->task_manager->destroy(this->task_manager);
DESTROY_IF(this->crypter_in);
DESTROY_IF(this->crypter_out);
DESTROY_IF(this->signer_in);
DESTROY_IF(this->signer_out);
DESTROY_IF(this->prf);
DESTROY_IF(this->child_prf);
chunk_free(&this->skp_verify);
chunk_free(&this->skp_build);
free(this->selected_proposal);
if (this->my_virtual_ip)
{
charon->kernel_interface->del_ip(charon->kernel_interface,
this->my_virtual_ip);
this->my_virtual_ip->destroy(this->my_virtual_ip);
}
if (this->other_virtual_ip)
{
if (this->peer_cfg && this->peer_cfg->get_pool(this->peer_cfg))
{
charon->attributes->release_address(charon->attributes,
this->peer_cfg->get_pool(this->peer_cfg),
this->other_virtual_ip);
}
this->other_virtual_ip->destroy(this->other_virtual_ip);
}
remove_dns_servers(this);
this->dns_servers->destroy_offset(this->dns_servers,
offsetof(host_t, destroy));
this->additional_addresses->destroy_offset(this->additional_addresses,
offsetof(host_t, destroy));
#ifdef ME
if (this->is_mediation_server)
{
charon->mediation_manager->remove(charon->mediation_manager, this->ike_sa_id);
}
DESTROY_IF(this->server_reflexive_host);
chunk_free(&this->connect_id);
#endif /* ME */
free(this->nat_detection_dest.ptr);
DESTROY_IF(this->my_host);
DESTROY_IF(this->other_host);
DESTROY_IF(this->my_id);
DESTROY_IF(this->other_id);
DESTROY_IF(this->eap_identity);
DESTROY_IF(this->ike_cfg);
DESTROY_IF(this->peer_cfg);
DESTROY_IF(this->my_auth);
DESTROY_IF(this->other_auth);
this->ike_sa_id->destroy(this->ike_sa_id);
free(this);
}
/*
* Described in header.
*/
ike_sa_t * ike_sa_create(ike_sa_id_t *ike_sa_id)
{
private_ike_sa_t *this = malloc_thing(private_ike_sa_t);
static u_int32_t unique_id = 0;
/* Public functions */
this->public.get_state = (ike_sa_state_t (*)(ike_sa_t*)) get_state;
this->public.set_state = (void (*)(ike_sa_t*,ike_sa_state_t)) set_state;
this->public.get_name = (char* (*)(ike_sa_t*))get_name;
this->public.get_statistic = (u_int32_t(*)(ike_sa_t*, statistic_t kind))get_statistic;
this->public.process_message = (status_t (*)(ike_sa_t*, message_t*)) process_message;
this->public.initiate = (status_t (*)(ike_sa_t*,child_cfg_t*)) initiate;
this->public.route = (status_t (*)(ike_sa_t*,child_cfg_t*)) route;
this->public.unroute = (status_t (*)(ike_sa_t*,u_int32_t)) unroute;
this->public.acquire = (status_t (*)(ike_sa_t*,u_int32_t)) acquire;
this->public.get_ike_cfg = (ike_cfg_t* (*)(ike_sa_t*))get_ike_cfg;
this->public.set_ike_cfg = (void (*)(ike_sa_t*,ike_cfg_t*))set_ike_cfg;
this->public.get_peer_cfg = (peer_cfg_t* (*)(ike_sa_t*))get_peer_cfg;
this->public.set_peer_cfg = (void (*)(ike_sa_t*,peer_cfg_t*))set_peer_cfg;
this->public.get_my_auth = (auth_info_t*(*)(ike_sa_t*))get_my_auth;
this->public.get_other_auth = (auth_info_t*(*)(ike_sa_t*))get_other_auth;
this->public.get_id = (ike_sa_id_t* (*)(ike_sa_t*)) get_id;
this->public.get_my_host = (host_t* (*)(ike_sa_t*)) get_my_host;
this->public.set_my_host = (void (*)(ike_sa_t*,host_t*)) set_my_host;
this->public.get_other_host = (host_t* (*)(ike_sa_t*)) get_other_host;
this->public.set_other_host = (void (*)(ike_sa_t*,host_t*)) set_other_host;
this->public.update_hosts = (void(*)(ike_sa_t*, host_t *me, host_t *other))update_hosts;
this->public.get_my_id = (identification_t* (*)(ike_sa_t*)) get_my_id;
this->public.set_my_id = (void (*)(ike_sa_t*,identification_t*)) set_my_id;
this->public.get_other_id = (identification_t* (*)(ike_sa_t*)) get_other_id;
this->public.set_other_id = (void (*)(ike_sa_t*,identification_t*)) set_other_id;
this->public.get_eap_identity = (identification_t* (*)(ike_sa_t*)) get_eap_identity;
this->public.set_eap_identity = (void (*)(ike_sa_t*,identification_t*)) set_eap_identity;
this->public.enable_extension = (void(*)(ike_sa_t*, ike_extension_t extension))enable_extension;
this->public.supports_extension = (bool(*)(ike_sa_t*, ike_extension_t extension))supports_extension;
this->public.set_condition = (void (*)(ike_sa_t*, ike_condition_t,bool)) set_condition;
this->public.has_condition = (bool (*)(ike_sa_t*,ike_condition_t)) has_condition;
this->public.set_pending_updates = (void(*)(ike_sa_t*, u_int32_t updates))set_pending_updates;
this->public.get_pending_updates = (u_int32_t(*)(ike_sa_t*))get_pending_updates;
this->public.is_ike_initiator = (bool (*)(ike_sa_t*))is_ike_initiator;
this->public.create_additional_address_iterator = (iterator_t*(*)(ike_sa_t*))create_additional_address_iterator;
this->public.add_additional_address = (void(*)(ike_sa_t*, host_t *host))add_additional_address;
this->public.has_mapping_changed = (bool(*)(ike_sa_t*, chunk_t hash))has_mapping_changed;
this->public.retransmit = (status_t (*)(ike_sa_t *, u_int32_t)) retransmit;
this->public.delete = (status_t (*)(ike_sa_t*))delete_;
this->public.destroy = (void (*)(ike_sa_t*))destroy;
this->public.send_dpd = (status_t (*)(ike_sa_t*)) send_dpd;
this->public.send_keepalive = (void (*)(ike_sa_t*)) send_keepalive;
this->public.get_prf = (prf_t* (*)(ike_sa_t*)) get_prf;
this->public.get_child_prf = (prf_t* (*)(ike_sa_t *)) get_child_prf;
this->public.get_skp_verify = (chunk_t (*)(ike_sa_t *)) get_skp_verify;
this->public.get_skp_build = (chunk_t (*)(ike_sa_t *)) get_skp_build;
this->public.derive_keys = (status_t (*)(ike_sa_t *,proposal_t*,chunk_t,chunk_t,chunk_t,bool,prf_t*,prf_t*)) derive_keys;
this->public.get_proposal = (char* (*)(ike_sa_t*)) get_proposal;
this->public.set_proposal = (void (*)(ike_sa_t*,char*)) set_proposal;
this->public.add_child_sa = (void (*)(ike_sa_t*,child_sa_t*)) add_child_sa;
this->public.get_child_sa = (child_sa_t* (*)(ike_sa_t*,protocol_id_t,u_int32_t,bool)) get_child_sa;
this->public.create_child_sa_iterator = (iterator_t* (*)(ike_sa_t*)) create_child_sa_iterator;
this->public.rekey_child_sa = (status_t (*)(ike_sa_t*,protocol_id_t,u_int32_t)) rekey_child_sa;
this->public.delete_child_sa = (status_t (*)(ike_sa_t*,protocol_id_t,u_int32_t)) delete_child_sa;
this->public.destroy_child_sa = (status_t (*)(ike_sa_t*,protocol_id_t,u_int32_t))destroy_child_sa;
this->public.rekey = (status_t (*)(ike_sa_t*))rekey;
this->public.reauth = (status_t (*)(ike_sa_t*))reauth;
this->public.reestablish = (status_t (*)(ike_sa_t*))reestablish;
this->public.set_auth_lifetime = (void(*)(ike_sa_t*, u_int32_t lifetime))set_auth_lifetime;
this->public.roam = (status_t(*)(ike_sa_t*,bool))roam;
this->public.inherit = (status_t (*)(ike_sa_t*,ike_sa_t*))inherit;
this->public.generate_message = (status_t (*)(ike_sa_t*,message_t*,packet_t**))generate_message;
this->public.reset = (void (*)(ike_sa_t*))reset;
this->public.get_unique_id = (u_int32_t (*)(ike_sa_t*))get_unique_id;
this->public.set_virtual_ip = (void (*)(ike_sa_t*,bool,host_t*))set_virtual_ip;
this->public.get_virtual_ip = (host_t* (*)(ike_sa_t*,bool))get_virtual_ip;
this->public.add_dns_server = (void (*)(ike_sa_t*,host_t*))add_dns_server;
#ifdef ME
this->public.act_as_mediation_server = (void (*)(ike_sa_t*)) act_as_mediation_server;
this->public.get_server_reflexive_host = (host_t* (*)(ike_sa_t*)) get_server_reflexive_host;
this->public.set_server_reflexive_host = (void (*)(ike_sa_t*,host_t*)) set_server_reflexive_host;
this->public.get_connect_id = (chunk_t (*)(ike_sa_t*)) get_connect_id;
this->public.initiate_mediation = (status_t (*)(ike_sa_t*,peer_cfg_t*)) initiate_mediation;
this->public.initiate_mediated = (status_t (*)(ike_sa_t*,host_t*,host_t*,chunk_t)) initiate_mediated;
this->public.relay = (status_t (*)(ike_sa_t*,identification_t*,chunk_t,chunk_t,linked_list_t*,bool)) relay;
this->public.callback = (status_t (*)(ike_sa_t*,identification_t*)) callback;
this->public.respond = (status_t (*)(ike_sa_t*,identification_t*,chunk_t)) respond;
#endif /* ME */
/* initialize private fields */
this->ike_sa_id = ike_sa_id->clone(ike_sa_id);
this->child_sas = linked_list_create();
this->my_host = host_create_from_string("0.0.0.0", IKEV2_UDP_PORT);
this->other_host = host_create_from_string("0.0.0.0", IKEV2_UDP_PORT);
this->my_id = identification_create_from_encoding(ID_ANY, chunk_empty);
this->other_id = identification_create_from_encoding(ID_ANY, chunk_empty);
this->eap_identity = NULL;
this->extensions = 0;
this->conditions = 0;
this->selected_proposal = NULL;
this->crypter_in = NULL;
this->crypter_out = NULL;
this->signer_in = NULL;
this->signer_out = NULL;
this->prf = NULL;
this->skp_verify = chunk_empty;
this->skp_build = chunk_empty;
this->child_prf = NULL;
this->state = IKE_CREATED;
this->keepalive_interval = lib->settings->get_time(lib->settings,
"charon.keep_alive", KEEPALIVE_INTERVAL);
this->time.inbound = this->time.outbound = time(NULL);
this->time.established = 0;
this->time.rekey = 0;
this->time.reauth = 0;
this->time.delete = 0;
this->ike_cfg = NULL;
this->peer_cfg = NULL;
this->my_auth = auth_info_create();
this->other_auth = auth_info_create();
this->task_manager = task_manager_create(&this->public);
this->unique_id = ++unique_id;
this->my_virtual_ip = NULL;
this->other_virtual_ip = NULL;
this->dns_servers = linked_list_create();
this->additional_addresses = linked_list_create();
this->nat_detection_dest = chunk_empty;
this->pending_updates = 0;
this->keyingtry = 0;
this->ike_initiator = FALSE;
#ifdef ME
this->is_mediation_server = FALSE;
this->server_reflexive_host = NULL;
this->connect_id = chunk_empty;
#endif /* ME */
return &this->public;
}