strongswan/src/charon/config/proposal.c

947 lines
22 KiB
C

/*
* Copyright (C) 2008-2009 Tobias Brunner
* Copyright (C) 2006 Martin Willi
* Hochschule fuer Technik Rapperswil
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version. See <http://www.fsf.org/copyleft/gpl.txt>.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*/
#include <string.h>
#include "proposal.h"
#include <daemon.h>
#include <utils/linked_list.h>
#include <utils/identification.h>
#include <utils/lexparser.h>
#include <crypto/transform.h>
#include <crypto/prfs/prf.h>
#include <crypto/crypters/crypter.h>
#include <crypto/signers/signer.h>
#include <crypto/proposal/proposal_keywords.h>
ENUM(protocol_id_names, PROTO_NONE, PROTO_ESP,
"PROTO_NONE",
"IKE",
"AH",
"ESP",
);
ENUM(extended_sequence_numbers_names, NO_EXT_SEQ_NUMBERS, EXT_SEQ_NUMBERS,
"NO_EXT_SEQ",
"EXT_SEQ",
);
typedef struct private_proposal_t private_proposal_t;
typedef struct algorithm_t algorithm_t;
/**
* Private data of an proposal_t object
*/
struct private_proposal_t {
/**
* Public part
*/
proposal_t public;
/**
* protocol (ESP or AH)
*/
protocol_id_t protocol;
/**
* priority ordered list of encryption algorithms
*/
linked_list_t *encryption_algos;
/**
* priority ordered list of integrity algorithms
*/
linked_list_t *integrity_algos;
/**
* priority ordered list of pseudo random functions
*/
linked_list_t *prf_algos;
/**
* priority ordered list of dh groups
*/
linked_list_t *dh_groups;
/**
* priority ordered list of extended sequence number flags
*/
linked_list_t *esns;
/**
* senders SPI
*/
u_int64_t spi;
};
/**
* Struct used to store different kinds of algorithms.
*/
struct algorithm_t {
/**
* Value from an encryption_algorithm_t/integrity_algorithm_t/...
*/
u_int16_t algorithm;
/**
* the associated key size in bits, or zero if not needed
*/
u_int16_t key_size;
};
/**
* Add algorithm/keysize to a algorithm list
*/
static void add_algo(linked_list_t *list, u_int16_t algo, u_int16_t key_size)
{
algorithm_t *algo_key;
algo_key = malloc_thing(algorithm_t);
algo_key->algorithm = algo;
algo_key->key_size = key_size;
list->insert_last(list, (void*)algo_key);
}
/**
* Implements proposal_t.add_algorithm
*/
static void add_algorithm(private_proposal_t *this, transform_type_t type,
u_int16_t algo, u_int16_t key_size)
{
switch (type)
{
case ENCRYPTION_ALGORITHM:
add_algo(this->encryption_algos, algo, key_size);
break;
case INTEGRITY_ALGORITHM:
add_algo(this->integrity_algos, algo, key_size);
break;
case PSEUDO_RANDOM_FUNCTION:
add_algo(this->prf_algos, algo, key_size);
break;
case DIFFIE_HELLMAN_GROUP:
add_algo(this->dh_groups, algo, 0);
break;
case EXTENDED_SEQUENCE_NUMBERS:
add_algo(this->esns, algo, 0);
break;
default:
break;
}
}
/**
* filter function for peer configs
*/
static bool alg_filter(void *null, algorithm_t **in, u_int16_t *alg,
void **unused, u_int16_t *key_size)
{
algorithm_t *algo = *in;
*alg = algo->algorithm;
if (key_size)
{
*key_size = algo->key_size;
}
return TRUE;
}
/**
* Implements proposal_t.create_enumerator.
*/
static enumerator_t *create_enumerator(private_proposal_t *this,
transform_type_t type)
{
linked_list_t *list;
switch (type)
{
case ENCRYPTION_ALGORITHM:
list = this->encryption_algos;
break;
case INTEGRITY_ALGORITHM:
list = this->integrity_algos;
break;
case PSEUDO_RANDOM_FUNCTION:
list = this->prf_algos;
break;
case DIFFIE_HELLMAN_GROUP:
list = this->dh_groups;
break;
case EXTENDED_SEQUENCE_NUMBERS:
list = this->esns;
break;
default:
return NULL;
}
return enumerator_create_filter(list->create_enumerator(list),
(void*)alg_filter, NULL, NULL);
}
/**
* Implements proposal_t.get_algorithm.
*/
static bool get_algorithm(private_proposal_t *this, transform_type_t type,
u_int16_t *alg, u_int16_t *key_size)
{
enumerator_t *enumerator;
bool found = FALSE;
enumerator = create_enumerator(this, type);
if (enumerator->enumerate(enumerator, alg, key_size))
{
found = TRUE;
}
enumerator->destroy(enumerator);
return found;
}
/**
* Implements proposal_t.has_dh_group
*/
static bool has_dh_group(private_proposal_t *this, diffie_hellman_group_t group)
{
bool result = FALSE;
if (this->dh_groups->get_count(this->dh_groups))
{
algorithm_t *current;
enumerator_t *enumerator;
enumerator = this->dh_groups->create_enumerator(this->dh_groups);
while (enumerator->enumerate(enumerator, (void**)&current))
{
if (current->algorithm == group)
{
result = TRUE;
break;
}
}
enumerator->destroy(enumerator);
}
else if (group == MODP_NONE)
{
result = TRUE;
}
return result;
}
/**
* Implementation of proposal_t.strip_dh.
*/
static void strip_dh(private_proposal_t *this)
{
algorithm_t *alg;
while (this->dh_groups->remove_last(this->dh_groups, (void**)&alg) == SUCCESS)
{
free(alg);
}
}
/**
* Returns true if the given alg is an authenticated encryption algorithm
*/
static bool is_authenticated_encryption(u_int16_t alg)
{
switch(alg)
{
case ENCR_AES_CCM_ICV8:
case ENCR_AES_CCM_ICV12:
case ENCR_AES_CCM_ICV16:
case ENCR_AES_GCM_ICV8:
case ENCR_AES_GCM_ICV12:
case ENCR_AES_GCM_ICV16:
case ENCR_CAMELLIA_CCM_ICV8:
case ENCR_CAMELLIA_CCM_ICV12:
case ENCR_CAMELLIA_CCM_ICV16:
case ENCR_NULL_AUTH_AES_GMAC:
return TRUE;
}
return FALSE;
}
/**
* Find a matching alg/keysize in two linked lists
*/
static bool select_algo(linked_list_t *first, linked_list_t *second, bool priv,
bool *add, u_int16_t *alg, size_t *key_size)
{
enumerator_t *e1, *e2;
algorithm_t *alg1, *alg2;
/* if in both are zero algorithms specified, we HAVE a match */
if (first->get_count(first) == 0 && second->get_count(second) == 0)
{
*add = FALSE;
return TRUE;
}
e1 = first->create_enumerator(first);
e2 = second->create_enumerator(second);
/* compare algs, order of algs in "first" is preferred */
while (e1->enumerate(e1, &alg1))
{
e2->destroy(e2);
e2 = second->create_enumerator(second);
while (e2->enumerate(e2, &alg2))
{
if (alg1->algorithm == alg2->algorithm &&
alg1->key_size == alg2->key_size)
{
if (!priv && alg1->algorithm >= 1024)
{
/* accept private use algorithms only if requested */
DBG1(DBG_CFG, "an algorithm from private space would match, "
"but peer implementation is unknown, skipped");
continue;
}
/* ok, we have an algorithm */
*alg = alg1->algorithm;
*key_size = alg1->key_size;
*add = TRUE;
e1->destroy(e1);
e2->destroy(e2);
return TRUE;
}
}
}
/* no match in all comparisons */
e1->destroy(e1);
e2->destroy(e2);
return FALSE;
}
/**
* Implements proposal_t.select.
*/
static proposal_t *select_proposal(private_proposal_t *this,
private_proposal_t *other, bool private)
{
proposal_t *selected;
u_int16_t algo;
size_t key_size;
bool add;
DBG2(DBG_CFG, "selecting proposal:");
/* check protocol */
if (this->protocol != other->protocol)
{
DBG2(DBG_CFG, " protocol mismatch, skipping");
return NULL;
}
selected = proposal_create(this->protocol);
/* select encryption algorithm */
if (select_algo(this->encryption_algos, other->encryption_algos, private,
&add, &algo, &key_size))
{
if (add)
{
selected->add_algorithm(selected, ENCRYPTION_ALGORITHM,
algo, key_size);
}
}
else
{
selected->destroy(selected);
DBG2(DBG_CFG, " no acceptable %N found",
transform_type_names, ENCRYPTION_ALGORITHM);
return NULL;
}
/* select integrity algorithm */
if (!is_authenticated_encryption(algo))
{
if (select_algo(this->integrity_algos, other->integrity_algos, private,
&add, &algo, &key_size))
{
if (add)
{
selected->add_algorithm(selected, INTEGRITY_ALGORITHM,
algo, key_size);
}
}
else
{
selected->destroy(selected);
DBG2(DBG_CFG, " no acceptable %N found",
transform_type_names, INTEGRITY_ALGORITHM);
return NULL;
}
}
/* select prf algorithm */
if (select_algo(this->prf_algos, other->prf_algos, private,
&add, &algo, &key_size))
{
if (add)
{
selected->add_algorithm(selected, PSEUDO_RANDOM_FUNCTION,
algo, key_size);
}
}
else
{
selected->destroy(selected);
DBG2(DBG_CFG, " no acceptable %N found",
transform_type_names, PSEUDO_RANDOM_FUNCTION);
return NULL;
}
/* select a DH-group */
if (select_algo(this->dh_groups, other->dh_groups, private,
&add, &algo, &key_size))
{
if (add)
{
selected->add_algorithm(selected, DIFFIE_HELLMAN_GROUP, algo, 0);
}
}
else
{
selected->destroy(selected);
DBG2(DBG_CFG, " no acceptable %N found",
transform_type_names, DIFFIE_HELLMAN_GROUP);
return NULL;
}
/* select if we use ESNs (has no private use space) */
if (select_algo(this->esns, other->esns, TRUE, &add, &algo, &key_size))
{
if (add)
{
selected->add_algorithm(selected, EXTENDED_SEQUENCE_NUMBERS, algo, 0);
}
}
else
{
selected->destroy(selected);
DBG2(DBG_CFG, " no acceptable %N found",
transform_type_names, EXTENDED_SEQUENCE_NUMBERS);
return NULL;
}
DBG2(DBG_CFG, " proposal matches");
/* apply SPI from "other" */
selected->set_spi(selected, other->spi);
/* everything matched, return new proposal */
return selected;
}
/**
* Implements proposal_t.get_protocols.
*/
static protocol_id_t get_protocol(private_proposal_t *this)
{
return this->protocol;
}
/**
* Implements proposal_t.set_spi.
*/
static void set_spi(private_proposal_t *this, u_int64_t spi)
{
this->spi = spi;
}
/**
* Implements proposal_t.get_spi.
*/
static u_int64_t get_spi(private_proposal_t *this)
{
return this->spi;
}
/**
* Clone a algorithm list
*/
static void clone_algo_list(linked_list_t *list, linked_list_t *clone_list)
{
algorithm_t *algo, *clone_algo;
enumerator_t *enumerator;
enumerator = list->create_enumerator(list);
while (enumerator->enumerate(enumerator, &algo))
{
clone_algo = malloc_thing(algorithm_t);
memcpy(clone_algo, algo, sizeof(algorithm_t));
clone_list->insert_last(clone_list, (void*)clone_algo);
}
enumerator->destroy(enumerator);
}
/**
* check if an algorithm list equals
*/
static bool algo_list_equals(linked_list_t *l1, linked_list_t *l2)
{
enumerator_t *e1, *e2;
algorithm_t *alg1, *alg2;
bool equals = TRUE;
if (l1->get_count(l1) != l2->get_count(l2))
{
return FALSE;
}
e1 = l1->create_enumerator(l1);
e2 = l2->create_enumerator(l2);
while (e1->enumerate(e1, &alg1) && e2->enumerate(e2, &alg2))
{
if (alg1->algorithm != alg2->algorithm ||
alg1->key_size != alg2->key_size)
{
equals = FALSE;
break;
}
}
e1->destroy(e1);
e2->destroy(e2);
return equals;
}
/**
* Implementation of proposal_t.equals.
*/
static bool equals(private_proposal_t *this, private_proposal_t *other)
{
if (this == other)
{
return TRUE;
}
if (this->public.equals != other->public.equals)
{
return FALSE;
}
return (
algo_list_equals(this->encryption_algos, other->encryption_algos) &&
algo_list_equals(this->integrity_algos, other->integrity_algos) &&
algo_list_equals(this->prf_algos, other->prf_algos) &&
algo_list_equals(this->dh_groups, other->dh_groups) &&
algo_list_equals(this->esns, other->esns));
}
/**
* Implements proposal_t.clone
*/
static proposal_t *clone_(private_proposal_t *this)
{
private_proposal_t *clone = (private_proposal_t*)proposal_create(this->protocol);
clone_algo_list(this->encryption_algos, clone->encryption_algos);
clone_algo_list(this->integrity_algos, clone->integrity_algos);
clone_algo_list(this->prf_algos, clone->prf_algos);
clone_algo_list(this->dh_groups, clone->dh_groups);
clone_algo_list(this->esns, clone->esns);
clone->spi = this->spi;
return &clone->public;
}
/**
* Checks the proposal read from a string.
*/
static void check_proposal(private_proposal_t *this)
{
enumerator_t *e;
algorithm_t *alg;
bool all_aead = TRUE;
e = this->encryption_algos->create_enumerator(this->encryption_algos);
while (e->enumerate(e, &alg))
{
if (!is_authenticated_encryption(alg->algorithm))
{
all_aead = FALSE;
break;
}
}
e->destroy(e);
if (all_aead)
{
/* if all encryption algorithms in the proposal are authenticated encryption
* algorithms we MUST NOT propose any integrity algorithms */
while (this->integrity_algos->remove_last(this->integrity_algos,
(void**)&alg) == SUCCESS)
{
free(alg);
}
}
}
/**
* add a algorithm identified by a string to the proposal.
*/
static status_t add_string_algo(private_proposal_t *this, chunk_t alg)
{
const proposal_token_t *token = proposal_get_token(alg.ptr, alg.len);
if (token == NULL)
{
return FAILED;
}
add_algorithm(this, token->type, token->algorithm, token->keysize);
if (this->protocol == PROTO_IKE && token->type == INTEGRITY_ALGORITHM)
{
pseudo_random_function_t prf;
switch (token->algorithm)
{
case AUTH_HMAC_SHA1_96:
prf = PRF_HMAC_SHA1;
break;
case AUTH_HMAC_SHA2_256_128:
prf = PRF_HMAC_SHA2_256;
break;
case AUTH_HMAC_SHA2_384_192:
prf = PRF_HMAC_SHA2_384;
break;
case AUTH_HMAC_SHA2_512_256:
prf = PRF_HMAC_SHA2_512;
break;
case AUTH_HMAC_MD5_96:
prf = PRF_HMAC_MD5;
break;
case AUTH_AES_XCBC_96:
prf = PRF_AES128_XCBC;
break;
default:
prf = PRF_UNDEFINED;
}
if (prf != PRF_UNDEFINED)
{
add_algorithm(this, PSEUDO_RANDOM_FUNCTION, prf, 0);
}
}
return SUCCESS;
}
/**
* print all algorithms of a kind to buffer
*/
static int print_alg(private_proposal_t *this, char **dst, size_t *len,
u_int kind, void *names, bool *first)
{
enumerator_t *enumerator;
size_t written = 0;
u_int16_t alg, size;
enumerator = create_enumerator(this, kind);
while (enumerator->enumerate(enumerator, &alg, &size))
{
if (*first)
{
written += print_in_hook(*dst, *len, "%N", names, alg);
*first = FALSE;
}
else
{
written += print_in_hook(*dst, *len, "/%N", names, alg);
}
if (size)
{
written += print_in_hook(*dst, *len, "_%u", size);
}
}
enumerator->destroy(enumerator);
return written;
}
/**
* Described in header.
*/
int proposal_printf_hook(char *dst, size_t len, printf_hook_spec_t *spec,
const void *const *args)
{
private_proposal_t *this = *((private_proposal_t**)(args[0]));
linked_list_t *list = *((linked_list_t**)(args[0]));
enumerator_t *enumerator;
size_t written = 0;
bool first = TRUE;
if (this == NULL)
{
return print_in_hook(dst, len, "(null)");
}
if (spec->hash)
{
enumerator = list->create_enumerator(list);
while (enumerator->enumerate(enumerator, &this))
{ /* call recursivly */
if (first)
{
written += print_in_hook(dst, len, "%P", this);
first = FALSE;
}
else
{
written += print_in_hook(dst, len, ", %P", this);
}
}
enumerator->destroy(enumerator);
return written;
}
written = print_in_hook(dst, len, "%N:", protocol_id_names, this->protocol);
written += print_alg(this, &dst, &len, ENCRYPTION_ALGORITHM,
encryption_algorithm_names, &first);
written += print_alg(this, &dst, &len, INTEGRITY_ALGORITHM,
integrity_algorithm_names, &first);
written += print_alg(this, &dst, &len, PSEUDO_RANDOM_FUNCTION,
pseudo_random_function_names, &first);
written += print_alg(this, &dst, &len, DIFFIE_HELLMAN_GROUP,
diffie_hellman_group_names, &first);
written += print_alg(this, &dst, &len, EXTENDED_SEQUENCE_NUMBERS,
extended_sequence_numbers_names, &first);
return written;
}
/**
* Implements proposal_t.destroy.
*/
static void destroy(private_proposal_t *this)
{
this->encryption_algos->destroy_function(this->encryption_algos, free);
this->integrity_algos->destroy_function(this->integrity_algos, free);
this->prf_algos->destroy_function(this->prf_algos, free);
this->dh_groups->destroy_function(this->dh_groups, free);
this->esns->destroy_function(this->esns, free);
free(this);
}
/*
* Describtion in header-file
*/
proposal_t *proposal_create(protocol_id_t protocol)
{
private_proposal_t *this = malloc_thing(private_proposal_t);
this->public.add_algorithm = (void (*)(proposal_t*,transform_type_t,u_int16_t,u_int16_t))add_algorithm;
this->public.create_enumerator = (enumerator_t* (*)(proposal_t*,transform_type_t))create_enumerator;
this->public.get_algorithm = (bool (*)(proposal_t*,transform_type_t,u_int16_t*,u_int16_t*))get_algorithm;
this->public.has_dh_group = (bool (*)(proposal_t*,diffie_hellman_group_t))has_dh_group;
this->public.strip_dh = (void(*)(proposal_t*))strip_dh;
this->public.select = (proposal_t* (*)(proposal_t*,proposal_t*,bool))select_proposal;
this->public.get_protocol = (protocol_id_t(*)(proposal_t*))get_protocol;
this->public.set_spi = (void(*)(proposal_t*,u_int64_t))set_spi;
this->public.get_spi = (u_int64_t(*)(proposal_t*))get_spi;
this->public.equals = (bool(*)(proposal_t*, proposal_t *other))equals;
this->public.clone = (proposal_t*(*)(proposal_t*))clone_;
this->public.destroy = (void(*)(proposal_t*))destroy;
this->spi = 0;
this->protocol = protocol;
this->encryption_algos = linked_list_create();
this->integrity_algos = linked_list_create();
this->prf_algos = linked_list_create();
this->dh_groups = linked_list_create();
this->esns = linked_list_create();
return &this->public;
}
/**
* Add supported IKE algorithms to proposal
*/
static void proposal_add_supported_ike(private_proposal_t *this)
{
enumerator_t *enumerator;
encryption_algorithm_t encryption;
integrity_algorithm_t integrity;
pseudo_random_function_t prf;
diffie_hellman_group_t group;
enumerator = lib->crypto->create_crypter_enumerator(lib->crypto);
while (enumerator->enumerate(enumerator, &encryption))
{
switch (encryption)
{
case ENCR_AES_CBC:
/* we assume that we support all AES sizes */
add_algorithm(this, ENCRYPTION_ALGORITHM, encryption, 128);
add_algorithm(this, ENCRYPTION_ALGORITHM, encryption, 192);
add_algorithm(this, ENCRYPTION_ALGORITHM, encryption, 256);
break;
case ENCR_3DES:
case ENCR_AES_CTR:
case ENCR_AES_CCM_ICV8:
case ENCR_AES_CCM_ICV12:
case ENCR_AES_CCM_ICV16:
case ENCR_AES_GCM_ICV8:
case ENCR_AES_GCM_ICV12:
case ENCR_AES_GCM_ICV16:
add_algorithm(this, ENCRYPTION_ALGORITHM, encryption, 0);
break;
case ENCR_DES:
/* no, thanks */
break;
default:
break;
}
}
enumerator->destroy(enumerator);
enumerator = lib->crypto->create_signer_enumerator(lib->crypto);
while (enumerator->enumerate(enumerator, &integrity))
{
switch (integrity)
{
case AUTH_HMAC_SHA1_96:
case AUTH_HMAC_SHA2_256_128:
case AUTH_HMAC_SHA2_384_192:
case AUTH_HMAC_SHA2_512_256:
case AUTH_HMAC_MD5_96:
case AUTH_AES_XCBC_96:
add_algorithm(this, INTEGRITY_ALGORITHM, integrity, 0);
break;
default:
break;
}
}
enumerator->destroy(enumerator);
enumerator = lib->crypto->create_prf_enumerator(lib->crypto);
while (enumerator->enumerate(enumerator, &prf))
{
switch (prf)
{
case PRF_HMAC_SHA1:
case PRF_HMAC_SHA2_256:
case PRF_HMAC_SHA2_384:
case PRF_HMAC_SHA2_512:
case PRF_HMAC_MD5:
case PRF_AES128_XCBC:
add_algorithm(this, PSEUDO_RANDOM_FUNCTION, prf, 0);
break;
default:
break;
}
}
enumerator->destroy(enumerator);
enumerator = lib->crypto->create_dh_enumerator(lib->crypto);
while (enumerator->enumerate(enumerator, &group))
{
switch (group)
{
case MODP_NULL:
/* only for testing purposes */
break;
case MODP_768_BIT:
/* weak */
break;
case MODP_1024_BIT:
case MODP_1536_BIT:
case MODP_2048_BIT:
case MODP_4096_BIT:
case MODP_8192_BIT:
case ECP_256_BIT:
case ECP_384_BIT:
case ECP_521_BIT:
case ECP_192_BIT:
case ECP_224_BIT:
add_algorithm(this, DIFFIE_HELLMAN_GROUP, group, 0);
break;
default:
break;
}
}
enumerator->destroy(enumerator);
}
/*
* Describtion in header-file
*/
proposal_t *proposal_create_default(protocol_id_t protocol)
{
private_proposal_t *this = (private_proposal_t*)proposal_create(protocol);
switch (protocol)
{
case PROTO_IKE:
proposal_add_supported_ike(this);
break;
case PROTO_ESP:
add_algorithm(this, ENCRYPTION_ALGORITHM, ENCR_AES_CBC, 128);
add_algorithm(this, ENCRYPTION_ALGORITHM, ENCR_AES_CBC, 192);
add_algorithm(this, ENCRYPTION_ALGORITHM, ENCR_AES_CBC, 256);
add_algorithm(this, ENCRYPTION_ALGORITHM, ENCR_3DES, 0);
add_algorithm(this, ENCRYPTION_ALGORITHM, ENCR_BLOWFISH, 256);
add_algorithm(this, INTEGRITY_ALGORITHM, AUTH_HMAC_SHA1_96, 0);
add_algorithm(this, INTEGRITY_ALGORITHM, AUTH_AES_XCBC_96, 0);
add_algorithm(this, INTEGRITY_ALGORITHM, AUTH_HMAC_MD5_96, 0);
add_algorithm(this, EXTENDED_SEQUENCE_NUMBERS, NO_EXT_SEQ_NUMBERS, 0);
break;
case PROTO_AH:
add_algorithm(this, INTEGRITY_ALGORITHM, AUTH_HMAC_SHA1_96, 0);
add_algorithm(this, INTEGRITY_ALGORITHM, AUTH_AES_XCBC_96, 0);
add_algorithm(this, INTEGRITY_ALGORITHM, AUTH_HMAC_MD5_96, 0);
add_algorithm(this, EXTENDED_SEQUENCE_NUMBERS, NO_EXT_SEQ_NUMBERS, 0);
break;
default:
break;
}
return &this->public;
}
/*
* Describtion in header-file
*/
proposal_t *proposal_create_from_string(protocol_id_t protocol, const char *algs)
{
private_proposal_t *this = (private_proposal_t*)proposal_create(protocol);
chunk_t string = {(void*)algs, strlen(algs)};
chunk_t alg;
status_t status = SUCCESS;
eat_whitespace(&string);
if (string.len < 1)
{
destroy(this);
return NULL;
}
/* get all tokens, separated by '-' */
while (extract_token(&alg, '-', &string))
{
status |= add_string_algo(this, alg);
}
if (string.len)
{
status |= add_string_algo(this, string);
}
if (status != SUCCESS)
{
destroy(this);
return NULL;
}
check_proposal(this);
if (protocol == PROTO_AH || protocol == PROTO_ESP)
{
add_algorithm(this, EXTENDED_SEQUENCE_NUMBERS, NO_EXT_SEQ_NUMBERS, 0);
}
return &this->public;
}