strongswan/src/charon/sa/ike_sa_manager.c

1716 lines
43 KiB
C

/*
* Copyright (C) 2008 Tobias Brunner
* Copyright (C) 2005-2008 Martin Willi
* Copyright (C) 2005 Jan Hutter
* Hochschule fuer Technik Rapperswil
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version. See <http://www.fsf.org/copyleft/gpl.txt>.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* $Id$
*/
#include <string.h>
#include "ike_sa_manager.h"
#include <daemon.h>
#include <sa/ike_sa_id.h>
#include <bus/bus.h>
#include <utils/mutex.h>
#include <utils/linked_list.h>
#include <crypto/hashers/hasher.h>
/* the default size of the hash table (MUST be a power of 2) */
#define DEFAULT_HASHTABLE_SIZE 1
/* the maximum size of the hash table (MUST be a power of 2) */
#define MAX_HASHTABLE_SIZE (1 << 30)
/* the default number of segments (MUST be a power of 2) */
#define DEFAULT_SEGMENT_COUNT 1
typedef struct entry_t entry_t;
/**
* An entry in the linked list, contains IKE_SA, locking and lookup data.
*/
struct entry_t {
/**
* Number of threads waiting for this ike_sa_t object.
*/
int waiting_threads;
/**
* Condvar where threads can wait until ike_sa_t object is free for use again.
*/
condvar_t *condvar;
/**
* Is this ike_sa currently checked out?
*/
bool checked_out;
/**
* Does this SA drives out new threads?
*/
bool driveout_new_threads;
/**
* Does this SA drives out waiting threads?
*/
bool driveout_waiting_threads;
/**
* Identification of an IKE_SA (SPIs).
*/
ike_sa_id_t *ike_sa_id;
/**
* The contained ike_sa_t object.
*/
ike_sa_t *ike_sa;
/**
* hash of the IKE_SA_INIT message, used to detect retransmissions
*/
chunk_t init_hash;
/**
* remote host address, required for DoS detection
*/
host_t *other;
/**
* As responder: Is this SA half-open?
*/
bool half_open;
/**
* own identity, required for duplicate checking
*/
identification_t *my_id;
/**
* remote identity, required for duplicate checking
*/
identification_t *other_id;
/**
* message ID currently processing, if any
*/
u_int32_t message_id;
};
/**
* Implementation of entry_t.destroy.
*/
static status_t entry_destroy(entry_t *this)
{
/* also destroy IKE SA */
this->ike_sa->destroy(this->ike_sa);
this->ike_sa_id->destroy(this->ike_sa_id);
chunk_free(&this->init_hash);
DESTROY_IF(this->other);
DESTROY_IF(this->my_id);
DESTROY_IF(this->other_id);
this->condvar->destroy(this->condvar);
free(this);
return SUCCESS;
}
/**
* Creates a new entry for the ike_sa_t list.
*/
static entry_t *entry_create()
{
entry_t *this = malloc_thing(entry_t);
this->waiting_threads = 0;
this->condvar = condvar_create(CONDVAR_DEFAULT);
/* we set checkout flag when we really give it out */
this->checked_out = FALSE;
this->driveout_new_threads = FALSE;
this->driveout_waiting_threads = FALSE;
this->message_id = -1;
this->init_hash = chunk_empty;
this->other = NULL;
this->half_open = FALSE;
this->my_id = NULL;
this->other_id = NULL;
this->ike_sa_id = NULL;
this->ike_sa = NULL;
return this;
}
/**
* Function that matches entry_t objects by initiator SPI and the hash of the
* IKE_SA_INIT message.
*/
static bool entry_match_by_hash(entry_t *entry, ike_sa_id_t *id, chunk_t *hash)
{
return id->get_responder_spi(id) == 0 &&
id->is_initiator(id) == entry->ike_sa_id->is_initiator(entry->ike_sa_id) &&
id->get_initiator_spi(id) == entry->ike_sa_id->get_initiator_spi(entry->ike_sa_id) &&
chunk_equals(*hash, entry->init_hash);
}
/**
* Function that matches entry_t objects by ike_sa_id_t.
*/
static bool entry_match_by_id(entry_t *entry, ike_sa_id_t *id)
{
if (id->equals(id, entry->ike_sa_id))
{
return TRUE;
}
if ((id->get_responder_spi(id) == 0 ||
entry->ike_sa_id->get_responder_spi(entry->ike_sa_id) == 0) &&
id->is_initiator(id) == entry->ike_sa_id->is_initiator(entry->ike_sa_id) &&
id->get_initiator_spi(id) == entry->ike_sa_id->get_initiator_spi(entry->ike_sa_id))
{
/* this is TRUE for IKE_SAs that we initiated but have not yet received a response */
return TRUE;
}
return FALSE;
}
/**
* Function that matches entry_t objects by ike_sa_t pointers.
*/
static bool entry_match_by_sa(entry_t *entry, ike_sa_t *ike_sa)
{
return entry->ike_sa == ike_sa;
}
/**
* Hash function for ike_sa_id_t objects.
*/
static u_int ike_sa_id_hash(ike_sa_id_t *ike_sa_id)
{
/* we always use initiator spi as key */
return ike_sa_id->get_initiator_spi(ike_sa_id);
}
typedef struct half_open_t half_open_t;
/**
* Struct to manage half-open IKE_SAs per peer.
*/
struct half_open_t {
/** chunk of remote host address */
chunk_t other;
/** the number of half-open IKE_SAs with that host */
u_int count;
};
/**
* Destroys a half_open_t object.
*/
static void half_open_destroy(half_open_t *this)
{
chunk_free(&this->other);
free(this);
}
/**
* Function that matches half_open_t objects by the given IP address chunk.
*/
static bool half_open_match(half_open_t *half_open, chunk_t *addr)
{
return chunk_equals(*addr, half_open->other);
}
typedef struct connected_peers_t connected_peers_t;
struct connected_peers_t {
/** own identity */
identification_t *my_id;
/** remote identity */
identification_t *other_id;
/** list of ike_sa_id_t objects of IKE_SAs between the two identities */
linked_list_t *sas;
};
static void connected_peers_destroy(connected_peers_t *this)
{
this->my_id->destroy(this->my_id);
this->other_id->destroy(this->other_id);
this->sas->destroy(this->sas);
free(this);
}
/**
* Function that matches connected_peers_t objects by the given ids.
*/
static bool connected_peers_match(connected_peers_t *connected_peers,
identification_t *my_id, identification_t *other_id)
{
return my_id->equals(my_id, connected_peers->my_id) &&
other_id->equals(other_id, connected_peers->other_id);
}
typedef struct segment_t segment_t;
/**
* Struct to manage segments of the hash table.
*/
struct segment_t {
/** mutex to access a segment exclusively */
mutex_t *mutex;
/** the number of entries in this segment */
u_int count;
};
typedef struct shareable_segment_t shareable_segment_t;
/**
* Struct to manage segments of the "half-open" and "connected peers" hash tables.
*/
struct shareable_segment_t {
/** rwlock to access a segment non-/exclusively */
rwlock_t *lock;
/** the number of entries in this segment - in case of the "half-open table"
* it's the sum of all half_open_t.count in a segment. */
u_int count;
};
typedef struct private_ike_sa_manager_t private_ike_sa_manager_t;
/**
* Additional private members of ike_sa_manager_t.
*/
struct private_ike_sa_manager_t {
/**
* Public interface of ike_sa_manager_t.
*/
ike_sa_manager_t public;
/**
* Hash table with entries for the ike_sa_t objects.
*/
linked_list_t **ike_sa_table;
/**
* The size of the hash table.
*/
u_int table_size;
/**
* Mask to map the hashes to table rows.
*/
u_int table_mask;
/**
* Segments of the hash table.
*/
segment_t *segments;
/**
* The number of segments.
*/
u_int segment_count;
/**
* Mask to map a table row to a segment.
*/
u_int segment_mask;
/**
* Hash table with half_open_t objects.
*/
linked_list_t **half_open_table;
/**
* Segments of the "half-open" hash table.
*/
shareable_segment_t *half_open_segments;
/**
* Hash table with connected_peers_t objects.
*/
linked_list_t **connected_peers_table;
/**
* Segments of the "connected peers" hash table.
*/
shareable_segment_t *connected_peers_segments;
/**
* RNG to get random SPIs for our side
*/
rng_t *rng;
/**
* SHA1 hasher for IKE_SA_INIT retransmit detection
*/
hasher_t *hasher;
/**
* reuse existing IKE_SAs in checkout_by_config
*/
bool reuse_ikesa;
};
/**
* Acquire a lock to access the segment of the table row with the given index.
* It also works with the segment index directly.
*/
static void lock_single_segment(private_ike_sa_manager_t *this, u_int index)
{
mutex_t *lock = this->segments[index & this->segment_mask].mutex;
lock->lock(lock);
}
/**
* Release the lock required to access the segment of the table row with the given index.
* It also works with the segment index directly.
*/
static void unlock_single_segment(private_ike_sa_manager_t *this, u_int index)
{
mutex_t *lock = this->segments[index & this->segment_mask].mutex;
lock->unlock(lock);
}
/**
* Lock all segments
*/
static void lock_all_segments(private_ike_sa_manager_t *this)
{
u_int i;
for (i = 0; i < this->segment_count; ++i)
{
this->segments[i].mutex->lock(this->segments[i].mutex);
}
}
/**
* Unlock all segments
*/
static void unlock_all_segments(private_ike_sa_manager_t *this)
{
u_int i;
for (i = 0; i < this->segment_count; ++i)
{
this->segments[i].mutex->unlock(this->segments[i].mutex);
}
}
typedef struct private_enumerator_t private_enumerator_t;
/**
* hash table enumerator implementation
*/
struct private_enumerator_t {
/**
* implements enumerator interface
*/
enumerator_t enumerator;
/**
* associated ike_sa_manager_t
*/
private_ike_sa_manager_t *manager;
/**
* current segment index
*/
u_int segment;
/**
* currently enumerating entry
*/
entry_t *entry;
/**
* current table row index
*/
u_int row;
/**
* enumerator for the current table row
*/
enumerator_t *current;
};
/**
* Implementation of private_enumerator_t.enumerator.enumerate.
*/
static bool enumerate(private_enumerator_t *this, entry_t **entry, u_int *segment)
{
if (this->entry)
{
this->entry->condvar->signal(this->entry->condvar);
this->entry = NULL;
}
while (this->segment < this->manager->segment_count)
{
while (this->row < this->manager->table_size)
{
if (this->current)
{
entry_t *item;
if (this->current->enumerate(this->current, &item))
{
*entry = this->entry = item;
*segment = this->segment;
return TRUE;
}
this->current->destroy(this->current);
this->current = NULL;
unlock_single_segment(this->manager, this->segment);
}
else
{
linked_list_t *list;
lock_single_segment(this->manager, this->segment);
if ((list = this->manager->ike_sa_table[this->row]) != NULL &&
list->get_count(list))
{
this->current = list->create_enumerator(list);
continue;
}
unlock_single_segment(this->manager, this->segment);
}
this->row += this->manager->segment_count;
}
this->segment++;
this->row = this->segment;
}
return FALSE;
}
/**
* Implementation of private_enumerator_t.enumerator.destroy.
*/
static void enumerator_destroy(private_enumerator_t *this)
{
if (this->entry)
{
this->entry->condvar->signal(this->entry->condvar);
}
if (this->current)
{
this->current->destroy(this->current);
unlock_single_segment(this->manager, this->segment);
}
free(this);
}
/**
* Creates an enumerator to enumerate the entries in the hash table.
*/
static enumerator_t* create_table_enumerator(private_ike_sa_manager_t *this)
{
private_enumerator_t *enumerator = malloc_thing(private_enumerator_t);
enumerator->enumerator.enumerate = (void*)enumerate;
enumerator->enumerator.destroy = (void*)enumerator_destroy;
enumerator->manager = this;
enumerator->segment = 0;
enumerator->entry = NULL;
enumerator->row = 0;
enumerator->current = NULL;
return &enumerator->enumerator;
}
/**
* Put an entry into the hash table.
* Note: The caller has to unlock the returned segment.
*/
static u_int put_entry(private_ike_sa_manager_t *this, entry_t *entry)
{
linked_list_t *list;
u_int row = ike_sa_id_hash(entry->ike_sa_id) & this->table_mask;
u_int segment = row & this->segment_mask;
lock_single_segment(this, segment);
if ((list = this->ike_sa_table[row]) == NULL)
{
list = this->ike_sa_table[row] = linked_list_create();
}
list->insert_last(list, entry);
this->segments[segment].count++;
return segment;
}
/**
* Remove an entry from the hash table.
* Note: The caller MUST have a lock on the segment of this entry.
*/
static void remove_entry(private_ike_sa_manager_t *this, entry_t *entry)
{
linked_list_t *list;
u_int row = ike_sa_id_hash(entry->ike_sa_id) & this->table_mask;
u_int segment = row & this->segment_mask;
if ((list = this->ike_sa_table[row]) != NULL)
{
entry_t *current;
enumerator_t *enumerator = list->create_enumerator(list);
while (enumerator->enumerate(enumerator, &current))
{
if (current == entry)
{
list->remove_at(list, enumerator);
this->segments[segment].count--;
break;
}
}
enumerator->destroy(enumerator);
}
}
/**
* Remove the entry at the current enumerator position.
*/
static void remove_entry_at(private_enumerator_t *this)
{
this->entry = NULL;
if (this->current)
{
linked_list_t *list = this->manager->ike_sa_table[this->row];
list->remove_at(list, this->current);
this->manager->segments[this->segment].count--;
}
}
/**
* Find an entry using the provided match function to compare the entries for
* equality.
*/
static status_t get_entry_by_match_function(private_ike_sa_manager_t *this,
ike_sa_id_t *ike_sa_id, entry_t **entry, u_int *segment,
linked_list_match_t match, void *p1, void *p2)
{
entry_t *current;
linked_list_t *list;
u_int row = ike_sa_id_hash(ike_sa_id) & this->table_mask;
u_int seg = row & this->segment_mask;
lock_single_segment(this, seg);
if ((list = this->ike_sa_table[row]) != NULL)
{
if (list->find_first(list, match, (void**)&current, p1, p2) == SUCCESS)
{
*entry = current;
*segment = seg;
/* the locked segment has to be unlocked by the caller */
return SUCCESS;
}
}
unlock_single_segment(this, seg);
return NOT_FOUND;
}
/**
* Find an entry by ike_sa_id_t.
* Note: On SUCCESS, the caller has to unlock the segment.
*/
static status_t get_entry_by_id(private_ike_sa_manager_t *this,
ike_sa_id_t *ike_sa_id, entry_t **entry, u_int *segment)
{
return get_entry_by_match_function(this, ike_sa_id, entry, segment,
(linked_list_match_t)entry_match_by_id, ike_sa_id, NULL);
}
/**
* Find an entry by initiator SPI and IKE_SA_INIT hash.
* Note: On SUCCESS, the caller has to unlock the segment.
*/
static status_t get_entry_by_hash(private_ike_sa_manager_t *this,
ike_sa_id_t *ike_sa_id, chunk_t hash, entry_t **entry, u_int *segment)
{
return get_entry_by_match_function(this, ike_sa_id, entry, segment,
(linked_list_match_t)entry_match_by_hash, ike_sa_id, &hash);
}
/**
* Find an entry by IKE_SA pointer.
* Note: On SUCCESS, the caller has to unlock the segment.
*/
static status_t get_entry_by_sa(private_ike_sa_manager_t *this,
ike_sa_id_t *ike_sa_id, ike_sa_t *ike_sa, entry_t **entry, u_int *segment)
{
return get_entry_by_match_function(this, ike_sa_id, entry, segment,
(linked_list_match_t)entry_match_by_sa, ike_sa, NULL);
}
/**
* Wait until no other thread is using an IKE_SA, return FALSE if entry not
* acquirable.
*/
static bool wait_for_entry(private_ike_sa_manager_t *this, entry_t *entry,
u_int segment)
{
if (entry->driveout_new_threads)
{
/* we are not allowed to get this */
return FALSE;
}
while (entry->checked_out && !entry->driveout_waiting_threads)
{
/* so wait until we can get it for us.
* we register us as waiting. */
entry->waiting_threads++;
entry->condvar->wait(entry->condvar, this->segments[segment].mutex);
entry->waiting_threads--;
}
/* hm, a deletion request forbids us to get this SA, get next one */
if (entry->driveout_waiting_threads)
{
/* we must signal here, others may be waiting on it, too */
entry->condvar->signal(entry->condvar);
return FALSE;
}
return TRUE;
}
/**
* Put a half-open SA into the hash table.
*/
static void put_half_open(private_ike_sa_manager_t *this, entry_t *entry)
{
half_open_t *half_open = NULL;
linked_list_t *list;
chunk_t addr = entry->other->get_address(entry->other);
u_int row = chunk_hash(addr) & this->table_mask;
u_int segment = row & this->segment_mask;
rwlock_t *lock = this->half_open_segments[segment].lock;
lock->write_lock(lock);
if ((list = this->half_open_table[row]) == NULL)
{
list = this->half_open_table[row] = linked_list_create();
}
else
{
half_open_t *current;
if (list->find_first(list, (linked_list_match_t)half_open_match,
(void**)&current, &addr) == SUCCESS)
{
half_open = current;
half_open->count++;
this->half_open_segments[segment].count++;
}
}
if (!half_open)
{
half_open = malloc_thing(half_open_t);
half_open->other = chunk_clone(addr);
half_open->count = 1;
list->insert_last(list, half_open);
this->half_open_segments[segment].count++;
}
lock->unlock(lock);
}
/**
* Remove a half-open SA from the hash table.
*/
static void remove_half_open(private_ike_sa_manager_t *this, entry_t *entry)
{
linked_list_t *list;
chunk_t addr = entry->other->get_address(entry->other);
u_int row = chunk_hash(addr) & this->table_mask;
u_int segment = row & this->segment_mask;
rwlock_t *lock = this->half_open_segments[segment].lock;
lock->write_lock(lock);
if ((list = this->half_open_table[row]) != NULL)
{
half_open_t *current;
enumerator_t *enumerator = list->create_enumerator(list);
while (enumerator->enumerate(enumerator, &current))
{
if (half_open_match(current, &addr))
{
if (--current->count == 0)
{
list->remove_at(list, enumerator);
half_open_destroy(current);
}
this->half_open_segments[segment].count--;
break;
}
}
enumerator->destroy(enumerator);
}
lock->unlock(lock);
}
/**
* Put an SA between two peers into the hash table.
*/
static void put_connected_peers(private_ike_sa_manager_t *this, entry_t *entry)
{
linked_list_t *list;
connected_peers_t *connected_peers = NULL;
chunk_t my_id = entry->my_id->get_encoding(entry->my_id),
other_id = entry->other_id->get_encoding(entry->other_id);
u_int row = chunk_hash_inc(other_id, chunk_hash(my_id)) & this->table_mask;
u_int segment = row & this->segment_mask;
rwlock_t *lock = this->connected_peers_segments[segment].lock;
lock->write_lock(lock);
if ((list = this->connected_peers_table[row]) == NULL)
{
list = this->connected_peers_table[row] = linked_list_create();
}
else
{
connected_peers_t *current;
if (list->find_first(list, (linked_list_match_t)connected_peers_match,
(void**)&current, entry->my_id, entry->other_id) == SUCCESS)
{
connected_peers = current;
if (connected_peers->sas->find_first(connected_peers->sas,
(linked_list_match_t)entry->ike_sa_id->equals,
NULL, entry->ike_sa_id) == SUCCESS)
{
lock->unlock(lock);
return;
}
}
}
if (!connected_peers)
{
connected_peers = malloc_thing(connected_peers_t);
connected_peers->my_id = entry->my_id->clone(entry->my_id);
connected_peers->other_id = entry->other_id->clone(entry->other_id);
connected_peers->sas = linked_list_create();
list->insert_last(list, connected_peers);
}
connected_peers->sas->insert_last(connected_peers->sas,
entry->ike_sa_id->clone(entry->ike_sa_id));
this->connected_peers_segments[segment].count++;
lock->unlock(lock);
}
/**
* Remove an SA between two peers from the hash table.
*/
static void remove_connected_peers(private_ike_sa_manager_t *this, entry_t *entry)
{
linked_list_t *list;
chunk_t my_id = entry->my_id->get_encoding(entry->my_id),
other_id = entry->other_id->get_encoding(entry->other_id);
u_int row = chunk_hash_inc(other_id, chunk_hash(my_id)) & this->table_mask;
u_int segment = row & this->segment_mask;
rwlock_t *lock = this->connected_peers_segments[segment].lock;
lock->write_lock(lock);
if ((list = this->connected_peers_table[row]) != NULL)
{
connected_peers_t *current;
enumerator_t *enumerator = list->create_enumerator(list);
while (enumerator->enumerate(enumerator, &current))
{
if (connected_peers_match(current, entry->my_id, entry->other_id))
{
ike_sa_id_t *ike_sa_id;
enumerator_t *inner = current->sas->create_enumerator(current->sas);
while (inner->enumerate(inner, &ike_sa_id))
{
if (ike_sa_id->equals(ike_sa_id, entry->ike_sa_id))
{
current->sas->remove_at(current->sas, inner);
ike_sa_id->destroy(ike_sa_id);
this->connected_peers_segments[segment].count--;
break;
}
}
inner->destroy(inner);
if (current->sas->get_count(current->sas) == 0)
{
list->remove_at(list, enumerator);
connected_peers_destroy(current);
}
break;
}
}
enumerator->destroy(enumerator);
}
lock->unlock(lock);
}
/**
* Implementation of private_ike_sa_manager_t.get_next_spi.
*/
static u_int64_t get_next_spi(private_ike_sa_manager_t *this)
{
u_int64_t spi;
this->rng->get_bytes(this->rng, sizeof(spi), (u_int8_t*)&spi);
return spi;
}
/**
* Implementation of of ike_sa_manager.checkout.
*/
static ike_sa_t* checkout(private_ike_sa_manager_t *this, ike_sa_id_t *ike_sa_id)
{
ike_sa_t *ike_sa = NULL;
entry_t *entry;
u_int segment;
DBG2(DBG_MGR, "checkout IKE_SA");
if (get_entry_by_id(this, ike_sa_id, &entry, &segment) == SUCCESS)
{
if (wait_for_entry(this, entry, segment))
{
DBG2(DBG_MGR, "IKE_SA successfully checked out");
entry->checked_out = TRUE;
ike_sa = entry->ike_sa;
}
unlock_single_segment(this, segment);
}
charon->bus->set_sa(charon->bus, ike_sa);
return ike_sa;
}
/**
* Implementation of of ike_sa_manager.checkout_new.
*/
static ike_sa_t *checkout_new(private_ike_sa_manager_t* this, bool initiator)
{
entry_t *entry;
u_int segment;
entry = entry_create();
if (initiator)
{
entry->ike_sa_id = ike_sa_id_create(get_next_spi(this), 0, TRUE);
}
else
{
entry->ike_sa_id = ike_sa_id_create(0, get_next_spi(this), FALSE);
}
entry->ike_sa = ike_sa_create(entry->ike_sa_id);
segment = put_entry(this, entry);
entry->checked_out = TRUE;
unlock_single_segment(this, segment);
DBG2(DBG_MGR, "created IKE_SA");
return entry->ike_sa;
}
/**
* Implementation of of ike_sa_manager.checkout_by_message.
*/
static ike_sa_t* checkout_by_message(private_ike_sa_manager_t* this,
message_t *message)
{
u_int segment;
entry_t *entry;
ike_sa_t *ike_sa = NULL;
ike_sa_id_t *id = message->get_ike_sa_id(message);
id = id->clone(id);
id->switch_initiator(id);
DBG2(DBG_MGR, "checkout IKE_SA by message");
if (message->get_request(message) &&
message->get_exchange_type(message) == IKE_SA_INIT)
{
/* IKE_SA_INIT request. Check for an IKE_SA with such a message hash. */
chunk_t data, hash;
data = message->get_packet_data(message);
this->hasher->allocate_hash(this->hasher, data, &hash);
chunk_free(&data);
if (get_entry_by_hash(this, id, hash, &entry, &segment) == SUCCESS)
{
if (entry->message_id == 0)
{
unlock_single_segment(this, segment);
chunk_free(&hash);
id->destroy(id);
DBG1(DBG_MGR, "ignoring IKE_SA_INIT, already processing");
return NULL;
}
else if (wait_for_entry(this, entry, segment))
{
DBG2(DBG_MGR, "IKE_SA checked out by hash");
entry->checked_out = TRUE;
entry->message_id = message->get_message_id(message);
ike_sa = entry->ike_sa;
}
unlock_single_segment(this, segment);
}
if (ike_sa == NULL)
{
if (id->get_responder_spi(id) == 0 &&
message->get_exchange_type(message) == IKE_SA_INIT)
{
/* no IKE_SA found, create a new one */
id->set_responder_spi(id, get_next_spi(this));
entry = entry_create();
entry->ike_sa = ike_sa_create(id);
entry->ike_sa_id = id->clone(id);
segment = put_entry(this, entry);
entry->checked_out = TRUE;
unlock_single_segment(this, segment);
entry->message_id = message->get_message_id(message);
entry->init_hash = hash;
ike_sa = entry->ike_sa;
DBG2(DBG_MGR, "created IKE_SA");
}
else
{
chunk_free(&hash);
DBG1(DBG_MGR, "ignoring message, no such IKE_SA");
}
}
else
{
chunk_free(&hash);
}
id->destroy(id);
charon->bus->set_sa(charon->bus, ike_sa);
return ike_sa;
}
if (get_entry_by_id(this, id, &entry, &segment) == SUCCESS)
{
/* only check out if we are not processing this request */
if (message->get_request(message) &&
message->get_message_id(message) == entry->message_id)
{
DBG1(DBG_MGR, "ignoring request with ID %d, already processing",
entry->message_id);
}
else if (wait_for_entry(this, entry, segment))
{
ike_sa_id_t *ike_id = entry->ike_sa->get_id(entry->ike_sa);
DBG2(DBG_MGR, "IKE_SA successfully checked out");
entry->checked_out = TRUE;
entry->message_id = message->get_message_id(message);
if (ike_id->get_responder_spi(ike_id) == 0)
{
ike_id->set_responder_spi(ike_id, id->get_responder_spi(id));
}
ike_sa = entry->ike_sa;
}
unlock_single_segment(this, segment);
}
id->destroy(id);
charon->bus->set_sa(charon->bus, ike_sa);
return ike_sa;
}
/**
* Implementation of of ike_sa_manager.checkout_by_config.
*/
static ike_sa_t* checkout_by_config(private_ike_sa_manager_t *this,
peer_cfg_t *peer_cfg)
{
enumerator_t *enumerator;
entry_t *entry;
ike_sa_t *ike_sa = NULL;
peer_cfg_t *current_cfg;
u_int segment;
if (!this->reuse_ikesa)
{ /* IKE_SA reuse disable by config */
ike_sa = checkout_new(this, TRUE);
charon->bus->set_sa(charon->bus, ike_sa);
return ike_sa;
}
enumerator = create_table_enumerator(this);
while (enumerator->enumerate(enumerator, &entry, &segment))
{
if (!wait_for_entry(this, entry, segment))
{
continue;
}
if (entry->ike_sa->get_state(entry->ike_sa) == IKE_DELETING)
{ /* skip IKE_SAs which are not usable */
continue;
}
current_cfg = entry->ike_sa->get_peer_cfg(entry->ike_sa);
if (current_cfg && current_cfg->equals(current_cfg, peer_cfg))
{
DBG2(DBG_MGR, "found an existing IKE_SA with a '%s' config",
current_cfg->get_name(current_cfg));
entry->checked_out = TRUE;
ike_sa = entry->ike_sa;
break;
}
}
enumerator->destroy(enumerator);
if (!ike_sa)
{ /* no IKE_SA using such a config, hand out a new */
ike_sa = checkout_new(this, TRUE);
}
charon->bus->set_sa(charon->bus, ike_sa);
return ike_sa;
}
/**
* Implementation of of ike_sa_manager.checkout_by_id.
*/
static ike_sa_t* checkout_by_id(private_ike_sa_manager_t *this, u_int32_t id,
bool child)
{
enumerator_t *enumerator;
iterator_t *children;
entry_t *entry;
ike_sa_t *ike_sa = NULL;
child_sa_t *child_sa;
u_int segment;
enumerator = create_table_enumerator(this);
while (enumerator->enumerate(enumerator, &entry, &segment))
{
if (wait_for_entry(this, entry, segment))
{
/* look for a child with such a reqid ... */
if (child)
{
children = entry->ike_sa->create_child_sa_iterator(entry->ike_sa);
while (children->iterate(children, (void**)&child_sa))
{
if (child_sa->get_reqid(child_sa) == id)
{
ike_sa = entry->ike_sa;
break;
}
}
children->destroy(children);
}
else /* ... or for a IKE_SA with such a unique id */
{
if (entry->ike_sa->get_unique_id(entry->ike_sa) == id)
{
ike_sa = entry->ike_sa;
}
}
/* got one, return */
if (ike_sa)
{
entry->checked_out = TRUE;
break;
}
}
}
enumerator->destroy(enumerator);
charon->bus->set_sa(charon->bus, ike_sa);
return ike_sa;
}
/**
* Implementation of of ike_sa_manager.checkout_by_name.
*/
static ike_sa_t* checkout_by_name(private_ike_sa_manager_t *this, char *name,
bool child)
{
enumerator_t *enumerator;
iterator_t *children;
entry_t *entry;
ike_sa_t *ike_sa = NULL;
child_sa_t *child_sa;
u_int segment;
enumerator = create_table_enumerator(this);
while (enumerator->enumerate(enumerator, &entry, &segment))
{
if (wait_for_entry(this, entry, segment))
{
/* look for a child with such a policy name ... */
if (child)
{
children = entry->ike_sa->create_child_sa_iterator(entry->ike_sa);
while (children->iterate(children, (void**)&child_sa))
{
if (streq(child_sa->get_name(child_sa), name))
{
ike_sa = entry->ike_sa;
break;
}
}
children->destroy(children);
}
else /* ... or for a IKE_SA with such a connection name */
{
if (streq(entry->ike_sa->get_name(entry->ike_sa), name))
{
ike_sa = entry->ike_sa;
}
}
/* got one, return */
if (ike_sa)
{
entry->checked_out = TRUE;
break;
}
}
}
enumerator->destroy(enumerator);
charon->bus->set_sa(charon->bus, ike_sa);
return ike_sa;
}
/**
* enumerator filter function
*/
static bool enumerator_filter(private_ike_sa_manager_t *this,
entry_t **in, ike_sa_t **out, u_int *segment)
{
if (wait_for_entry(this, *in, *segment))
{
*out = (*in)->ike_sa;
return TRUE;
}
return FALSE;
}
/**
* Implementation of ike_sa_manager_t.create_enumerator.
*/
static enumerator_t *create_enumerator(private_ike_sa_manager_t* this)
{
return enumerator_create_filter(
create_table_enumerator(this),
(void*)enumerator_filter, this, NULL);
}
/**
* Implementation of ike_sa_manager_t.checkin.
*/
static void checkin(private_ike_sa_manager_t *this, ike_sa_t *ike_sa)
{
/* to check the SA back in, we look for the pointer of the ike_sa
* in all entries.
* The lookup is done by initiator SPI, so even if the SPI has changed (e.g.
* on reception of a IKE_SA_INIT response) the lookup will work but
* updating of the SPI MAY be necessary...
*/
entry_t *entry;
ike_sa_id_t *ike_sa_id;
host_t *other;
identification_t *my_id, *other_id;
u_int segment;
ike_sa_id = ike_sa->get_id(ike_sa);
my_id = ike_sa->get_my_id(ike_sa);
other_id = ike_sa->get_other_id(ike_sa);
other = ike_sa->get_other_host(ike_sa);
DBG2(DBG_MGR, "checkin IKE_SA");
/* look for the entry */
if (get_entry_by_sa(this, ike_sa_id, ike_sa, &entry, &segment) == SUCCESS)
{
/* ike_sa_id must be updated */
entry->ike_sa_id->replace_values(entry->ike_sa_id, ike_sa->get_id(ike_sa));
/* signal waiting threads */
entry->checked_out = FALSE;
entry->message_id = -1;
/* check if this SA is half-open */
if (entry->half_open && ike_sa->get_state(ike_sa) != IKE_CONNECTING)
{
/* not half open anymore */
entry->half_open = FALSE;
remove_half_open(this, entry);
}
else if (entry->half_open && !other->ip_equals(other, entry->other))
{
/* the other host's IP has changed, we must update the hash table */
remove_half_open(this, entry);
DESTROY_IF(entry->other);
entry->other = other->clone(other);
put_half_open(this, entry);
}
else if (!entry->half_open &&
!entry->ike_sa_id->is_initiator(entry->ike_sa_id) &&
ike_sa->get_state(ike_sa) == IKE_CONNECTING)
{
/* this is a new half-open SA */
entry->half_open = TRUE;
entry->other = other->clone(other);
put_half_open(this, entry);
}
DBG2(DBG_MGR, "check-in of IKE_SA successful.");
entry->condvar->signal(entry->condvar);
}
else
{
entry = entry_create();
entry->ike_sa_id = ike_sa_id->clone(ike_sa_id);
entry->ike_sa = ike_sa;
segment = put_entry(this, entry);
}
/* apply identities for duplicate test (only as responder) */
if (!entry->ike_sa_id->is_initiator(entry->ike_sa_id) &&
ike_sa->get_state(ike_sa) == IKE_ESTABLISHED &&
entry->my_id == NULL && entry->other_id == NULL)
{
entry->my_id = my_id->clone(my_id);
entry->other_id = other_id->clone(other_id);
put_connected_peers(this, entry);
}
unlock_single_segment(this, segment);
charon->bus->set_sa(charon->bus, NULL);
}
/**
* Implementation of ike_sa_manager_t.checkin_and_destroy.
*/
static void checkin_and_destroy(private_ike_sa_manager_t *this, ike_sa_t *ike_sa)
{
/* deletion is a bit complex, we must ensure that no thread is waiting for
* this SA.
* We take this SA from the table, and start signaling while threads
* are in the condvar.
*/
entry_t *entry;
ike_sa_id_t *ike_sa_id;
u_int segment;
ike_sa_id = ike_sa->get_id(ike_sa);
DBG2(DBG_MGR, "checkin and destroy IKE_SA");
if (get_entry_by_sa(this, ike_sa_id, ike_sa, &entry, &segment) == SUCCESS)
{
/* drive out waiting threads, as we are in hurry */
entry->driveout_waiting_threads = TRUE;
/* mark it, so no new threads can get this entry */
entry->driveout_new_threads = TRUE;
/* wait until all workers have done their work */
while (entry->waiting_threads)
{
/* wake up all */
entry->condvar->broadcast(entry->condvar);
/* they will wake us again when their work is done */
entry->condvar->wait(entry->condvar, this->segments[segment].mutex);
}
remove_entry(this, entry);
unlock_single_segment(this, segment);
if (entry->half_open)
{
remove_half_open(this, entry);
}
if (!entry->ike_sa_id->is_initiator(entry->ike_sa_id) &&
entry->my_id && entry->other_id)
{
remove_connected_peers(this, entry);
}
entry_destroy(entry);
DBG2(DBG_MGR, "check-in and destroy of IKE_SA successful");
}
else
{
DBG1(DBG_MGR, "tried to check-in and delete nonexisting IKE_SA");
ike_sa->destroy(ike_sa);
}
charon->bus->set_sa(charon->bus, NULL);
}
/**
* Implementation of ike_sa_manager_t.check_uniqueness.
*/
static bool check_uniqueness(private_ike_sa_manager_t *this, ike_sa_t *ike_sa)
{
bool cancel = FALSE;
peer_cfg_t *peer_cfg;
unique_policy_t policy;
linked_list_t *list, *duplicate_ids = NULL;
enumerator_t *enumerator;
ike_sa_id_t *duplicate_id = NULL;
identification_t *me, *other;
u_int row, segment;
rwlock_t *lock;
peer_cfg = ike_sa->get_peer_cfg(ike_sa);
policy = peer_cfg->get_unique_policy(peer_cfg);
if (policy == UNIQUE_NO)
{
return FALSE;
}
me = ike_sa->get_my_id(ike_sa);
other = ike_sa->get_other_id(ike_sa);
row = chunk_hash_inc(other->get_encoding(other),
chunk_hash(me->get_encoding(me))) & this->table_mask;
segment = row & this->segment_mask;
lock = this->connected_peers_segments[segment & this->segment_mask].lock;
lock->read_lock(lock);
if ((list = this->connected_peers_table[row]) != NULL)
{
connected_peers_t *current;
if (list->find_first(list, (linked_list_match_t)connected_peers_match,
(void**)&current, me, other) == SUCCESS)
{
/* clone the list, so we can release the lock */
duplicate_ids = current->sas->clone_offset(current->sas,
offsetof(ike_sa_id_t, clone));
}
}
lock->unlock(lock);
if (!duplicate_ids)
{
return FALSE;
}
enumerator = duplicate_ids->create_enumerator(duplicate_ids);
while (enumerator->enumerate(enumerator, &duplicate_id))
{
status_t status = SUCCESS;
ike_sa_t *duplicate;
duplicate = checkout(this, duplicate_id);
if (!duplicate)
{
continue;
}
peer_cfg = duplicate->get_peer_cfg(duplicate);
if (peer_cfg && peer_cfg->equals(peer_cfg, ike_sa->get_peer_cfg(ike_sa)))
{
switch (duplicate->get_state(duplicate))
{
case IKE_ESTABLISHED:
case IKE_REKEYING:
switch (policy)
{
case UNIQUE_REPLACE:
DBG1(DBG_IKE, "deleting duplicate IKE_SA for peer "
"'%D' due to uniqueness policy", other);
status = duplicate->delete(duplicate);
break;
case UNIQUE_KEEP:
cancel = TRUE;
/* we keep the first IKE_SA and delete all
* other duplicates that might exist */
policy = UNIQUE_REPLACE;
break;
default:
break;
}
break;
default:
break;
}
}
if (status == DESTROY_ME)
{
checkin_and_destroy(this, duplicate);
}
else
{
checkin(this, duplicate);
}
}
enumerator->destroy(enumerator);
duplicate_ids->destroy_offset(duplicate_ids, offsetof(ike_sa_id_t, destroy));
/* reset thread's current IKE_SA after checkin */
charon->bus->set_sa(charon->bus, ike_sa);
return cancel;
}
/**
* Implementation of ike_sa_manager_t.get_half_open_count.
*/
static int get_half_open_count(private_ike_sa_manager_t *this, host_t *ip)
{
int count = 0;
if (ip)
{
linked_list_t *list;
chunk_t addr = ip->get_address(ip);
u_int row = chunk_hash(addr) & this->table_mask;
u_int segment = row & this->segment_mask;
rwlock_t *lock = this->half_open_segments[segment & this->segment_mask].lock;
lock->read_lock(lock);
if ((list = this->half_open_table[row]) != NULL)
{
half_open_t *current;
if (list->find_first(list, (linked_list_match_t)half_open_match,
(void**)&current, &addr) == SUCCESS)
{
count = current->count;
}
}
lock->unlock(lock);
}
else
{
u_int segment;
for (segment = 0; segment < this->segment_count; ++segment)
{
rwlock_t *lock;
lock = this->half_open_segments[segment & this->segment_mask].lock;
lock->read_lock(lock);
count += this->half_open_segments[segment].count;
lock->unlock(lock);
}
}
return count;
}
/**
* Implementation of ike_sa_manager_t.flush.
*/
static void flush(private_ike_sa_manager_t *this)
{
/* destroy all list entries */
enumerator_t *enumerator;
entry_t *entry;
u_int segment;
lock_all_segments(this);
DBG2(DBG_MGR, "going to destroy IKE_SA manager and all managed IKE_SA's");
/* Step 1: drive out all waiting threads */
DBG2(DBG_MGR, "set driveout flags for all stored IKE_SA's");
enumerator = create_table_enumerator(this);
while (enumerator->enumerate(enumerator, &entry, &segment))
{
/* do not accept new threads, drive out waiting threads */
entry->driveout_new_threads = TRUE;
entry->driveout_waiting_threads = TRUE;
}
enumerator->destroy(enumerator);
DBG2(DBG_MGR, "wait for all threads to leave IKE_SA's");
/* Step 2: wait until all are gone */
enumerator = create_table_enumerator(this);
while (enumerator->enumerate(enumerator, &entry, &segment))
{
while (entry->waiting_threads || entry->checked_out)
{
/* wake up all */
entry->condvar->broadcast(entry->condvar);
/* go sleeping until they are gone */
entry->condvar->wait(entry->condvar, this->segments[segment].mutex);
}
}
enumerator->destroy(enumerator);
DBG2(DBG_MGR, "delete all IKE_SA's");
/* Step 3: initiate deletion of all IKE_SAs */
enumerator = create_table_enumerator(this);
while (enumerator->enumerate(enumerator, &entry, &segment))
{
charon->bus->set_sa(charon->bus, entry->ike_sa);
entry->ike_sa->delete(entry->ike_sa);
}
enumerator->destroy(enumerator);
DBG2(DBG_MGR, "destroy all entries");
/* Step 4: destroy all entries */
enumerator = create_table_enumerator(this);
while (enumerator->enumerate(enumerator, &entry, &segment))
{
charon->bus->set_sa(charon->bus, entry->ike_sa);
if (entry->half_open)
{
remove_half_open(this, entry);
}
if (!entry->ike_sa_id->is_initiator(entry->ike_sa_id) &&
entry->my_id && entry->other_id)
{
remove_connected_peers(this, entry);
}
remove_entry_at((private_enumerator_t*)enumerator);
entry_destroy(entry);
}
enumerator->destroy(enumerator);
charon->bus->set_sa(charon->bus, NULL);
unlock_all_segments(this);
}
/**
* Implementation of ike_sa_manager_t.destroy.
*/
static void destroy(private_ike_sa_manager_t *this)
{
u_int i;
for (i = 0; i < this->table_size; ++i)
{
linked_list_t *list;
if ((list = this->ike_sa_table[i]) != NULL)
{
list->destroy(list);
}
if ((list = this->half_open_table[i]) != NULL)
{
list->destroy(list);
}
if ((list = this->connected_peers_table[i]) != NULL)
{
list->destroy(list);
}
}
free(this->ike_sa_table);
free(this->half_open_table);
free(this->connected_peers_table);
for (i = 0; i < this->segment_count; ++i)
{
this->segments[i].mutex->destroy(this->segments[i].mutex);
this->half_open_segments[i].lock->destroy(this->half_open_segments[i].lock);
this->connected_peers_segments[i].lock->destroy(this->connected_peers_segments[i].lock);
}
free(this->segments);
free(this->half_open_segments);
free(this->connected_peers_segments);
this->rng->destroy(this->rng);
this->hasher->destroy(this->hasher);
free(this);
}
/**
* This function returns the next-highest power of two for the given number.
* The algorithm works by setting all bits on the right-hand side of the most
* significant 1 to 1 and then increments the whole number so it rolls over
* to the nearest power of two. Note: returns 0 for n == 0
*/
static u_int get_nearest_powerof2(u_int n)
{
u_int i;
--n;
for (i = 1; i < sizeof(u_int) * 8; i <<= 1)
{
n |= n >> i;
}
return ++n;
}
/*
* Described in header.
*/
ike_sa_manager_t *ike_sa_manager_create()
{
u_int i;
private_ike_sa_manager_t *this = malloc_thing(private_ike_sa_manager_t);
/* assign public functions */
this->public.flush = (void(*)(ike_sa_manager_t*))flush;
this->public.destroy = (void(*)(ike_sa_manager_t*))destroy;
this->public.checkout = (ike_sa_t*(*)(ike_sa_manager_t*, ike_sa_id_t*))checkout;
this->public.checkout_new = (ike_sa_t*(*)(ike_sa_manager_t*,bool))checkout_new;
this->public.checkout_by_message = (ike_sa_t*(*)(ike_sa_manager_t*,message_t*))checkout_by_message;
this->public.checkout_by_config = (ike_sa_t*(*)(ike_sa_manager_t*,peer_cfg_t*))checkout_by_config;
this->public.checkout_by_id = (ike_sa_t*(*)(ike_sa_manager_t*,u_int32_t,bool))checkout_by_id;
this->public.checkout_by_name = (ike_sa_t*(*)(ike_sa_manager_t*,char*,bool))checkout_by_name;
this->public.check_uniqueness = (bool(*)(ike_sa_manager_t*, ike_sa_t *ike_sa))check_uniqueness;
this->public.create_enumerator = (enumerator_t*(*)(ike_sa_manager_t*))create_enumerator;
this->public.checkin = (void(*)(ike_sa_manager_t*,ike_sa_t*))checkin;
this->public.checkin_and_destroy = (void(*)(ike_sa_manager_t*,ike_sa_t*))checkin_and_destroy;
this->public.get_half_open_count = (int(*)(ike_sa_manager_t*,host_t*))get_half_open_count;
/* initialize private variables */
this->hasher = lib->crypto->create_hasher(lib->crypto, HASH_PREFERRED);
if (this->hasher == NULL)
{
DBG1(DBG_MGR, "manager initialization failed, no hasher supported");
free(this);
return NULL;
}
this->rng = lib->crypto->create_rng(lib->crypto, RNG_WEAK);
if (this->rng == NULL)
{
DBG1(DBG_MGR, "manager initialization failed, no RNG supported");
this->hasher->destroy(this->hasher);
free(this);
return NULL;
}
this->table_size = get_nearest_powerof2(lib->settings->get_int(lib->settings,
"charon.ikesa_table_size", DEFAULT_HASHTABLE_SIZE));
this->table_size = max(1, min(this->table_size, MAX_HASHTABLE_SIZE));
this->table_mask = this->table_size - 1;
this->segment_count = get_nearest_powerof2(lib->settings->get_int(lib->settings,
"charon.ikesa_table_segments", DEFAULT_SEGMENT_COUNT));
this->segment_count = max(1, min(this->segment_count, this->table_size));
this->segment_mask = this->segment_count - 1;
this->ike_sa_table = calloc(this->table_size, sizeof(linked_list_t*));
this->segments = (segment_t*)calloc(this->segment_count, sizeof(segment_t));
for (i = 0; i < this->segment_count; ++i)
{
this->segments[i].mutex = mutex_create(MUTEX_RECURSIVE);
this->segments[i].count = 0;
}
/* we use the same table parameters for the table to track half-open SAs */
this->half_open_table = calloc(this->table_size, sizeof(linked_list_t*));
this->half_open_segments = calloc(this->segment_count, sizeof(shareable_segment_t));
for (i = 0; i < this->segment_count; ++i)
{
this->half_open_segments[i].lock = rwlock_create(RWLOCK_DEFAULT);
this->half_open_segments[i].count = 0;
}
/* also for the hash table used for duplicate tests */
this->connected_peers_table = calloc(this->table_size, sizeof(linked_list_t*));
this->connected_peers_segments = calloc(this->segment_count, sizeof(shareable_segment_t));
for (i = 0; i < this->segment_count; ++i)
{
this->connected_peers_segments[i].lock = rwlock_create(RWLOCK_DEFAULT);
this->connected_peers_segments[i].count = 0;
}
this->reuse_ikesa = lib->settings->get_bool(lib->settings,
"charon.reuse_ikesa", TRUE);
return &this->public;
}