strongswan/src/charon/plugins/kernel_pfkey/kernel_pfkey_ipsec.c

2214 lines
60 KiB
C

/*
* Copyright (C) 2008-2009 Tobias Brunner
* Copyright (C) 2008 Andreas Steffen
* Hochschule fuer Technik Rapperswil
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version. See <http://www.fsf.org/copyleft/gpl.txt>.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*/
#include <sys/types.h>
#include <sys/socket.h>
#ifdef __FreeBSD__
#include <limits.h> /* for LONG_MAX */
#endif
#ifdef HAVE_NET_PFKEYV2_H
#include <net/pfkeyv2.h>
#else
#include <stdint.h>
#include <linux/pfkeyv2.h>
#endif
#ifdef SADB_X_EXT_NAT_T_TYPE
#define HAVE_NATT
#endif
#ifdef HAVE_NETIPSEC_IPSEC_H
#include <netipsec/ipsec.h>
#elif defined(HAVE_NETINET6_IPSEC_H)
#include <netinet6/ipsec.h>
#else
#include <linux/ipsec.h>
#endif
#ifdef HAVE_NATT
#ifdef HAVE_LINUX_UDP_H
#include <linux/udp.h>
#else
#include <netinet/udp.h>
#endif /*HAVE_LINUX_UDP_H*/
#endif /*HAVE_NATT*/
#include <unistd.h>
#include <pthread.h>
#include <errno.h>
#include "kernel_pfkey_ipsec.h"
#include <daemon.h>
#include <utils/host.h>
#include <utils/mutex.h>
#include <processing/jobs/callback_job.h>
#include <processing/jobs/acquire_job.h>
#include <processing/jobs/migrate_job.h>
#include <processing/jobs/rekey_child_sa_job.h>
#include <processing/jobs/delete_child_sa_job.h>
#include <processing/jobs/update_sa_job.h>
/** non linux specific */
#ifndef IPPROTO_COMP
#define IPPROTO_COMP IPPROTO_IPCOMP
#endif
#ifndef SADB_X_AALG_SHA2_256HMAC
#define SADB_X_AALG_SHA2_256HMAC SADB_X_AALG_SHA2_256
#define SADB_X_AALG_SHA2_384HMAC SADB_X_AALG_SHA2_384
#define SADB_X_AALG_SHA2_512HMAC SADB_X_AALG_SHA2_512
#endif
#ifndef SADB_X_EALG_AESCBC
#define SADB_X_EALG_AESCBC SADB_X_EALG_AES
#endif
#ifndef SADB_X_EALG_CASTCBC
#define SADB_X_EALG_CASTCBC SADB_X_EALG_CAST128CBC
#endif
#ifndef SOL_IP
#define SOL_IP IPPROTO_IP
#define SOL_IPV6 IPPROTO_IPV6
#endif
/** from linux/in.h */
#ifndef IP_IPSEC_POLICY
#define IP_IPSEC_POLICY 16
#endif
/** missing on uclibc */
#ifndef IPV6_IPSEC_POLICY
#define IPV6_IPSEC_POLICY 34
#endif
/** default priority of installed policies */
#define PRIO_LOW 3000
#define PRIO_HIGH 2000
#ifdef __APPLE__
/** from xnu/bsd/net/pfkeyv2.h */
#define SADB_X_EXT_NATT 0x002
struct sadb_sa_2 {
struct sadb_sa sa;
u_int16_t sadb_sa_natt_port;
u_int16_t sadb_reserved0;
u_int32_t sadb_reserved1;
};
#endif
/** buffer size for PF_KEY messages */
#define PFKEY_BUFFER_SIZE 4096
/** PF_KEY messages are 64 bit aligned */
#define PFKEY_ALIGNMENT 8
/** aligns len to 64 bits */
#define PFKEY_ALIGN(len) (((len) + PFKEY_ALIGNMENT - 1) & ~(PFKEY_ALIGNMENT - 1))
/** calculates the properly padded length in 64 bit chunks */
#define PFKEY_LEN(len) ((PFKEY_ALIGN(len) / PFKEY_ALIGNMENT))
/** calculates user mode length i.e. in bytes */
#define PFKEY_USER_LEN(len) ((len) * PFKEY_ALIGNMENT)
/** given a PF_KEY message header and an extension this updates the length in the header */
#define PFKEY_EXT_ADD(msg, ext) ((msg)->sadb_msg_len += ((struct sadb_ext*)ext)->sadb_ext_len)
/** given a PF_KEY message header this returns a pointer to the next extension */
#define PFKEY_EXT_ADD_NEXT(msg) ((struct sadb_ext*)(((char*)(msg)) + PFKEY_USER_LEN((msg)->sadb_msg_len)))
/** copy an extension and append it to a PF_KEY message */
#define PFKEY_EXT_COPY(msg, ext) (PFKEY_EXT_ADD(msg, memcpy(PFKEY_EXT_ADD_NEXT(msg), ext, PFKEY_USER_LEN(((struct sadb_ext*)ext)->sadb_ext_len))))
/** given a PF_KEY extension this returns a pointer to the next extension */
#define PFKEY_EXT_NEXT(ext) ((struct sadb_ext*)(((char*)(ext)) + PFKEY_USER_LEN(((struct sadb_ext*)ext)->sadb_ext_len)))
/** given a PF_KEY extension this returns a pointer to the next extension also updates len (len in 64 bit words) */
#define PFKEY_EXT_NEXT_LEN(ext,len) ((len) -= (ext)->sadb_ext_len, PFKEY_EXT_NEXT(ext))
/** true if ext has a valid length and len is large enough to contain ext (assuming len in 64 bit words) */
#define PFKEY_EXT_OK(ext,len) ((len) >= PFKEY_LEN(sizeof(struct sadb_ext)) && \
(ext)->sadb_ext_len >= PFKEY_LEN(sizeof(struct sadb_ext)) && \
(ext)->sadb_ext_len <= (len))
typedef struct private_kernel_pfkey_ipsec_t private_kernel_pfkey_ipsec_t;
/**
* Private variables and functions of kernel_pfkey class.
*/
struct private_kernel_pfkey_ipsec_t
{
/**
* Public part of the kernel_pfkey_t object.
*/
kernel_pfkey_ipsec_t public;
/**
* mutex to lock access to various lists
*/
mutex_t *mutex;
/**
* List of installed policies (policy_entry_t)
*/
linked_list_t *policies;
/**
* whether to install routes along policies
*/
bool install_routes;
/**
* job receiving PF_KEY events
*/
callback_job_t *job;
/**
* mutex to lock access to the PF_KEY socket
*/
mutex_t *mutex_pfkey;
/**
* PF_KEY socket to communicate with the kernel
*/
int socket;
/**
* PF_KEY socket to receive acquire and expire events
*/
int socket_events;
/**
* sequence number for messages sent to the kernel
*/
int seq;
};
typedef struct route_entry_t route_entry_t;
/**
* installed routing entry
*/
struct route_entry_t {
/** Name of the interface the route is bound to */
char *if_name;
/** Source ip of the route */
host_t *src_ip;
/** gateway for this route */
host_t *gateway;
/** Destination net */
chunk_t dst_net;
/** Destination net prefixlen */
u_int8_t prefixlen;
};
/**
* destroy an route_entry_t object
*/
static void route_entry_destroy(route_entry_t *this)
{
free(this->if_name);
DESTROY_IF(this->src_ip);
DESTROY_IF(this->gateway);
chunk_free(&this->dst_net);
free(this);
}
typedef struct policy_entry_t policy_entry_t;
/**
* installed kernel policy.
*/
struct policy_entry_t {
/** reqid of this policy */
u_int32_t reqid;
/** index assigned by the kernel */
u_int32_t index;
/** direction of this policy: in, out, forward */
u_int8_t direction;
/** parameters of installed policy */
struct {
/** subnet and port */
host_t *net;
/** subnet mask */
u_int8_t mask;
/** protocol */
u_int8_t proto;
} src, dst;
/** associated route installed for this policy */
route_entry_t *route;
/** by how many CHILD_SA's this policy is used */
u_int refcount;
};
/**
* create a policy_entry_t object
*/
static policy_entry_t *create_policy_entry(traffic_selector_t *src_ts,
traffic_selector_t *dst_ts, policy_dir_t dir, u_int32_t reqid)
{
policy_entry_t *policy = malloc_thing(policy_entry_t);
policy->reqid = reqid;
policy->index = 0;
policy->direction = dir;
policy->route = NULL;
policy->refcount = 0;
src_ts->to_subnet(src_ts, &policy->src.net, &policy->src.mask);
dst_ts->to_subnet(dst_ts, &policy->dst.net, &policy->dst.mask);
/* src or dest proto may be "any" (0), use more restrictive one */
policy->src.proto = max(src_ts->get_protocol(src_ts), dst_ts->get_protocol(dst_ts));
policy->src.proto = policy->src.proto ? policy->src.proto : IPSEC_PROTO_ANY;
policy->dst.proto = policy->src.proto;
return policy;
}
/**
* destroy a policy_entry_t object
*/
static void policy_entry_destroy(policy_entry_t *this)
{
DESTROY_IF(this->src.net);
DESTROY_IF(this->dst.net);
if (this->route)
{
route_entry_destroy(this->route);
}
free(this);
}
/**
* compares two policy_entry_t
*/
static inline bool policy_entry_equals(policy_entry_t *current, policy_entry_t *policy)
{
return current->direction == policy->direction &&
current->src.proto == policy->src.proto &&
current->dst.proto == policy->dst.proto &&
current->src.mask == policy->src.mask &&
current->dst.mask == policy->dst.mask &&
current->src.net->equals(current->src.net, policy->src.net) &&
current->dst.net->equals(current->dst.net, policy->dst.net);
}
/**
* compare the given kernel index with that of a policy
*/
static inline bool policy_entry_match_byindex(policy_entry_t *current, u_int32_t *index)
{
return current->index == *index;
}
typedef struct pfkey_msg_t pfkey_msg_t;
struct pfkey_msg_t
{
/**
* PF_KEY message base
*/
struct sadb_msg *msg;
/**
* PF_KEY message extensions
*/
union {
struct sadb_ext *ext[SADB_EXT_MAX + 1];
struct {
struct sadb_ext *reserved; /* SADB_EXT_RESERVED */
struct sadb_sa *sa; /* SADB_EXT_SA */
struct sadb_lifetime *lft_current; /* SADB_EXT_LIFETIME_CURRENT */
struct sadb_lifetime *lft_hard; /* SADB_EXT_LIFETIME_HARD */
struct sadb_lifetime *lft_soft; /* SADB_EXT_LIFETIME_SOFT */
struct sadb_address *src; /* SADB_EXT_ADDRESS_SRC */
struct sadb_address *dst; /* SADB_EXT_ADDRESS_DST */
struct sadb_address *proxy; /* SADB_EXT_ADDRESS_PROXY */
struct sadb_key *key_auth; /* SADB_EXT_KEY_AUTH */
struct sadb_key *key_encr; /* SADB_EXT_KEY_ENCRYPT */
struct sadb_ident *id_src; /* SADB_EXT_IDENTITY_SRC */
struct sadb_ident *id_dst; /* SADB_EXT_IDENTITY_DST */
struct sadb_sens *sensitivity; /* SADB_EXT_SENSITIVITY */
struct sadb_prop *proposal; /* SADB_EXT_PROPOSAL */
struct sadb_supported *supported_auth; /* SADB_EXT_SUPPORTED_AUTH */
struct sadb_supported *supported_encr; /* SADB_EXT_SUPPORTED_ENCRYPT */
struct sadb_spirange *spirange; /* SADB_EXT_SPIRANGE */
struct sadb_x_kmprivate *x_kmprivate; /* SADB_X_EXT_KMPRIVATE */
struct sadb_x_policy *x_policy; /* SADB_X_EXT_POLICY */
struct sadb_x_sa2 *x_sa2; /* SADB_X_EXT_SA2 */
struct sadb_x_nat_t_type *x_natt_type; /* SADB_X_EXT_NAT_T_TYPE */
struct sadb_x_nat_t_port *x_natt_sport; /* SADB_X_EXT_NAT_T_SPORT */
struct sadb_x_nat_t_port *x_natt_dport; /* SADB_X_EXT_NAT_T_DPORT */
struct sadb_address *x_natt_oa; /* SADB_X_EXT_NAT_T_OA */
struct sadb_x_sec_ctx *x_sec_ctx; /* SADB_X_EXT_SEC_CTX */
struct sadb_x_kmaddress *x_kmaddress; /* SADB_X_EXT_KMADDRESS */
} __attribute__((__packed__));
};
};
ENUM(sadb_ext_type_names, SADB_EXT_RESERVED, SADB_EXT_MAX,
"SADB_EXT_RESERVED",
"SADB_EXT_SA",
"SADB_EXT_LIFETIME_CURRENT",
"SADB_EXT_LIFETIME_HARD",
"SADB_EXT_LIFETIME_SOFT",
"SADB_EXT_ADDRESS_SRC",
"SADB_EXT_ADDRESS_DST",
"SADB_EXT_ADDRESS_PROXY",
"SADB_EXT_KEY_AUTH",
"SADB_EXT_KEY_ENCRYPT",
"SADB_EXT_IDENTITY_SRC",
"SADB_EXT_IDENTITY_DST",
"SADB_EXT_SENSITIVITY",
"SADB_EXT_PROPOSAL",
"SADB_EXT_SUPPORTED_AUTH",
"SADB_EXT_SUPPORTED_ENCRYPT",
"SADB_EXT_SPIRANGE",
"SADB_X_EXT_KMPRIVATE",
"SADB_X_EXT_POLICY",
"SADB_X_EXT_SA2",
"SADB_X_EXT_NAT_T_TYPE",
"SADB_X_EXT_NAT_T_SPORT",
"SADB_X_EXT_NAT_T_DPORT",
"SADB_X_EXT_NAT_T_OA",
"SADB_X_EXT_SEC_CTX",
"SADB_X_EXT_KMADDRESS"
);
/**
* convert a IKEv2 specific protocol identifier to the PF_KEY sa type
*/
static u_int8_t proto_ike2satype(protocol_id_t proto)
{
switch (proto)
{
case PROTO_ESP:
return SADB_SATYPE_ESP;
case PROTO_AH:
return SADB_SATYPE_AH;
case IPPROTO_COMP:
return SADB_X_SATYPE_IPCOMP;
default:
return proto;
}
}
/**
* convert a PF_KEY sa type to a IKEv2 specific protocol identifier
*/
static protocol_id_t proto_satype2ike(u_int8_t proto)
{
switch (proto)
{
case SADB_SATYPE_ESP:
return PROTO_ESP;
case SADB_SATYPE_AH:
return PROTO_AH;
case SADB_X_SATYPE_IPCOMP:
return IPPROTO_COMP;
default:
return proto;
}
}
/**
* convert a IKEv2 specific protocol identifier to the IP protocol identifier
*/
static u_int8_t proto_ike2ip(protocol_id_t proto)
{
switch (proto)
{
case PROTO_ESP:
return IPPROTO_ESP;
case PROTO_AH:
return IPPROTO_AH;
default:
return proto;
}
}
/**
* convert the general ipsec mode to the one defined in ipsec.h
*/
static u_int8_t mode2kernel(ipsec_mode_t mode)
{
switch (mode)
{
case MODE_TRANSPORT:
return IPSEC_MODE_TRANSPORT;
case MODE_TUNNEL:
return IPSEC_MODE_TUNNEL;
#ifdef HAVE_IPSEC_MODE_BEET
case MODE_BEET:
return IPSEC_MODE_BEET;
#endif
default:
return mode;
}
}
/**
* convert the general policy direction to the one defined in ipsec.h
*/
static u_int8_t dir2kernel(policy_dir_t dir)
{
switch (dir)
{
case POLICY_IN:
return IPSEC_DIR_INBOUND;
case POLICY_OUT:
return IPSEC_DIR_OUTBOUND;
#ifdef HAVE_IPSEC_DIR_FWD
case POLICY_FWD:
return IPSEC_DIR_FWD;
#endif
default:
return IPSEC_DIR_INVALID;
}
}
#ifdef SADB_X_MIGRATE
/**
* convert the policy direction in ipsec.h to the general one.
*/
static policy_dir_t kernel2dir(u_int8_t dir)
{
switch (dir)
{
case IPSEC_DIR_INBOUND:
return POLICY_IN;
case IPSEC_DIR_OUTBOUND:
return POLICY_OUT;
#ifdef HAVE_IPSEC_DIR_FWD
case IPSEC_DIR_FWD:
return POLICY_FWD;
#endif
default:
return dir;
}
}
#endif /*SADB_X_MIGRATE*/
typedef struct kernel_algorithm_t kernel_algorithm_t;
/**
* Mapping of IKEv2 algorithms to PF_KEY algorithms
*/
struct kernel_algorithm_t {
/**
* Identifier specified in IKEv2
*/
int ikev2;
/**
* Identifier as defined in pfkeyv2.h
*/
int kernel;
};
#define END_OF_LIST -1
/**
* Algorithms for encryption
*/
static kernel_algorithm_t encryption_algs[] = {
/* {ENCR_DES_IV64, 0 }, */
{ENCR_DES, SADB_EALG_DESCBC },
{ENCR_3DES, SADB_EALG_3DESCBC },
/* {ENCR_RC5, 0 }, */
/* {ENCR_IDEA, 0 }, */
{ENCR_CAST, SADB_X_EALG_CASTCBC },
{ENCR_BLOWFISH, SADB_X_EALG_BLOWFISHCBC },
/* {ENCR_3IDEA, 0 }, */
/* {ENCR_DES_IV32, 0 }, */
{ENCR_NULL, SADB_EALG_NULL },
{ENCR_AES_CBC, SADB_X_EALG_AESCBC },
/* {ENCR_AES_CTR, SADB_X_EALG_AESCTR }, */
/* {ENCR_AES_CCM_ICV8, SADB_X_EALG_AES_CCM_ICV8 }, */
/* {ENCR_AES_CCM_ICV12, SADB_X_EALG_AES_CCM_ICV12 }, */
/* {ENCR_AES_CCM_ICV16, SADB_X_EALG_AES_CCM_ICV16 }, */
/* {ENCR_AES_GCM_ICV8, SADB_X_EALG_AES_GCM_ICV8 }, */
/* {ENCR_AES_GCM_ICV12, SADB_X_EALG_AES_GCM_ICV12 }, */
/* {ENCR_AES_GCM_ICV16, SADB_X_EALG_AES_GCM_ICV16 }, */
{END_OF_LIST, 0 },
};
/**
* Algorithms for integrity protection
*/
static kernel_algorithm_t integrity_algs[] = {
{AUTH_HMAC_MD5_96, SADB_AALG_MD5HMAC },
{AUTH_HMAC_SHA1_96, SADB_AALG_SHA1HMAC },
{AUTH_HMAC_SHA2_256_128, SADB_X_AALG_SHA2_256HMAC },
{AUTH_HMAC_SHA2_384_192, SADB_X_AALG_SHA2_384HMAC },
{AUTH_HMAC_SHA2_512_256, SADB_X_AALG_SHA2_512HMAC },
/* {AUTH_DES_MAC, 0, }, */
/* {AUTH_KPDK_MD5, 0, }, */
#ifdef SADB_X_AALG_AES_XCBC_MAC
{AUTH_AES_XCBC_96, SADB_X_AALG_AES_XCBC_MAC, },
#endif
{END_OF_LIST, 0, },
};
#if 0
/**
* Algorithms for IPComp, unused yet
*/
static kernel_algorithm_t compression_algs[] = {
/* {IPCOMP_OUI, 0 }, */
{IPCOMP_DEFLATE, SADB_X_CALG_DEFLATE },
{IPCOMP_LZS, SADB_X_CALG_LZS },
{IPCOMP_LZJH, SADB_X_CALG_LZJH },
{END_OF_LIST, 0 },
};
#endif
/**
* Look up a kernel algorithm ID and its key size
*/
static int lookup_algorithm(kernel_algorithm_t *list, int ikev2)
{
while (list->ikev2 != END_OF_LIST)
{
if (ikev2 == list->ikev2)
{
return list->kernel;
}
list++;
}
return 0;
}
/**
* add a host behind a sadb_address extension
*/
static void host2ext(host_t *host, struct sadb_address *ext)
{
sockaddr_t *host_addr = host->get_sockaddr(host);
socklen_t *len = host->get_sockaddr_len(host);
#ifdef HAVE_STRUCT_SOCKADDR_SA_LEN
host_addr->sa_len = *len;
#endif
memcpy((char*)(ext + 1), host_addr, *len);
ext->sadb_address_len = PFKEY_LEN(sizeof(*ext) + *len);
}
/**
* add a host to the given sadb_msg
*/
static void add_addr_ext(struct sadb_msg *msg, host_t *host, u_int16_t type,
u_int8_t proto, u_int8_t prefixlen)
{
struct sadb_address *addr = (struct sadb_address*)PFKEY_EXT_ADD_NEXT(msg);
addr->sadb_address_exttype = type;
addr->sadb_address_proto = proto;
addr->sadb_address_prefixlen = prefixlen;
host2ext(host, addr);
PFKEY_EXT_ADD(msg, addr);
}
/**
* adds an empty address extension to the given sadb_msg
*/
static void add_anyaddr_ext(struct sadb_msg *msg, int family, u_int8_t type)
{
socklen_t len = (family == AF_INET) ? sizeof(struct sockaddr_in) :
sizeof(struct sockaddr_in6);
struct sadb_address *addr = (struct sadb_address*)PFKEY_EXT_ADD_NEXT(msg);
addr->sadb_address_exttype = type;
sockaddr_t *saddr = (sockaddr_t*)(addr + 1);
saddr->sa_family = family;
#ifdef HAVE_STRUCT_SOCKADDR_SA_LEN
saddr->sa_len = len;
#endif
addr->sadb_address_len = PFKEY_LEN(sizeof(*addr) + len);
PFKEY_EXT_ADD(msg, addr);
}
#ifdef HAVE_NATT
/**
* add udp encap extensions to a sadb_msg
*/
static void add_encap_ext(struct sadb_msg *msg, host_t *src, host_t *dst)
{
struct sadb_x_nat_t_type* nat_type;
struct sadb_x_nat_t_port* nat_port;
nat_type = (struct sadb_x_nat_t_type*)PFKEY_EXT_ADD_NEXT(msg);
nat_type->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
nat_type->sadb_x_nat_t_type_len = PFKEY_LEN(sizeof(struct sadb_x_nat_t_type));
nat_type->sadb_x_nat_t_type_type = UDP_ENCAP_ESPINUDP;
PFKEY_EXT_ADD(msg, nat_type);
nat_port = (struct sadb_x_nat_t_port*)PFKEY_EXT_ADD_NEXT(msg);
nat_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
nat_port->sadb_x_nat_t_port_len = PFKEY_LEN(sizeof(struct sadb_x_nat_t_port));
nat_port->sadb_x_nat_t_port_port = htons(src->get_port(src));
PFKEY_EXT_ADD(msg, nat_port);
nat_port = (struct sadb_x_nat_t_port*)PFKEY_EXT_ADD_NEXT(msg);
nat_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
nat_port->sadb_x_nat_t_port_len = PFKEY_LEN(sizeof(struct sadb_x_nat_t_port));
nat_port->sadb_x_nat_t_port_port = htons(dst->get_port(dst));
PFKEY_EXT_ADD(msg, nat_port);
}
#endif /*HAVE_NATT*/
/**
* Convert a sadb_address to a traffic_selector
*/
static traffic_selector_t* sadb_address2ts(struct sadb_address *address)
{
traffic_selector_t *ts;
host_t *host;
/* The Linux 2.6 kernel does not set the protocol and port information
* in the src and dst sadb_address extensions of the SADB_ACQUIRE message.
*/
host = host_create_from_sockaddr((sockaddr_t*)&address[1]) ;
ts = traffic_selector_create_from_subnet(host, address->sadb_address_prefixlen,
address->sadb_address_proto, host->get_port(host));
return ts;
}
/**
* Parses a pfkey message received from the kernel
*/
static status_t parse_pfkey_message(struct sadb_msg *msg, pfkey_msg_t *out)
{
struct sadb_ext* ext;
size_t len;
memset(out, 0, sizeof(pfkey_msg_t));
out->msg = msg;
len = msg->sadb_msg_len;
len -= PFKEY_LEN(sizeof(struct sadb_msg));
ext = (struct sadb_ext*)(((char*)msg) + sizeof(struct sadb_msg));
while (len >= PFKEY_LEN(sizeof(struct sadb_ext)))
{
DBG3(DBG_KNL, " %N", sadb_ext_type_names, ext->sadb_ext_type);
if (ext->sadb_ext_len < PFKEY_LEN(sizeof(struct sadb_ext)) ||
ext->sadb_ext_len > len)
{
DBG1(DBG_KNL, "length of %N extension is invalid",
sadb_ext_type_names, ext->sadb_ext_type);
break;
}
if ((ext->sadb_ext_type > SADB_EXT_MAX) || (!ext->sadb_ext_type))
{
DBG1(DBG_KNL, "type of PF_KEY extension (%d) is invalid", ext->sadb_ext_type);
break;
}
if (out->ext[ext->sadb_ext_type])
{
DBG1(DBG_KNL, "duplicate %N extension",
sadb_ext_type_names, ext->sadb_ext_type);
break;
}
out->ext[ext->sadb_ext_type] = ext;
ext = PFKEY_EXT_NEXT_LEN(ext, len);
}
if (len)
{
DBG1(DBG_KNL, "PF_KEY message length is invalid");
return FAILED;
}
return SUCCESS;
}
/**
* Send a message to a specific PF_KEY socket and handle the response.
*/
static status_t pfkey_send_socket(private_kernel_pfkey_ipsec_t *this, int socket,
struct sadb_msg *in, struct sadb_msg **out, size_t *out_len)
{
unsigned char buf[PFKEY_BUFFER_SIZE];
struct sadb_msg *msg;
int in_len, len;
this->mutex_pfkey->lock(this->mutex_pfkey);
/* FIXME: our usage of sequence numbers is probably wrong. check RFC 2367,
* in particular the behavior in response to an SADB_ACQUIRE. */
in->sadb_msg_seq = ++this->seq;
in->sadb_msg_pid = getpid();
in_len = PFKEY_USER_LEN(in->sadb_msg_len);
while (TRUE)
{
len = send(socket, in, in_len, 0);
if (len != in_len)
{
if (errno == EINTR)
{
/* interrupted, try again */
continue;
}
this->mutex_pfkey->unlock(this->mutex_pfkey);
DBG1(DBG_KNL, "error sending to PF_KEY socket: %s", strerror(errno));
return FAILED;
}
break;
}
while (TRUE)
{
msg = (struct sadb_msg*)buf;
len = recv(socket, buf, sizeof(buf), 0);
if (len < 0)
{
if (errno == EINTR)
{
DBG1(DBG_KNL, "got interrupted");
/* interrupted, try again */
continue;
}
DBG1(DBG_KNL, "error reading from PF_KEY socket: %s", strerror(errno));
this->mutex_pfkey->unlock(this->mutex_pfkey);
return FAILED;
}
if (len < sizeof(struct sadb_msg) ||
msg->sadb_msg_len < PFKEY_LEN(sizeof(struct sadb_msg)))
{
DBG1(DBG_KNL, "received corrupted PF_KEY message");
this->mutex_pfkey->unlock(this->mutex_pfkey);
return FAILED;
}
if (msg->sadb_msg_len > len / PFKEY_ALIGNMENT)
{
DBG1(DBG_KNL, "buffer was too small to receive the complete PF_KEY message");
this->mutex_pfkey->unlock(this->mutex_pfkey);
return FAILED;
}
if (msg->sadb_msg_pid != in->sadb_msg_pid)
{
DBG2(DBG_KNL, "received PF_KEY message is not intended for us");
continue;
}
if (msg->sadb_msg_seq != this->seq)
{
DBG1(DBG_KNL, "received PF_KEY message with unexpected sequence "
"number, was %d expected %d", msg->sadb_msg_seq, this->seq);
if (msg->sadb_msg_seq == 0)
{
/* FreeBSD and Mac OS X do this for the response to
* SADB_X_SPDGET (but not for the response to SADB_GET).
* FreeBSD: 'key_spdget' in /usr/src/sys/netipsec/key.c. */
}
else if (msg->sadb_msg_seq < this->seq)
{
continue;
}
else
{
this->mutex_pfkey->unlock(this->mutex_pfkey);
return FAILED;
}
}
if (msg->sadb_msg_type != in->sadb_msg_type)
{
DBG2(DBG_KNL, "received PF_KEY message of wrong type, "
"was %d expected %d, ignoring",
msg->sadb_msg_type, in->sadb_msg_type);
}
break;
}
*out_len = len;
*out = (struct sadb_msg*)malloc(len);
memcpy(*out, buf, len);
this->mutex_pfkey->unlock(this->mutex_pfkey);
return SUCCESS;
}
/**
* Send a message to the default PF_KEY socket and handle the response.
*/
static status_t pfkey_send(private_kernel_pfkey_ipsec_t *this,
struct sadb_msg *in, struct sadb_msg **out, size_t *out_len)
{
return pfkey_send_socket(this, this->socket, in, out, out_len);
}
/**
* Process a SADB_ACQUIRE message from the kernel
*/
static void process_acquire(private_kernel_pfkey_ipsec_t *this, struct sadb_msg* msg)
{
pfkey_msg_t response;
u_int32_t index, reqid = 0;
traffic_selector_t *src_ts, *dst_ts;
policy_entry_t *policy;
job_t *job;
switch (msg->sadb_msg_satype)
{
case SADB_SATYPE_UNSPEC:
case SADB_SATYPE_ESP:
case SADB_SATYPE_AH:
break;
default:
/* acquire for AH/ESP only */
return;
}
DBG2(DBG_KNL, "received an SADB_ACQUIRE");
if (parse_pfkey_message(msg, &response) != SUCCESS)
{
DBG1(DBG_KNL, "parsing SADB_ACQUIRE from kernel failed");
return;
}
index = response.x_policy->sadb_x_policy_id;
this->mutex->lock(this->mutex);
if (this->policies->find_first(this->policies,
(linked_list_match_t)policy_entry_match_byindex, (void**)&policy, &index) == SUCCESS)
{
reqid = policy->reqid;
}
else
{
DBG1(DBG_KNL, "received an SADB_ACQUIRE with policy id %d but no matching policy found",
index);
}
src_ts = sadb_address2ts(response.src);
dst_ts = sadb_address2ts(response.dst);
this->mutex->unlock(this->mutex);
DBG1(DBG_KNL, "creating acquire job for policy %R === %R with reqid {%u}",
src_ts, dst_ts, reqid);
job = (job_t*)acquire_job_create(reqid, src_ts, dst_ts);
charon->processor->queue_job(charon->processor, job);
}
/**
* Process a SADB_EXPIRE message from the kernel
*/
static void process_expire(private_kernel_pfkey_ipsec_t *this, struct sadb_msg* msg)
{
pfkey_msg_t response;
protocol_id_t protocol;
u_int32_t spi, reqid;
bool hard;
job_t *job;
DBG2(DBG_KNL, "received an SADB_EXPIRE");
if (parse_pfkey_message(msg, &response) != SUCCESS)
{
DBG1(DBG_KNL, "parsing SADB_EXPIRE from kernel failed");
return;
}
protocol = proto_satype2ike(msg->sadb_msg_satype);
spi = response.sa->sadb_sa_spi;
reqid = response.x_sa2->sadb_x_sa2_reqid;
hard = response.lft_hard != NULL;
if (protocol != PROTO_ESP && protocol != PROTO_AH)
{
DBG2(DBG_KNL, "ignoring SADB_EXPIRE for SA with SPI %.8x and reqid {%u} "
"which is not a CHILD_SA", ntohl(spi), reqid);
return;
}
DBG1(DBG_KNL, "creating %s job for %N CHILD_SA with SPI %.8x and reqid {%u}",
hard ? "delete" : "rekey", protocol_id_names,
protocol, ntohl(spi), reqid);
if (hard)
{
job = (job_t*)delete_child_sa_job_create(reqid, protocol, spi);
}
else
{
job = (job_t*)rekey_child_sa_job_create(reqid, protocol, spi);
}
charon->processor->queue_job(charon->processor, job);
}
#ifdef SADB_X_MIGRATE
/**
* Process a SADB_X_MIGRATE message from the kernel
*/
static void process_migrate(private_kernel_pfkey_ipsec_t *this, struct sadb_msg* msg)
{
pfkey_msg_t response;
traffic_selector_t *src_ts, *dst_ts;
policy_dir_t dir;
u_int32_t reqid = 0;
host_t *local = NULL, *remote = NULL;
job_t *job;
DBG2(DBG_KNL, "received an SADB_X_MIGRATE");
if (parse_pfkey_message(msg, &response) != SUCCESS)
{
DBG1(DBG_KNL, "parsing SADB_X_MIGRATE from kernel failed");
return;
}
src_ts = sadb_address2ts(response.src);
dst_ts = sadb_address2ts(response.dst);
dir = kernel2dir(response.x_policy->sadb_x_policy_dir);
DBG2(DBG_KNL, " policy %R === %R %N, id %u", src_ts, dst_ts,
policy_dir_names, dir);
/* SADB_X_EXT_KMADDRESS is not present in unpatched kernels < 2.6.28 */
if (response.x_kmaddress)
{
sockaddr_t *local_addr, *remote_addr;
u_int32_t local_len;
local_addr = (sockaddr_t*)&response.x_kmaddress[1];
local = host_create_from_sockaddr(local_addr);
local_len = (local_addr->sa_family == AF_INET6)?
sizeof(struct sockaddr_in6) : sizeof(struct sockaddr_in);
remote_addr = (sockaddr_t*)((u_int8_t*)local_addr + local_len);
remote = host_create_from_sockaddr(remote_addr);
DBG2(DBG_KNL, " kmaddress: %H...%H", local, remote);
}
if (src_ts && dst_ts && local && remote)
{
DBG1(DBG_KNL, "creating migrate job for policy %R === %R %N with reqid {%u}",
src_ts, dst_ts, policy_dir_names, dir, reqid, local);
job = (job_t*)migrate_job_create(reqid, src_ts, dst_ts, dir,
local, remote);
charon->processor->queue_job(charon->processor, job);
}
else
{
DESTROY_IF(src_ts);
DESTROY_IF(dst_ts);
DESTROY_IF(local);
DESTROY_IF(remote);
}
}
#endif /*SADB_X_MIGRATE*/
#ifdef HAVE_NATT
/**
* Process a SADB_X_NAT_T_NEW_MAPPING message from the kernel
*/
static void process_mapping(private_kernel_pfkey_ipsec_t *this, struct sadb_msg* msg)
{
pfkey_msg_t response;
u_int32_t spi, reqid;
host_t *host;
job_t *job;
DBG2(DBG_KNL, "received an SADB_X_NAT_T_NEW_MAPPING");
if (parse_pfkey_message(msg, &response) != SUCCESS)
{
DBG1(DBG_KNL, "parsing SADB_X_NAT_T_NEW_MAPPING from kernel failed");
return;
}
if (!response.x_sa2)
{
DBG1(DBG_KNL, "received SADB_X_NAT_T_NEW_MAPPING is missing required information");
return;
}
spi = response.sa->sadb_sa_spi;
reqid = response.x_sa2->sadb_x_sa2_reqid;
if (proto_satype2ike(msg->sadb_msg_satype) == PROTO_ESP)
{
sockaddr_t *sa = (sockaddr_t*)(response.dst + 1);
switch (sa->sa_family)
{
case AF_INET:
{
struct sockaddr_in *sin = (struct sockaddr_in*)sa;
sin->sin_port = htons(response.x_natt_dport->sadb_x_nat_t_port_port);
}
case AF_INET6:
{
struct sockaddr_in6 *sin6 = (struct sockaddr_in6*)sa;
sin6->sin6_port = htons(response.x_natt_dport->sadb_x_nat_t_port_port);
}
default:
break;
}
host = host_create_from_sockaddr(sa);
if (host)
{
DBG1(DBG_KNL, "NAT mappings of ESP CHILD_SA with SPI %.8x and "
"reqid {%u} changed, queuing update job", ntohl(spi), reqid);
job = (job_t*)update_sa_job_create(reqid, host);
charon->processor->queue_job(charon->processor, job);
}
}
}
#endif /*HAVE_NATT*/
/**
* Receives events from kernel
*/
static job_requeue_t receive_events(private_kernel_pfkey_ipsec_t *this)
{
unsigned char buf[PFKEY_BUFFER_SIZE];
struct sadb_msg *msg = (struct sadb_msg*)buf;
int len, oldstate;
pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &oldstate);
len = recvfrom(this->socket_events, buf, sizeof(buf), 0, NULL, 0);
pthread_setcancelstate(oldstate, NULL);
if (len < 0)
{
switch (errno)
{
case EINTR:
/* interrupted, try again */
return JOB_REQUEUE_DIRECT;
case EAGAIN:
/* no data ready, select again */
return JOB_REQUEUE_DIRECT;
default:
DBG1(DBG_KNL, "unable to receive from PF_KEY event socket");
sleep(1);
return JOB_REQUEUE_FAIR;
}
}
if (len < sizeof(struct sadb_msg) ||
msg->sadb_msg_len < PFKEY_LEN(sizeof(struct sadb_msg)))
{
DBG2(DBG_KNL, "received corrupted PF_KEY message");
return JOB_REQUEUE_DIRECT;
}
if (msg->sadb_msg_pid != 0)
{ /* not from kernel. not interested, try another one */
return JOB_REQUEUE_DIRECT;
}
if (msg->sadb_msg_len > len / PFKEY_ALIGNMENT)
{
DBG1(DBG_KNL, "buffer was too small to receive the complete PF_KEY message");
return JOB_REQUEUE_DIRECT;
}
switch (msg->sadb_msg_type)
{
case SADB_ACQUIRE:
process_acquire(this, msg);
break;
case SADB_EXPIRE:
process_expire(this, msg);
break;
#ifdef SADB_X_MIGRATE
case SADB_X_MIGRATE:
process_migrate(this, msg);
break;
#endif /*SADB_X_MIGRATE*/
#ifdef HAVE_NATT
case SADB_X_NAT_T_NEW_MAPPING:
process_mapping(this, msg);
break;
#endif /*HAVE_NATT*/
default:
break;
}
return JOB_REQUEUE_DIRECT;
}
/**
* Implementation of kernel_interface_t.get_spi.
*/
static status_t get_spi(private_kernel_pfkey_ipsec_t *this,
host_t *src, host_t *dst,
protocol_id_t protocol, u_int32_t reqid,
u_int32_t *spi)
{
unsigned char request[PFKEY_BUFFER_SIZE];
struct sadb_msg *msg, *out;
struct sadb_x_sa2 *sa2;
struct sadb_spirange *range;
pfkey_msg_t response;
u_int32_t received_spi = 0;
size_t len;
memset(&request, 0, sizeof(request));
msg = (struct sadb_msg*)request;
msg->sadb_msg_version = PF_KEY_V2;
msg->sadb_msg_type = SADB_GETSPI;
msg->sadb_msg_satype = proto_ike2satype(protocol);
msg->sadb_msg_len = PFKEY_LEN(sizeof(struct sadb_msg));
sa2 = (struct sadb_x_sa2*)PFKEY_EXT_ADD_NEXT(msg);
sa2->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
sa2->sadb_x_sa2_len = PFKEY_LEN(sizeof(struct sadb_spirange));
sa2->sadb_x_sa2_reqid = reqid;
PFKEY_EXT_ADD(msg, sa2);
add_addr_ext(msg, src, SADB_EXT_ADDRESS_SRC, 0, 0);
add_addr_ext(msg, dst, SADB_EXT_ADDRESS_DST, 0, 0);
range = (struct sadb_spirange*)PFKEY_EXT_ADD_NEXT(msg);
range->sadb_spirange_exttype = SADB_EXT_SPIRANGE;
range->sadb_spirange_len = PFKEY_LEN(sizeof(struct sadb_spirange));
range->sadb_spirange_min = 0xc0000000;
range->sadb_spirange_max = 0xcFFFFFFF;
PFKEY_EXT_ADD(msg, range);
if (pfkey_send(this, msg, &out, &len) == SUCCESS)
{
if (out->sadb_msg_errno)
{
DBG1(DBG_KNL, "allocating SPI failed: %s (%d)",
strerror(out->sadb_msg_errno), out->sadb_msg_errno);
}
else if (parse_pfkey_message(out, &response) == SUCCESS)
{
received_spi = response.sa->sadb_sa_spi;
}
free(out);
}
if (received_spi == 0)
{
return FAILED;
}
*spi = received_spi;
return SUCCESS;
}
/**
* Implementation of kernel_interface_t.get_cpi.
*/
static status_t get_cpi(private_kernel_pfkey_ipsec_t *this,
host_t *src, host_t *dst,
u_int32_t reqid, u_int16_t *cpi)
{
return FAILED;
}
/**
* Implementation of kernel_interface_t.add_sa.
*/
static status_t add_sa(private_kernel_pfkey_ipsec_t *this,
host_t *src, host_t *dst, u_int32_t spi,
protocol_id_t protocol, u_int32_t reqid,
lifetime_cfg_t *lifetime,
u_int16_t enc_alg, chunk_t enc_key,
u_int16_t int_alg, chunk_t int_key,
ipsec_mode_t mode, u_int16_t ipcomp, u_int16_t cpi,
bool encap, bool inbound, traffic_selector_t *src_ts,
traffic_selector_t *dst_ts)
{
unsigned char request[PFKEY_BUFFER_SIZE];
struct sadb_msg *msg, *out;
struct sadb_sa *sa;
struct sadb_x_sa2 *sa2;
struct sadb_lifetime *lft;
struct sadb_key *key;
size_t len;
memset(&request, 0, sizeof(request));
DBG2(DBG_KNL, "adding SAD entry with SPI %.8x and reqid {%u}", ntohl(spi), reqid);
msg = (struct sadb_msg*)request;
msg->sadb_msg_version = PF_KEY_V2;
msg->sadb_msg_type = inbound ? SADB_UPDATE : SADB_ADD;
msg->sadb_msg_satype = proto_ike2satype(protocol);
msg->sadb_msg_len = PFKEY_LEN(sizeof(struct sadb_msg));
#ifdef __APPLE__
if (encap)
{
struct sadb_sa_2 *sa_2;
sa_2 = (struct sadb_sa_2*)PFKEY_EXT_ADD_NEXT(msg);
sa_2->sadb_sa_natt_port = dst->get_port(dst);
sa = &sa_2->sa;
sa->sadb_sa_flags |= SADB_X_EXT_NATT;
len = sizeof(struct sadb_sa_2);
}
else
#endif
{
sa = (struct sadb_sa*)PFKEY_EXT_ADD_NEXT(msg);
len = sizeof(struct sadb_sa);
}
sa->sadb_sa_exttype = SADB_EXT_SA;
sa->sadb_sa_len = PFKEY_LEN(len);
sa->sadb_sa_spi = spi;
sa->sadb_sa_replay = (protocol == IPPROTO_COMP) ? 0 : 32;
sa->sadb_sa_auth = lookup_algorithm(integrity_algs, int_alg);
sa->sadb_sa_encrypt = lookup_algorithm(encryption_algs, enc_alg);
PFKEY_EXT_ADD(msg, sa);
sa2 = (struct sadb_x_sa2*)PFKEY_EXT_ADD_NEXT(msg);
sa2->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
sa2->sadb_x_sa2_len = PFKEY_LEN(sizeof(struct sadb_spirange));
sa2->sadb_x_sa2_mode = mode2kernel(mode);
sa2->sadb_x_sa2_reqid = reqid;
PFKEY_EXT_ADD(msg, sa2);
add_addr_ext(msg, src, SADB_EXT_ADDRESS_SRC, 0, 0);
add_addr_ext(msg, dst, SADB_EXT_ADDRESS_DST, 0, 0);
lft = (struct sadb_lifetime*)PFKEY_EXT_ADD_NEXT(msg);
lft->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
lft->sadb_lifetime_len = PFKEY_LEN(sizeof(struct sadb_lifetime));
lft->sadb_lifetime_allocations = lifetime->packets.rekey;
lft->sadb_lifetime_bytes = lifetime->bytes.rekey;
lft->sadb_lifetime_addtime = lifetime->time.rekey;
lft->sadb_lifetime_usetime = 0; /* we only use addtime */
PFKEY_EXT_ADD(msg, lft);
lft = (struct sadb_lifetime*)PFKEY_EXT_ADD_NEXT(msg);
lft->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
lft->sadb_lifetime_len = PFKEY_LEN(sizeof(struct sadb_lifetime));
lft->sadb_lifetime_allocations = lifetime->packets.life;
lft->sadb_lifetime_bytes = lifetime->bytes.life;
lft->sadb_lifetime_addtime = lifetime->time.life;
lft->sadb_lifetime_usetime = 0; /* we only use addtime */
PFKEY_EXT_ADD(msg, lft);
if (enc_alg != ENCR_UNDEFINED)
{
if (!sa->sadb_sa_encrypt)
{
DBG1(DBG_KNL, "algorithm %N not supported by kernel!",
encryption_algorithm_names, enc_alg);
return FAILED;
}
DBG2(DBG_KNL, " using encryption algorithm %N with key size %d",
encryption_algorithm_names, enc_alg, enc_key.len * 8);
key = (struct sadb_key*)PFKEY_EXT_ADD_NEXT(msg);
key->sadb_key_exttype = SADB_EXT_KEY_ENCRYPT;
key->sadb_key_bits = enc_key.len * 8;
key->sadb_key_len = PFKEY_LEN(sizeof(struct sadb_key) + enc_key.len);
memcpy(key + 1, enc_key.ptr, enc_key.len);
PFKEY_EXT_ADD(msg, key);
}
if (int_alg != AUTH_UNDEFINED)
{
if (!sa->sadb_sa_auth)
{
DBG1(DBG_KNL, "algorithm %N not supported by kernel!",
integrity_algorithm_names, int_alg);
return FAILED;
}
DBG2(DBG_KNL, " using integrity algorithm %N with key size %d",
integrity_algorithm_names, int_alg, int_key.len * 8);
key = (struct sadb_key*)PFKEY_EXT_ADD_NEXT(msg);
key->sadb_key_exttype = SADB_EXT_KEY_AUTH;
key->sadb_key_bits = int_key.len * 8;
key->sadb_key_len = PFKEY_LEN(sizeof(struct sadb_key) + int_key.len);
memcpy(key + 1, int_key.ptr, int_key.len);
PFKEY_EXT_ADD(msg, key);
}
if (ipcomp != IPCOMP_NONE)
{
/*TODO*/
}
#ifdef HAVE_NATT
if (encap)
{
add_encap_ext(msg, src, dst);
}
#endif /*HAVE_NATT*/
if (pfkey_send(this, msg, &out, &len) != SUCCESS)
{
DBG1(DBG_KNL, "unable to add SAD entry with SPI %.8x", ntohl(spi));
return FAILED;
}
else if (out->sadb_msg_errno)
{
DBG1(DBG_KNL, "unable to add SAD entry with SPI %.8x: %s (%d)",
ntohl(spi), strerror(out->sadb_msg_errno), out->sadb_msg_errno);
free(out);
return FAILED;
}
free(out);
return SUCCESS;
}
/**
* Implementation of kernel_interface_t.update_sa.
*/
static status_t update_sa(private_kernel_pfkey_ipsec_t *this,
u_int32_t spi, protocol_id_t protocol, u_int16_t cpi,
host_t *src, host_t *dst,
host_t *new_src, host_t *new_dst,
bool encap, bool new_encap)
{
unsigned char request[PFKEY_BUFFER_SIZE];
struct sadb_msg *msg, *out;
struct sadb_sa *sa;
pfkey_msg_t response;
size_t len;
/* we can't update the SA if any of the ip addresses have changed.
* that's because we can't use SADB_UPDATE and by deleting and readding the
* SA the sequence numbers would get lost */
if (!src->ip_equals(src, new_src) ||
!dst->ip_equals(dst, new_dst))
{
DBG1(DBG_KNL, "unable to update SAD entry with SPI %.8x: address changes"
" are not supported", ntohl(spi));
return NOT_SUPPORTED;
}
memset(&request, 0, sizeof(request));
DBG2(DBG_KNL, "querying SAD entry with SPI %.8x", ntohl(spi));
msg = (struct sadb_msg*)request;
msg->sadb_msg_version = PF_KEY_V2;
msg->sadb_msg_type = SADB_GET;
msg->sadb_msg_satype = proto_ike2satype(protocol);
msg->sadb_msg_len = PFKEY_LEN(sizeof(struct sadb_msg));
sa = (struct sadb_sa*)PFKEY_EXT_ADD_NEXT(msg);
sa->sadb_sa_exttype = SADB_EXT_SA;
sa->sadb_sa_len = PFKEY_LEN(sizeof(struct sadb_sa));
sa->sadb_sa_spi = spi;
PFKEY_EXT_ADD(msg, sa);
/* the kernel wants a SADB_EXT_ADDRESS_SRC to be present even though
* it is not used for anything. */
add_anyaddr_ext(msg, dst->get_family(dst), SADB_EXT_ADDRESS_SRC);
add_addr_ext(msg, dst, SADB_EXT_ADDRESS_DST, 0, 0);
if (pfkey_send(this, msg, &out, &len) != SUCCESS)
{
DBG1(DBG_KNL, "unable to query SAD entry with SPI %.8x",
ntohl(spi));
return FAILED;
}
else if (out->sadb_msg_errno)
{
DBG1(DBG_KNL, "unable to query SAD entry with SPI %.8x: %s (%d)",
ntohl(spi), strerror(out->sadb_msg_errno), out->sadb_msg_errno);
free(out);
return FAILED;
}
else if (parse_pfkey_message(out, &response) != SUCCESS)
{
DBG1(DBG_KNL, "unable to query SAD entry with SPI %.8x: parsing response "
"from kernel failed", ntohl(spi));
free(out);
return FAILED;
}
DBG2(DBG_KNL, "updating SAD entry with SPI %.8x from %#H..%#H to %#H..%#H",
ntohl(spi), src, dst, new_src, new_dst);
memset(&request, 0, sizeof(request));
msg = (struct sadb_msg*)request;
msg->sadb_msg_version = PF_KEY_V2;
msg->sadb_msg_type = SADB_UPDATE;
msg->sadb_msg_satype = proto_ike2satype(protocol);
msg->sadb_msg_len = PFKEY_LEN(sizeof(struct sadb_msg));
#ifdef __APPLE__
{
struct sadb_sa_2 *sa_2;
sa_2 = (struct sadb_sa_2*)PFKEY_EXT_ADD_NEXT(msg);
sa_2->sa.sadb_sa_len = PFKEY_LEN(sizeof(struct sadb_sa_2));
memcpy(&sa_2->sa, response.sa, sizeof(struct sadb_sa));
if (encap)
{
sa_2->sadb_sa_natt_port = new_dst->get_port(new_dst);
sa_2->sa.sadb_sa_flags |= SADB_X_EXT_NATT;
}
}
#else
PFKEY_EXT_COPY(msg, response.sa);
#endif
PFKEY_EXT_COPY(msg, response.x_sa2);
PFKEY_EXT_COPY(msg, response.src);
PFKEY_EXT_COPY(msg, response.dst);
PFKEY_EXT_COPY(msg, response.lft_soft);
PFKEY_EXT_COPY(msg, response.lft_hard);
if (response.key_encr)
{
PFKEY_EXT_COPY(msg, response.key_encr);
}
if (response.key_auth)
{
PFKEY_EXT_COPY(msg, response.key_auth);
}
#ifdef HAVE_NATT
if (new_encap)
{
add_encap_ext(msg, new_src, new_dst);
}
#endif /*HAVE_NATT*/
free(out);
if (pfkey_send(this, msg, &out, &len) != SUCCESS)
{
DBG1(DBG_KNL, "unable to update SAD entry with SPI %.8x", ntohl(spi));
return FAILED;
}
else if (out->sadb_msg_errno)
{
DBG1(DBG_KNL, "unable to update SAD entry with SPI %.8x: %s (%d)",
ntohl(spi), strerror(out->sadb_msg_errno), out->sadb_msg_errno);
free(out);
return FAILED;
}
free(out);
return SUCCESS;
}
/**
* Implementation of kernel_interface_t.query_sa.
*/
static status_t query_sa(private_kernel_pfkey_ipsec_t *this, host_t *src,
host_t *dst, u_int32_t spi, protocol_id_t protocol,
u_int64_t *bytes)
{
unsigned char request[PFKEY_BUFFER_SIZE];
struct sadb_msg *msg, *out;
struct sadb_sa *sa;
pfkey_msg_t response;
size_t len;
memset(&request, 0, sizeof(request));
DBG2(DBG_KNL, "querying SAD entry with SPI %.8x", ntohl(spi));
msg = (struct sadb_msg*)request;
msg->sadb_msg_version = PF_KEY_V2;
msg->sadb_msg_type = SADB_GET;
msg->sadb_msg_satype = proto_ike2satype(protocol);
msg->sadb_msg_len = PFKEY_LEN(sizeof(struct sadb_msg));
sa = (struct sadb_sa*)PFKEY_EXT_ADD_NEXT(msg);
sa->sadb_sa_exttype = SADB_EXT_SA;
sa->sadb_sa_len = PFKEY_LEN(sizeof(struct sadb_sa));
sa->sadb_sa_spi = spi;
PFKEY_EXT_ADD(msg, sa);
/* the Linux Kernel doesn't care for the src address, but other systems do
* (e.g. FreeBSD)
*/
add_addr_ext(msg, src, SADB_EXT_ADDRESS_SRC, 0, 0);
add_addr_ext(msg, dst, SADB_EXT_ADDRESS_DST, 0, 0);
if (pfkey_send(this, msg, &out, &len) != SUCCESS)
{
DBG1(DBG_KNL, "unable to query SAD entry with SPI %.8x", ntohl(spi));
return FAILED;
}
else if (out->sadb_msg_errno)
{
DBG1(DBG_KNL, "unable to query SAD entry with SPI %.8x: %s (%d)",
ntohl(spi), strerror(out->sadb_msg_errno), out->sadb_msg_errno);
free(out);
return FAILED;
}
else if (parse_pfkey_message(out, &response) != SUCCESS)
{
DBG1(DBG_KNL, "unable to query SAD entry with SPI %.8x", ntohl(spi));
free(out);
return FAILED;
}
*bytes = response.lft_current->sadb_lifetime_bytes;
free(out);
return SUCCESS;
}
/**
* Implementation of kernel_interface_t.del_sa.
*/
static status_t del_sa(private_kernel_pfkey_ipsec_t *this, host_t *src,
host_t *dst, u_int32_t spi, protocol_id_t protocol,
u_int16_t cpi)
{
unsigned char request[PFKEY_BUFFER_SIZE];
struct sadb_msg *msg, *out;
struct sadb_sa *sa;
size_t len;
memset(&request, 0, sizeof(request));
DBG2(DBG_KNL, "deleting SAD entry with SPI %.8x", ntohl(spi));
msg = (struct sadb_msg*)request;
msg->sadb_msg_version = PF_KEY_V2;
msg->sadb_msg_type = SADB_DELETE;
msg->sadb_msg_satype = proto_ike2satype(protocol);
msg->sadb_msg_len = PFKEY_LEN(sizeof(struct sadb_msg));
sa = (struct sadb_sa*)PFKEY_EXT_ADD_NEXT(msg);
sa->sadb_sa_exttype = SADB_EXT_SA;
sa->sadb_sa_len = PFKEY_LEN(sizeof(struct sadb_sa));
sa->sadb_sa_spi = spi;
PFKEY_EXT_ADD(msg, sa);
/* the Linux Kernel doesn't care for the src address, but other systems do
* (e.g. FreeBSD)
*/
add_addr_ext(msg, src, SADB_EXT_ADDRESS_SRC, 0, 0);
add_addr_ext(msg, dst, SADB_EXT_ADDRESS_DST, 0, 0);
if (pfkey_send(this, msg, &out, &len) != SUCCESS)
{
DBG1(DBG_KNL, "unable to delete SAD entry with SPI %.8x", ntohl(spi));
return FAILED;
}
else if (out->sadb_msg_errno)
{
DBG1(DBG_KNL, "unable to delete SAD entry with SPI %.8x: %s (%d)",
ntohl(spi), strerror(out->sadb_msg_errno), out->sadb_msg_errno);
free(out);
return FAILED;
}
DBG2(DBG_KNL, "deleted SAD entry with SPI %.8x", ntohl(spi));
free(out);
return SUCCESS;
}
/**
* Implementation of kernel_interface_t.add_policy.
*/
static status_t add_policy(private_kernel_pfkey_ipsec_t *this,
host_t *src, host_t *dst,
traffic_selector_t *src_ts,
traffic_selector_t *dst_ts,
policy_dir_t direction, u_int32_t spi,
protocol_id_t protocol, u_int32_t reqid,
ipsec_mode_t mode, u_int16_t ipcomp, u_int16_t cpi,
bool routed)
{
unsigned char request[PFKEY_BUFFER_SIZE];
struct sadb_msg *msg, *out;
struct sadb_x_policy *pol;
struct sadb_x_ipsecrequest *req;
policy_entry_t *policy, *found = NULL;
pfkey_msg_t response;
size_t len;
if (dir2kernel(direction) == IPSEC_DIR_INVALID)
{
/* FWD policies are not supported on all platforms */
return SUCCESS;
}
/* create a policy */
policy = create_policy_entry(src_ts, dst_ts, direction, reqid);
/* find a matching policy */
this->mutex->lock(this->mutex);
if (this->policies->find_first(this->policies,
(linked_list_match_t)policy_entry_equals, (void**)&found, policy) == SUCCESS)
{
/* use existing policy */
found->refcount++;
DBG2(DBG_KNL, "policy %R === %R %N already exists, increasing "
"refcount", src_ts, dst_ts,
policy_dir_names, direction);
policy_entry_destroy(policy);
policy = found;
}
else
{
/* apply the new one, if we have no such policy */
this->policies->insert_last(this->policies, policy);
policy->refcount = 1;
}
memset(&request, 0, sizeof(request));
DBG2(DBG_KNL, "adding policy %R === %R %N", src_ts, dst_ts,
policy_dir_names, direction);
msg = (struct sadb_msg*)request;
msg->sadb_msg_version = PF_KEY_V2;
msg->sadb_msg_type = found ? SADB_X_SPDUPDATE : SADB_X_SPDADD;
msg->sadb_msg_satype = 0;
msg->sadb_msg_len = PFKEY_LEN(sizeof(struct sadb_msg));
pol = (struct sadb_x_policy*)PFKEY_EXT_ADD_NEXT(msg);
pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
pol->sadb_x_policy_len = PFKEY_LEN(sizeof(struct sadb_x_policy));
pol->sadb_x_policy_id = 0;
pol->sadb_x_policy_dir = dir2kernel(direction);
pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
#ifdef HAVE_STRUCT_SADB_X_POLICY_SADB_X_POLICY_PRIORITY
/* calculate priority based on source selector size, small size = high prio */
pol->sadb_x_policy_priority = routed ? PRIO_LOW : PRIO_HIGH;
pol->sadb_x_policy_priority -= policy->src.mask * 10;
pol->sadb_x_policy_priority -= policy->src.proto != IPSEC_PROTO_ANY ? 2 : 0;
pol->sadb_x_policy_priority -= policy->src.net->get_port(policy->src.net) ? 1 : 0;
#endif
/* one or more sadb_x_ipsecrequest extensions are added to the sadb_x_policy extension */
req = (struct sadb_x_ipsecrequest*)(pol + 1);
req->sadb_x_ipsecrequest_proto = proto_ike2ip(protocol);
/* !!! the length of this struct MUST be in octets instead of 64 bit words */
req->sadb_x_ipsecrequest_len = sizeof(struct sadb_x_ipsecrequest);
req->sadb_x_ipsecrequest_mode = mode2kernel(mode);
req->sadb_x_ipsecrequest_reqid = reqid;
req->sadb_x_ipsecrequest_level = IPSEC_LEVEL_UNIQUE;
if (mode == MODE_TUNNEL)
{
sockaddr_t *sa;
socklen_t sl;
sa = src->get_sockaddr(src);
sl = *src->get_sockaddr_len(src);
memcpy(req + 1, sa, sl);
sa = dst->get_sockaddr(dst);
memcpy((u_int8_t*)(req + 1) + sl, sa, sl);
req->sadb_x_ipsecrequest_len += sl * 2;
}
pol->sadb_x_policy_len += PFKEY_LEN(req->sadb_x_ipsecrequest_len);
PFKEY_EXT_ADD(msg, pol);
add_addr_ext(msg, policy->src.net, SADB_EXT_ADDRESS_SRC, policy->src.proto,
policy->src.mask);
add_addr_ext(msg, policy->dst.net, SADB_EXT_ADDRESS_DST, policy->dst.proto,
policy->dst.mask);
#ifdef __FreeBSD__
{ /* on FreeBSD a lifetime has to be defined to be able to later query
* the current use time. */
struct sadb_lifetime *lft;
lft = (struct sadb_lifetime*)PFKEY_EXT_ADD_NEXT(msg);
lft->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
lft->sadb_lifetime_len = PFKEY_LEN(sizeof(struct sadb_lifetime));
lft->sadb_lifetime_addtime = LONG_MAX;
PFKEY_EXT_ADD(msg, lft);
}
#endif
this->mutex->unlock(this->mutex);
if (pfkey_send(this, msg, &out, &len) != SUCCESS)
{
DBG1(DBG_KNL, "unable to add policy %R === %R %N", src_ts, dst_ts,
policy_dir_names, direction);
return FAILED;
}
else if (out->sadb_msg_errno)
{
DBG1(DBG_KNL, "unable to add policy %R === %R %N: %s (%d)", src_ts, dst_ts,
policy_dir_names, direction,
strerror(out->sadb_msg_errno), out->sadb_msg_errno);
free(out);
return FAILED;
}
else if (parse_pfkey_message(out, &response) != SUCCESS)
{
DBG1(DBG_KNL, "unable to add policy %R === %R %N: parsing response "
"from kernel failed", src_ts, dst_ts, policy_dir_names, direction);
free(out);
return FAILED;
}
this->mutex->lock(this->mutex);
/* we try to find the policy again and update the kernel index */
if (this->policies->find_last(this->policies, NULL, (void**)&policy) != SUCCESS)
{
DBG2(DBG_KNL, "unable to update index, the policy %R === %R %N is "
"already gone, ignoring", src_ts, dst_ts, policy_dir_names, direction);
this->mutex->unlock(this->mutex);
free(out);
return SUCCESS;
}
policy->index = response.x_policy->sadb_x_policy_id;
free(out);
/* install a route, if:
* - we are NOT updating a policy
* - this is a forward policy (to just get one for each child)
* - we are in tunnel mode
* - we are not using IPv6 (does not work correctly yet!)
* - routing is not disabled via strongswan.conf
*/
if (policy->route == NULL && direction == POLICY_FWD &&
mode != MODE_TRANSPORT && src->get_family(src) != AF_INET6 &&
this->install_routes)
{
route_entry_t *route = malloc_thing(route_entry_t);
if (charon->kernel_interface->get_address_by_ts(charon->kernel_interface,
dst_ts, &route->src_ip) == SUCCESS)
{
/* get the nexthop to src (src as we are in POLICY_FWD).*/
route->gateway = charon->kernel_interface->get_nexthop(
charon->kernel_interface, src);
route->if_name = charon->kernel_interface->get_interface(
charon->kernel_interface, dst);
route->dst_net = chunk_clone(policy->src.net->get_address(policy->src.net));
route->prefixlen = policy->src.mask;
switch (charon->kernel_interface->add_route(charon->kernel_interface,
route->dst_net, route->prefixlen, route->gateway,
route->src_ip, route->if_name))
{
default:
DBG1(DBG_KNL, "unable to install source route for %H",
route->src_ip);
/* FALL */
case ALREADY_DONE:
/* route exists, do not uninstall */
route_entry_destroy(route);
break;
case SUCCESS:
/* cache the installed route */
policy->route = route;
break;
}
}
else
{
free(route);
}
}
this->mutex->unlock(this->mutex);
return SUCCESS;
}
/**
* Implementation of kernel_interface_t.query_policy.
*/
static status_t query_policy(private_kernel_pfkey_ipsec_t *this,
traffic_selector_t *src_ts,
traffic_selector_t *dst_ts,
policy_dir_t direction, u_int32_t *use_time)
{
unsigned char request[PFKEY_BUFFER_SIZE];
struct sadb_msg *msg, *out;
struct sadb_x_policy *pol;
policy_entry_t *policy, *found = NULL;
pfkey_msg_t response;
size_t len;
if (dir2kernel(direction) == IPSEC_DIR_INVALID)
{
/* FWD policies are not supported on all platforms */
return NOT_FOUND;
}
DBG2(DBG_KNL, "querying policy %R === %R %N", src_ts, dst_ts,
policy_dir_names, direction);
/* create a policy */
policy = create_policy_entry(src_ts, dst_ts, direction, 0);
/* find a matching policy */
this->mutex->lock(this->mutex);
if (this->policies->find_first(this->policies,
(linked_list_match_t)policy_entry_equals, (void**)&found, policy) != SUCCESS)
{
DBG1(DBG_KNL, "querying policy %R === %R %N failed, not found", src_ts,
dst_ts, policy_dir_names, direction);
policy_entry_destroy(policy);
this->mutex->unlock(this->mutex);
return NOT_FOUND;
}
policy_entry_destroy(policy);
policy = found;
memset(&request, 0, sizeof(request));
msg = (struct sadb_msg*)request;
msg->sadb_msg_version = PF_KEY_V2;
msg->sadb_msg_type = SADB_X_SPDGET;
msg->sadb_msg_satype = 0;
msg->sadb_msg_len = PFKEY_LEN(sizeof(struct sadb_msg));
pol = (struct sadb_x_policy*)PFKEY_EXT_ADD_NEXT(msg);
pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
pol->sadb_x_policy_id = policy->index;
pol->sadb_x_policy_len = PFKEY_LEN(sizeof(struct sadb_x_policy));
pol->sadb_x_policy_dir = dir2kernel(direction);
pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
PFKEY_EXT_ADD(msg, pol);
add_addr_ext(msg, policy->src.net, SADB_EXT_ADDRESS_SRC, policy->src.proto,
policy->src.mask);
add_addr_ext(msg, policy->dst.net, SADB_EXT_ADDRESS_DST, policy->dst.proto,
policy->dst.mask);
this->mutex->unlock(this->mutex);
if (pfkey_send(this, msg, &out, &len) != SUCCESS)
{
DBG1(DBG_KNL, "unable to query policy %R === %R %N", src_ts, dst_ts,
policy_dir_names, direction);
return FAILED;
}
else if (out->sadb_msg_errno)
{
DBG1(DBG_KNL, "unable to query policy %R === %R %N: %s (%d)", src_ts,
dst_ts, policy_dir_names, direction,
strerror(out->sadb_msg_errno), out->sadb_msg_errno);
free(out);
return FAILED;
}
else if (parse_pfkey_message(out, &response) != SUCCESS)
{
DBG1(DBG_KNL, "unable to query policy %R === %R %N: parsing response "
"from kernel failed", src_ts, dst_ts, policy_dir_names, direction);
free(out);
return FAILED;
}
else if (response.lft_current == NULL)
{
DBG1(DBG_KNL, "unable to query policy %R === %R %N: kernel reports no "
"use time", src_ts, dst_ts, policy_dir_names, direction);
free(out);
return FAILED;
}
/* we need the monotonic time, but the kernel returns system time. */
if (response.lft_current->sadb_lifetime_usetime)
{
*use_time = time_monotonic(NULL) -
(time(NULL) - response.lft_current->sadb_lifetime_usetime);
}
else
{
*use_time = 0;
}
free(out);
return SUCCESS;
}
/**
* Implementation of kernel_interface_t.del_policy.
*/
static status_t del_policy(private_kernel_pfkey_ipsec_t *this,
traffic_selector_t *src_ts,
traffic_selector_t *dst_ts,
policy_dir_t direction, bool unrouted)
{
unsigned char request[PFKEY_BUFFER_SIZE];
struct sadb_msg *msg, *out;
struct sadb_x_policy *pol;
policy_entry_t *policy, *found = NULL;
route_entry_t *route;
size_t len;
if (dir2kernel(direction) == IPSEC_DIR_INVALID)
{
/* FWD policies are not supported on all platforms */
return SUCCESS;
}
DBG2(DBG_KNL, "deleting policy %R === %R %N", src_ts, dst_ts,
policy_dir_names, direction);
/* create a policy */
policy = create_policy_entry(src_ts, dst_ts, direction, 0);
/* find a matching policy */
this->mutex->lock(this->mutex);
if (this->policies->find_first(this->policies,
(linked_list_match_t)policy_entry_equals, (void**)&found, policy) == SUCCESS)
{
if (--found->refcount > 0)
{
/* is used by more SAs, keep in kernel */
DBG2(DBG_KNL, "policy still used by another CHILD_SA, not removed");
policy_entry_destroy(policy);
this->mutex->unlock(this->mutex);
return SUCCESS;
}
/* remove if last reference */
this->policies->remove(this->policies, found, NULL);
policy_entry_destroy(policy);
policy = found;
}
else
{
DBG1(DBG_KNL, "deleting policy %R === %R %N failed, not found", src_ts,
dst_ts, policy_dir_names, direction);
policy_entry_destroy(policy);
this->mutex->unlock(this->mutex);
return NOT_FOUND;
}
this->mutex->unlock(this->mutex);
memset(&request, 0, sizeof(request));
msg = (struct sadb_msg*)request;
msg->sadb_msg_version = PF_KEY_V2;
msg->sadb_msg_type = SADB_X_SPDDELETE;
msg->sadb_msg_satype = 0;
msg->sadb_msg_len = PFKEY_LEN(sizeof(struct sadb_msg));
pol = (struct sadb_x_policy*)PFKEY_EXT_ADD_NEXT(msg);
pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
pol->sadb_x_policy_len = PFKEY_LEN(sizeof(struct sadb_x_policy));
pol->sadb_x_policy_dir = dir2kernel(direction);
pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
PFKEY_EXT_ADD(msg, pol);
add_addr_ext(msg, policy->src.net, SADB_EXT_ADDRESS_SRC, policy->src.proto,
policy->src.mask);
add_addr_ext(msg, policy->dst.net, SADB_EXT_ADDRESS_DST, policy->dst.proto,
policy->dst.mask);
route = policy->route;
policy->route = NULL;
policy_entry_destroy(policy);
if (pfkey_send(this, msg, &out, &len) != SUCCESS)
{
DBG1(DBG_KNL, "unable to delete policy %R === %R %N", src_ts, dst_ts,
policy_dir_names, direction);
return FAILED;
}
else if (out->sadb_msg_errno)
{
DBG1(DBG_KNL, "unable to delete policy %R === %R %N: %s (%d)", src_ts,
dst_ts, policy_dir_names, direction,
strerror(out->sadb_msg_errno), out->sadb_msg_errno);
free(out);
return FAILED;
}
free(out);
if (route)
{
if (charon->kernel_interface->del_route(charon->kernel_interface,
route->dst_net, route->prefixlen, route->gateway,
route->src_ip, route->if_name) != SUCCESS)
{
DBG1(DBG_KNL, "error uninstalling route installed with "
"policy %R === %R %N", src_ts, dst_ts,
policy_dir_names, direction);
}
route_entry_destroy(route);
}
return SUCCESS;
}
/**
* Register a socket for AQUIRE/EXPIRE messages
*/
static status_t register_pfkey_socket(private_kernel_pfkey_ipsec_t *this, u_int8_t satype)
{
unsigned char request[PFKEY_BUFFER_SIZE];
struct sadb_msg *msg, *out;
size_t len;
memset(&request, 0, sizeof(request));
msg = (struct sadb_msg*)request;
msg->sadb_msg_version = PF_KEY_V2;
msg->sadb_msg_type = SADB_REGISTER;
msg->sadb_msg_satype = satype;
msg->sadb_msg_len = PFKEY_LEN(sizeof(struct sadb_msg));
if (pfkey_send_socket(this, this->socket_events, msg, &out, &len) != SUCCESS)
{
DBG1(DBG_KNL, "unable to register PF_KEY socket");
return FAILED;
}
else if (out->sadb_msg_errno)
{
DBG1(DBG_KNL, "unable to register PF_KEY socket: %s (%d)",
strerror(out->sadb_msg_errno), out->sadb_msg_errno);
free(out);
return FAILED;
}
free(out);
return SUCCESS;
}
/**
* Implementation of kernel_interface_t.destroy.
*/
static void destroy(private_kernel_pfkey_ipsec_t *this)
{
this->job->cancel(this->job);
close(this->socket);
close(this->socket_events);
this->policies->destroy_function(this->policies, (void*)policy_entry_destroy);
this->mutex->destroy(this->mutex);
this->mutex_pfkey->destroy(this->mutex_pfkey);
free(this);
}
/**
* Add bypass policies for IKE on the sockets of charon
*/
static bool add_bypass_policies(private_kernel_pfkey_ipsec_t *this)
{
int fd, family, port;
enumerator_t *sockets;
bool status = TRUE;
sockets = charon->socket->create_enumerator(charon->socket);
while (sockets->enumerate(sockets, &fd, &family, &port))
{
struct sadb_x_policy policy;
u_int sol, ipsec_policy;
switch (family)
{
case AF_INET:
{
sol = SOL_IP;
ipsec_policy = IP_IPSEC_POLICY;
break;
}
case AF_INET6:
{
sol = SOL_IPV6;
ipsec_policy = IPV6_IPSEC_POLICY;
break;
}
default:
continue;
}
memset(&policy, 0, sizeof(policy));
policy.sadb_x_policy_len = sizeof(policy) / sizeof(u_int64_t);
policy.sadb_x_policy_exttype = SADB_X_EXT_POLICY;
policy.sadb_x_policy_type = IPSEC_POLICY_BYPASS;
policy.sadb_x_policy_dir = IPSEC_DIR_OUTBOUND;
if (setsockopt(fd, sol, ipsec_policy, &policy, sizeof(policy)) < 0)
{
DBG1(DBG_KNL, "unable to set IPSEC_POLICY on socket: %s",
strerror(errno));
status = FALSE;
break;
}
policy.sadb_x_policy_dir = IPSEC_DIR_INBOUND;
if (setsockopt(fd, sol, ipsec_policy, &policy, sizeof(policy)) < 0)
{
DBG1(DBG_KNL, "unable to set IPSEC_POLICY on socket: %s",
strerror(errno));
status = FALSE;
break;
}
}
sockets->destroy(sockets);
return status;
}
/*
* Described in header.
*/
kernel_pfkey_ipsec_t *kernel_pfkey_ipsec_create()
{
private_kernel_pfkey_ipsec_t *this = malloc_thing(private_kernel_pfkey_ipsec_t);
/* public functions */
this->public.interface.get_spi = (status_t(*)(kernel_ipsec_t*,host_t*,host_t*,protocol_id_t,u_int32_t,u_int32_t*))get_spi;
this->public.interface.get_cpi = (status_t(*)(kernel_ipsec_t*,host_t*,host_t*,u_int32_t,u_int16_t*))get_cpi;
this->public.interface.add_sa = (status_t(*)(kernel_ipsec_t *,host_t*,host_t*,u_int32_t,protocol_id_t,u_int32_t,lifetime_cfg_t*,u_int16_t,chunk_t,u_int16_t,chunk_t,ipsec_mode_t,u_int16_t,u_int16_t,bool,bool,traffic_selector_t*,traffic_selector_t*))add_sa;
this->public.interface.update_sa = (status_t(*)(kernel_ipsec_t*,u_int32_t,protocol_id_t,u_int16_t,host_t*,host_t*,host_t*,host_t*,bool,bool))update_sa;
this->public.interface.query_sa = (status_t(*)(kernel_ipsec_t*,host_t*,host_t*,u_int32_t,protocol_id_t,u_int64_t*))query_sa;
this->public.interface.del_sa = (status_t(*)(kernel_ipsec_t*,host_t*,host_t*,u_int32_t,protocol_id_t,u_int16_t))del_sa;
this->public.interface.add_policy = (status_t(*)(kernel_ipsec_t*,host_t*,host_t*,traffic_selector_t*,traffic_selector_t*,policy_dir_t,u_int32_t,protocol_id_t,u_int32_t,ipsec_mode_t,u_int16_t,u_int16_t,bool))add_policy;
this->public.interface.query_policy = (status_t(*)(kernel_ipsec_t*,traffic_selector_t*,traffic_selector_t*,policy_dir_t,u_int32_t*))query_policy;
this->public.interface.del_policy = (status_t(*)(kernel_ipsec_t*,traffic_selector_t*,traffic_selector_t*,policy_dir_t,bool))del_policy;
this->public.interface.destroy = (void(*)(kernel_ipsec_t*)) destroy;
/* private members */
this->policies = linked_list_create();
this->mutex = mutex_create(MUTEX_TYPE_DEFAULT);
this->mutex_pfkey = mutex_create(MUTEX_TYPE_DEFAULT);
this->install_routes = lib->settings->get_bool(lib->settings,
"charon.install_routes", TRUE);
this->seq = 0;
/* create a PF_KEY socket to communicate with the kernel */
this->socket = socket(PF_KEY, SOCK_RAW, PF_KEY_V2);
if (this->socket <= 0)
{
charon->kill(charon, "unable to create PF_KEY socket");
}
/* create a PF_KEY socket for ACQUIRE & EXPIRE */
this->socket_events = socket(PF_KEY, SOCK_RAW, PF_KEY_V2);
if (this->socket_events <= 0)
{
charon->kill(charon, "unable to create PF_KEY event socket");
}
/* add bypass policies on the sockets used by charon */
if (!add_bypass_policies(this))
{
charon->kill(charon, "unable to add bypass policies on sockets");
}
/* register the event socket */
if (register_pfkey_socket(this, SADB_SATYPE_ESP) != SUCCESS ||
register_pfkey_socket(this, SADB_SATYPE_AH) != SUCCESS)
{
charon->kill(charon, "unable to register PF_KEY event socket");
}
this->job = callback_job_create((callback_job_cb_t)receive_events,
this, NULL, NULL);
charon->processor->queue_job(charon->processor, (job_t*)this->job);
return &this->public;
}