strongswan/src/charon/plugins/kernel_netlink/kernel_netlink_ipsec.c

1762 lines
46 KiB
C

/*
* Copyright (C) 2006-2008 Tobias Brunner
* Copyright (C) 2005-2007 Martin Willi
* Copyright (C) 2006-2007 Fabian Hartmann, Noah Heusser
* Copyright (C) 2006 Daniel Roethlisberger
* Copyright (C) 2005 Jan Hutter
* Hochschule fuer Technik Rapperswil
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version. See <http://www.fsf.org/copyleft/gpl.txt>.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* $Id$
*/
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <linux/netlink.h>
#include <linux/rtnetlink.h>
#include <linux/xfrm.h>
#include <linux/udp.h>
#include <netinet/in.h>
#include <pthread.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include "kernel_netlink_ipsec.h"
#include "kernel_netlink_shared.h"
#include <daemon.h>
#include <utils/linked_list.h>
#include <processing/jobs/callback_job.h>
#include <processing/jobs/acquire_job.h>
#include <processing/jobs/rekey_child_sa_job.h>
#include <processing/jobs/delete_child_sa_job.h>
#include <processing/jobs/update_sa_job.h>
/** required for Linux 2.6.26 kernel and later */
#ifndef XFRM_STATE_AF_UNSPEC
#define XFRM_STATE_AF_UNSPEC 32
#endif
/** default priority of installed policies */
#define PRIO_LOW 3000
#define PRIO_HIGH 2000
/**
* Create ORable bitfield of XFRM NL groups
*/
#define XFRMNLGRP(x) (1<<(XFRMNLGRP_##x-1))
/**
* returns a pointer to the first rtattr following the nlmsghdr *nlh and the
* 'usual' netlink data x like 'struct xfrm_usersa_info'
*/
#define XFRM_RTA(nlh, x) ((struct rtattr*)(NLMSG_DATA(nlh) + NLMSG_ALIGN(sizeof(x))))
/**
* returns a pointer to the next rtattr following rta.
* !!! do not use this to parse messages. use RTA_NEXT and RTA_OK instead !!!
*/
#define XFRM_RTA_NEXT(rta) ((struct rtattr*)(((char*)(rta)) + RTA_ALIGN((rta)->rta_len)))
/**
* returns the total size of attached rta data
* (after 'usual' netlink data x like 'struct xfrm_usersa_info')
*/
#define XFRM_PAYLOAD(nlh, x) NLMSG_PAYLOAD(nlh, sizeof(x))
typedef struct kernel_algorithm_t kernel_algorithm_t;
/**
* Mapping from the algorithms defined in IKEv2 to
* kernel level algorithm names and their key length
*/
struct kernel_algorithm_t {
/**
* Identifier specified in IKEv2
*/
int ikev2_id;
/**
* Name of the algorithm, as used as kernel identifier
*/
char *name;
/**
* Key length in bits, if fixed size
*/
u_int key_size;
};
ENUM(policy_dir_names, POLICY_IN, POLICY_FWD,
"in",
"out",
"fwd"
);
#define END_OF_LIST -1
/**
* Algorithms for encryption
*/
static kernel_algorithm_t encryption_algs[] = {
/* {ENCR_DES_IV64, "***", 0}, */
{ENCR_DES, "des", 64},
{ENCR_3DES, "des3_ede", 192},
/* {ENCR_RC5, "***", 0}, */
/* {ENCR_IDEA, "***", 0}, */
{ENCR_CAST, "cast128", 0},
{ENCR_BLOWFISH, "blowfish", 0},
/* {ENCR_3IDEA, "***", 0}, */
/* {ENCR_DES_IV32, "***", 0}, */
{ENCR_NULL, "cipher_null", 0},
{ENCR_AES_CBC, "aes", 0},
/* {ENCR_AES_CTR, "***", 0}, */
{ENCR_AES_CCM_ICV8, "rfc4309(ccm(aes))", 64}, /* key_size = ICV size */
{ENCR_AES_CCM_ICV12, "rfc4309(ccm(aes))", 96}, /* key_size = ICV size */
{ENCR_AES_CCM_ICV16, "rfc4309(ccm(aes))", 128}, /* key_size = ICV size */
{ENCR_AES_GCM_ICV8, "rfc4106(gcm(aes))", 64}, /* key_size = ICV size */
{ENCR_AES_GCM_ICV12, "rfc4106(gcm(aes))", 96}, /* key_size = ICV size */
{ENCR_AES_GCM_ICV16, "rfc4106(gcm(aes))", 128}, /* key_size = ICV size */
{END_OF_LIST, NULL, 0},
};
/**
* Algorithms for integrity protection
*/
static kernel_algorithm_t integrity_algs[] = {
{AUTH_HMAC_MD5_96, "md5", 128},
{AUTH_HMAC_SHA1_96, "sha1", 160},
{AUTH_HMAC_SHA2_256_128, "sha256", 256},
{AUTH_HMAC_SHA2_384_192, "sha384", 384},
{AUTH_HMAC_SHA2_512_256, "sha512", 512},
/* {AUTH_DES_MAC, "***", 0}, */
/* {AUTH_KPDK_MD5, "***", 0}, */
{AUTH_AES_XCBC_96, "xcbc(aes)", 128},
{END_OF_LIST, NULL, 0},
};
/**
* Algorithms for IPComp
*/
static kernel_algorithm_t compression_algs[] = {
/* {IPCOMP_OUI, "***", 0}, */
{IPCOMP_DEFLATE, "deflate", 0},
{IPCOMP_LZS, "lzs", 0},
{IPCOMP_LZJH, "lzjh", 0},
{END_OF_LIST, NULL, 0},
};
/**
* Look up a kernel algorithm name and its key size
*/
static char* lookup_algorithm(kernel_algorithm_t *kernel_algo,
u_int16_t ikev2_algo, u_int16_t *key_size)
{
while (kernel_algo->ikev2_id != END_OF_LIST)
{
if (ikev2_algo == kernel_algo->ikev2_id)
{
/* match, evaluate key length */
if (key_size && *key_size == 0)
{ /* update key size if not set */
*key_size = kernel_algo->key_size;
}
return kernel_algo->name;
}
kernel_algo++;
}
return NULL;
}
typedef struct route_entry_t route_entry_t;
/**
* installed routing entry
*/
struct route_entry_t {
/** Name of the interface the route is bound to */
char *if_name;
/** Source ip of the route */
host_t *src_ip;
/** gateway for this route */
host_t *gateway;
/** Destination net */
chunk_t dst_net;
/** Destination net prefixlen */
u_int8_t prefixlen;
};
/**
* destroy an route_entry_t object
*/
static void route_entry_destroy(route_entry_t *this)
{
free(this->if_name);
this->src_ip->destroy(this->src_ip);
this->gateway->destroy(this->gateway);
chunk_free(&this->dst_net);
free(this);
}
typedef struct policy_entry_t policy_entry_t;
/**
* installed kernel policy.
*/
struct policy_entry_t {
/** direction of this policy: in, out, forward */
u_int8_t direction;
/** reqid of the policy */
u_int32_t reqid;
/** parameters of installed policy */
struct xfrm_selector sel;
/** associated route installed for this policy */
route_entry_t *route;
/** by how many CHILD_SA's this policy is used */
u_int refcount;
};
typedef struct private_kernel_netlink_ipsec_t private_kernel_netlink_ipsec_t;
/**
* Private variables and functions of kernel_netlink class.
*/
struct private_kernel_netlink_ipsec_t {
/**
* Public part of the kernel_netlink_t object.
*/
kernel_netlink_ipsec_t public;
/**
* mutex to lock access to various lists
*/
pthread_mutex_t mutex;
/**
* List of installed policies (policy_entry_t)
*/
linked_list_t *policies;
/**
* job receiving netlink events
*/
callback_job_t *job;
/**
* Netlink xfrm socket (IPsec)
*/
netlink_socket_t *socket_xfrm;
/**
* netlink xfrm socket to receive acquire and expire events
*/
int socket_xfrm_events;
/**
* whether to install routes along policies
*/
bool install_routes;
};
/**
* convert a IKEv2 specific protocol identifier to the kernel one
*/
static u_int8_t proto_ike2kernel(protocol_id_t proto)
{
switch (proto)
{
case PROTO_ESP:
return IPPROTO_ESP;
case PROTO_AH:
return IPPROTO_AH;
default:
return proto;
}
}
/**
* reverse of ike2kernel
*/
static protocol_id_t proto_kernel2ike(u_int8_t proto)
{
switch (proto)
{
case IPPROTO_ESP:
return PROTO_ESP;
case IPPROTO_AH:
return PROTO_AH;
default:
return proto;
}
}
/**
* convert a host_t to a struct xfrm_address
*/
static void host2xfrm(host_t *host, xfrm_address_t *xfrm)
{
chunk_t chunk = host->get_address(host);
memcpy(xfrm, chunk.ptr, min(chunk.len, sizeof(xfrm_address_t)));
}
/**
* convert a struct xfrm_address to a host_t
*/
static host_t* xfrm2host(int family, xfrm_address_t *xfrm, u_int16_t port)
{
chunk_t chunk;
switch (family)
{
case AF_INET:
chunk = chunk_create((u_char*)&xfrm->a4, sizeof(xfrm->a4));
break;
case AF_INET6:
chunk = chunk_create((u_char*)&xfrm->a6, sizeof(xfrm->a6));
break;
default:
return NULL;
}
return host_create_from_chunk(family, chunk, ntohs(port));
}
/**
* convert a traffic selector address range to subnet and its mask.
*/
static void ts2subnet(traffic_selector_t* ts,
xfrm_address_t *net, u_int8_t *mask)
{
/* there is no way to do this cleanly, as the address range may
* be anything else but a subnet. We use from_addr as subnet
* and try to calculate a usable subnet mask.
*/
int byte, bit;
bool found = FALSE;
chunk_t from, to;
size_t size = (ts->get_type(ts) == TS_IPV4_ADDR_RANGE) ? 4 : 16;
from = ts->get_from_address(ts);
to = ts->get_to_address(ts);
*mask = (size * 8);
/* go trough all bits of the addresses, beginning in the front.
* as long as they are equal, the subnet gets larger
*/
for (byte = 0; byte < size; byte++)
{
for (bit = 7; bit >= 0; bit--)
{
if ((1<<bit & from.ptr[byte]) != (1<<bit & to.ptr[byte]))
{
*mask = ((7 - bit) + (byte * 8));
found = TRUE;
break;
}
}
if (found)
{
break;
}
}
memcpy(net, from.ptr, from.len);
chunk_free(&from);
chunk_free(&to);
}
/**
* convert a traffic selector port range to port/portmask
*/
static void ts2ports(traffic_selector_t* ts,
u_int16_t *port, u_int16_t *mask)
{
/* linux does not seem to accept complex portmasks. Only
* any or a specific port is allowed. We set to any, if we have
* a port range, or to a specific, if we have one port only.
*/
u_int16_t from, to;
from = ts->get_from_port(ts);
to = ts->get_to_port(ts);
if (from == to)
{
*port = htons(from);
*mask = ~0;
}
else
{
*port = 0;
*mask = 0;
}
}
/**
* convert a pair of traffic_selectors to a xfrm_selector
*/
static struct xfrm_selector ts2selector(traffic_selector_t *src,
traffic_selector_t *dst)
{
struct xfrm_selector sel;
memset(&sel, 0, sizeof(sel));
sel.family = (src->get_type(src) == TS_IPV4_ADDR_RANGE) ? AF_INET : AF_INET6;
/* src or dest proto may be "any" (0), use more restrictive one */
sel.proto = max(src->get_protocol(src), dst->get_protocol(dst));
ts2subnet(dst, &sel.daddr, &sel.prefixlen_d);
ts2subnet(src, &sel.saddr, &sel.prefixlen_s);
ts2ports(dst, &sel.dport, &sel.dport_mask);
ts2ports(src, &sel.sport, &sel.sport_mask);
sel.ifindex = 0;
sel.user = 0;
return sel;
}
/**
* process a XFRM_MSG_ACQUIRE from kernel
*/
static void process_acquire(private_kernel_netlink_ipsec_t *this, struct nlmsghdr *hdr)
{
u_int32_t reqid = 0;
int proto = 0;
job_t *job;
struct rtattr *rtattr = XFRM_RTA(hdr, struct xfrm_user_acquire);
size_t rtsize = XFRM_PAYLOAD(hdr, struct xfrm_user_tmpl);
if (RTA_OK(rtattr, rtsize))
{
if (rtattr->rta_type == XFRMA_TMPL)
{
struct xfrm_user_tmpl* tmpl = (struct xfrm_user_tmpl*)RTA_DATA(rtattr);
reqid = tmpl->reqid;
proto = tmpl->id.proto;
}
}
switch (proto)
{
case 0:
case IPPROTO_ESP:
case IPPROTO_AH:
break;
default:
/* acquire for AH/ESP only, not for IPCOMP */
return;
}
if (reqid == 0)
{
DBG1(DBG_KNL, "received a XFRM_MSG_ACQUIRE, but no reqid found");
return;
}
DBG2(DBG_KNL, "received a XFRM_MSG_ACQUIRE");
DBG1(DBG_KNL, "creating acquire job for CHILD_SA with reqid {%d}", reqid);
job = (job_t*)acquire_job_create(reqid);
charon->processor->queue_job(charon->processor, job);
}
/**
* process a XFRM_MSG_EXPIRE from kernel
*/
static void process_expire(private_kernel_netlink_ipsec_t *this, struct nlmsghdr *hdr)
{
job_t *job;
protocol_id_t protocol;
u_int32_t spi, reqid;
struct xfrm_user_expire *expire;
expire = (struct xfrm_user_expire*)NLMSG_DATA(hdr);
protocol = proto_kernel2ike(expire->state.id.proto);
spi = expire->state.id.spi;
reqid = expire->state.reqid;
DBG2(DBG_KNL, "received a XFRM_MSG_EXPIRE");
if (protocol != PROTO_ESP && protocol != PROTO_AH)
{
DBG2(DBG_KNL, "ignoring XFRM_MSG_EXPIRE for SA with SPI %.8x and reqid {%d} "
"which is not a CHILD_SA", ntohl(spi), reqid);
return;
}
DBG1(DBG_KNL, "creating %s job for %N CHILD_SA with SPI %.8x and reqid {%d}",
expire->hard ? "delete" : "rekey", protocol_id_names,
protocol, ntohl(spi), reqid);
if (expire->hard)
{
job = (job_t*)delete_child_sa_job_create(reqid, protocol, spi);
}
else
{
job = (job_t*)rekey_child_sa_job_create(reqid, protocol, spi);
}
charon->processor->queue_job(charon->processor, job);
}
/**
* process a XFRM_MSG_MAPPING from kernel
*/
static void process_mapping(private_kernel_netlink_ipsec_t *this,
struct nlmsghdr *hdr)
{
job_t *job;
u_int32_t spi, reqid;
struct xfrm_user_mapping *mapping;
host_t *host;
mapping = (struct xfrm_user_mapping*)NLMSG_DATA(hdr);
spi = mapping->id.spi;
reqid = mapping->reqid;
DBG2(DBG_KNL, "received a XFRM_MSG_MAPPING");
if (proto_kernel2ike(mapping->id.proto) == PROTO_ESP)
{
host = xfrm2host(mapping->id.family, &mapping->new_saddr,
mapping->new_sport);
if (host)
{
DBG1(DBG_KNL, "NAT mappings of ESP CHILD_SA with SPI %.8x and "
"reqid {%d} changed, queueing update job", ntohl(spi), reqid);
job = (job_t*)update_sa_job_create(reqid, host);
charon->processor->queue_job(charon->processor, job);
}
}
}
/**
* Receives events from kernel
*/
static job_requeue_t receive_events(private_kernel_netlink_ipsec_t *this)
{
char response[1024];
struct nlmsghdr *hdr = (struct nlmsghdr*)response;
struct sockaddr_nl addr;
socklen_t addr_len = sizeof(addr);
int len, oldstate;
pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &oldstate);
len = recvfrom(this->socket_xfrm_events, response, sizeof(response), 0,
(struct sockaddr*)&addr, &addr_len);
pthread_setcancelstate(oldstate, NULL);
if (len < 0)
{
switch (errno)
{
case EINTR:
/* interrupted, try again */
return JOB_REQUEUE_DIRECT;
case EAGAIN:
/* no data ready, select again */
return JOB_REQUEUE_DIRECT;
default:
DBG1(DBG_KNL, "unable to receive from xfrm event socket");
sleep(1);
return JOB_REQUEUE_FAIR;
}
}
if (addr.nl_pid != 0)
{ /* not from kernel. not interested, try another one */
return JOB_REQUEUE_DIRECT;
}
while (NLMSG_OK(hdr, len))
{
switch (hdr->nlmsg_type)
{
case XFRM_MSG_ACQUIRE:
process_acquire(this, hdr);
break;
case XFRM_MSG_EXPIRE:
process_expire(this, hdr);
break;
case XFRM_MSG_MAPPING:
process_mapping(this, hdr);
break;
default:
break;
}
hdr = NLMSG_NEXT(hdr, len);
}
return JOB_REQUEUE_DIRECT;
}
/**
* Tries to find an ip address of a local interface that is included in the
* supplied traffic selector.
*/
static status_t get_address_by_ts(private_kernel_netlink_ipsec_t *this,
traffic_selector_t *ts, host_t **ip)
{
enumerator_t *addrs;
host_t *host;
int family;
bool found = FALSE;
DBG2(DBG_KNL, "getting a local address in traffic selector %R", ts);
/* if we have a family which includes localhost, we do not
* search for an IP, we use the default */
family = ts->get_type(ts) == TS_IPV4_ADDR_RANGE ? AF_INET : AF_INET6;
if (family == AF_INET)
{
host = host_create_from_string("127.0.0.1", 0);
}
else
{
host = host_create_from_string("::1", 0);
}
if (ts->includes(ts, host))
{
*ip = host_create_any(family);
host->destroy(host);
DBG2(DBG_KNL, "using host %H", *ip);
return SUCCESS;
}
host->destroy(host);
addrs = charon->kernel_interface->create_address_enumerator(
charon->kernel_interface, TRUE, TRUE);
while (addrs->enumerate(addrs, (void**)&host))
{
if (ts->includes(ts, host))
{
found = TRUE;
*ip = host->clone(host);
break;
}
}
addrs->destroy(addrs);
if (!found)
{
DBG1(DBG_KNL, "no local address found in traffic selector %R", ts);
return FAILED;
}
DBG2(DBG_KNL, "using host %H", *ip);
return SUCCESS;
}
/**
* Get an SPI for a specific protocol from the kernel.
*/
static status_t get_spi_internal(private_kernel_netlink_ipsec_t *this,
host_t *src, host_t *dst, u_int8_t proto, u_int32_t min, u_int32_t max,
u_int32_t reqid, u_int32_t *spi)
{
unsigned char request[NETLINK_BUFFER_SIZE];
struct nlmsghdr *hdr, *out;
struct xfrm_userspi_info *userspi;
u_int32_t received_spi = 0;
size_t len;
memset(&request, 0, sizeof(request));
hdr = (struct nlmsghdr*)request;
hdr->nlmsg_flags = NLM_F_REQUEST;
hdr->nlmsg_type = XFRM_MSG_ALLOCSPI;
hdr->nlmsg_len = NLMSG_LENGTH(sizeof(struct xfrm_userspi_info));
userspi = (struct xfrm_userspi_info*)NLMSG_DATA(hdr);
host2xfrm(src, &userspi->info.saddr);
host2xfrm(dst, &userspi->info.id.daddr);
userspi->info.id.proto = proto;
userspi->info.mode = TRUE; /* tunnel mode */
userspi->info.reqid = reqid;
userspi->info.family = src->get_family(src);
userspi->min = min;
userspi->max = max;
if (this->socket_xfrm->send(this->socket_xfrm, hdr, &out, &len) == SUCCESS)
{
hdr = out;
while (NLMSG_OK(hdr, len))
{
switch (hdr->nlmsg_type)
{
case XFRM_MSG_NEWSA:
{
struct xfrm_usersa_info* usersa = NLMSG_DATA(hdr);
received_spi = usersa->id.spi;
break;
}
case NLMSG_ERROR:
{
struct nlmsgerr *err = NLMSG_DATA(hdr);
DBG1(DBG_KNL, "allocating SPI failed: %s (%d)",
strerror(-err->error), -err->error);
break;
}
default:
hdr = NLMSG_NEXT(hdr, len);
continue;
case NLMSG_DONE:
break;
}
break;
}
free(out);
}
if (received_spi == 0)
{
return FAILED;
}
*spi = received_spi;
return SUCCESS;
}
/**
* Implementation of kernel_interface_t.get_spi.
*/
static status_t get_spi(private_kernel_netlink_ipsec_t *this,
host_t *src, host_t *dst,
protocol_id_t protocol, u_int32_t reqid,
u_int32_t *spi)
{
DBG2(DBG_KNL, "getting SPI for reqid {%d}", reqid);
if (get_spi_internal(this, src, dst, proto_ike2kernel(protocol),
0xc0000000, 0xcFFFFFFF, reqid, spi) != SUCCESS)
{
DBG1(DBG_KNL, "unable to get SPI for reqid {%d}", reqid);
return FAILED;
}
DBG2(DBG_KNL, "got SPI %.8x for reqid {%d}", ntohl(*spi), reqid);
return SUCCESS;
}
/**
* Implementation of kernel_interface_t.get_cpi.
*/
static status_t get_cpi(private_kernel_netlink_ipsec_t *this,
host_t *src, host_t *dst,
u_int32_t reqid, u_int16_t *cpi)
{
u_int32_t received_spi = 0;
DBG2(DBG_KNL, "getting CPI for reqid {%d}", reqid);
if (get_spi_internal(this, src, dst,
IPPROTO_COMP, 0x100, 0xEFFF, reqid, &received_spi) != SUCCESS)
{
DBG1(DBG_KNL, "unable to get CPI for reqid {%d}", reqid);
return FAILED;
}
*cpi = htons((u_int16_t)ntohl(received_spi));
DBG2(DBG_KNL, "got CPI %.4x for reqid {%d}", ntohs(*cpi), reqid);
return SUCCESS;
}
/**
* Implementation of kernel_interface_t.add_sa.
*/
static status_t add_sa(private_kernel_netlink_ipsec_t *this,
host_t *src, host_t *dst, u_int32_t spi,
protocol_id_t protocol, u_int32_t reqid,
u_int64_t expire_soft, u_int64_t expire_hard,
u_int16_t enc_alg, u_int16_t enc_size,
u_int16_t int_alg, u_int16_t int_size,
prf_plus_t *prf_plus, ipsec_mode_t mode,
u_int16_t ipcomp, bool encap,
bool replace)
{
unsigned char request[NETLINK_BUFFER_SIZE];
char *alg_name;
/* additional 4 octets KEYMAT required for AES-GCM as of RFC4106 8.1. */
u_int16_t add_keymat = 32;
struct nlmsghdr *hdr;
struct xfrm_usersa_info *sa;
memset(&request, 0, sizeof(request));
DBG2(DBG_KNL, "adding SAD entry with SPI %.8x and reqid {%d}", ntohl(spi), reqid);
hdr = (struct nlmsghdr*)request;
hdr->nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK;
hdr->nlmsg_type = replace ? XFRM_MSG_UPDSA : XFRM_MSG_NEWSA;
hdr->nlmsg_len = NLMSG_LENGTH(sizeof(struct xfrm_usersa_info));
sa = (struct xfrm_usersa_info*)NLMSG_DATA(hdr);
host2xfrm(src, &sa->saddr);
host2xfrm(dst, &sa->id.daddr);
sa->id.spi = spi;
sa->id.proto = proto_ike2kernel(protocol);
sa->family = src->get_family(src);
sa->mode = mode;
if (mode == MODE_TUNNEL)
{
sa->flags |= XFRM_STATE_AF_UNSPEC;
}
sa->replay_window = (protocol == IPPROTO_COMP) ? 0 : 32;
sa->reqid = reqid;
/* we currently do not expire SAs by volume/packet count */
sa->lft.soft_byte_limit = XFRM_INF;
sa->lft.hard_byte_limit = XFRM_INF;
sa->lft.soft_packet_limit = XFRM_INF;
sa->lft.hard_packet_limit = XFRM_INF;
/* we use lifetimes since added, not since used */
sa->lft.soft_add_expires_seconds = expire_soft;
sa->lft.hard_add_expires_seconds = expire_hard;
sa->lft.soft_use_expires_seconds = 0;
sa->lft.hard_use_expires_seconds = 0;
struct rtattr *rthdr = XFRM_RTA(hdr, struct xfrm_usersa_info);
switch (enc_alg)
{
case ENCR_UNDEFINED:
/* no encryption */
break;
case ENCR_AES_CCM_ICV8:
case ENCR_AES_CCM_ICV12:
case ENCR_AES_CCM_ICV16:
/* AES-CCM needs only 3 additional octets KEYMAT as of RFC 4309 7.1. */
add_keymat = 24;
/* fall-through */
case ENCR_AES_GCM_ICV8:
case ENCR_AES_GCM_ICV12:
case ENCR_AES_GCM_ICV16:
{
u_int16_t icv_size = 0;
rthdr->rta_type = XFRMA_ALG_AEAD;
alg_name = lookup_algorithm(encryption_algs, enc_alg, &icv_size);
if (alg_name == NULL)
{
DBG1(DBG_KNL, "algorithm %N not supported by kernel!",
encryption_algorithm_names, enc_alg);
return FAILED;
}
DBG2(DBG_KNL, " using encryption algorithm %N with key size %d",
encryption_algorithm_names, enc_alg, enc_size);
/* additional KEYMAT required */
enc_size += add_keymat;
rthdr->rta_len = RTA_LENGTH(sizeof(struct xfrm_algo_aead) + enc_size / 8);
hdr->nlmsg_len += rthdr->rta_len;
if (hdr->nlmsg_len > sizeof(request))
{
return FAILED;
}
struct xfrm_algo_aead* algo = (struct xfrm_algo_aead*)RTA_DATA(rthdr);
algo->alg_key_len = enc_size;
algo->alg_icv_len = icv_size;
strcpy(algo->alg_name, alg_name);
prf_plus->get_bytes(prf_plus, enc_size / 8, algo->alg_key);
rthdr = XFRM_RTA_NEXT(rthdr);
break;
}
default:
{
rthdr->rta_type = XFRMA_ALG_CRYPT;
alg_name = lookup_algorithm(encryption_algs, enc_alg, &enc_size);
if (alg_name == NULL)
{
DBG1(DBG_KNL, "algorithm %N not supported by kernel!",
encryption_algorithm_names, enc_alg);
return FAILED;
}
DBG2(DBG_KNL, " using encryption algorithm %N with key size %d",
encryption_algorithm_names, enc_alg, enc_size);
rthdr->rta_len = RTA_LENGTH(sizeof(struct xfrm_algo) + enc_size / 8);
hdr->nlmsg_len += rthdr->rta_len;
if (hdr->nlmsg_len > sizeof(request))
{
return FAILED;
}
struct xfrm_algo* algo = (struct xfrm_algo*)RTA_DATA(rthdr);
algo->alg_key_len = enc_size;
strcpy(algo->alg_name, alg_name);
prf_plus->get_bytes(prf_plus, enc_size / 8, algo->alg_key);
rthdr = XFRM_RTA_NEXT(rthdr);
break;
}
}
if (int_alg != AUTH_UNDEFINED)
{
rthdr->rta_type = XFRMA_ALG_AUTH;
alg_name = lookup_algorithm(integrity_algs, int_alg, &int_size);
if (alg_name == NULL)
{
DBG1(DBG_KNL, "algorithm %N not supported by kernel!",
integrity_algorithm_names, int_alg);
return FAILED;
}
DBG2(DBG_KNL, " using integrity algorithm %N with key size %d",
integrity_algorithm_names, int_alg, int_size);
rthdr->rta_len = RTA_LENGTH(sizeof(struct xfrm_algo) + int_size / 8);
hdr->nlmsg_len += rthdr->rta_len;
if (hdr->nlmsg_len > sizeof(request))
{
return FAILED;
}
struct xfrm_algo* algo = (struct xfrm_algo*)RTA_DATA(rthdr);
algo->alg_key_len = int_size;
strcpy(algo->alg_name, alg_name);
prf_plus->get_bytes(prf_plus, int_size / 8, algo->alg_key);
rthdr = XFRM_RTA_NEXT(rthdr);
}
if (ipcomp != IPCOMP_NONE)
{
rthdr->rta_type = XFRMA_ALG_COMP;
alg_name = lookup_algorithm(compression_algs, ipcomp, NULL);
if (alg_name == NULL)
{
DBG1(DBG_KNL, "algorithm %N not supported by kernel!",
ipcomp_transform_names, ipcomp);
return FAILED;
}
DBG2(DBG_KNL, " using compression algorithm %N",
ipcomp_transform_names, ipcomp);
rthdr->rta_len = RTA_LENGTH(sizeof(struct xfrm_algo));
hdr->nlmsg_len += rthdr->rta_len;
if (hdr->nlmsg_len > sizeof(request))
{
return FAILED;
}
struct xfrm_algo* algo = (struct xfrm_algo*)RTA_DATA(rthdr);
algo->alg_key_len = 0;
strcpy(algo->alg_name, alg_name);
rthdr = XFRM_RTA_NEXT(rthdr);
}
if (encap)
{
rthdr->rta_type = XFRMA_ENCAP;
rthdr->rta_len = RTA_LENGTH(sizeof(struct xfrm_encap_tmpl));
hdr->nlmsg_len += rthdr->rta_len;
if (hdr->nlmsg_len > sizeof(request))
{
return FAILED;
}
struct xfrm_encap_tmpl* tmpl = (struct xfrm_encap_tmpl*)RTA_DATA(rthdr);
tmpl->encap_type = UDP_ENCAP_ESPINUDP;
tmpl->encap_sport = htons(src->get_port(src));
tmpl->encap_dport = htons(dst->get_port(dst));
memset(&tmpl->encap_oa, 0, sizeof (xfrm_address_t));
/* encap_oa could probably be derived from the
* traffic selectors [rfc4306, p39]. In the netlink kernel implementation
* pluto does the same as we do here but it uses encap_oa in the
* pfkey implementation. BUT as /usr/src/linux/net/key/af_key.c indicates
* the kernel ignores it anyway
* -> does that mean that NAT-T encap doesn't work in transport mode?
* No. The reason the kernel ignores NAT-OA is that it recomputes
* (or, rather, just ignores) the checksum. If packets pass
* the IPsec checks it marks them "checksum ok" so OA isn't needed. */
rthdr = XFRM_RTA_NEXT(rthdr);
}
if (this->socket_xfrm->send_ack(this->socket_xfrm, hdr) != SUCCESS)
{
DBG1(DBG_KNL, "unable to add SAD entry with SPI %.8x", ntohl(spi));
return FAILED;
}
return SUCCESS;
}
/**
* Get the replay state (i.e. sequence numbers) of an SA.
*/
static status_t get_replay_state(private_kernel_netlink_ipsec_t *this,
u_int32_t spi, protocol_id_t protocol, host_t *dst,
struct xfrm_replay_state *replay)
{
unsigned char request[NETLINK_BUFFER_SIZE];
struct nlmsghdr *hdr, *out = NULL;
struct xfrm_aevent_id *out_aevent = NULL, *aevent_id;
size_t len;
struct rtattr *rta;
size_t rtasize;
memset(&request, 0, sizeof(request));
DBG2(DBG_KNL, "querying replay state from SAD entry with SPI %.8x", ntohl(spi));
hdr = (struct nlmsghdr*)request;
hdr->nlmsg_flags = NLM_F_REQUEST;
hdr->nlmsg_type = XFRM_MSG_GETAE;
hdr->nlmsg_len = NLMSG_LENGTH(sizeof(struct xfrm_aevent_id));
aevent_id = (struct xfrm_aevent_id*)NLMSG_DATA(hdr);
aevent_id->flags = XFRM_AE_RVAL;
host2xfrm(dst, &aevent_id->sa_id.daddr);
aevent_id->sa_id.spi = spi;
aevent_id->sa_id.proto = proto_ike2kernel(protocol);
aevent_id->sa_id.family = dst->get_family(dst);
if (this->socket_xfrm->send(this->socket_xfrm, hdr, &out, &len) == SUCCESS)
{
hdr = out;
while (NLMSG_OK(hdr, len))
{
switch (hdr->nlmsg_type)
{
case XFRM_MSG_NEWAE:
{
out_aevent = NLMSG_DATA(hdr);
break;
}
case NLMSG_ERROR:
{
struct nlmsgerr *err = NLMSG_DATA(hdr);
DBG1(DBG_KNL, "querying replay state from SAD entry failed: %s (%d)",
strerror(-err->error), -err->error);
break;
}
default:
hdr = NLMSG_NEXT(hdr, len);
continue;
case NLMSG_DONE:
break;
}
break;
}
}
if (out_aevent == NULL)
{
DBG1(DBG_KNL, "unable to query replay state from SAD entry with SPI %.8x",
ntohl(spi));
free(out);
return FAILED;
}
rta = XFRM_RTA(out, struct xfrm_aevent_id);
rtasize = XFRM_PAYLOAD(out, struct xfrm_aevent_id);
while(RTA_OK(rta, rtasize))
{
if (rta->rta_type == XFRMA_REPLAY_VAL)
{
memcpy(replay, RTA_DATA(rta), rta->rta_len);
free(out);
return SUCCESS;
}
rta = RTA_NEXT(rta, rtasize);
}
DBG1(DBG_KNL, "unable to query replay state from SAD entry with SPI %.8x",
ntohl(spi));
free(out);
return FAILED;
}
/**
* Implementation of kernel_interface_t.update_sa.
*/
static status_t update_sa(private_kernel_netlink_ipsec_t *this,
u_int32_t spi, protocol_id_t protocol,
host_t *src, host_t *dst,
host_t *new_src, host_t *new_dst, bool encap)
{
unsigned char request[NETLINK_BUFFER_SIZE], *pos;
struct nlmsghdr *hdr, *out = NULL;
struct xfrm_usersa_id *sa_id;
struct xfrm_usersa_info *out_sa = NULL, *sa;
size_t len;
struct rtattr *rta;
size_t rtasize;
struct xfrm_encap_tmpl* tmpl = NULL;
bool got_replay_state;
struct xfrm_replay_state replay;
memset(&request, 0, sizeof(request));
DBG2(DBG_KNL, "querying SAD entry with SPI %.8x for update", ntohl(spi));
/* query the existing SA first */
hdr = (struct nlmsghdr*)request;
hdr->nlmsg_flags = NLM_F_REQUEST;
hdr->nlmsg_type = XFRM_MSG_GETSA;
hdr->nlmsg_len = NLMSG_LENGTH(sizeof(struct xfrm_usersa_id));
sa_id = (struct xfrm_usersa_id*)NLMSG_DATA(hdr);
host2xfrm(dst, &sa_id->daddr);
sa_id->spi = spi;
sa_id->proto = proto_ike2kernel(protocol);
sa_id->family = dst->get_family(dst);
if (this->socket_xfrm->send(this->socket_xfrm, hdr, &out, &len) == SUCCESS)
{
hdr = out;
while (NLMSG_OK(hdr, len))
{
switch (hdr->nlmsg_type)
{
case XFRM_MSG_NEWSA:
{
out_sa = NLMSG_DATA(hdr);
break;
}
case NLMSG_ERROR:
{
struct nlmsgerr *err = NLMSG_DATA(hdr);
DBG1(DBG_KNL, "querying SAD entry failed: %s (%d)",
strerror(-err->error), -err->error);
break;
}
default:
hdr = NLMSG_NEXT(hdr, len);
continue;
case NLMSG_DONE:
break;
}
break;
}
}
if (out_sa == NULL)
{
DBG1(DBG_KNL, "unable to update SAD entry with SPI %.8x", ntohl(spi));
free(out);
return FAILED;
}
/* try to get the replay state */
got_replay_state = (get_replay_state(
this, spi, protocol, dst, &replay) == SUCCESS);
/* delete the old SA */
if (this->public.interface.del_sa(&this->public.interface, dst, spi, protocol) != SUCCESS)
{
DBG1(DBG_KNL, "unable to delete old SAD entry with SPI %.8x", ntohl(spi));
free(out);
return FAILED;
}
DBG2(DBG_KNL, "updating SAD entry with SPI %.8x from %#H..%#H to %#H..%#H",
ntohl(spi), src, dst, new_src, new_dst);
/* copy over the SA from out to request */
hdr = (struct nlmsghdr*)request;
memcpy(hdr, out, min(out->nlmsg_len, sizeof(request)));
hdr->nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK;
hdr->nlmsg_type = XFRM_MSG_NEWSA;
hdr->nlmsg_len = NLMSG_LENGTH(sizeof(struct xfrm_usersa_info));
sa = NLMSG_DATA(hdr);
sa->family = new_dst->get_family(new_dst);
if (!src->ip_equals(src, new_src))
{
host2xfrm(new_src, &sa->saddr);
}
if (!dst->ip_equals(dst, new_dst))
{
host2xfrm(new_dst, &sa->id.daddr);
}
rta = XFRM_RTA(out, struct xfrm_usersa_info);
rtasize = XFRM_PAYLOAD(out, struct xfrm_usersa_info);
pos = (u_char*)XFRM_RTA(hdr, struct xfrm_usersa_info);
while(RTA_OK(rta, rtasize))
{
/* copy all attributes, but not XFRMA_ENCAP if we are disabling it */
if (rta->rta_type != XFRMA_ENCAP || encap)
{
if (rta->rta_type == XFRMA_ENCAP)
{ /* update encap tmpl */
tmpl = (struct xfrm_encap_tmpl*)RTA_DATA(rta);
tmpl->encap_sport = ntohs(new_src->get_port(new_src));
tmpl->encap_dport = ntohs(new_dst->get_port(new_dst));
}
memcpy(pos, rta, rta->rta_len);
pos += RTA_ALIGN(rta->rta_len);
hdr->nlmsg_len += RTA_ALIGN(rta->rta_len);
}
rta = RTA_NEXT(rta, rtasize);
}
rta = (struct rtattr*)pos;
if (tmpl == NULL && encap)
{ /* add tmpl if we are enabling it */
rta->rta_type = XFRMA_ENCAP;
rta->rta_len = RTA_LENGTH(sizeof(struct xfrm_encap_tmpl));
hdr->nlmsg_len += rta->rta_len;
if (hdr->nlmsg_len > sizeof(request))
{
return FAILED;
}
tmpl = (struct xfrm_encap_tmpl*)RTA_DATA(rta);
tmpl->encap_type = UDP_ENCAP_ESPINUDP;
tmpl->encap_sport = ntohs(new_src->get_port(new_src));
tmpl->encap_dport = ntohs(new_dst->get_port(new_dst));
memset(&tmpl->encap_oa, 0, sizeof (xfrm_address_t));
rta = XFRM_RTA_NEXT(rta);
}
if (got_replay_state)
{ /* copy the replay data if available */
rta->rta_type = XFRMA_REPLAY_VAL;
rta->rta_len = RTA_LENGTH(sizeof(struct xfrm_replay_state));
hdr->nlmsg_len += rta->rta_len;
if (hdr->nlmsg_len > sizeof(request))
{
return FAILED;
}
memcpy(RTA_DATA(rta), &replay, sizeof(replay));
rta = XFRM_RTA_NEXT(rta);
}
if (this->socket_xfrm->send_ack(this->socket_xfrm, hdr) != SUCCESS)
{
DBG1(DBG_KNL, "unable to update SAD entry with SPI %.8x", ntohl(spi));
free(out);
return FAILED;
}
free(out);
return SUCCESS;
}
/**
* Implementation of kernel_interface_t.query_sa.
*/
static status_t query_sa(private_kernel_netlink_ipsec_t *this, host_t *dst,
u_int32_t spi, protocol_id_t protocol,
u_int32_t *use_time)
{
unsigned char request[NETLINK_BUFFER_SIZE];
struct nlmsghdr *out = NULL, *hdr;
struct xfrm_usersa_id *sa_id;
struct xfrm_usersa_info *sa = NULL;
size_t len;
DBG2(DBG_KNL, "querying SAD entry with SPI %.8x", ntohl(spi));
memset(&request, 0, sizeof(request));
hdr = (struct nlmsghdr*)request;
hdr->nlmsg_flags = NLM_F_REQUEST;
hdr->nlmsg_type = XFRM_MSG_GETSA;
hdr->nlmsg_len = NLMSG_LENGTH(sizeof(struct xfrm_usersa_info));
sa_id = (struct xfrm_usersa_id*)NLMSG_DATA(hdr);
host2xfrm(dst, &sa_id->daddr);
sa_id->spi = spi;
sa_id->proto = proto_ike2kernel(protocol);
sa_id->family = dst->get_family(dst);
if (this->socket_xfrm->send(this->socket_xfrm, hdr, &out, &len) == SUCCESS)
{
hdr = out;
while (NLMSG_OK(hdr, len))
{
switch (hdr->nlmsg_type)
{
case XFRM_MSG_NEWSA:
{
sa = NLMSG_DATA(hdr);
break;
}
case NLMSG_ERROR:
{
struct nlmsgerr *err = NLMSG_DATA(hdr);
DBG1(DBG_KNL, "querying SAD entry failed: %s (%d)",
strerror(-err->error), -err->error);
break;
}
default:
hdr = NLMSG_NEXT(hdr, len);
continue;
case NLMSG_DONE:
break;
}
break;
}
}
if (sa == NULL)
{
DBG1(DBG_KNL, "unable to query SAD entry with SPI %.8x", ntohl(spi));
free(out);
return FAILED;
}
*use_time = sa->curlft.use_time;
free (out);
return SUCCESS;
}
/**
* Implementation of kernel_interface_t.del_sa.
*/
static status_t del_sa(private_kernel_netlink_ipsec_t *this, host_t *dst,
u_int32_t spi, protocol_id_t protocol)
{
unsigned char request[NETLINK_BUFFER_SIZE];
struct nlmsghdr *hdr;
struct xfrm_usersa_id *sa_id;
memset(&request, 0, sizeof(request));
DBG2(DBG_KNL, "deleting SAD entry with SPI %.8x", ntohl(spi));
hdr = (struct nlmsghdr*)request;
hdr->nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK;
hdr->nlmsg_type = XFRM_MSG_DELSA;
hdr->nlmsg_len = NLMSG_LENGTH(sizeof(struct xfrm_usersa_id));
sa_id = (struct xfrm_usersa_id*)NLMSG_DATA(hdr);
host2xfrm(dst, &sa_id->daddr);
sa_id->spi = spi;
sa_id->proto = proto_ike2kernel(protocol);
sa_id->family = dst->get_family(dst);
if (this->socket_xfrm->send_ack(this->socket_xfrm, hdr) != SUCCESS)
{
DBG1(DBG_KNL, "unable to delete SAD entry with SPI %.8x", ntohl(spi));
return FAILED;
}
DBG2(DBG_KNL, "deleted SAD entry with SPI %.8x", ntohl(spi));
return SUCCESS;
}
/**
* Implementation of kernel_interface_t.add_policy.
*/
static status_t add_policy(private_kernel_netlink_ipsec_t *this,
host_t *src, host_t *dst,
traffic_selector_t *src_ts,
traffic_selector_t *dst_ts,
policy_dir_t direction, protocol_id_t protocol,
u_int32_t reqid, bool high_prio, ipsec_mode_t mode,
u_int16_t ipcomp)
{
iterator_t *iterator;
policy_entry_t *current, *policy;
bool found = FALSE;
unsigned char request[NETLINK_BUFFER_SIZE];
struct xfrm_userpolicy_info *policy_info;
struct nlmsghdr *hdr;
/* create a policy */
policy = malloc_thing(policy_entry_t);
memset(policy, 0, sizeof(policy_entry_t));
policy->sel = ts2selector(src_ts, dst_ts);
policy->direction = direction;
/* find the policy, which matches EXACTLY */
pthread_mutex_lock(&this->mutex);
iterator = this->policies->create_iterator(this->policies, TRUE);
while (iterator->iterate(iterator, (void**)&current))
{
if (memeq(&current->sel, &policy->sel, sizeof(struct xfrm_selector)) &&
policy->direction == current->direction)
{
/* use existing policy */
current->refcount++;
DBG2(DBG_KNL, "policy %R === %R %N already exists, increasing "
"refcount", src_ts, dst_ts,
policy_dir_names, direction);
free(policy);
policy = current;
found = TRUE;
break;
}
}
iterator->destroy(iterator);
if (!found)
{ /* apply the new one, if we have no such policy */
this->policies->insert_last(this->policies, policy);
policy->refcount = 1;
}
DBG2(DBG_KNL, "adding policy %R === %R %N", src_ts, dst_ts,
policy_dir_names, direction);
memset(&request, 0, sizeof(request));
hdr = (struct nlmsghdr*)request;
hdr->nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK;
hdr->nlmsg_type = found ? XFRM_MSG_UPDPOLICY : XFRM_MSG_NEWPOLICY;
hdr->nlmsg_len = NLMSG_LENGTH(sizeof(struct xfrm_userpolicy_info));
policy_info = (struct xfrm_userpolicy_info*)NLMSG_DATA(hdr);
policy_info->sel = policy->sel;
policy_info->dir = policy->direction;
/* calculate priority based on source selector size, small size = high prio */
policy_info->priority = high_prio ? PRIO_HIGH : PRIO_LOW;
policy_info->priority -= policy->sel.prefixlen_s * 10;
policy_info->priority -= policy->sel.proto ? 2 : 0;
policy_info->priority -= policy->sel.sport_mask ? 1 : 0;
policy_info->action = XFRM_POLICY_ALLOW;
policy_info->share = XFRM_SHARE_ANY;
pthread_mutex_unlock(&this->mutex);
/* policies don't expire */
policy_info->lft.soft_byte_limit = XFRM_INF;
policy_info->lft.soft_packet_limit = XFRM_INF;
policy_info->lft.hard_byte_limit = XFRM_INF;
policy_info->lft.hard_packet_limit = XFRM_INF;
policy_info->lft.soft_add_expires_seconds = 0;
policy_info->lft.hard_add_expires_seconds = 0;
policy_info->lft.soft_use_expires_seconds = 0;
policy_info->lft.hard_use_expires_seconds = 0;
struct rtattr *rthdr = XFRM_RTA(hdr, struct xfrm_userpolicy_info);
rthdr->rta_type = XFRMA_TMPL;
rthdr->rta_len = RTA_LENGTH(sizeof(struct xfrm_user_tmpl));
hdr->nlmsg_len += rthdr->rta_len;
if (hdr->nlmsg_len > sizeof(request))
{
return FAILED;
}
struct xfrm_user_tmpl *tmpl = (struct xfrm_user_tmpl*)RTA_DATA(rthdr);
if (ipcomp != IPCOMP_NONE)
{
tmpl->reqid = reqid;
tmpl->id.proto = IPPROTO_COMP;
tmpl->aalgos = tmpl->ealgos = tmpl->calgos = ~0;
tmpl->mode = mode;
tmpl->optional = direction != POLICY_OUT;
tmpl->family = src->get_family(src);
host2xfrm(src, &tmpl->saddr);
host2xfrm(dst, &tmpl->id.daddr);
/* add an additional xfrm_user_tmpl */
rthdr->rta_len += RTA_LENGTH(sizeof(struct xfrm_user_tmpl));
hdr->nlmsg_len += RTA_LENGTH(sizeof(struct xfrm_user_tmpl));
if (hdr->nlmsg_len > sizeof(request))
{
return FAILED;
}
tmpl++;
}
tmpl->reqid = reqid;
tmpl->id.proto = proto_ike2kernel(protocol);
tmpl->aalgos = tmpl->ealgos = tmpl->calgos = ~0;
tmpl->mode = mode;
tmpl->family = src->get_family(src);
host2xfrm(src, &tmpl->saddr);
host2xfrm(dst, &tmpl->id.daddr);
if (this->socket_xfrm->send_ack(this->socket_xfrm, hdr) != SUCCESS)
{
DBG1(DBG_KNL, "unable to add policy %R === %R %N", src_ts, dst_ts,
policy_dir_names, direction);
return FAILED;
}
/* install a route, if:
* - we are NOT updating a policy
* - this is a forward policy (to just get one for each child)
* - we are in tunnel mode
* - we are not using IPv6 (does not work correctly yet!)
* - routing is not disabled via strongswan.conf
*/
if (policy->route == NULL && direction == POLICY_FWD &&
mode != MODE_TRANSPORT && src->get_family(src) != AF_INET6 &&
this->install_routes)
{
route_entry_t *route = malloc_thing(route_entry_t);
if (get_address_by_ts(this, dst_ts, &route->src_ip) == SUCCESS)
{
/* get the nexthop to src (src as we are in POLICY_FWD).*/
route->gateway = charon->kernel_interface->get_nexthop(
charon->kernel_interface, src);
route->if_name = charon->kernel_interface->get_interface(
charon->kernel_interface, dst);
route->dst_net = chunk_alloc(policy->sel.family == AF_INET ? 4 : 16);
memcpy(route->dst_net.ptr, &policy->sel.saddr, route->dst_net.len);
route->prefixlen = policy->sel.prefixlen_s;
switch (charon->kernel_interface->add_route(charon->kernel_interface,
route->dst_net, route->prefixlen, route->gateway,
route->src_ip, route->if_name))
{
default:
DBG1(DBG_KNL, "unable to install source route for %H",
route->src_ip);
/* FALL */
case ALREADY_DONE:
/* route exists, do not uninstall */
route_entry_destroy(route);
break;
case SUCCESS:
/* cache the installed route */
policy->route = route;
break;
}
}
else
{
free(route);
}
}
return SUCCESS;
}
/**
* Implementation of kernel_interface_t.query_policy.
*/
static status_t query_policy(private_kernel_netlink_ipsec_t *this,
traffic_selector_t *src_ts,
traffic_selector_t *dst_ts,
policy_dir_t direction, u_int32_t *use_time)
{
unsigned char request[NETLINK_BUFFER_SIZE];
struct nlmsghdr *out = NULL, *hdr;
struct xfrm_userpolicy_id *policy_id;
struct xfrm_userpolicy_info *policy = NULL;
size_t len;
memset(&request, 0, sizeof(request));
DBG2(DBG_KNL, "querying policy %R === %R %N", src_ts, dst_ts,
policy_dir_names, direction);
hdr = (struct nlmsghdr*)request;
hdr->nlmsg_flags = NLM_F_REQUEST;
hdr->nlmsg_type = XFRM_MSG_GETPOLICY;
hdr->nlmsg_len = NLMSG_LENGTH(sizeof(struct xfrm_userpolicy_id));
policy_id = (struct xfrm_userpolicy_id*)NLMSG_DATA(hdr);
policy_id->sel = ts2selector(src_ts, dst_ts);
policy_id->dir = direction;
if (this->socket_xfrm->send(this->socket_xfrm, hdr, &out, &len) == SUCCESS)
{
hdr = out;
while (NLMSG_OK(hdr, len))
{
switch (hdr->nlmsg_type)
{
case XFRM_MSG_NEWPOLICY:
{
policy = (struct xfrm_userpolicy_info*)NLMSG_DATA(hdr);
break;
}
case NLMSG_ERROR:
{
struct nlmsgerr *err = NLMSG_DATA(hdr);
DBG1(DBG_KNL, "querying policy failed: %s (%d)",
strerror(-err->error), -err->error);
break;
}
default:
hdr = NLMSG_NEXT(hdr, len);
continue;
case NLMSG_DONE:
break;
}
break;
}
}
if (policy == NULL)
{
DBG2(DBG_KNL, "unable to query policy %R === %R %N", src_ts, dst_ts,
policy_dir_names, direction);
free(out);
return FAILED;
}
*use_time = (time_t)policy->curlft.use_time;
free(out);
return SUCCESS;
}
/**
* Implementation of kernel_interface_t.del_policy.
*/
static status_t del_policy(private_kernel_netlink_ipsec_t *this,
traffic_selector_t *src_ts,
traffic_selector_t *dst_ts,
policy_dir_t direction)
{
policy_entry_t *current, policy, *to_delete = NULL;
route_entry_t *route;
unsigned char request[NETLINK_BUFFER_SIZE];
struct nlmsghdr *hdr;
struct xfrm_userpolicy_id *policy_id;
iterator_t *iterator;
DBG2(DBG_KNL, "deleting policy %R === %R %N", src_ts, dst_ts,
policy_dir_names, direction);
/* create a policy */
memset(&policy, 0, sizeof(policy_entry_t));
policy.sel = ts2selector(src_ts, dst_ts);
policy.direction = direction;
/* find the policy */
iterator = this->policies->create_iterator_locked(this->policies, &this->mutex);
while (iterator->iterate(iterator, (void**)&current))
{
if (memcmp(&current->sel, &policy.sel, sizeof(struct xfrm_selector)) == 0 &&
policy.direction == current->direction)
{
to_delete = current;
if (--to_delete->refcount > 0)
{
/* is used by more SAs, keep in kernel */
DBG2(DBG_KNL, "policy still used by another CHILD_SA, not removed");
iterator->destroy(iterator);
return SUCCESS;
}
/* remove if last reference */
iterator->remove(iterator);
break;
}
}
iterator->destroy(iterator);
if (!to_delete)
{
DBG1(DBG_KNL, "deleting policy %R === %R %N failed, not found", src_ts,
dst_ts, policy_dir_names, direction);
return NOT_FOUND;
}
memset(&request, 0, sizeof(request));
hdr = (struct nlmsghdr*)request;
hdr->nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK;
hdr->nlmsg_type = XFRM_MSG_DELPOLICY;
hdr->nlmsg_len = NLMSG_LENGTH(sizeof(struct xfrm_userpolicy_id));
policy_id = (struct xfrm_userpolicy_id*)NLMSG_DATA(hdr);
policy_id->sel = to_delete->sel;
policy_id->dir = direction;
route = to_delete->route;
free(to_delete);
if (this->socket_xfrm->send_ack(this->socket_xfrm, hdr) != SUCCESS)
{
DBG1(DBG_KNL, "unable to delete policy %R === %R %N", src_ts, dst_ts,
policy_dir_names, direction);
return FAILED;
}
if (route)
{
if (charon->kernel_interface->del_route(charon->kernel_interface,
route->dst_net, route->prefixlen, route->gateway,
route->src_ip, route->if_name) != SUCCESS)
{
DBG1(DBG_KNL, "error uninstalling route installed with "
"policy %R === %R %N", src_ts, dst_ts,
policy_dir_names, direction);
}
route_entry_destroy(route);
}
return SUCCESS;
}
/**
* Implementation of kernel_interface_t.destroy.
*/
static void destroy(private_kernel_netlink_ipsec_t *this)
{
this->job->cancel(this->job);
close(this->socket_xfrm_events);
this->socket_xfrm->destroy(this->socket_xfrm);
this->policies->destroy(this->policies);
free(this);
}
/*
* Described in header.
*/
kernel_netlink_ipsec_t *kernel_netlink_ipsec_create()
{
private_kernel_netlink_ipsec_t *this = malloc_thing(private_kernel_netlink_ipsec_t);
struct sockaddr_nl addr;
/* public functions */
this->public.interface.get_spi = (status_t(*)(kernel_ipsec_t*,host_t*,host_t*,protocol_id_t,u_int32_t,u_int32_t*))get_spi;
this->public.interface.get_cpi = (status_t(*)(kernel_ipsec_t*,host_t*,host_t*,u_int32_t,u_int16_t*))get_cpi;
this->public.interface.add_sa = (status_t(*)(kernel_ipsec_t *,host_t*,host_t*,u_int32_t,protocol_id_t,u_int32_t,u_int64_t,u_int64_t,u_int16_t,u_int16_t,u_int16_t,u_int16_t,prf_plus_t*,ipsec_mode_t,u_int16_t,bool,bool))add_sa;
this->public.interface.update_sa = (status_t(*)(kernel_ipsec_t*,u_int32_t,protocol_id_t,host_t*,host_t*,host_t*,host_t*,bool))update_sa;
this->public.interface.query_sa = (status_t(*)(kernel_ipsec_t*,host_t*,u_int32_t,protocol_id_t,u_int32_t*))query_sa;
this->public.interface.del_sa = (status_t(*)(kernel_ipsec_t*,host_t*,u_int32_t,protocol_id_t))del_sa;
this->public.interface.add_policy = (status_t(*)(kernel_ipsec_t*,host_t*,host_t*,traffic_selector_t*,traffic_selector_t*,policy_dir_t,protocol_id_t,u_int32_t,bool,ipsec_mode_t,u_int16_t))add_policy;
this->public.interface.query_policy = (status_t(*)(kernel_ipsec_t*,traffic_selector_t*,traffic_selector_t*,policy_dir_t,u_int32_t*))query_policy;
this->public.interface.del_policy = (status_t(*)(kernel_ipsec_t*,traffic_selector_t*,traffic_selector_t*,policy_dir_t))del_policy;
this->public.interface.destroy = (void(*)(kernel_ipsec_t*)) destroy;
/* private members */
this->policies = linked_list_create();
pthread_mutex_init(&this->mutex, NULL);
this->install_routes = lib->settings->get_bool(lib->settings,
"charon.install_routes", TRUE);
this->socket_xfrm = netlink_socket_create(NETLINK_XFRM);
memset(&addr, 0, sizeof(addr));
addr.nl_family = AF_NETLINK;
/* create and bind XFRM socket for ACQUIRE & EXPIRE */
this->socket_xfrm_events = socket(AF_NETLINK, SOCK_RAW, NETLINK_XFRM);
if (this->socket_xfrm_events <= 0)
{
charon->kill(charon, "unable to create XFRM event socket");
}
addr.nl_groups = XFRMNLGRP(ACQUIRE) | XFRMNLGRP(EXPIRE) | XFRMNLGRP(MAPPING);
if (bind(this->socket_xfrm_events, (struct sockaddr*)&addr, sizeof(addr)))
{
charon->kill(charon, "unable to bind XFRM event socket");
}
this->job = callback_job_create((callback_job_cb_t)receive_events,
this, NULL, NULL);
charon->processor->queue_job(charon->processor, (job_t*)this->job);
return &this->public;
}