strongswan/src/libstrongswan/plugins/aesni/aesni_gcm.c

1445 lines
36 KiB
C

/*
* Copyright (C) 2015 Martin Willi
* Copyright (C) 2015 revosec AG
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version. See <http://www.fsf.org/copyleft/gpl.txt>.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*/
#include "aesni_gcm.h"
#include "aesni_key.h"
#include <crypto/iv/iv_gen_seq.h>
#include <tmmintrin.h>
#define NONCE_SIZE 12
#define IV_SIZE 8
#define SALT_SIZE (NONCE_SIZE - IV_SIZE)
/**
* Parallel pipelining
*/
#define GCM_CRYPT_PARALLELISM 4
typedef struct private_aesni_gcm_t private_aesni_gcm_t;
/**
* GCM en/decryption method type
*/
typedef void (*aesni_gcm_fn_t)(private_aesni_gcm_t*, size_t, u_char*, u_char*,
u_char*, size_t, u_char*, u_char*);
/**
* Private data of an aesni_gcm_t object.
*/
struct private_aesni_gcm_t {
/**
* Public aesni_gcm_t interface.
*/
aesni_gcm_t public;
/**
* Encryption key schedule
*/
aesni_key_t *key;
/**
* IV generator.
*/
iv_gen_t *iv_gen;
/**
* Length of the integrity check value
*/
size_t icv_size;
/**
* Length of the key in bytes
*/
size_t key_size;
/**
* GCM encryption function
*/
aesni_gcm_fn_t encrypt;
/**
* GCM decryption function
*/
aesni_gcm_fn_t decrypt;
/**
* salt to add to nonce
*/
u_char salt[SALT_SIZE];
/**
* GHASH subkey H, big-endian
*/
__m128i h;
/**
* GHASH key H^2, big-endian
*/
__m128i hh;
/**
* GHASH key H^3, big-endian
*/
__m128i hhh;
/**
* GHASH key H^4, big-endian
*/
__m128i hhhh;
};
/**
* Byte-swap a 128-bit integer
*/
static inline __m128i swap128(__m128i x)
{
return _mm_shuffle_epi8(x,
_mm_set_epi8(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15));
}
/**
* Multiply two blocks in GF128
*/
static __m128i mult_block(__m128i h, __m128i y)
{
__m128i t1, t2, t3, t4, t5, t6;
y = swap128(y);
t1 = _mm_clmulepi64_si128(h, y, 0x00);
t2 = _mm_clmulepi64_si128(h, y, 0x01);
t3 = _mm_clmulepi64_si128(h, y, 0x10);
t4 = _mm_clmulepi64_si128(h, y, 0x11);
t2 = _mm_xor_si128(t2, t3);
t3 = _mm_slli_si128(t2, 8);
t2 = _mm_srli_si128(t2, 8);
t1 = _mm_xor_si128(t1, t3);
t4 = _mm_xor_si128(t4, t2);
t5 = _mm_srli_epi32(t1, 31);
t1 = _mm_slli_epi32(t1, 1);
t6 = _mm_srli_epi32(t4, 31);
t4 = _mm_slli_epi32(t4, 1);
t3 = _mm_srli_si128(t5, 12);
t6 = _mm_slli_si128(t6, 4);
t5 = _mm_slli_si128(t5, 4);
t1 = _mm_or_si128(t1, t5);
t4 = _mm_or_si128(t4, t6);
t4 = _mm_or_si128(t4, t3);
t5 = _mm_slli_epi32(t1, 31);
t6 = _mm_slli_epi32(t1, 30);
t3 = _mm_slli_epi32(t1, 25);
t5 = _mm_xor_si128(t5, t6);
t5 = _mm_xor_si128(t5, t3);
t6 = _mm_srli_si128(t5, 4);
t4 = _mm_xor_si128(t4, t6);
t5 = _mm_slli_si128(t5, 12);
t1 = _mm_xor_si128(t1, t5);
t4 = _mm_xor_si128(t4, t1);
t5 = _mm_srli_epi32(t1, 1);
t2 = _mm_srli_epi32(t1, 2);
t3 = _mm_srli_epi32(t1, 7);
t4 = _mm_xor_si128(t4, t2);
t4 = _mm_xor_si128(t4, t3);
t4 = _mm_xor_si128(t4, t5);
return swap128(t4);
}
/**
* Multiply four consecutive blocks by their respective GHASH key, XOR
*/
static inline __m128i mult4xor(__m128i h1, __m128i h2, __m128i h3, __m128i h4,
__m128i d1, __m128i d2, __m128i d3, __m128i d4)
{
__m128i t0, t1, t2, t3, t4, t5, t6, t7, t8, t9;
d1 = swap128(d1);
d2 = swap128(d2);
d3 = swap128(d3);
d4 = swap128(d4);
t0 = _mm_clmulepi64_si128(h1, d1, 0x00);
t1 = _mm_clmulepi64_si128(h2, d2, 0x00);
t2 = _mm_clmulepi64_si128(h3, d3, 0x00);
t3 = _mm_clmulepi64_si128(h4, d4, 0x00);
t8 = _mm_xor_si128(t0, t1);
t8 = _mm_xor_si128(t8, t2);
t8 = _mm_xor_si128(t8, t3);
t4 = _mm_clmulepi64_si128(h1, d1, 0x11);
t5 = _mm_clmulepi64_si128(h2, d2, 0x11);
t6 = _mm_clmulepi64_si128(h3, d3, 0x11);
t7 = _mm_clmulepi64_si128(h4, d4, 0x11);
t9 = _mm_xor_si128(t4, t5);
t9 = _mm_xor_si128(t9, t6);
t9 = _mm_xor_si128(t9, t7);
t0 = _mm_shuffle_epi32(h1, 78);
t4 = _mm_shuffle_epi32(d1, 78);
t0 = _mm_xor_si128(t0, h1);
t4 = _mm_xor_si128(t4, d1);
t1 = _mm_shuffle_epi32(h2, 78);
t5 = _mm_shuffle_epi32(d2, 78);
t1 = _mm_xor_si128(t1, h2);
t5 = _mm_xor_si128(t5, d2);
t2 = _mm_shuffle_epi32(h3, 78);
t6 = _mm_shuffle_epi32(d3, 78);
t2 = _mm_xor_si128(t2, h3);
t6 = _mm_xor_si128(t6, d3);
t3 = _mm_shuffle_epi32(h4, 78);
t7 = _mm_shuffle_epi32(d4, 78);
t3 = _mm_xor_si128(t3, h4);
t7 = _mm_xor_si128(t7, d4);
t0 = _mm_clmulepi64_si128(t0, t4, 0x00);
t1 = _mm_clmulepi64_si128(t1, t5, 0x00);
t2 = _mm_clmulepi64_si128(t2, t6, 0x00);
t3 = _mm_clmulepi64_si128(t3, t7, 0x00);
t0 = _mm_xor_si128(t0, t8);
t0 = _mm_xor_si128(t0, t9);
t0 = _mm_xor_si128(t1, t0);
t0 = _mm_xor_si128(t2, t0);
t0 = _mm_xor_si128(t3, t0);
t4 = _mm_slli_si128(t0, 8);
t0 = _mm_srli_si128(t0, 8);
t3 = _mm_xor_si128(t4, t8);
t6 = _mm_xor_si128(t0, t9);
t7 = _mm_srli_epi32(t3, 31);
t8 = _mm_srli_epi32(t6, 31);
t3 = _mm_slli_epi32(t3, 1);
t6 = _mm_slli_epi32(t6, 1);
t9 = _mm_srli_si128(t7, 12);
t8 = _mm_slli_si128(t8, 4);
t7 = _mm_slli_si128(t7, 4);
t3 = _mm_or_si128(t3, t7);
t6 = _mm_or_si128(t6, t8);
t6 = _mm_or_si128(t6, t9);
t7 = _mm_slli_epi32(t3, 31);
t8 = _mm_slli_epi32(t3, 30);
t9 = _mm_slli_epi32(t3, 25);
t7 = _mm_xor_si128(t7, t8);
t7 = _mm_xor_si128(t7, t9);
t8 = _mm_srli_si128(t7, 4);
t7 = _mm_slli_si128(t7, 12);
t3 = _mm_xor_si128(t3, t7);
t2 = _mm_srli_epi32(t3, 1);
t4 = _mm_srli_epi32(t3, 2);
t5 = _mm_srli_epi32(t3, 7);
t2 = _mm_xor_si128(t2, t4);
t2 = _mm_xor_si128(t2, t5);
t2 = _mm_xor_si128(t2, t8);
t3 = _mm_xor_si128(t3, t2);
t6 = _mm_xor_si128(t6, t3);
return swap128(t6);
}
/**
* GHASH on a single block
*/
static __m128i ghash(__m128i h, __m128i y, __m128i x)
{
return mult_block(h, _mm_xor_si128(y, x));
}
/**
* Start constructing the ICV for the associated data
*/
static __m128i icv_header(private_aesni_gcm_t *this, void *assoc, size_t alen)
{
u_int blocks, pblocks, rem, i;
__m128i h1, h2, h3, h4, d1, d2, d3, d4;
__m128i y, last, *ab;
h1 = this->hhhh;
h2 = this->hhh;
h3 = this->hh;
h4 = this->h;
y = _mm_setzero_si128();
ab = assoc;
blocks = alen / AES_BLOCK_SIZE;
pblocks = blocks - (blocks % GCM_CRYPT_PARALLELISM);
rem = alen % AES_BLOCK_SIZE;
for (i = 0; i < pblocks; i += GCM_CRYPT_PARALLELISM)
{
d1 = _mm_loadu_si128(ab + i + 0);
d2 = _mm_loadu_si128(ab + i + 1);
d3 = _mm_loadu_si128(ab + i + 2);
d4 = _mm_loadu_si128(ab + i + 3);
y = _mm_xor_si128(y, d1);
y = mult4xor(h1, h2, h3, h4, y, d2, d3, d4);
}
for (i = pblocks; i < blocks; i++)
{
y = ghash(this->h, y, _mm_loadu_si128(ab + i));
}
if (rem)
{
last = _mm_setzero_si128();
memcpy(&last, ab + blocks, rem);
y = ghash(this->h, y, last);
}
return y;
}
/**
* Complete the ICV by hashing a assoc/data length block
*/
static __m128i icv_tailer(private_aesni_gcm_t *this, __m128i y,
size_t alen, size_t dlen)
{
__m128i b;
htoun64(&b, alen * 8);
htoun64((u_char*)&b + sizeof(uint64_t), dlen * 8);
return ghash(this->h, y, b);
}
/**
* En-/Decrypt the ICV, trim and store it
*/
static void icv_crypt(private_aesni_gcm_t *this, __m128i y, __m128i j,
u_char *icv)
{
__m128i *ks, t, b;
u_int round;
ks = this->key->schedule;
t = _mm_xor_si128(j, ks[0]);
for (round = 1; round < this->key->rounds; round++)
{
t = _mm_aesenc_si128(t, ks[round]);
}
t = _mm_aesenclast_si128(t, ks[this->key->rounds]);
t = _mm_xor_si128(y, t);
_mm_storeu_si128(&b, t);
memcpy(icv, &b, this->icv_size);
}
/**
* Do big-endian increment on x
*/
static inline __m128i increment_be(__m128i x)
{
x = swap128(x);
x = _mm_add_epi64(x, _mm_set_epi32(0, 0, 0, 1));
x = swap128(x);
return x;
}
/**
* Generate the block J0
*/
static inline __m128i create_j(private_aesni_gcm_t *this, u_char *iv)
{
u_char j[AES_BLOCK_SIZE];
memcpy(j, this->salt, SALT_SIZE);
memcpy(j + SALT_SIZE, iv, IV_SIZE);
htoun32(j + SALT_SIZE + IV_SIZE, 1);
return _mm_loadu_si128((__m128i*)j);
}
/**
* Encrypt a remaining incomplete block, return updated Y
*/
static __m128i encrypt_gcm_rem(private_aesni_gcm_t *this, u_int rem,
void *in, void *out, __m128i cb, __m128i y)
{
__m128i *ks, t, b;
u_int round;
memset(&b, 0, sizeof(b));
memcpy(&b, in, rem);
ks = this->key->schedule;
t = _mm_xor_si128(cb, ks[0]);
for (round = 1; round < this->key->rounds; round++)
{
t = _mm_aesenc_si128(t, ks[round]);
}
t = _mm_aesenclast_si128(t, ks[this->key->rounds]);
b = _mm_xor_si128(t, b);
memcpy(out, &b, rem);
memset((u_char*)&b + rem, 0, AES_BLOCK_SIZE - rem);
return ghash(this->h, y, b);
}
/**
* Decrypt a remaining incomplete block, return updated Y
*/
static __m128i decrypt_gcm_rem(private_aesni_gcm_t *this, u_int rem,
void *in, void *out, __m128i cb, __m128i y)
{
__m128i *ks, t, b;
u_int round;
memset(&b, 0, sizeof(b));
memcpy(&b, in, rem);
y = ghash(this->h, y, b);
ks = this->key->schedule;
t = _mm_xor_si128(cb, ks[0]);
for (round = 1; round < this->key->rounds; round++)
{
t = _mm_aesenc_si128(t, ks[round]);
}
t = _mm_aesenclast_si128(t, ks[this->key->rounds]);
b = _mm_xor_si128(t, b);
memcpy(out, &b, rem);
return y;
}
/**
* AES-128 GCM encryption/ICV generation
*/
static void encrypt_gcm128(private_aesni_gcm_t *this,
size_t len, u_char *in, u_char *out, u_char *iv,
size_t alen, u_char *assoc, u_char *icv)
{
__m128i d1, d2, d3, d4, t1, t2, t3, t4;
__m128i *ks, y, j, cb, *bi, *bo;
u_int blocks, pblocks, rem, i;
j = create_j(this, iv);
cb = increment_be(j);
y = icv_header(this, assoc, alen);
blocks = len / AES_BLOCK_SIZE;
pblocks = blocks - (blocks % GCM_CRYPT_PARALLELISM);
rem = len % AES_BLOCK_SIZE;
bi = (__m128i*)in;
bo = (__m128i*)out;
ks = this->key->schedule;
for (i = 0; i < pblocks; i += GCM_CRYPT_PARALLELISM)
{
d1 = _mm_loadu_si128(bi + i + 0);
d2 = _mm_loadu_si128(bi + i + 1);
d3 = _mm_loadu_si128(bi + i + 2);
d4 = _mm_loadu_si128(bi + i + 3);
t1 = _mm_xor_si128(cb, ks[0]);
cb = increment_be(cb);
t2 = _mm_xor_si128(cb, ks[0]);
cb = increment_be(cb);
t3 = _mm_xor_si128(cb, ks[0]);
cb = increment_be(cb);
t4 = _mm_xor_si128(cb, ks[0]);
cb = increment_be(cb);
t1 = _mm_aesenc_si128(t1, ks[1]);
t2 = _mm_aesenc_si128(t2, ks[1]);
t3 = _mm_aesenc_si128(t3, ks[1]);
t4 = _mm_aesenc_si128(t4, ks[1]);
t1 = _mm_aesenc_si128(t1, ks[2]);
t2 = _mm_aesenc_si128(t2, ks[2]);
t3 = _mm_aesenc_si128(t3, ks[2]);
t4 = _mm_aesenc_si128(t4, ks[2]);
t1 = _mm_aesenc_si128(t1, ks[3]);
t2 = _mm_aesenc_si128(t2, ks[3]);
t3 = _mm_aesenc_si128(t3, ks[3]);
t4 = _mm_aesenc_si128(t4, ks[3]);
t1 = _mm_aesenc_si128(t1, ks[4]);
t2 = _mm_aesenc_si128(t2, ks[4]);
t3 = _mm_aesenc_si128(t3, ks[4]);
t4 = _mm_aesenc_si128(t4, ks[4]);
t1 = _mm_aesenc_si128(t1, ks[5]);
t2 = _mm_aesenc_si128(t2, ks[5]);
t3 = _mm_aesenc_si128(t3, ks[5]);
t4 = _mm_aesenc_si128(t4, ks[5]);
t1 = _mm_aesenc_si128(t1, ks[6]);
t2 = _mm_aesenc_si128(t2, ks[6]);
t3 = _mm_aesenc_si128(t3, ks[6]);
t4 = _mm_aesenc_si128(t4, ks[6]);
t1 = _mm_aesenc_si128(t1, ks[7]);
t2 = _mm_aesenc_si128(t2, ks[7]);
t3 = _mm_aesenc_si128(t3, ks[7]);
t4 = _mm_aesenc_si128(t4, ks[7]);
t1 = _mm_aesenc_si128(t1, ks[8]);
t2 = _mm_aesenc_si128(t2, ks[8]);
t3 = _mm_aesenc_si128(t3, ks[8]);
t4 = _mm_aesenc_si128(t4, ks[8]);
t1 = _mm_aesenc_si128(t1, ks[9]);
t2 = _mm_aesenc_si128(t2, ks[9]);
t3 = _mm_aesenc_si128(t3, ks[9]);
t4 = _mm_aesenc_si128(t4, ks[9]);
t1 = _mm_aesenclast_si128(t1, ks[10]);
t2 = _mm_aesenclast_si128(t2, ks[10]);
t3 = _mm_aesenclast_si128(t3, ks[10]);
t4 = _mm_aesenclast_si128(t4, ks[10]);
t1 = _mm_xor_si128(t1, d1);
t2 = _mm_xor_si128(t2, d2);
t3 = _mm_xor_si128(t3, d3);
t4 = _mm_xor_si128(t4, d4);
y = _mm_xor_si128(y, t1);
y = mult4xor(this->hhhh, this->hhh, this->hh, this->h, y, t2, t3, t4);
_mm_storeu_si128(bo + i + 0, t1);
_mm_storeu_si128(bo + i + 1, t2);
_mm_storeu_si128(bo + i + 2, t3);
_mm_storeu_si128(bo + i + 3, t4);
}
for (i = pblocks; i < blocks; i++)
{
d1 = _mm_loadu_si128(bi + i);
t1 = _mm_xor_si128(cb, ks[0]);
t1 = _mm_aesenc_si128(t1, ks[1]);
t1 = _mm_aesenc_si128(t1, ks[2]);
t1 = _mm_aesenc_si128(t1, ks[3]);
t1 = _mm_aesenc_si128(t1, ks[4]);
t1 = _mm_aesenc_si128(t1, ks[5]);
t1 = _mm_aesenc_si128(t1, ks[6]);
t1 = _mm_aesenc_si128(t1, ks[7]);
t1 = _mm_aesenc_si128(t1, ks[8]);
t1 = _mm_aesenc_si128(t1, ks[9]);
t1 = _mm_aesenclast_si128(t1, ks[10]);
t1 = _mm_xor_si128(t1, d1);
_mm_storeu_si128(bo + i, t1);
y = ghash(this->h, y, t1);
cb = increment_be(cb);
}
if (rem)
{
y = encrypt_gcm_rem(this, rem, bi + blocks, bo + blocks, cb, y);
}
y = icv_tailer(this, y, alen, len);
icv_crypt(this, y, j, icv);
}
/**
* AES-128 GCM decryption/ICV generation
*/
static void decrypt_gcm128(private_aesni_gcm_t *this,
size_t len, u_char *in, u_char *out, u_char *iv,
size_t alen, u_char *assoc, u_char *icv)
{
__m128i d1, d2, d3, d4, t1, t2, t3, t4;
__m128i *ks, y, j, cb, *bi, *bo;
u_int blocks, pblocks, rem, i;
j = create_j(this, iv);
cb = increment_be(j);
y = icv_header(this, assoc, alen);
blocks = len / AES_BLOCK_SIZE;
pblocks = blocks - (blocks % GCM_CRYPT_PARALLELISM);
rem = len % AES_BLOCK_SIZE;
bi = (__m128i*)in;
bo = (__m128i*)out;
ks = this->key->schedule;
for (i = 0; i < pblocks; i += GCM_CRYPT_PARALLELISM)
{
d1 = _mm_loadu_si128(bi + i + 0);
d2 = _mm_loadu_si128(bi + i + 1);
d3 = _mm_loadu_si128(bi + i + 2);
d4 = _mm_loadu_si128(bi + i + 3);
y = _mm_xor_si128(y, d1);
y = mult4xor(this->hhhh, this->hhh, this->hh, this->h, y, d2, d3, d4);
t1 = _mm_xor_si128(cb, ks[0]);
cb = increment_be(cb);
t2 = _mm_xor_si128(cb, ks[0]);
cb = increment_be(cb);
t3 = _mm_xor_si128(cb, ks[0]);
cb = increment_be(cb);
t4 = _mm_xor_si128(cb, ks[0]);
cb = increment_be(cb);
t1 = _mm_aesenc_si128(t1, ks[1]);
t2 = _mm_aesenc_si128(t2, ks[1]);
t3 = _mm_aesenc_si128(t3, ks[1]);
t4 = _mm_aesenc_si128(t4, ks[1]);
t1 = _mm_aesenc_si128(t1, ks[2]);
t2 = _mm_aesenc_si128(t2, ks[2]);
t3 = _mm_aesenc_si128(t3, ks[2]);
t4 = _mm_aesenc_si128(t4, ks[2]);
t1 = _mm_aesenc_si128(t1, ks[3]);
t2 = _mm_aesenc_si128(t2, ks[3]);
t3 = _mm_aesenc_si128(t3, ks[3]);
t4 = _mm_aesenc_si128(t4, ks[3]);
t1 = _mm_aesenc_si128(t1, ks[4]);
t2 = _mm_aesenc_si128(t2, ks[4]);
t3 = _mm_aesenc_si128(t3, ks[4]);
t4 = _mm_aesenc_si128(t4, ks[4]);
t1 = _mm_aesenc_si128(t1, ks[5]);
t2 = _mm_aesenc_si128(t2, ks[5]);
t3 = _mm_aesenc_si128(t3, ks[5]);
t4 = _mm_aesenc_si128(t4, ks[5]);
t1 = _mm_aesenc_si128(t1, ks[6]);
t2 = _mm_aesenc_si128(t2, ks[6]);
t3 = _mm_aesenc_si128(t3, ks[6]);
t4 = _mm_aesenc_si128(t4, ks[6]);
t1 = _mm_aesenc_si128(t1, ks[7]);
t2 = _mm_aesenc_si128(t2, ks[7]);
t3 = _mm_aesenc_si128(t3, ks[7]);
t4 = _mm_aesenc_si128(t4, ks[7]);
t1 = _mm_aesenc_si128(t1, ks[8]);
t2 = _mm_aesenc_si128(t2, ks[8]);
t3 = _mm_aesenc_si128(t3, ks[8]);
t4 = _mm_aesenc_si128(t4, ks[8]);
t1 = _mm_aesenc_si128(t1, ks[9]);
t2 = _mm_aesenc_si128(t2, ks[9]);
t3 = _mm_aesenc_si128(t3, ks[9]);
t4 = _mm_aesenc_si128(t4, ks[9]);
t1 = _mm_aesenclast_si128(t1, ks[10]);
t2 = _mm_aesenclast_si128(t2, ks[10]);
t3 = _mm_aesenclast_si128(t3, ks[10]);
t4 = _mm_aesenclast_si128(t4, ks[10]);
t1 = _mm_xor_si128(t1, d1);
t2 = _mm_xor_si128(t2, d2);
t3 = _mm_xor_si128(t3, d3);
t4 = _mm_xor_si128(t4, d4);
_mm_storeu_si128(bo + i + 0, t1);
_mm_storeu_si128(bo + i + 1, t2);
_mm_storeu_si128(bo + i + 2, t3);
_mm_storeu_si128(bo + i + 3, t4);
}
for (i = pblocks; i < blocks; i++)
{
d1 = _mm_loadu_si128(bi + i);
y = ghash(this->h, y, d1);
t1 = _mm_xor_si128(cb, ks[0]);
t1 = _mm_aesenc_si128(t1, ks[1]);
t1 = _mm_aesenc_si128(t1, ks[2]);
t1 = _mm_aesenc_si128(t1, ks[3]);
t1 = _mm_aesenc_si128(t1, ks[4]);
t1 = _mm_aesenc_si128(t1, ks[5]);
t1 = _mm_aesenc_si128(t1, ks[6]);
t1 = _mm_aesenc_si128(t1, ks[7]);
t1 = _mm_aesenc_si128(t1, ks[8]);
t1 = _mm_aesenc_si128(t1, ks[9]);
t1 = _mm_aesenclast_si128(t1, ks[10]);
t1 = _mm_xor_si128(t1, d1);
_mm_storeu_si128(bo + i, t1);
cb = increment_be(cb);
}
if (rem)
{
y = decrypt_gcm_rem(this, rem, bi + blocks, bo + blocks, cb, y);
}
y = icv_tailer(this, y, alen, len);
icv_crypt(this, y, j, icv);
}
/**
* AES-192 GCM encryption/ICV generation
*/
static void encrypt_gcm192(private_aesni_gcm_t *this,
size_t len, u_char *in, u_char *out, u_char *iv,
size_t alen, u_char *assoc, u_char *icv)
{
__m128i d1, d2, d3, d4, t1, t2, t3, t4;
__m128i *ks, y, j, cb, *bi, *bo;
u_int blocks, pblocks, rem, i;
j = create_j(this, iv);
cb = increment_be(j);
y = icv_header(this, assoc, alen);
blocks = len / AES_BLOCK_SIZE;
pblocks = blocks - (blocks % GCM_CRYPT_PARALLELISM);
rem = len % AES_BLOCK_SIZE;
bi = (__m128i*)in;
bo = (__m128i*)out;
ks = this->key->schedule;
for (i = 0; i < pblocks; i += GCM_CRYPT_PARALLELISM)
{
d1 = _mm_loadu_si128(bi + i + 0);
d2 = _mm_loadu_si128(bi + i + 1);
d3 = _mm_loadu_si128(bi + i + 2);
d4 = _mm_loadu_si128(bi + i + 3);
t1 = _mm_xor_si128(cb, ks[0]);
cb = increment_be(cb);
t2 = _mm_xor_si128(cb, ks[0]);
cb = increment_be(cb);
t3 = _mm_xor_si128(cb, ks[0]);
cb = increment_be(cb);
t4 = _mm_xor_si128(cb, ks[0]);
cb = increment_be(cb);
t1 = _mm_aesenc_si128(t1, ks[1]);
t2 = _mm_aesenc_si128(t2, ks[1]);
t3 = _mm_aesenc_si128(t3, ks[1]);
t4 = _mm_aesenc_si128(t4, ks[1]);
t1 = _mm_aesenc_si128(t1, ks[2]);
t2 = _mm_aesenc_si128(t2, ks[2]);
t3 = _mm_aesenc_si128(t3, ks[2]);
t4 = _mm_aesenc_si128(t4, ks[2]);
t1 = _mm_aesenc_si128(t1, ks[3]);
t2 = _mm_aesenc_si128(t2, ks[3]);
t3 = _mm_aesenc_si128(t3, ks[3]);
t4 = _mm_aesenc_si128(t4, ks[3]);
t1 = _mm_aesenc_si128(t1, ks[4]);
t2 = _mm_aesenc_si128(t2, ks[4]);
t3 = _mm_aesenc_si128(t3, ks[4]);
t4 = _mm_aesenc_si128(t4, ks[4]);
t1 = _mm_aesenc_si128(t1, ks[5]);
t2 = _mm_aesenc_si128(t2, ks[5]);
t3 = _mm_aesenc_si128(t3, ks[5]);
t4 = _mm_aesenc_si128(t4, ks[5]);
t1 = _mm_aesenc_si128(t1, ks[6]);
t2 = _mm_aesenc_si128(t2, ks[6]);
t3 = _mm_aesenc_si128(t3, ks[6]);
t4 = _mm_aesenc_si128(t4, ks[6]);
t1 = _mm_aesenc_si128(t1, ks[7]);
t2 = _mm_aesenc_si128(t2, ks[7]);
t3 = _mm_aesenc_si128(t3, ks[7]);
t4 = _mm_aesenc_si128(t4, ks[7]);
t1 = _mm_aesenc_si128(t1, ks[8]);
t2 = _mm_aesenc_si128(t2, ks[8]);
t3 = _mm_aesenc_si128(t3, ks[8]);
t4 = _mm_aesenc_si128(t4, ks[8]);
t1 = _mm_aesenc_si128(t1, ks[9]);
t2 = _mm_aesenc_si128(t2, ks[9]);
t3 = _mm_aesenc_si128(t3, ks[9]);
t4 = _mm_aesenc_si128(t4, ks[9]);
t1 = _mm_aesenc_si128(t1, ks[10]);
t2 = _mm_aesenc_si128(t2, ks[10]);
t3 = _mm_aesenc_si128(t3, ks[10]);
t4 = _mm_aesenc_si128(t4, ks[10]);
t1 = _mm_aesenc_si128(t1, ks[11]);
t2 = _mm_aesenc_si128(t2, ks[11]);
t3 = _mm_aesenc_si128(t3, ks[11]);
t4 = _mm_aesenc_si128(t4, ks[11]);
t1 = _mm_aesenclast_si128(t1, ks[12]);
t2 = _mm_aesenclast_si128(t2, ks[12]);
t3 = _mm_aesenclast_si128(t3, ks[12]);
t4 = _mm_aesenclast_si128(t4, ks[12]);
t1 = _mm_xor_si128(t1, d1);
t2 = _mm_xor_si128(t2, d2);
t3 = _mm_xor_si128(t3, d3);
t4 = _mm_xor_si128(t4, d4);
y = _mm_xor_si128(y, t1);
y = mult4xor(this->hhhh, this->hhh, this->hh, this->h, y, t2, t3, t4);
_mm_storeu_si128(bo + i + 0, t1);
_mm_storeu_si128(bo + i + 1, t2);
_mm_storeu_si128(bo + i + 2, t3);
_mm_storeu_si128(bo + i + 3, t4);
}
for (i = pblocks; i < blocks; i++)
{
d1 = _mm_loadu_si128(bi + i);
t1 = _mm_xor_si128(cb, ks[0]);
t1 = _mm_aesenc_si128(t1, ks[1]);
t1 = _mm_aesenc_si128(t1, ks[2]);
t1 = _mm_aesenc_si128(t1, ks[3]);
t1 = _mm_aesenc_si128(t1, ks[4]);
t1 = _mm_aesenc_si128(t1, ks[5]);
t1 = _mm_aesenc_si128(t1, ks[6]);
t1 = _mm_aesenc_si128(t1, ks[7]);
t1 = _mm_aesenc_si128(t1, ks[8]);
t1 = _mm_aesenc_si128(t1, ks[9]);
t1 = _mm_aesenc_si128(t1, ks[10]);
t1 = _mm_aesenc_si128(t1, ks[11]);
t1 = _mm_aesenclast_si128(t1, ks[12]);
t1 = _mm_xor_si128(t1, d1);
_mm_storeu_si128(bo + i, t1);
y = ghash(this->h, y, t1);
cb = increment_be(cb);
}
if (rem)
{
y = encrypt_gcm_rem(this, rem, bi + blocks, bo + blocks, cb, y);
}
y = icv_tailer(this, y, alen, len);
icv_crypt(this, y, j, icv);
}
/**
* AES-192 GCM decryption/ICV generation
*/
static void decrypt_gcm192(private_aesni_gcm_t *this,
size_t len, u_char *in, u_char *out, u_char *iv,
size_t alen, u_char *assoc, u_char *icv)
{
__m128i d1, d2, d3, d4, t1, t2, t3, t4;
__m128i *ks, y, j, cb, *bi, *bo;
u_int blocks, pblocks, rem, i;
j = create_j(this, iv);
cb = increment_be(j);
y = icv_header(this, assoc, alen);
blocks = len / AES_BLOCK_SIZE;
pblocks = blocks - (blocks % GCM_CRYPT_PARALLELISM);
rem = len % AES_BLOCK_SIZE;
bi = (__m128i*)in;
bo = (__m128i*)out;
ks = this->key->schedule;
for (i = 0; i < pblocks; i += GCM_CRYPT_PARALLELISM)
{
d1 = _mm_loadu_si128(bi + i + 0);
d2 = _mm_loadu_si128(bi + i + 1);
d3 = _mm_loadu_si128(bi + i + 2);
d4 = _mm_loadu_si128(bi + i + 3);
y = _mm_xor_si128(y, d1);
y = mult4xor(this->hhhh, this->hhh, this->hh, this->h, y, d2, d3, d4);
t1 = _mm_xor_si128(cb, ks[0]);
cb = increment_be(cb);
t2 = _mm_xor_si128(cb, ks[0]);
cb = increment_be(cb);
t3 = _mm_xor_si128(cb, ks[0]);
cb = increment_be(cb);
t4 = _mm_xor_si128(cb, ks[0]);
cb = increment_be(cb);
t1 = _mm_aesenc_si128(t1, ks[1]);
t2 = _mm_aesenc_si128(t2, ks[1]);
t3 = _mm_aesenc_si128(t3, ks[1]);
t4 = _mm_aesenc_si128(t4, ks[1]);
t1 = _mm_aesenc_si128(t1, ks[2]);
t2 = _mm_aesenc_si128(t2, ks[2]);
t3 = _mm_aesenc_si128(t3, ks[2]);
t4 = _mm_aesenc_si128(t4, ks[2]);
t1 = _mm_aesenc_si128(t1, ks[3]);
t2 = _mm_aesenc_si128(t2, ks[3]);
t3 = _mm_aesenc_si128(t3, ks[3]);
t4 = _mm_aesenc_si128(t4, ks[3]);
t1 = _mm_aesenc_si128(t1, ks[4]);
t2 = _mm_aesenc_si128(t2, ks[4]);
t3 = _mm_aesenc_si128(t3, ks[4]);
t4 = _mm_aesenc_si128(t4, ks[4]);
t1 = _mm_aesenc_si128(t1, ks[5]);
t2 = _mm_aesenc_si128(t2, ks[5]);
t3 = _mm_aesenc_si128(t3, ks[5]);
t4 = _mm_aesenc_si128(t4, ks[5]);
t1 = _mm_aesenc_si128(t1, ks[6]);
t2 = _mm_aesenc_si128(t2, ks[6]);
t3 = _mm_aesenc_si128(t3, ks[6]);
t4 = _mm_aesenc_si128(t4, ks[6]);
t1 = _mm_aesenc_si128(t1, ks[7]);
t2 = _mm_aesenc_si128(t2, ks[7]);
t3 = _mm_aesenc_si128(t3, ks[7]);
t4 = _mm_aesenc_si128(t4, ks[7]);
t1 = _mm_aesenc_si128(t1, ks[8]);
t2 = _mm_aesenc_si128(t2, ks[8]);
t3 = _mm_aesenc_si128(t3, ks[8]);
t4 = _mm_aesenc_si128(t4, ks[8]);
t1 = _mm_aesenc_si128(t1, ks[9]);
t2 = _mm_aesenc_si128(t2, ks[9]);
t3 = _mm_aesenc_si128(t3, ks[9]);
t4 = _mm_aesenc_si128(t4, ks[9]);
t1 = _mm_aesenc_si128(t1, ks[10]);
t2 = _mm_aesenc_si128(t2, ks[10]);
t3 = _mm_aesenc_si128(t3, ks[10]);
t4 = _mm_aesenc_si128(t4, ks[10]);
t1 = _mm_aesenc_si128(t1, ks[11]);
t2 = _mm_aesenc_si128(t2, ks[11]);
t3 = _mm_aesenc_si128(t3, ks[11]);
t4 = _mm_aesenc_si128(t4, ks[11]);
t1 = _mm_aesenclast_si128(t1, ks[12]);
t2 = _mm_aesenclast_si128(t2, ks[12]);
t3 = _mm_aesenclast_si128(t3, ks[12]);
t4 = _mm_aesenclast_si128(t4, ks[12]);
t1 = _mm_xor_si128(t1, d1);
t2 = _mm_xor_si128(t2, d2);
t3 = _mm_xor_si128(t3, d3);
t4 = _mm_xor_si128(t4, d4);
_mm_storeu_si128(bo + i + 0, t1);
_mm_storeu_si128(bo + i + 1, t2);
_mm_storeu_si128(bo + i + 2, t3);
_mm_storeu_si128(bo + i + 3, t4);
}
for (i = pblocks; i < blocks; i++)
{
d1 = _mm_loadu_si128(bi + i);
y = ghash(this->h, y, d1);
t1 = _mm_xor_si128(cb, ks[0]);
t1 = _mm_aesenc_si128(t1, ks[1]);
t1 = _mm_aesenc_si128(t1, ks[2]);
t1 = _mm_aesenc_si128(t1, ks[3]);
t1 = _mm_aesenc_si128(t1, ks[4]);
t1 = _mm_aesenc_si128(t1, ks[5]);
t1 = _mm_aesenc_si128(t1, ks[6]);
t1 = _mm_aesenc_si128(t1, ks[7]);
t1 = _mm_aesenc_si128(t1, ks[8]);
t1 = _mm_aesenc_si128(t1, ks[9]);
t1 = _mm_aesenc_si128(t1, ks[10]);
t1 = _mm_aesenc_si128(t1, ks[11]);
t1 = _mm_aesenclast_si128(t1, ks[12]);
t1 = _mm_xor_si128(t1, d1);
_mm_storeu_si128(bo + i, t1);
cb = increment_be(cb);
}
if (rem)
{
y = decrypt_gcm_rem(this, rem, bi + blocks, bo + blocks, cb, y);
}
y = icv_tailer(this, y, alen, len);
icv_crypt(this, y, j, icv);
}
/**
* AES-256 GCM encryption/ICV generation
*/
static void encrypt_gcm256(private_aesni_gcm_t *this,
size_t len, u_char *in, u_char *out, u_char *iv,
size_t alen, u_char *assoc, u_char *icv)
{
__m128i d1, d2, d3, d4, t1, t2, t3, t4;
__m128i *ks, y, j, cb, *bi, *bo;
u_int blocks, pblocks, rem, i;
j = create_j(this, iv);
cb = increment_be(j);
y = icv_header(this, assoc, alen);
blocks = len / AES_BLOCK_SIZE;
pblocks = blocks - (blocks % GCM_CRYPT_PARALLELISM);
rem = len % AES_BLOCK_SIZE;
bi = (__m128i*)in;
bo = (__m128i*)out;
ks = this->key->schedule;
for (i = 0; i < pblocks; i += GCM_CRYPT_PARALLELISM)
{
d1 = _mm_loadu_si128(bi + i + 0);
d2 = _mm_loadu_si128(bi + i + 1);
d3 = _mm_loadu_si128(bi + i + 2);
d4 = _mm_loadu_si128(bi + i + 3);
t1 = _mm_xor_si128(cb, ks[0]);
cb = increment_be(cb);
t2 = _mm_xor_si128(cb, ks[0]);
cb = increment_be(cb);
t3 = _mm_xor_si128(cb, ks[0]);
cb = increment_be(cb);
t4 = _mm_xor_si128(cb, ks[0]);
cb = increment_be(cb);
t1 = _mm_aesenc_si128(t1, ks[1]);
t2 = _mm_aesenc_si128(t2, ks[1]);
t3 = _mm_aesenc_si128(t3, ks[1]);
t4 = _mm_aesenc_si128(t4, ks[1]);
t1 = _mm_aesenc_si128(t1, ks[2]);
t2 = _mm_aesenc_si128(t2, ks[2]);
t3 = _mm_aesenc_si128(t3, ks[2]);
t4 = _mm_aesenc_si128(t4, ks[2]);
t1 = _mm_aesenc_si128(t1, ks[3]);
t2 = _mm_aesenc_si128(t2, ks[3]);
t3 = _mm_aesenc_si128(t3, ks[3]);
t4 = _mm_aesenc_si128(t4, ks[3]);
t1 = _mm_aesenc_si128(t1, ks[4]);
t2 = _mm_aesenc_si128(t2, ks[4]);
t3 = _mm_aesenc_si128(t3, ks[4]);
t4 = _mm_aesenc_si128(t4, ks[4]);
t1 = _mm_aesenc_si128(t1, ks[5]);
t2 = _mm_aesenc_si128(t2, ks[5]);
t3 = _mm_aesenc_si128(t3, ks[5]);
t4 = _mm_aesenc_si128(t4, ks[5]);
t1 = _mm_aesenc_si128(t1, ks[6]);
t2 = _mm_aesenc_si128(t2, ks[6]);
t3 = _mm_aesenc_si128(t3, ks[6]);
t4 = _mm_aesenc_si128(t4, ks[6]);
t1 = _mm_aesenc_si128(t1, ks[7]);
t2 = _mm_aesenc_si128(t2, ks[7]);
t3 = _mm_aesenc_si128(t3, ks[7]);
t4 = _mm_aesenc_si128(t4, ks[7]);
t1 = _mm_aesenc_si128(t1, ks[8]);
t2 = _mm_aesenc_si128(t2, ks[8]);
t3 = _mm_aesenc_si128(t3, ks[8]);
t4 = _mm_aesenc_si128(t4, ks[8]);
t1 = _mm_aesenc_si128(t1, ks[9]);
t2 = _mm_aesenc_si128(t2, ks[9]);
t3 = _mm_aesenc_si128(t3, ks[9]);
t4 = _mm_aesenc_si128(t4, ks[9]);
t1 = _mm_aesenc_si128(t1, ks[10]);
t2 = _mm_aesenc_si128(t2, ks[10]);
t3 = _mm_aesenc_si128(t3, ks[10]);
t4 = _mm_aesenc_si128(t4, ks[10]);
t1 = _mm_aesenc_si128(t1, ks[11]);
t2 = _mm_aesenc_si128(t2, ks[11]);
t3 = _mm_aesenc_si128(t3, ks[11]);
t4 = _mm_aesenc_si128(t4, ks[11]);
t1 = _mm_aesenc_si128(t1, ks[12]);
t2 = _mm_aesenc_si128(t2, ks[12]);
t3 = _mm_aesenc_si128(t3, ks[12]);
t4 = _mm_aesenc_si128(t4, ks[12]);
t1 = _mm_aesenc_si128(t1, ks[13]);
t2 = _mm_aesenc_si128(t2, ks[13]);
t3 = _mm_aesenc_si128(t3, ks[13]);
t4 = _mm_aesenc_si128(t4, ks[13]);
t1 = _mm_aesenclast_si128(t1, ks[14]);
t2 = _mm_aesenclast_si128(t2, ks[14]);
t3 = _mm_aesenclast_si128(t3, ks[14]);
t4 = _mm_aesenclast_si128(t4, ks[14]);
t1 = _mm_xor_si128(t1, d1);
t2 = _mm_xor_si128(t2, d2);
t3 = _mm_xor_si128(t3, d3);
t4 = _mm_xor_si128(t4, d4);
y = _mm_xor_si128(y, t1);
y = mult4xor(this->hhhh, this->hhh, this->hh, this->h, y, t2, t3, t4);
_mm_storeu_si128(bo + i + 0, t1);
_mm_storeu_si128(bo + i + 1, t2);
_mm_storeu_si128(bo + i + 2, t3);
_mm_storeu_si128(bo + i + 3, t4);
}
for (i = pblocks; i < blocks; i++)
{
d1 = _mm_loadu_si128(bi + i);
t1 = _mm_xor_si128(cb, ks[0]);
t1 = _mm_aesenc_si128(t1, ks[1]);
t1 = _mm_aesenc_si128(t1, ks[2]);
t1 = _mm_aesenc_si128(t1, ks[3]);
t1 = _mm_aesenc_si128(t1, ks[4]);
t1 = _mm_aesenc_si128(t1, ks[5]);
t1 = _mm_aesenc_si128(t1, ks[6]);
t1 = _mm_aesenc_si128(t1, ks[7]);
t1 = _mm_aesenc_si128(t1, ks[8]);
t1 = _mm_aesenc_si128(t1, ks[9]);
t1 = _mm_aesenc_si128(t1, ks[10]);
t1 = _mm_aesenc_si128(t1, ks[11]);
t1 = _mm_aesenc_si128(t1, ks[12]);
t1 = _mm_aesenc_si128(t1, ks[13]);
t1 = _mm_aesenclast_si128(t1, ks[14]);
t1 = _mm_xor_si128(t1, d1);
_mm_storeu_si128(bo + i, t1);
y = ghash(this->h, y, t1);
cb = increment_be(cb);
}
if (rem)
{
y = encrypt_gcm_rem(this, rem, bi + blocks, bo + blocks, cb, y);
}
y = icv_tailer(this, y, alen, len);
icv_crypt(this, y, j, icv);
}
/**
* AES-256 GCM decryption/ICV generation
*/
static void decrypt_gcm256(private_aesni_gcm_t *this,
size_t len, u_char *in, u_char *out, u_char *iv,
size_t alen, u_char *assoc, u_char *icv)
{
__m128i d1, d2, d3, d4, t1, t2, t3, t4;
__m128i *ks, y, j, cb, *bi, *bo;
u_int blocks, pblocks, rem, i;
j = create_j(this, iv);
cb = increment_be(j);
y = icv_header(this, assoc, alen);
blocks = len / AES_BLOCK_SIZE;
pblocks = blocks - (blocks % GCM_CRYPT_PARALLELISM);
rem = len % AES_BLOCK_SIZE;
bi = (__m128i*)in;
bo = (__m128i*)out;
ks = this->key->schedule;
for (i = 0; i < pblocks; i += GCM_CRYPT_PARALLELISM)
{
d1 = _mm_loadu_si128(bi + i + 0);
d2 = _mm_loadu_si128(bi + i + 1);
d3 = _mm_loadu_si128(bi + i + 2);
d4 = _mm_loadu_si128(bi + i + 3);
y = _mm_xor_si128(y, d1);
y = mult4xor(this->hhhh, this->hhh, this->hh, this->h, y, d2, d3, d4);
t1 = _mm_xor_si128(cb, ks[0]);
cb = increment_be(cb);
t2 = _mm_xor_si128(cb, ks[0]);
cb = increment_be(cb);
t3 = _mm_xor_si128(cb, ks[0]);
cb = increment_be(cb);
t4 = _mm_xor_si128(cb, ks[0]);
cb = increment_be(cb);
t1 = _mm_aesenc_si128(t1, ks[1]);
t2 = _mm_aesenc_si128(t2, ks[1]);
t3 = _mm_aesenc_si128(t3, ks[1]);
t4 = _mm_aesenc_si128(t4, ks[1]);
t1 = _mm_aesenc_si128(t1, ks[2]);
t2 = _mm_aesenc_si128(t2, ks[2]);
t3 = _mm_aesenc_si128(t3, ks[2]);
t4 = _mm_aesenc_si128(t4, ks[2]);
t1 = _mm_aesenc_si128(t1, ks[3]);
t2 = _mm_aesenc_si128(t2, ks[3]);
t3 = _mm_aesenc_si128(t3, ks[3]);
t4 = _mm_aesenc_si128(t4, ks[3]);
t1 = _mm_aesenc_si128(t1, ks[4]);
t2 = _mm_aesenc_si128(t2, ks[4]);
t3 = _mm_aesenc_si128(t3, ks[4]);
t4 = _mm_aesenc_si128(t4, ks[4]);
t1 = _mm_aesenc_si128(t1, ks[5]);
t2 = _mm_aesenc_si128(t2, ks[5]);
t3 = _mm_aesenc_si128(t3, ks[5]);
t4 = _mm_aesenc_si128(t4, ks[5]);
t1 = _mm_aesenc_si128(t1, ks[6]);
t2 = _mm_aesenc_si128(t2, ks[6]);
t3 = _mm_aesenc_si128(t3, ks[6]);
t4 = _mm_aesenc_si128(t4, ks[6]);
t1 = _mm_aesenc_si128(t1, ks[7]);
t2 = _mm_aesenc_si128(t2, ks[7]);
t3 = _mm_aesenc_si128(t3, ks[7]);
t4 = _mm_aesenc_si128(t4, ks[7]);
t1 = _mm_aesenc_si128(t1, ks[8]);
t2 = _mm_aesenc_si128(t2, ks[8]);
t3 = _mm_aesenc_si128(t3, ks[8]);
t4 = _mm_aesenc_si128(t4, ks[8]);
t1 = _mm_aesenc_si128(t1, ks[9]);
t2 = _mm_aesenc_si128(t2, ks[9]);
t3 = _mm_aesenc_si128(t3, ks[9]);
t4 = _mm_aesenc_si128(t4, ks[9]);
t1 = _mm_aesenc_si128(t1, ks[10]);
t2 = _mm_aesenc_si128(t2, ks[10]);
t3 = _mm_aesenc_si128(t3, ks[10]);
t4 = _mm_aesenc_si128(t4, ks[10]);
t1 = _mm_aesenc_si128(t1, ks[11]);
t2 = _mm_aesenc_si128(t2, ks[11]);
t3 = _mm_aesenc_si128(t3, ks[11]);
t4 = _mm_aesenc_si128(t4, ks[11]);
t1 = _mm_aesenc_si128(t1, ks[12]);
t2 = _mm_aesenc_si128(t2, ks[12]);
t3 = _mm_aesenc_si128(t3, ks[12]);
t4 = _mm_aesenc_si128(t4, ks[12]);
t1 = _mm_aesenc_si128(t1, ks[13]);
t2 = _mm_aesenc_si128(t2, ks[13]);
t3 = _mm_aesenc_si128(t3, ks[13]);
t4 = _mm_aesenc_si128(t4, ks[13]);
t1 = _mm_aesenclast_si128(t1, ks[14]);
t2 = _mm_aesenclast_si128(t2, ks[14]);
t3 = _mm_aesenclast_si128(t3, ks[14]);
t4 = _mm_aesenclast_si128(t4, ks[14]);
t1 = _mm_xor_si128(t1, d1);
t2 = _mm_xor_si128(t2, d2);
t3 = _mm_xor_si128(t3, d3);
t4 = _mm_xor_si128(t4, d4);
_mm_storeu_si128(bo + i + 0, t1);
_mm_storeu_si128(bo + i + 1, t2);
_mm_storeu_si128(bo + i + 2, t3);
_mm_storeu_si128(bo + i + 3, t4);
}
for (i = pblocks; i < blocks; i++)
{
d1 = _mm_loadu_si128(bi + i);
y = ghash(this->h, y, d1);
t1 = _mm_xor_si128(cb, ks[0]);
t1 = _mm_aesenc_si128(t1, ks[1]);
t1 = _mm_aesenc_si128(t1, ks[2]);
t1 = _mm_aesenc_si128(t1, ks[3]);
t1 = _mm_aesenc_si128(t1, ks[4]);
t1 = _mm_aesenc_si128(t1, ks[5]);
t1 = _mm_aesenc_si128(t1, ks[6]);
t1 = _mm_aesenc_si128(t1, ks[7]);
t1 = _mm_aesenc_si128(t1, ks[8]);
t1 = _mm_aesenc_si128(t1, ks[9]);
t1 = _mm_aesenc_si128(t1, ks[10]);
t1 = _mm_aesenc_si128(t1, ks[11]);
t1 = _mm_aesenc_si128(t1, ks[12]);
t1 = _mm_aesenc_si128(t1, ks[13]);
t1 = _mm_aesenclast_si128(t1, ks[14]);
t1 = _mm_xor_si128(t1, d1);
_mm_storeu_si128(bo + i, t1);
cb = increment_be(cb);
}
if (rem)
{
y = decrypt_gcm_rem(this, rem, bi + blocks, bo + blocks, cb, y);
}
y = icv_tailer(this, y, alen, len);
icv_crypt(this, y, j, icv);
}
METHOD(aead_t, encrypt, bool,
private_aesni_gcm_t *this, chunk_t plain, chunk_t assoc, chunk_t iv,
chunk_t *encr)
{
u_char *out;
if (!this->key || iv.len != IV_SIZE)
{
return FALSE;
}
out = plain.ptr;
if (encr)
{
*encr = chunk_alloc(plain.len + this->icv_size);
out = encr->ptr;
}
this->encrypt(this, plain.len, plain.ptr, out, iv.ptr,
assoc.len, assoc.ptr, out + plain.len);
return TRUE;
}
METHOD(aead_t, decrypt, bool,
private_aesni_gcm_t *this, chunk_t encr, chunk_t assoc, chunk_t iv,
chunk_t *plain)
{
u_char *out, icv[this->icv_size];
if (!this->key || iv.len != IV_SIZE || encr.len < this->icv_size)
{
return FALSE;
}
encr.len -= this->icv_size;
out = encr.ptr;
if (plain)
{
*plain = chunk_alloc(encr.len);
out = plain->ptr;
}
this->decrypt(this, encr.len, encr.ptr, out, iv.ptr,
assoc.len, assoc.ptr, icv);
return memeq_const(icv, encr.ptr + encr.len, this->icv_size);
}
METHOD(aead_t, get_block_size, size_t,
private_aesni_gcm_t *this)
{
return 1;
}
METHOD(aead_t, get_icv_size, size_t,
private_aesni_gcm_t *this)
{
return this->icv_size;
}
METHOD(aead_t, get_iv_size, size_t,
private_aesni_gcm_t *this)
{
return IV_SIZE;
}
METHOD(aead_t, get_iv_gen, iv_gen_t*,
private_aesni_gcm_t *this)
{
return this->iv_gen;
}
METHOD(aead_t, get_key_size, size_t,
private_aesni_gcm_t *this)
{
return this->key_size + SALT_SIZE;
}
METHOD(aead_t, set_key, bool,
private_aesni_gcm_t *this, chunk_t key)
{
u_int round;
__m128i *ks, h;
if (key.len != this->key_size + SALT_SIZE)
{
return FALSE;
}
memcpy(this->salt, key.ptr + key.len - SALT_SIZE, SALT_SIZE);
key.len -= SALT_SIZE;
DESTROY_IF(this->key);
this->key = aesni_key_create(TRUE, key);
ks = this->key->schedule;
h = _mm_xor_si128(_mm_setzero_si128(), ks[0]);
for (round = 1; round < this->key->rounds; round++)
{
h = _mm_aesenc_si128(h, ks[round]);
}
h = _mm_aesenclast_si128(h, ks[this->key->rounds]);
this->h = h;
h = swap128(h);
this->hh = mult_block(h, this->h);
this->hhh = mult_block(h, this->hh);
this->hhhh = mult_block(h, this->hhh);
this->h = swap128(this->h);
this->hh = swap128(this->hh);
this->hhh = swap128(this->hhh);
this->hhhh = swap128(this->hhhh);
return TRUE;
}
METHOD(aead_t, destroy, void,
private_aesni_gcm_t *this)
{
DESTROY_IF(this->key);
memwipe(&this->h, sizeof(this->h));
memwipe(&this->hh, sizeof(this->hh));
memwipe(&this->hhh, sizeof(this->hhh));
memwipe(&this->hhhh, sizeof(this->hhhh));
this->iv_gen->destroy(this->iv_gen);
free_align(this);
}
/**
* See header
*/
aesni_gcm_t *aesni_gcm_create(encryption_algorithm_t algo,
size_t key_size, size_t salt_size)
{
private_aesni_gcm_t *this;
size_t icv_size;
switch (key_size)
{
case 0:
key_size = 16;
break;
case 16:
case 24:
case 32:
break;
default:
return NULL;
}
if (salt_size && salt_size != SALT_SIZE)
{
/* currently not supported */
return NULL;
}
switch (algo)
{
case ENCR_AES_GCM_ICV8:
icv_size = 8;
break;
case ENCR_AES_GCM_ICV12:
icv_size = 12;
break;
case ENCR_AES_GCM_ICV16:
icv_size = 16;
break;
default:
return NULL;
}
INIT_ALIGN(this, sizeof(__m128i),
.public = {
.aead = {
.encrypt = _encrypt,
.decrypt = _decrypt,
.get_block_size = _get_block_size,
.get_icv_size = _get_icv_size,
.get_iv_size = _get_iv_size,
.get_iv_gen = _get_iv_gen,
.get_key_size = _get_key_size,
.set_key = _set_key,
.destroy = _destroy,
},
},
.key_size = key_size,
.iv_gen = iv_gen_seq_create(),
.icv_size = icv_size,
);
switch (key_size)
{
case 16:
this->encrypt = encrypt_gcm128;
this->decrypt = decrypt_gcm128;
break;
case 24:
this->encrypt = encrypt_gcm192;
this->decrypt = decrypt_gcm192;
break;
case 32:
this->encrypt = encrypt_gcm256;
this->decrypt = decrypt_gcm256;
break;
}
return &this->public;
}