strongswan/src/libstrongswan/plugins/aesni/aesni_cmac.c

372 lines
7.6 KiB
C

/*
* Copyright (C) 2012 Tobias Brunner
* HSR Hochschule fuer Technik Rapperswil
* Copyright (C) 2015 Martin Willi
* Copyright (C) 2015 revosec AG
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version. See <http://www.fsf.org/copyleft/gpl.txt>.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*/
#include "aesni_cmac.h"
#include "aesni_key.h"
#include <crypto/prfs/mac_prf.h>
#include <crypto/signers/mac_signer.h>
typedef struct private_mac_t private_mac_t;
/**
* Private data of a mac_t object.
*/
struct private_mac_t {
/**
* Public interface.
*/
mac_t public;
/**
* Key schedule for key K
*/
aesni_key_t *k;
/**
* K1
*/
__m128i k1;
/**
* K2
*/
__m128i k2;
/**
* T
*/
__m128i t;
/**
* remaining, unprocessed bytes in append mode
*/
u_char rem[AES_BLOCK_SIZE];
/**
* number of bytes in remaining
*/
int rem_size;
};
METHOD(mac_t, get_mac, bool,
private_mac_t *this, chunk_t data, uint8_t *out)
{
__m128i *ks, t, l, *bi;
u_int blocks, rem, i;
if (!this->k)
{
return FALSE;
}
ks = this->k->schedule;
t = this->t;
if (this->rem_size + data.len > AES_BLOCK_SIZE)
{
/* T := 0x00000000000000000000000000000000 (initially)
* for each block M_i (except the last)
* X := T XOR M_i;
* T := AES-128(K, X);
*/
/* append data to remaining bytes, process block M_1 */
memcpy(this->rem + this->rem_size, data.ptr,
AES_BLOCK_SIZE - this->rem_size);
data = chunk_skip(data, AES_BLOCK_SIZE - this->rem_size);
t = _mm_xor_si128(t, _mm_loadu_si128((__m128i*)this->rem));
t = _mm_xor_si128(t, ks[0]);
t = _mm_aesenc_si128(t, ks[1]);
t = _mm_aesenc_si128(t, ks[2]);
t = _mm_aesenc_si128(t, ks[3]);
t = _mm_aesenc_si128(t, ks[4]);
t = _mm_aesenc_si128(t, ks[5]);
t = _mm_aesenc_si128(t, ks[6]);
t = _mm_aesenc_si128(t, ks[7]);
t = _mm_aesenc_si128(t, ks[8]);
t = _mm_aesenc_si128(t, ks[9]);
t = _mm_aesenclast_si128(t, ks[10]);
/* process blocks M_2 ... M_n-1 */
bi = (__m128i*)data.ptr;
rem = data.len % AES_BLOCK_SIZE;
blocks = data.len / AES_BLOCK_SIZE;
if (!rem && blocks)
{ /* don't do last block */
rem = AES_BLOCK_SIZE;
blocks--;
}
/* process blocks M[2] ... M[n-1] */
for (i = 0; i < blocks; i++)
{
t = _mm_xor_si128(t, _mm_loadu_si128(bi + i));
t = _mm_xor_si128(t, ks[0]);
t = _mm_aesenc_si128(t, ks[1]);
t = _mm_aesenc_si128(t, ks[2]);
t = _mm_aesenc_si128(t, ks[3]);
t = _mm_aesenc_si128(t, ks[4]);
t = _mm_aesenc_si128(t, ks[5]);
t = _mm_aesenc_si128(t, ks[6]);
t = _mm_aesenc_si128(t, ks[7]);
t = _mm_aesenc_si128(t, ks[8]);
t = _mm_aesenc_si128(t, ks[9]);
t = _mm_aesenclast_si128(t, ks[10]);
}
/* store remaining bytes of block M_n */
memcpy(this->rem, data.ptr + data.len - rem, rem);
this->rem_size = rem;
}
else
{
/* no complete block (or last block), just copy into remaining */
memcpy(this->rem + this->rem_size, data.ptr, data.len);
this->rem_size += data.len;
}
if (out)
{
/* if last block is complete
* M_last := M_n XOR K1;
* else
* M_last := padding(M_n) XOR K2;
*/
if (this->rem_size == AES_BLOCK_SIZE)
{
l = _mm_loadu_si128((__m128i*)this->rem);
l = _mm_xor_si128(l, this->k1);
}
else
{
/* padding(x) = x || 10^i where i is 128-8*r-1
* That is, padding(x) is the concatenation of x and a single '1',
* followed by the minimum number of '0's, so that the total length is
* equal to 128 bits.
*/
if (this->rem_size < AES_BLOCK_SIZE)
{
memset(this->rem + this->rem_size, 0,
AES_BLOCK_SIZE - this->rem_size);
this->rem[this->rem_size] = 0x80;
}
l = _mm_loadu_si128((__m128i*)this->rem);
l = _mm_xor_si128(l, this->k2);
}
/* T := M_last XOR T;
* T := AES-128(K,T);
*/
t = _mm_xor_si128(l, t);
t = _mm_xor_si128(t, ks[0]);
t = _mm_aesenc_si128(t, ks[1]);
t = _mm_aesenc_si128(t, ks[2]);
t = _mm_aesenc_si128(t, ks[3]);
t = _mm_aesenc_si128(t, ks[4]);
t = _mm_aesenc_si128(t, ks[5]);
t = _mm_aesenc_si128(t, ks[6]);
t = _mm_aesenc_si128(t, ks[7]);
t = _mm_aesenc_si128(t, ks[8]);
t = _mm_aesenc_si128(t, ks[9]);
t = _mm_aesenclast_si128(t, ks[10]);
_mm_storeu_si128((__m128i*)out, t);
/* reset state */
t = _mm_setzero_si128();
this->rem_size = 0;
}
this->t = t;
return TRUE;
}
METHOD(mac_t, get_mac_size, size_t,
private_mac_t *this)
{
return AES_BLOCK_SIZE;
}
/**
* Left-shift the given chunk by one bit.
*/
static void bit_shift(chunk_t chunk)
{
size_t i;
for (i = 0; i < chunk.len; i++)
{
chunk.ptr[i] <<= 1;
if (i < chunk.len - 1 && chunk.ptr[i + 1] & 0x80)
{
chunk.ptr[i] |= 0x01;
}
}
}
METHOD(mac_t, set_key, bool,
private_mac_t *this, chunk_t key)
{
__m128i rb, msb, l, a;
u_int round;
chunk_t k;
this->t = _mm_setzero_si128();
this->rem_size = 0;
/* we support variable keys as defined in RFC 4615 */
if (key.len == AES_BLOCK_SIZE)
{
k = key;
}
else
{ /* use cmac recursively to resize longer or shorter keys */
k = chunk_alloca(AES_BLOCK_SIZE);
memset(k.ptr, 0, k.len);
if (!set_key(this, k) || !get_mac(this, key, k.ptr))
{
return FALSE;
}
}
DESTROY_IF(this->k);
this->k = aesni_key_create(TRUE, k);
if (!this->k)
{
return FALSE;
}
/*
* Rb = 0x00000000000000000000000000000087
* L = 0x00000000000000000000000000000000 encrypted with K
* if MSB(L) == 0
* K1 = L << 1
* else
* K1 = (L << 1) XOR Rb
* if MSB(K1) == 0
* K2 = K1 << 1
* else
* K2 = (K1 << 1) XOR Rb
*/
rb = _mm_set_epi32(0x87000000, 0, 0, 0);
msb = _mm_set_epi32(0, 0, 0, 0x80);
l = _mm_setzero_si128();
l = _mm_xor_si128(l, this->k->schedule[0]);
for (round = 1; round < this->k->rounds; round++)
{
l = _mm_aesenc_si128(l, this->k->schedule[round]);
}
l = _mm_aesenclast_si128(l, this->k->schedule[this->k->rounds]);
this->k1 = l;
bit_shift(chunk_from_thing(this->k1));
a = _mm_and_si128(l, msb);
if (memchr(&a, 0x80, 1))
{
this->k1 = _mm_xor_si128(this->k1, rb);
}
this->k2 = this->k1;
bit_shift(chunk_from_thing(this->k2));
a = _mm_and_si128(this->k1, msb);
if (memchr(&a, 0x80, 1))
{
this->k2 = _mm_xor_si128(this->k2, rb);
}
return TRUE;
}
METHOD(mac_t, destroy, void,
private_mac_t *this)
{
DESTROY_IF(this->k);
memwipe(&this->k1, sizeof(this->k1));
memwipe(&this->k2, sizeof(this->k2));
free_align(this);
}
/*
* Described in header
*/
mac_t *aesni_cmac_create(encryption_algorithm_t algo, size_t key_size)
{
private_mac_t *this;
INIT_ALIGN(this, sizeof(__m128i),
.public = {
.get_mac = _get_mac,
.get_mac_size = _get_mac_size,
.set_key = _set_key,
.destroy = _destroy,
},
);
return &this->public;
}
/*
* Described in header.
*/
prf_t *aesni_cmac_prf_create(pseudo_random_function_t algo)
{
mac_t *cmac;
switch (algo)
{
case PRF_AES128_CMAC:
cmac = aesni_cmac_create(ENCR_AES_CBC, 16);
break;
default:
return NULL;
}
if (cmac)
{
return mac_prf_create(cmac);
}
return NULL;
}
/*
* Described in header
*/
signer_t *aesni_cmac_signer_create(integrity_algorithm_t algo)
{
size_t truncation;
mac_t *cmac;
switch (algo)
{
case AUTH_AES_CMAC_96:
cmac = aesni_cmac_create(ENCR_AES_CBC, 16);
truncation = 12;
break;
default:
return NULL;
}
if (cmac)
{
return mac_signer_create(cmac, truncation);
}
return NULL;
}