strongswan/src/charon/sa/keymat.c

618 lines
16 KiB
C

/*
* Copyright (C) 2008 Martin Willi
* Hochschule fuer Technik Rapperswil
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version. See <http://www.fsf.org/copyleft/gpl.txt>.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*/
#include "keymat.h"
#include <daemon.h>
#include <crypto/prf_plus.h>
typedef struct private_keymat_t private_keymat_t;
/**
* Private data of an keymat_t object.
*/
struct private_keymat_t {
/**
* Public keymat_t interface.
*/
keymat_t public;
/**
* IKE_SA Role, initiator or responder
*/
bool initiator;
/**
* inbound signer (verify)
*/
signer_t *signer_in;
/**
* outbound signer (sign)
*/
signer_t *signer_out;
/**
* inbound crypter (decrypt)
*/
crypter_t *crypter_in;
/**
* outbound crypter (encrypt)
*/
crypter_t *crypter_out;
/**
* General purpose PRF
*/
prf_t *prf;
/**
* Negotiated PRF algorithm
*/
pseudo_random_function_t prf_alg;
/**
* Key to derive key material from for CHILD_SAs, rekeying
*/
chunk_t skd;
/**
* Key to build outging authentication data (SKp)
*/
chunk_t skp_build;
/**
* Key to verify incoming authentication data (SKp)
*/
chunk_t skp_verify;
};
typedef struct keylen_entry_t keylen_entry_t;
/**
* Implicit key length for an algorithm
*/
struct keylen_entry_t {
/** IKEv2 algorithm identifier */
int algo;
/** key length in bits */
int len;
};
#define END_OF_LIST -1
/**
* Keylen for encryption algos
*/
keylen_entry_t keylen_enc[] = {
{ENCR_DES, 64},
{ENCR_3DES, 192},
{END_OF_LIST, 0}
};
/**
* Keylen for integrity algos
*/
keylen_entry_t keylen_int[] = {
{AUTH_HMAC_MD5_96, 128},
{AUTH_HMAC_SHA1_96, 160},
{AUTH_HMAC_SHA2_256_96, 256},
{AUTH_HMAC_SHA2_256_128, 256},
{AUTH_HMAC_SHA2_384_192, 384},
{AUTH_HMAC_SHA2_512_256, 512},
{AUTH_AES_XCBC_96, 128},
{END_OF_LIST, 0}
};
/**
* Lookup key length of an algorithm
*/
static int lookup_keylen(keylen_entry_t *list, int algo)
{
while (list->algo != END_OF_LIST)
{
if (algo == list->algo)
{
return list->len;
}
list++;
}
return 0;
}
/**
* Implementation of keymat_t.create_dh
*/
static diffie_hellman_t* create_dh(private_keymat_t *this,
diffie_hellman_group_t group)
{
return lib->crypto->create_dh(lib->crypto, group);;
}
/**
* Implementation of keymat_t.derive_keys
*/
static bool derive_ike_keys(private_keymat_t *this, proposal_t *proposal,
diffie_hellman_t *dh, chunk_t nonce_i,
chunk_t nonce_r, ike_sa_id_t *id,
pseudo_random_function_t rekey_function,
chunk_t rekey_skd)
{
chunk_t skeyseed, key, secret, full_nonce, fixed_nonce, prf_plus_seed;
chunk_t spi_i, spi_r;
crypter_t *crypter_i, *crypter_r;
signer_t *signer_i, *signer_r;
prf_plus_t *prf_plus;
u_int16_t alg, key_size;
prf_t *rekey_prf = NULL;
spi_i = chunk_alloca(sizeof(u_int64_t));
spi_r = chunk_alloca(sizeof(u_int64_t));
if (dh->get_shared_secret(dh, &secret) != SUCCESS)
{
return FALSE;
}
/* Create SAs general purpose PRF first, we may use it here */
if (!proposal->get_algorithm(proposal, PSEUDO_RANDOM_FUNCTION, &alg, NULL))
{
DBG1(DBG_IKE, "no %N selected",
transform_type_names, PSEUDO_RANDOM_FUNCTION);
return FALSE;
}
this->prf_alg = alg;
this->prf = lib->crypto->create_prf(lib->crypto, alg);
if (this->prf == NULL)
{
DBG1(DBG_IKE, "%N %N not supported!",
transform_type_names, PSEUDO_RANDOM_FUNCTION,
pseudo_random_function_names, alg);
return FALSE;
}
DBG4(DBG_IKE, "shared Diffie Hellman secret %B", &secret);
/* full nonce is used as seed for PRF+ ... */
full_nonce = chunk_cat("cc", nonce_i, nonce_r);
/* but the PRF may need a fixed key which only uses the first bytes of
* the nonces. */
switch (alg)
{
case PRF_AES128_XCBC:
/* while rfc4434 defines variable keys for AES-XCBC, rfc3664 does
* not and therefore fixed key semantics apply to XCBC for key
* derivation. */
key_size = this->prf->get_key_size(this->prf)/2;
nonce_i.len = min(nonce_i.len, key_size);
nonce_r.len = min(nonce_r.len, key_size);
break;
default:
/* all other algorithms use variable key length, full nonce */
break;
}
fixed_nonce = chunk_cat("cc", nonce_i, nonce_r);
*((u_int64_t*)spi_i.ptr) = id->get_initiator_spi(id);
*((u_int64_t*)spi_r.ptr) = id->get_responder_spi(id);
prf_plus_seed = chunk_cat("ccc", full_nonce, spi_i, spi_r);
/* KEYMAT = prf+ (SKEYSEED, Ni | Nr | SPIi | SPIr)
*
* if we are rekeying, SKEYSEED is built on another way
*/
if (rekey_function == PRF_UNDEFINED) /* not rekeying */
{
/* SKEYSEED = prf(Ni | Nr, g^ir) */
this->prf->set_key(this->prf, fixed_nonce);
this->prf->allocate_bytes(this->prf, secret, &skeyseed);
this->prf->set_key(this->prf, skeyseed);
prf_plus = prf_plus_create(this->prf, prf_plus_seed);
}
else
{
/* SKEYSEED = prf(SK_d (old), [g^ir (new)] | Ni | Nr)
* use OLD SAs PRF functions for both prf_plus and prf */
rekey_prf = lib->crypto->create_prf(lib->crypto, rekey_function);
if (!rekey_prf)
{
DBG1(DBG_IKE, "PRF of old SA %N not supported!",
pseudo_random_function_names, rekey_function);
chunk_free(&full_nonce);
chunk_free(&fixed_nonce);
chunk_clear(&prf_plus_seed);
return FALSE;
}
secret = chunk_cat("mc", secret, full_nonce);
rekey_prf->set_key(rekey_prf, rekey_skd);
rekey_prf->allocate_bytes(rekey_prf, secret, &skeyseed);
rekey_prf->set_key(rekey_prf, skeyseed);
prf_plus = prf_plus_create(rekey_prf, prf_plus_seed);
}
DBG4(DBG_IKE, "SKEYSEED %B", &skeyseed);
chunk_clear(&skeyseed);
chunk_clear(&secret);
chunk_free(&full_nonce);
chunk_free(&fixed_nonce);
chunk_clear(&prf_plus_seed);
/* KEYMAT = SK_d | SK_ai | SK_ar | SK_ei | SK_er | SK_pi | SK_pr */
/* SK_d is used for generating CHILD_SA key mat => store for later use */
key_size = this->prf->get_key_size(this->prf);
prf_plus->allocate_bytes(prf_plus, key_size, &this->skd);
DBG4(DBG_IKE, "Sk_d secret %B", &this->skd);
/* SK_ai/SK_ar used for integrity protection => signer_in/signer_out */
if (!proposal->get_algorithm(proposal, INTEGRITY_ALGORITHM, &alg, NULL))
{
DBG1(DBG_IKE, "no %N selected",
transform_type_names, INTEGRITY_ALGORITHM);
prf_plus->destroy(prf_plus);
DESTROY_IF(rekey_prf);
return FALSE;
}
signer_i = lib->crypto->create_signer(lib->crypto, alg);
signer_r = lib->crypto->create_signer(lib->crypto, alg);
if (signer_i == NULL || signer_r == NULL)
{
DBG1(DBG_IKE, "%N %N not supported!",
transform_type_names, INTEGRITY_ALGORITHM,
integrity_algorithm_names ,alg);
prf_plus->destroy(prf_plus);
DESTROY_IF(rekey_prf);
return FALSE;
}
key_size = signer_i->get_key_size(signer_i);
prf_plus->allocate_bytes(prf_plus, key_size, &key);
DBG4(DBG_IKE, "Sk_ai secret %B", &key);
signer_i->set_key(signer_i, key);
chunk_clear(&key);
prf_plus->allocate_bytes(prf_plus, key_size, &key);
DBG4(DBG_IKE, "Sk_ar secret %B", &key);
signer_r->set_key(signer_r, key);
chunk_clear(&key);
if (this->initiator)
{
this->signer_in = signer_r;
this->signer_out = signer_i;
}
else
{
this->signer_in = signer_i;
this->signer_out = signer_r;
}
/* SK_ei/SK_er used for encryption => crypter_in/crypter_out */
if (!proposal->get_algorithm(proposal, ENCRYPTION_ALGORITHM, &alg, &key_size))
{
DBG1(DBG_IKE, "no %N selected",
transform_type_names, ENCRYPTION_ALGORITHM);
prf_plus->destroy(prf_plus);
DESTROY_IF(rekey_prf);
return FALSE;
}
crypter_i = lib->crypto->create_crypter(lib->crypto, alg, key_size / 8);
crypter_r = lib->crypto->create_crypter(lib->crypto, alg, key_size / 8);
if (crypter_i == NULL || crypter_r == NULL)
{
DBG1(DBG_IKE, "%N %N (key size %d) not supported!",
transform_type_names, ENCRYPTION_ALGORITHM,
encryption_algorithm_names, alg, key_size);
prf_plus->destroy(prf_plus);
DESTROY_IF(rekey_prf);
return FALSE;
}
key_size = crypter_i->get_key_size(crypter_i);
prf_plus->allocate_bytes(prf_plus, key_size, &key);
DBG4(DBG_IKE, "Sk_ei secret %B", &key);
crypter_i->set_key(crypter_i, key);
chunk_clear(&key);
prf_plus->allocate_bytes(prf_plus, key_size, &key);
DBG4(DBG_IKE, "Sk_er secret %B", &key);
crypter_r->set_key(crypter_r, key);
chunk_clear(&key);
if (this->initiator)
{
this->crypter_in = crypter_r;
this->crypter_out = crypter_i;
}
else
{
this->crypter_in = crypter_i;
this->crypter_out = crypter_r;
}
/* SK_pi/SK_pr used for authentication => stored for later */
key_size = this->prf->get_key_size(this->prf);
prf_plus->allocate_bytes(prf_plus, key_size, &key);
DBG4(DBG_IKE, "Sk_pi secret %B", &key);
if (this->initiator)
{
this->skp_build = key;
}
else
{
this->skp_verify = key;
}
prf_plus->allocate_bytes(prf_plus, key_size, &key);
DBG4(DBG_IKE, "Sk_pr secret %B", &key);
if (this->initiator)
{
this->skp_verify = key;
}
else
{
this->skp_build = key;
}
/* all done, prf_plus not needed anymore */
prf_plus->destroy(prf_plus);
DESTROY_IF(rekey_prf);
return TRUE;
}
/**
* Implementation of keymat_t.derive_child_keys
*/
static bool derive_child_keys(private_keymat_t *this,
proposal_t *proposal, diffie_hellman_t *dh,
chunk_t nonce_i, chunk_t nonce_r,
chunk_t *encr_i, chunk_t *integ_i,
chunk_t *encr_r, chunk_t *integ_r)
{
u_int16_t enc_alg, int_alg, enc_size = 0, int_size = 0;
chunk_t seed, secret = chunk_empty;
prf_plus_t *prf_plus;
if (dh)
{
if (dh->get_shared_secret(dh, &secret) != SUCCESS)
{
return FALSE;
}
DBG4(DBG_CHD, "DH secret %B", &secret);
}
seed = chunk_cata("mcc", secret, nonce_i, nonce_r);
DBG4(DBG_CHD, "seed %B", &seed);
if (proposal->get_algorithm(proposal, ENCRYPTION_ALGORITHM,
&enc_alg, &enc_size))
{
DBG2(DBG_CHD, " using %N for encryption",
encryption_algorithm_names, enc_alg);
if (!enc_size)
{
enc_size = lookup_keylen(keylen_enc, enc_alg);
}
if (enc_alg != ENCR_NULL && !enc_size)
{
DBG1(DBG_CHD, "no keylength defined for %N",
encryption_algorithm_names, enc_alg);
return FALSE;
}
/* to bytes */
enc_size /= 8;
/* CCM/GCM/CTR/GMAC needs additional bytes */
switch (enc_alg)
{
case ENCR_AES_CCM_ICV8:
case ENCR_AES_CCM_ICV12:
case ENCR_AES_CCM_ICV16:
case ENCR_CAMELLIA_CCM_ICV8:
case ENCR_CAMELLIA_CCM_ICV12:
case ENCR_CAMELLIA_CCM_ICV16:
enc_size += 3;
break;
case ENCR_AES_GCM_ICV8:
case ENCR_AES_GCM_ICV12:
case ENCR_AES_GCM_ICV16:
case ENCR_AES_CTR:
case ENCR_NULL_AUTH_AES_GMAC:
enc_size += 4;
break;
default:
break;
}
}
if (proposal->get_algorithm(proposal, INTEGRITY_ALGORITHM,
&int_alg, &int_size))
{
DBG2(DBG_CHD, " using %N for integrity",
integrity_algorithm_names, int_alg);
if (!int_size)
{
int_size = lookup_keylen(keylen_int, int_alg);
}
if (!int_size)
{
DBG1(DBG_CHD, "no keylength defined for %N",
integrity_algorithm_names, int_alg);
return FALSE;
}
/* to bytes */
int_size /= 8;
}
this->prf->set_key(this->prf, this->skd);
prf_plus = prf_plus_create(this->prf, seed);
prf_plus->allocate_bytes(prf_plus, enc_size, encr_i);
prf_plus->allocate_bytes(prf_plus, int_size, integ_i);
prf_plus->allocate_bytes(prf_plus, enc_size, encr_r);
prf_plus->allocate_bytes(prf_plus, int_size, integ_r);
prf_plus->destroy(prf_plus);
if (enc_size)
{
DBG4(DBG_CHD, "encryption initiator key %B", encr_i);
DBG4(DBG_CHD, "encryption responder key %B", encr_r);
}
if (int_size)
{
DBG4(DBG_CHD, "integrity initiator key %B", integ_i);
DBG4(DBG_CHD, "integrity responder key %B", integ_r);
}
return TRUE;
}
/**
* Implementation of keymat_t.get_skd
*/
static pseudo_random_function_t get_skd(private_keymat_t *this, chunk_t *skd)
{
*skd = this->skd;
return this->prf_alg;
}
/**
* Implementation of keymat_t.get_signer
*/
static signer_t* get_signer(private_keymat_t *this, bool in)
{
return in ? this->signer_in : this->signer_out;
}
/**
* Implementation of keymat_t.get_crypter
*/
static crypter_t* get_crypter(private_keymat_t *this, bool in)
{
return in ? this->crypter_in : this->crypter_out;
}
/**
* Implementation of keymat_t.get_auth_octets
*/
static chunk_t get_auth_octets(private_keymat_t *this, bool verify,
chunk_t ike_sa_init, chunk_t nonce,
identification_t *id)
{
chunk_t chunk, idx, octets;
chunk_t skp;
skp = verify ? this->skp_verify : this->skp_build;
chunk = chunk_alloca(4);
memset(chunk.ptr, 0, chunk.len);
chunk.ptr[0] = id->get_type(id);
idx = chunk_cata("cc", chunk, id->get_encoding(id));
DBG3(DBG_IKE, "IDx' %B", &idx);
DBG3(DBG_IKE, "SK_p %B", &skp);
this->prf->set_key(this->prf, skp);
this->prf->allocate_bytes(this->prf, idx, &chunk);
octets = chunk_cat("ccm", ike_sa_init, nonce, chunk);
DBG3(DBG_IKE, "octets = message + nonce + prf(Sk_px, IDx') %B", &octets);
return octets;
}
/**
* Key pad for the AUTH method SHARED_KEY_MESSAGE_INTEGRITY_CODE.
*/
#define IKEV2_KEY_PAD "Key Pad for IKEv2"
#define IKEV2_KEY_PAD_LENGTH 17
/**
* Implementation of keymat_t.get_psk_sig
*/
static chunk_t get_psk_sig(private_keymat_t *this, bool verify,
chunk_t ike_sa_init, chunk_t nonce, chunk_t secret,
identification_t *id)
{
chunk_t key_pad, key, sig, octets;
if (!secret.len)
{ /* EAP uses SK_p if no MSK has been established */
secret = verify ? this->skp_verify : this->skp_build;
}
octets = get_auth_octets(this, verify, ike_sa_init, nonce, id);
/* AUTH = prf(prf(Shared Secret,"Key Pad for IKEv2"), <msg octets>) */
key_pad = chunk_create(IKEV2_KEY_PAD, IKEV2_KEY_PAD_LENGTH);
this->prf->set_key(this->prf, secret);
this->prf->allocate_bytes(this->prf, key_pad, &key);
this->prf->set_key(this->prf, key);
this->prf->allocate_bytes(this->prf, octets, &sig);
DBG4(DBG_IKE, "secret %B", &secret);
DBG4(DBG_IKE, "prf(secret, keypad) %B", &key);
DBG3(DBG_IKE, "AUTH = prf(prf(secret, keypad), octets) %B", &sig);
chunk_free(&octets);
chunk_free(&key);
return sig;
}
/**
* Implementation of keymat_t.destroy.
*/
static void destroy(private_keymat_t *this)
{
DESTROY_IF(this->signer_in);
DESTROY_IF(this->signer_out);
DESTROY_IF(this->crypter_in);
DESTROY_IF(this->crypter_out);
DESTROY_IF(this->prf);
chunk_clear(&this->skd);
chunk_clear(&this->skp_verify);
chunk_clear(&this->skp_build);
free(this);
}
/**
* See header
*/
keymat_t *keymat_create(bool initiator)
{
private_keymat_t *this = malloc_thing(private_keymat_t);
this->public.create_dh = (diffie_hellman_t*(*)(keymat_t*, diffie_hellman_group_t group))create_dh;
this->public.derive_ike_keys = (bool(*)(keymat_t*, proposal_t *proposal, diffie_hellman_t *dh, chunk_t nonce_i, chunk_t nonce_r, ike_sa_id_t *id, pseudo_random_function_t,chunk_t))derive_ike_keys;
this->public.derive_child_keys = (bool(*)(keymat_t*, proposal_t *proposal, diffie_hellman_t *dh, chunk_t nonce_i, chunk_t nonce_r, chunk_t *encr_i, chunk_t *integ_i, chunk_t *encr_r, chunk_t *integ_r))derive_child_keys;
this->public.get_skd = (pseudo_random_function_t(*)(keymat_t*, chunk_t *skd))get_skd;
this->public.get_signer = (signer_t*(*)(keymat_t*, bool in))get_signer;
this->public.get_crypter = (crypter_t*(*)(keymat_t*, bool in))get_crypter;
this->public.get_auth_octets = (chunk_t(*)(keymat_t *, bool verify, chunk_t ike_sa_init, chunk_t nonce, identification_t *id))get_auth_octets;
this->public.get_psk_sig = (chunk_t(*)(keymat_t*, bool verify, chunk_t ike_sa_init, chunk_t nonce, chunk_t secret, identification_t *id))get_psk_sig;
this->public.destroy = (void(*)(keymat_t*))destroy;
this->initiator = initiator;
this->signer_in = NULL;
this->signer_out = NULL;
this->crypter_in = NULL;
this->crypter_out = NULL;
this->prf = NULL;
this->prf_alg = PRF_UNDEFINED;
this->skd = chunk_empty;
this->skp_verify = chunk_empty;
this->skp_build = chunk_empty;
return &this->public;
}