strongswan/src/libhydra/plugins/kernel_netlink/kernel_netlink_ipsec.c

2522 lines
63 KiB
C

/*
* Copyright (C) 2006-2011 Tobias Brunner
* Copyright (C) 2005-2009 Martin Willi
* Copyright (C) 2008 Andreas Steffen
* Copyright (C) 2006-2007 Fabian Hartmann, Noah Heusser
* Copyright (C) 2006 Daniel Roethlisberger
* Copyright (C) 2005 Jan Hutter
* Hochschule fuer Technik Rapperswil
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version. See <http://www.fsf.org/copyleft/gpl.txt>.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*/
#include <sys/types.h>
#include <sys/socket.h>
#include <stdint.h>
#include <linux/ipsec.h>
#include <linux/netlink.h>
#include <linux/rtnetlink.h>
#include <linux/xfrm.h>
#include <linux/udp.h>
#include <unistd.h>
#include <time.h>
#include <errno.h>
#include <string.h>
#include <fcntl.h>
#include "kernel_netlink_ipsec.h"
#include "kernel_netlink_shared.h"
#include <hydra.h>
#include <debug.h>
#include <threading/thread.h>
#include <threading/mutex.h>
#include <utils/hashtable.h>
#include <utils/linked_list.h>
#include <processing/jobs/callback_job.h>
/** required for Linux 2.6.26 kernel and later */
#ifndef XFRM_STATE_AF_UNSPEC
#define XFRM_STATE_AF_UNSPEC 32
#endif
/** from linux/in.h */
#ifndef IP_XFRM_POLICY
#define IP_XFRM_POLICY 17
#endif
/* missing on uclibc */
#ifndef IPV6_XFRM_POLICY
#define IPV6_XFRM_POLICY 34
#endif /*IPV6_XFRM_POLICY*/
/** default priority of installed policies */
#define PRIO_LOW 1024
#define PRIO_HIGH 512
/** default replay window size, if not set using charon.replay_window */
#define DEFAULT_REPLAY_WINDOW 32
/**
* map the limit for bytes and packets to XFRM_INF per default
*/
#define XFRM_LIMIT(x) ((x) == 0 ? XFRM_INF : (x))
/**
* Create ORable bitfield of XFRM NL groups
*/
#define XFRMNLGRP(x) (1<<(XFRMNLGRP_##x-1))
/**
* returns a pointer to the first rtattr following the nlmsghdr *nlh and the
* 'usual' netlink data x like 'struct xfrm_usersa_info'
*/
#define XFRM_RTA(nlh, x) ((struct rtattr*)(NLMSG_DATA(nlh) + NLMSG_ALIGN(sizeof(x))))
/**
* returns a pointer to the next rtattr following rta.
* !!! do not use this to parse messages. use RTA_NEXT and RTA_OK instead !!!
*/
#define XFRM_RTA_NEXT(rta) ((struct rtattr*)(((char*)(rta)) + RTA_ALIGN((rta)->rta_len)))
/**
* returns the total size of attached rta data
* (after 'usual' netlink data x like 'struct xfrm_usersa_info')
*/
#define XFRM_PAYLOAD(nlh, x) NLMSG_PAYLOAD(nlh, sizeof(x))
typedef struct kernel_algorithm_t kernel_algorithm_t;
/**
* Mapping of IKEv2 kernel identifier to linux crypto API names
*/
struct kernel_algorithm_t {
/**
* Identifier specified in IKEv2
*/
int ikev2;
/**
* Name of the algorithm in linux crypto API
*/
char *name;
};
ENUM(xfrm_msg_names, XFRM_MSG_NEWSA, XFRM_MSG_MAPPING,
"XFRM_MSG_NEWSA",
"XFRM_MSG_DELSA",
"XFRM_MSG_GETSA",
"XFRM_MSG_NEWPOLICY",
"XFRM_MSG_DELPOLICY",
"XFRM_MSG_GETPOLICY",
"XFRM_MSG_ALLOCSPI",
"XFRM_MSG_ACQUIRE",
"XFRM_MSG_EXPIRE",
"XFRM_MSG_UPDPOLICY",
"XFRM_MSG_UPDSA",
"XFRM_MSG_POLEXPIRE",
"XFRM_MSG_FLUSHSA",
"XFRM_MSG_FLUSHPOLICY",
"XFRM_MSG_NEWAE",
"XFRM_MSG_GETAE",
"XFRM_MSG_REPORT",
"XFRM_MSG_MIGRATE",
"XFRM_MSG_NEWSADINFO",
"XFRM_MSG_GETSADINFO",
"XFRM_MSG_NEWSPDINFO",
"XFRM_MSG_GETSPDINFO",
"XFRM_MSG_MAPPING"
);
ENUM(xfrm_attr_type_names, XFRMA_UNSPEC, XFRMA_KMADDRESS,
"XFRMA_UNSPEC",
"XFRMA_ALG_AUTH",
"XFRMA_ALG_CRYPT",
"XFRMA_ALG_COMP",
"XFRMA_ENCAP",
"XFRMA_TMPL",
"XFRMA_SA",
"XFRMA_POLICY",
"XFRMA_SEC_CTX",
"XFRMA_LTIME_VAL",
"XFRMA_REPLAY_VAL",
"XFRMA_REPLAY_THRESH",
"XFRMA_ETIMER_THRESH",
"XFRMA_SRCADDR",
"XFRMA_COADDR",
"XFRMA_LASTUSED",
"XFRMA_POLICY_TYPE",
"XFRMA_MIGRATE",
"XFRMA_ALG_AEAD",
"XFRMA_KMADDRESS"
);
#define END_OF_LIST -1
/**
* Algorithms for encryption
*/
static kernel_algorithm_t encryption_algs[] = {
/* {ENCR_DES_IV64, "***" }, */
{ENCR_DES, "des" },
{ENCR_3DES, "des3_ede" },
/* {ENCR_RC5, "***" }, */
/* {ENCR_IDEA, "***" }, */
{ENCR_CAST, "cast128" },
{ENCR_BLOWFISH, "blowfish" },
/* {ENCR_3IDEA, "***" }, */
/* {ENCR_DES_IV32, "***" }, */
{ENCR_NULL, "cipher_null" },
{ENCR_AES_CBC, "aes" },
{ENCR_AES_CTR, "rfc3686(ctr(aes))" },
{ENCR_AES_CCM_ICV8, "rfc4309(ccm(aes))" },
{ENCR_AES_CCM_ICV12, "rfc4309(ccm(aes))" },
{ENCR_AES_CCM_ICV16, "rfc4309(ccm(aes))" },
{ENCR_AES_GCM_ICV8, "rfc4106(gcm(aes))" },
{ENCR_AES_GCM_ICV12, "rfc4106(gcm(aes))" },
{ENCR_AES_GCM_ICV16, "rfc4106(gcm(aes))" },
{ENCR_NULL_AUTH_AES_GMAC, "rfc4543(gcm(aes))" },
{ENCR_CAMELLIA_CBC, "cbc(camellia)" },
/* {ENCR_CAMELLIA_CTR, "***" }, */
/* {ENCR_CAMELLIA_CCM_ICV8, "***" }, */
/* {ENCR_CAMELLIA_CCM_ICV12, "***" }, */
/* {ENCR_CAMELLIA_CCM_ICV16, "***" }, */
{ENCR_SERPENT_CBC, "serpent" },
{ENCR_TWOFISH_CBC, "twofish" },
{END_OF_LIST, NULL }
};
/**
* Algorithms for integrity protection
*/
static kernel_algorithm_t integrity_algs[] = {
{AUTH_HMAC_MD5_96, "md5" },
{AUTH_HMAC_SHA1_96, "sha1" },
{AUTH_HMAC_SHA2_256_96, "sha256" },
{AUTH_HMAC_SHA2_256_128, "hmac(sha256)" },
{AUTH_HMAC_SHA2_384_192, "hmac(sha384)" },
{AUTH_HMAC_SHA2_512_256, "hmac(sha512)" },
/* {AUTH_DES_MAC, "***" }, */
/* {AUTH_KPDK_MD5, "***" }, */
{AUTH_AES_XCBC_96, "xcbc(aes)" },
{END_OF_LIST, NULL }
};
/**
* Algorithms for IPComp
*/
static kernel_algorithm_t compression_algs[] = {
/* {IPCOMP_OUI, "***" }, */
{IPCOMP_DEFLATE, "deflate" },
{IPCOMP_LZS, "lzs" },
{IPCOMP_LZJH, "lzjh" },
{END_OF_LIST, NULL }
};
/**
* Look up a kernel algorithm name and its key size
*/
static char* lookup_algorithm(kernel_algorithm_t *list, int ikev2)
{
while (list->ikev2 != END_OF_LIST)
{
if (list->ikev2 == ikev2)
{
return list->name;
}
list++;
}
return NULL;
}
typedef struct route_entry_t route_entry_t;
/**
* installed routing entry
*/
struct route_entry_t {
/** name of the interface the route is bound to */
char *if_name;
/** source ip of the route */
host_t *src_ip;
/** gateway for this route */
host_t *gateway;
/** destination net */
chunk_t dst_net;
/** destination net prefixlen */
u_int8_t prefixlen;
};
/**
* destroy a route_entry_t object
*/
static void route_entry_destroy(route_entry_t *this)
{
free(this->if_name);
this->src_ip->destroy(this->src_ip);
DESTROY_IF(this->gateway);
chunk_free(&this->dst_net);
free(this);
}
/**
* compare two route_entry_t objects
*/
static bool route_entry_equals(route_entry_t *a, route_entry_t *b)
{
return a->if_name && b->if_name && streq(a->if_name, b->if_name) &&
a->src_ip->equals(a->src_ip, b->src_ip) &&
a->gateway->equals(a->gateway, b->gateway) &&
chunk_equals(a->dst_net, b->dst_net) && a->prefixlen == b->prefixlen;
}
typedef struct policy_sa_t policy_sa_t;
/**
* IPsec SA assigned to a policy.
*/
struct policy_sa_t {
/** priority assigned to the policy when installed with this SA */
u_int32_t priority;
/** type of the policy */
policy_type_t type;
/** source address of this SA */
host_t *src;
/** destination address of this SA */
host_t *dst;
/** source traffic selector of this SA */
traffic_selector_t *src_ts;
/** destination traffic selector of this SA */
traffic_selector_t *dst_ts;
/** optional mark */
mark_t mark;
/** description of this SA */
ipsec_sa_cfg_t cfg;
};
static void policy_sa_destroy(policy_sa_t *this)
{
DESTROY_IF(this->src);
DESTROY_IF(this->dst);
DESTROY_IF(this->src_ts);
DESTROY_IF(this->dst_ts);
free(this);
}
typedef struct policy_entry_t policy_entry_t;
/**
* installed kernel policy.
*/
struct policy_entry_t {
/** direction of this policy: in, out, forward */
u_int8_t direction;
/** parameters of installed policy */
struct xfrm_selector sel;
/** optional mark */
u_int32_t mark;
/** associated route installed for this policy */
route_entry_t *route;
/** the SAs this policy is used by, ordered by priority */
linked_list_t *sas;
};
static void policy_entry_destroy(policy_entry_t *this)
{
if (this->route)
{
route_entry_destroy(this->route);
}
this->sas->destroy_function(this->sas, (void*)policy_sa_destroy);
free(this);
}
/**
* Hash function for policy_entry_t objects
*/
static u_int policy_hash(policy_entry_t *key)
{
chunk_t chunk = chunk_create((void*)&key->sel,
sizeof(struct xfrm_selector) + sizeof(u_int32_t));
return chunk_hash(chunk);
}
/**
* Equality function for policy_entry_t objects
*/
static bool policy_equals(policy_entry_t *key, policy_entry_t *other_key)
{
return memeq(&key->sel, &other_key->sel,
sizeof(struct xfrm_selector) + sizeof(u_int32_t)) &&
key->direction == other_key->direction;
}
typedef struct private_kernel_netlink_ipsec_t private_kernel_netlink_ipsec_t;
/**
* Private variables and functions of kernel_netlink class.
*/
struct private_kernel_netlink_ipsec_t {
/**
* Public part of the kernel_netlink_t object.
*/
kernel_netlink_ipsec_t public;
/**
* mutex to lock access to installed policies
*/
mutex_t *mutex;
/**
* Hash table of installed policies (policy_entry_t)
*/
hashtable_t *policies;
/**
* job receiving netlink events
*/
callback_job_t *job;
/**
* Netlink xfrm socket (IPsec)
*/
netlink_socket_t *socket_xfrm;
/**
* netlink xfrm socket to receive acquire and expire events
*/
int socket_xfrm_events;
/**
* whether to install routes along policies
*/
bool install_routes;
/**
* Size of the replay window, in packets
*/
u_int32_t replay_window;
/**
* Size of the replay window bitmap, in bytes
*/
u_int32_t replay_bmp;
};
/**
* convert the general ipsec mode to the one defined in xfrm.h
*/
static u_int8_t mode2kernel(ipsec_mode_t mode)
{
switch (mode)
{
case MODE_TRANSPORT:
return XFRM_MODE_TRANSPORT;
case MODE_TUNNEL:
return XFRM_MODE_TUNNEL;
case MODE_BEET:
return XFRM_MODE_BEET;
default:
return mode;
}
}
/**
* convert a host_t to a struct xfrm_address
*/
static void host2xfrm(host_t *host, xfrm_address_t *xfrm)
{
chunk_t chunk = host->get_address(host);
memcpy(xfrm, chunk.ptr, min(chunk.len, sizeof(xfrm_address_t)));
}
/**
* convert a struct xfrm_address to a host_t
*/
static host_t* xfrm2host(int family, xfrm_address_t *xfrm, u_int16_t port)
{
chunk_t chunk;
switch (family)
{
case AF_INET:
chunk = chunk_create((u_char*)&xfrm->a4, sizeof(xfrm->a4));
break;
case AF_INET6:
chunk = chunk_create((u_char*)&xfrm->a6, sizeof(xfrm->a6));
break;
default:
return NULL;
}
return host_create_from_chunk(family, chunk, ntohs(port));
}
/**
* convert a traffic selector address range to subnet and its mask.
*/
static void ts2subnet(traffic_selector_t* ts,
xfrm_address_t *net, u_int8_t *mask)
{
host_t *net_host;
chunk_t net_chunk;
ts->to_subnet(ts, &net_host, mask);
net_chunk = net_host->get_address(net_host);
memcpy(net, net_chunk.ptr, net_chunk.len);
net_host->destroy(net_host);
}
/**
* convert a traffic selector port range to port/portmask
*/
static void ts2ports(traffic_selector_t* ts,
u_int16_t *port, u_int16_t *mask)
{
/* linux does not seem to accept complex portmasks. Only
* any or a specific port is allowed. We set to any, if we have
* a port range, or to a specific, if we have one port only.
*/
u_int16_t from, to;
from = ts->get_from_port(ts);
to = ts->get_to_port(ts);
if (from == to)
{
*port = htons(from);
*mask = ~0;
}
else
{
*port = 0;
*mask = 0;
}
}
/**
* convert a pair of traffic_selectors to a xfrm_selector
*/
static struct xfrm_selector ts2selector(traffic_selector_t *src,
traffic_selector_t *dst)
{
struct xfrm_selector sel;
memset(&sel, 0, sizeof(sel));
sel.family = (src->get_type(src) == TS_IPV4_ADDR_RANGE) ? AF_INET : AF_INET6;
/* src or dest proto may be "any" (0), use more restrictive one */
sel.proto = max(src->get_protocol(src), dst->get_protocol(dst));
ts2subnet(dst, &sel.daddr, &sel.prefixlen_d);
ts2subnet(src, &sel.saddr, &sel.prefixlen_s);
ts2ports(dst, &sel.dport, &sel.dport_mask);
ts2ports(src, &sel.sport, &sel.sport_mask);
sel.ifindex = 0;
sel.user = 0;
return sel;
}
/**
* convert a xfrm_selector to a src|dst traffic_selector
*/
static traffic_selector_t* selector2ts(struct xfrm_selector *sel, bool src)
{
u_char *addr;
u_int8_t prefixlen;
u_int16_t port = 0;
host_t *host = NULL;
if (src)
{
addr = (u_char*)&sel->saddr;
prefixlen = sel->prefixlen_s;
if (sel->sport_mask)
{
port = htons(sel->sport);
}
}
else
{
addr = (u_char*)&sel->daddr;
prefixlen = sel->prefixlen_d;
if (sel->dport_mask)
{
port = htons(sel->dport);
}
}
/* The Linux 2.6 kernel does not set the selector's family field,
* so as a kludge we additionally test the prefix length.
*/
if (sel->family == AF_INET || sel->prefixlen_s == 32)
{
host = host_create_from_chunk(AF_INET, chunk_create(addr, 4), 0);
}
else if (sel->family == AF_INET6 || sel->prefixlen_s == 128)
{
host = host_create_from_chunk(AF_INET6, chunk_create(addr, 16), 0);
}
if (host)
{
return traffic_selector_create_from_subnet(host, prefixlen,
sel->proto, port);
}
return NULL;
}
/**
* process a XFRM_MSG_ACQUIRE from kernel
*/
static void process_acquire(private_kernel_netlink_ipsec_t *this, struct nlmsghdr *hdr)
{
u_int32_t reqid = 0;
int proto = 0;
traffic_selector_t *src_ts, *dst_ts;
struct xfrm_user_acquire *acquire;
struct rtattr *rta;
size_t rtasize;
acquire = (struct xfrm_user_acquire*)NLMSG_DATA(hdr);
rta = XFRM_RTA(hdr, struct xfrm_user_acquire);
rtasize = XFRM_PAYLOAD(hdr, struct xfrm_user_acquire);
DBG2(DBG_KNL, "received a XFRM_MSG_ACQUIRE");
while (RTA_OK(rta, rtasize))
{
DBG2(DBG_KNL, " %N", xfrm_attr_type_names, rta->rta_type);
if (rta->rta_type == XFRMA_TMPL)
{
struct xfrm_user_tmpl* tmpl;
tmpl = (struct xfrm_user_tmpl*)RTA_DATA(rta);
reqid = tmpl->reqid;
proto = tmpl->id.proto;
}
rta = RTA_NEXT(rta, rtasize);
}
switch (proto)
{
case 0:
case IPPROTO_ESP:
case IPPROTO_AH:
break;
default:
/* acquire for AH/ESP only, not for IPCOMP */
return;
}
src_ts = selector2ts(&acquire->sel, TRUE);
dst_ts = selector2ts(&acquire->sel, FALSE);
hydra->kernel_interface->acquire(hydra->kernel_interface, reqid, src_ts,
dst_ts);
}
/**
* process a XFRM_MSG_EXPIRE from kernel
*/
static void process_expire(private_kernel_netlink_ipsec_t *this, struct nlmsghdr *hdr)
{
u_int8_t protocol;
u_int32_t spi, reqid;
struct xfrm_user_expire *expire;
expire = (struct xfrm_user_expire*)NLMSG_DATA(hdr);
protocol = expire->state.id.proto;
spi = expire->state.id.spi;
reqid = expire->state.reqid;
DBG2(DBG_KNL, "received a XFRM_MSG_EXPIRE");
if (protocol != IPPROTO_ESP && protocol != IPPROTO_AH)
{
DBG2(DBG_KNL, "ignoring XFRM_MSG_EXPIRE for SA with SPI %.8x and "
"reqid {%u} which is not a CHILD_SA", ntohl(spi), reqid);
return;
}
hydra->kernel_interface->expire(hydra->kernel_interface, reqid, protocol,
spi, expire->hard != 0);
}
/**
* process a XFRM_MSG_MIGRATE from kernel
*/
static void process_migrate(private_kernel_netlink_ipsec_t *this, struct nlmsghdr *hdr)
{
traffic_selector_t *src_ts, *dst_ts;
host_t *local = NULL, *remote = NULL;
host_t *old_src = NULL, *old_dst = NULL;
host_t *new_src = NULL, *new_dst = NULL;
struct xfrm_userpolicy_id *policy_id;
struct rtattr *rta;
size_t rtasize;
u_int32_t reqid = 0;
policy_dir_t dir;
policy_id = (struct xfrm_userpolicy_id*)NLMSG_DATA(hdr);
rta = XFRM_RTA(hdr, struct xfrm_userpolicy_id);
rtasize = XFRM_PAYLOAD(hdr, struct xfrm_userpolicy_id);
DBG2(DBG_KNL, "received a XFRM_MSG_MIGRATE");
src_ts = selector2ts(&policy_id->sel, TRUE);
dst_ts = selector2ts(&policy_id->sel, FALSE);
dir = (policy_dir_t)policy_id->dir;
DBG2(DBG_KNL, " policy: %R === %R %N", src_ts, dst_ts, policy_dir_names);
while (RTA_OK(rta, rtasize))
{
DBG2(DBG_KNL, " %N", xfrm_attr_type_names, rta->rta_type);
if (rta->rta_type == XFRMA_KMADDRESS)
{
struct xfrm_user_kmaddress *kmaddress;
kmaddress = (struct xfrm_user_kmaddress*)RTA_DATA(rta);
local = xfrm2host(kmaddress->family, &kmaddress->local, 0);
remote = xfrm2host(kmaddress->family, &kmaddress->remote, 0);
DBG2(DBG_KNL, " kmaddress: %H...%H", local, remote);
}
else if (rta->rta_type == XFRMA_MIGRATE)
{
struct xfrm_user_migrate *migrate;
migrate = (struct xfrm_user_migrate*)RTA_DATA(rta);
old_src = xfrm2host(migrate->old_family, &migrate->old_saddr, 0);
old_dst = xfrm2host(migrate->old_family, &migrate->old_daddr, 0);
new_src = xfrm2host(migrate->new_family, &migrate->new_saddr, 0);
new_dst = xfrm2host(migrate->new_family, &migrate->new_daddr, 0);
reqid = migrate->reqid;
DBG2(DBG_KNL, " migrate %H...%H to %H...%H, reqid {%u}",
old_src, old_dst, new_src, new_dst, reqid);
DESTROY_IF(old_src);
DESTROY_IF(old_dst);
DESTROY_IF(new_src);
DESTROY_IF(new_dst);
}
rta = RTA_NEXT(rta, rtasize);
}
if (src_ts && dst_ts && local && remote)
{
hydra->kernel_interface->migrate(hydra->kernel_interface, reqid,
src_ts, dst_ts, dir, local, remote);
}
else
{
DESTROY_IF(src_ts);
DESTROY_IF(dst_ts);
DESTROY_IF(local);
DESTROY_IF(remote);
}
}
/**
* process a XFRM_MSG_MAPPING from kernel
*/
static void process_mapping(private_kernel_netlink_ipsec_t *this,
struct nlmsghdr *hdr)
{
u_int32_t spi, reqid;
struct xfrm_user_mapping *mapping;
host_t *host;
mapping = (struct xfrm_user_mapping*)NLMSG_DATA(hdr);
spi = mapping->id.spi;
reqid = mapping->reqid;
DBG2(DBG_KNL, "received a XFRM_MSG_MAPPING");
if (mapping->id.proto == IPPROTO_ESP)
{
host = xfrm2host(mapping->id.family, &mapping->new_saddr,
mapping->new_sport);
if (host)
{
hydra->kernel_interface->mapping(hydra->kernel_interface, reqid,
spi, host);
}
}
}
/**
* Receives events from kernel
*/
static job_requeue_t receive_events(private_kernel_netlink_ipsec_t *this)
{
char response[1024];
struct nlmsghdr *hdr = (struct nlmsghdr*)response;
struct sockaddr_nl addr;
socklen_t addr_len = sizeof(addr);
int len;
bool oldstate;
oldstate = thread_cancelability(TRUE);
len = recvfrom(this->socket_xfrm_events, response, sizeof(response), 0,
(struct sockaddr*)&addr, &addr_len);
thread_cancelability(oldstate);
if (len < 0)
{
switch (errno)
{
case EINTR:
/* interrupted, try again */
return JOB_REQUEUE_DIRECT;
case EAGAIN:
/* no data ready, select again */
return JOB_REQUEUE_DIRECT;
default:
DBG1(DBG_KNL, "unable to receive from xfrm event socket");
sleep(1);
return JOB_REQUEUE_FAIR;
}
}
if (addr.nl_pid != 0)
{ /* not from kernel. not interested, try another one */
return JOB_REQUEUE_DIRECT;
}
while (NLMSG_OK(hdr, len))
{
switch (hdr->nlmsg_type)
{
case XFRM_MSG_ACQUIRE:
process_acquire(this, hdr);
break;
case XFRM_MSG_EXPIRE:
process_expire(this, hdr);
break;
case XFRM_MSG_MIGRATE:
process_migrate(this, hdr);
break;
case XFRM_MSG_MAPPING:
process_mapping(this, hdr);
break;
default:
DBG1(DBG_KNL, "received unknown event from xfrm event socket: %d", hdr->nlmsg_type);
break;
}
hdr = NLMSG_NEXT(hdr, len);
}
return JOB_REQUEUE_DIRECT;
}
/**
* Get an SPI for a specific protocol from the kernel.
*/
static status_t get_spi_internal(private_kernel_netlink_ipsec_t *this,
host_t *src, host_t *dst, u_int8_t proto, u_int32_t min, u_int32_t max,
u_int32_t reqid, u_int32_t *spi)
{
netlink_buf_t request;
struct nlmsghdr *hdr, *out;
struct xfrm_userspi_info *userspi;
u_int32_t received_spi = 0;
size_t len;
memset(&request, 0, sizeof(request));
hdr = (struct nlmsghdr*)request;
hdr->nlmsg_flags = NLM_F_REQUEST;
hdr->nlmsg_type = XFRM_MSG_ALLOCSPI;
hdr->nlmsg_len = NLMSG_LENGTH(sizeof(struct xfrm_userspi_info));
userspi = (struct xfrm_userspi_info*)NLMSG_DATA(hdr);
host2xfrm(src, &userspi->info.saddr);
host2xfrm(dst, &userspi->info.id.daddr);
userspi->info.id.proto = proto;
userspi->info.mode = XFRM_MODE_TUNNEL;
userspi->info.reqid = reqid;
userspi->info.family = src->get_family(src);
userspi->min = min;
userspi->max = max;
if (this->socket_xfrm->send(this->socket_xfrm, hdr, &out, &len) == SUCCESS)
{
hdr = out;
while (NLMSG_OK(hdr, len))
{
switch (hdr->nlmsg_type)
{
case XFRM_MSG_NEWSA:
{
struct xfrm_usersa_info* usersa = NLMSG_DATA(hdr);
received_spi = usersa->id.spi;
break;
}
case NLMSG_ERROR:
{
struct nlmsgerr *err = NLMSG_DATA(hdr);
DBG1(DBG_KNL, "allocating SPI failed: %s (%d)",
strerror(-err->error), -err->error);
break;
}
default:
hdr = NLMSG_NEXT(hdr, len);
continue;
case NLMSG_DONE:
break;
}
break;
}
free(out);
}
if (received_spi == 0)
{
return FAILED;
}
*spi = received_spi;
return SUCCESS;
}
METHOD(kernel_ipsec_t, get_spi, status_t,
private_kernel_netlink_ipsec_t *this, host_t *src, host_t *dst,
u_int8_t protocol, u_int32_t reqid, u_int32_t *spi)
{
DBG2(DBG_KNL, "getting SPI for reqid {%u}", reqid);
if (get_spi_internal(this, src, dst, protocol,
0xc0000000, 0xcFFFFFFF, reqid, spi) != SUCCESS)
{
DBG1(DBG_KNL, "unable to get SPI for reqid {%u}", reqid);
return FAILED;
}
DBG2(DBG_KNL, "got SPI %.8x for reqid {%u}", ntohl(*spi), reqid);
return SUCCESS;
}
METHOD(kernel_ipsec_t, get_cpi, status_t,
private_kernel_netlink_ipsec_t *this, host_t *src, host_t *dst,
u_int32_t reqid, u_int16_t *cpi)
{
u_int32_t received_spi = 0;
DBG2(DBG_KNL, "getting CPI for reqid {%u}", reqid);
if (get_spi_internal(this, src, dst,
IPPROTO_COMP, 0x100, 0xEFFF, reqid, &received_spi) != SUCCESS)
{
DBG1(DBG_KNL, "unable to get CPI for reqid {%u}", reqid);
return FAILED;
}
*cpi = htons((u_int16_t)ntohl(received_spi));
DBG2(DBG_KNL, "got CPI %.4x for reqid {%u}", ntohs(*cpi), reqid);
return SUCCESS;
}
METHOD(kernel_ipsec_t, add_sa, status_t,
private_kernel_netlink_ipsec_t *this, host_t *src, host_t *dst,
u_int32_t spi, u_int8_t protocol, u_int32_t reqid, mark_t mark,
u_int32_t tfc, lifetime_cfg_t *lifetime, u_int16_t enc_alg, chunk_t enc_key,
u_int16_t int_alg, chunk_t int_key, ipsec_mode_t mode, u_int16_t ipcomp,
u_int16_t cpi, bool encap, bool esn, bool inbound,
traffic_selector_t* src_ts, traffic_selector_t* dst_ts)
{
netlink_buf_t request;
char *alg_name;
struct nlmsghdr *hdr;
struct xfrm_usersa_info *sa;
u_int16_t icv_size = 64;
status_t status = FAILED;
/* if IPComp is used, we install an additional IPComp SA. if the cpi is 0
* we are in the recursive call below */
if (ipcomp != IPCOMP_NONE && cpi != 0)
{
lifetime_cfg_t lft = {{0,0,0},{0,0,0},{0,0,0}};
add_sa(this, src, dst, htonl(ntohs(cpi)), IPPROTO_COMP, reqid, mark, tfc,
&lft, ENCR_UNDEFINED, chunk_empty, AUTH_UNDEFINED, chunk_empty,
mode, ipcomp, 0, FALSE, FALSE, inbound, NULL, NULL);
ipcomp = IPCOMP_NONE;
/* use transport mode ESP SA, IPComp uses tunnel mode */
mode = MODE_TRANSPORT;
}
memset(&request, 0, sizeof(request));
if (mark.value)
{
DBG2(DBG_KNL, "adding SAD entry with SPI %.8x and reqid {%u} "
"(mark %u/0x%8x)", ntohl(spi), reqid, mark.value, mark.mask);
}
else
{
DBG2(DBG_KNL, "adding SAD entry with SPI %.8x and reqid {%u}",
ntohl(spi), reqid);
}
hdr = (struct nlmsghdr*)request;
hdr->nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK;
hdr->nlmsg_type = inbound ? XFRM_MSG_UPDSA : XFRM_MSG_NEWSA;
hdr->nlmsg_len = NLMSG_LENGTH(sizeof(struct xfrm_usersa_info));
sa = (struct xfrm_usersa_info*)NLMSG_DATA(hdr);
host2xfrm(src, &sa->saddr);
host2xfrm(dst, &sa->id.daddr);
sa->id.spi = spi;
sa->id.proto = protocol;
sa->family = src->get_family(src);
sa->mode = mode2kernel(mode);
switch (mode)
{
case MODE_TUNNEL:
sa->flags |= XFRM_STATE_AF_UNSPEC;
break;
case MODE_BEET:
case MODE_TRANSPORT:
if(src_ts && dst_ts)
{
sa->sel = ts2selector(src_ts, dst_ts);
}
break;
default:
break;
}
sa->reqid = reqid;
sa->lft.soft_byte_limit = XFRM_LIMIT(lifetime->bytes.rekey);
sa->lft.hard_byte_limit = XFRM_LIMIT(lifetime->bytes.life);
sa->lft.soft_packet_limit = XFRM_LIMIT(lifetime->packets.rekey);
sa->lft.hard_packet_limit = XFRM_LIMIT(lifetime->packets.life);
/* we use lifetimes since added, not since used */
sa->lft.soft_add_expires_seconds = lifetime->time.rekey;
sa->lft.hard_add_expires_seconds = lifetime->time.life;
sa->lft.soft_use_expires_seconds = 0;
sa->lft.hard_use_expires_seconds = 0;
struct rtattr *rthdr = XFRM_RTA(hdr, struct xfrm_usersa_info);
switch (enc_alg)
{
case ENCR_UNDEFINED:
/* no encryption */
break;
case ENCR_AES_CCM_ICV16:
case ENCR_AES_GCM_ICV16:
case ENCR_NULL_AUTH_AES_GMAC:
case ENCR_CAMELLIA_CCM_ICV16:
icv_size += 32;
/* FALL */
case ENCR_AES_CCM_ICV12:
case ENCR_AES_GCM_ICV12:
case ENCR_CAMELLIA_CCM_ICV12:
icv_size += 32;
/* FALL */
case ENCR_AES_CCM_ICV8:
case ENCR_AES_GCM_ICV8:
case ENCR_CAMELLIA_CCM_ICV8:
{
struct xfrm_algo_aead *algo;
alg_name = lookup_algorithm(encryption_algs, enc_alg);
if (alg_name == NULL)
{
DBG1(DBG_KNL, "algorithm %N not supported by kernel!",
encryption_algorithm_names, enc_alg);
goto failed;
}
DBG2(DBG_KNL, " using encryption algorithm %N with key size %d",
encryption_algorithm_names, enc_alg, enc_key.len * 8);
rthdr->rta_type = XFRMA_ALG_AEAD;
rthdr->rta_len = RTA_LENGTH(sizeof(struct xfrm_algo_aead) + enc_key.len);
hdr->nlmsg_len += RTA_ALIGN(rthdr->rta_len);
if (hdr->nlmsg_len > sizeof(request))
{
goto failed;
}
algo = (struct xfrm_algo_aead*)RTA_DATA(rthdr);
algo->alg_key_len = enc_key.len * 8;
algo->alg_icv_len = icv_size;
strcpy(algo->alg_name, alg_name);
memcpy(algo->alg_key, enc_key.ptr, enc_key.len);
rthdr = XFRM_RTA_NEXT(rthdr);
break;
}
default:
{
struct xfrm_algo *algo;
alg_name = lookup_algorithm(encryption_algs, enc_alg);
if (alg_name == NULL)
{
DBG1(DBG_KNL, "algorithm %N not supported by kernel!",
encryption_algorithm_names, enc_alg);
goto failed;
}
DBG2(DBG_KNL, " using encryption algorithm %N with key size %d",
encryption_algorithm_names, enc_alg, enc_key.len * 8);
rthdr->rta_type = XFRMA_ALG_CRYPT;
rthdr->rta_len = RTA_LENGTH(sizeof(struct xfrm_algo) + enc_key.len);
hdr->nlmsg_len += RTA_ALIGN(rthdr->rta_len);
if (hdr->nlmsg_len > sizeof(request))
{
goto failed;
}
algo = (struct xfrm_algo*)RTA_DATA(rthdr);
algo->alg_key_len = enc_key.len * 8;
strcpy(algo->alg_name, alg_name);
memcpy(algo->alg_key, enc_key.ptr, enc_key.len);
rthdr = XFRM_RTA_NEXT(rthdr);
}
}
if (int_alg != AUTH_UNDEFINED)
{
alg_name = lookup_algorithm(integrity_algs, int_alg);
if (alg_name == NULL)
{
DBG1(DBG_KNL, "algorithm %N not supported by kernel!",
integrity_algorithm_names, int_alg);
goto failed;
}
DBG2(DBG_KNL, " using integrity algorithm %N with key size %d",
integrity_algorithm_names, int_alg, int_key.len * 8);
if (int_alg == AUTH_HMAC_SHA2_256_128)
{
struct xfrm_algo_auth* algo;
/* the kernel uses SHA256 with 96 bit truncation by default,
* use specified truncation size supported by newer kernels */
rthdr->rta_type = XFRMA_ALG_AUTH_TRUNC;
rthdr->rta_len = RTA_LENGTH(sizeof(struct xfrm_algo_auth) + int_key.len);
hdr->nlmsg_len += RTA_ALIGN(rthdr->rta_len);
if (hdr->nlmsg_len > sizeof(request))
{
goto failed;
}
algo = (struct xfrm_algo_auth*)RTA_DATA(rthdr);
algo->alg_key_len = int_key.len * 8;
algo->alg_trunc_len = 128;
strcpy(algo->alg_name, alg_name);
memcpy(algo->alg_key, int_key.ptr, int_key.len);
}
else
{
struct xfrm_algo* algo;
rthdr->rta_type = XFRMA_ALG_AUTH;
rthdr->rta_len = RTA_LENGTH(sizeof(struct xfrm_algo) + int_key.len);
hdr->nlmsg_len += RTA_ALIGN(rthdr->rta_len);
if (hdr->nlmsg_len > sizeof(request))
{
goto failed;
}
algo = (struct xfrm_algo*)RTA_DATA(rthdr);
algo->alg_key_len = int_key.len * 8;
strcpy(algo->alg_name, alg_name);
memcpy(algo->alg_key, int_key.ptr, int_key.len);
}
rthdr = XFRM_RTA_NEXT(rthdr);
}
if (ipcomp != IPCOMP_NONE)
{
rthdr->rta_type = XFRMA_ALG_COMP;
alg_name = lookup_algorithm(compression_algs, ipcomp);
if (alg_name == NULL)
{
DBG1(DBG_KNL, "algorithm %N not supported by kernel!",
ipcomp_transform_names, ipcomp);
goto failed;
}
DBG2(DBG_KNL, " using compression algorithm %N",
ipcomp_transform_names, ipcomp);
rthdr->rta_len = RTA_LENGTH(sizeof(struct xfrm_algo));
hdr->nlmsg_len += RTA_ALIGN(rthdr->rta_len);
if (hdr->nlmsg_len > sizeof(request))
{
goto failed;
}
struct xfrm_algo* algo = (struct xfrm_algo*)RTA_DATA(rthdr);
algo->alg_key_len = 0;
strcpy(algo->alg_name, alg_name);
rthdr = XFRM_RTA_NEXT(rthdr);
}
if (encap)
{
struct xfrm_encap_tmpl *tmpl;
rthdr->rta_type = XFRMA_ENCAP;
rthdr->rta_len = RTA_LENGTH(sizeof(struct xfrm_encap_tmpl));
hdr->nlmsg_len += RTA_ALIGN(rthdr->rta_len);
if (hdr->nlmsg_len > sizeof(request))
{
goto failed;
}
tmpl = (struct xfrm_encap_tmpl*)RTA_DATA(rthdr);
tmpl->encap_type = UDP_ENCAP_ESPINUDP;
tmpl->encap_sport = htons(src->get_port(src));
tmpl->encap_dport = htons(dst->get_port(dst));
memset(&tmpl->encap_oa, 0, sizeof (xfrm_address_t));
/* encap_oa could probably be derived from the
* traffic selectors [rfc4306, p39]. In the netlink kernel implementation
* pluto does the same as we do here but it uses encap_oa in the
* pfkey implementation. BUT as /usr/src/linux/net/key/af_key.c indicates
* the kernel ignores it anyway
* -> does that mean that NAT-T encap doesn't work in transport mode?
* No. The reason the kernel ignores NAT-OA is that it recomputes
* (or, rather, just ignores) the checksum. If packets pass
* the IPsec checks it marks them "checksum ok" so OA isn't needed. */
rthdr = XFRM_RTA_NEXT(rthdr);
}
if (mark.value)
{
struct xfrm_mark *mrk;
rthdr->rta_type = XFRMA_MARK;
rthdr->rta_len = RTA_LENGTH(sizeof(struct xfrm_mark));
hdr->nlmsg_len += RTA_ALIGN(rthdr->rta_len);
if (hdr->nlmsg_len > sizeof(request))
{
goto failed;
}
mrk = (struct xfrm_mark*)RTA_DATA(rthdr);
mrk->v = mark.value;
mrk->m = mark.mask;
rthdr = XFRM_RTA_NEXT(rthdr);
}
if (tfc)
{
u_int32_t *tfcpad;
rthdr->rta_type = XFRMA_TFCPAD;
rthdr->rta_len = RTA_LENGTH(sizeof(u_int32_t));
hdr->nlmsg_len += RTA_ALIGN(rthdr->rta_len);
if (hdr->nlmsg_len > sizeof(request))
{
goto failed;
}
tfcpad = (u_int32_t*)RTA_DATA(rthdr);
*tfcpad = tfc;
rthdr = XFRM_RTA_NEXT(rthdr);
}
if (protocol != IPPROTO_COMP)
{
if (esn || this->replay_window > DEFAULT_REPLAY_WINDOW)
{
/* for ESN or larger replay windows we need the new
* XFRMA_REPLAY_ESN_VAL attribute to configure a bitmap */
struct xfrm_replay_state_esn *replay;
rthdr->rta_type = XFRMA_REPLAY_ESN_VAL;
rthdr->rta_len = RTA_LENGTH(sizeof(struct xfrm_replay_state_esn) +
(this->replay_window + 7) / 8);
hdr->nlmsg_len += RTA_ALIGN(rthdr->rta_len);
if (hdr->nlmsg_len > sizeof(request))
{
goto failed;
}
replay = (struct xfrm_replay_state_esn*)RTA_DATA(rthdr);
/* bmp_len contains number uf __u32's */
replay->bmp_len = this->replay_bmp;
replay->replay_window = this->replay_window;
rthdr = XFRM_RTA_NEXT(rthdr);
if (esn)
{
sa->flags |= XFRM_STATE_ESN;
}
}
else
{
sa->replay_window = DEFAULT_REPLAY_WINDOW;
}
}
if (this->socket_xfrm->send_ack(this->socket_xfrm, hdr) != SUCCESS)
{
if (mark.value)
{
DBG1(DBG_KNL, "unable to add SAD entry with SPI %.8x "
"(mark %u/0x%8x)", ntohl(spi), mark.value, mark.mask);
}
else
{
DBG1(DBG_KNL, "unable to add SAD entry with SPI %.8x", ntohl(spi));
}
goto failed;
}
status = SUCCESS;
failed:
memwipe(request, sizeof(request));
return status;
}
/**
* Get the ESN replay state (i.e. sequence numbers) of an SA.
*
* Allocates into one the replay state structure we get from the kernel.
*/
static void get_replay_state(private_kernel_netlink_ipsec_t *this,
u_int32_t spi, u_int8_t protocol, host_t *dst,
struct xfrm_replay_state_esn **replay_esn,
struct xfrm_replay_state **replay)
{
netlink_buf_t request;
struct nlmsghdr *hdr, *out = NULL;
struct xfrm_aevent_id *out_aevent = NULL, *aevent_id;
size_t len;
struct rtattr *rta;
size_t rtasize;
memset(&request, 0, sizeof(request));
DBG2(DBG_KNL, "querying replay state from SAD entry with SPI %.8x",
ntohl(spi));
hdr = (struct nlmsghdr*)request;
hdr->nlmsg_flags = NLM_F_REQUEST;
hdr->nlmsg_type = XFRM_MSG_GETAE;
hdr->nlmsg_len = NLMSG_LENGTH(sizeof(struct xfrm_aevent_id));
aevent_id = (struct xfrm_aevent_id*)NLMSG_DATA(hdr);
aevent_id->flags = XFRM_AE_RVAL;
host2xfrm(dst, &aevent_id->sa_id.daddr);
aevent_id->sa_id.spi = spi;
aevent_id->sa_id.proto = protocol;
aevent_id->sa_id.family = dst->get_family(dst);
if (this->socket_xfrm->send(this->socket_xfrm, hdr, &out, &len) == SUCCESS)
{
hdr = out;
while (NLMSG_OK(hdr, len))
{
switch (hdr->nlmsg_type)
{
case XFRM_MSG_NEWAE:
{
out_aevent = NLMSG_DATA(hdr);
break;
}
case NLMSG_ERROR:
{
struct nlmsgerr *err = NLMSG_DATA(hdr);
DBG1(DBG_KNL, "querying replay state from SAD entry failed: %s (%d)",
strerror(-err->error), -err->error);
break;
}
default:
hdr = NLMSG_NEXT(hdr, len);
continue;
case NLMSG_DONE:
break;
}
break;
}
}
if (out_aevent)
{
rta = XFRM_RTA(out, struct xfrm_aevent_id);
rtasize = XFRM_PAYLOAD(out, struct xfrm_aevent_id);
while (RTA_OK(rta, rtasize))
{
if (rta->rta_type == XFRMA_REPLAY_VAL &&
RTA_PAYLOAD(rta) == sizeof(**replay))
{
*replay = malloc(RTA_PAYLOAD(rta));
memcpy(*replay, RTA_DATA(rta), RTA_PAYLOAD(rta));
break;
}
if (rta->rta_type == XFRMA_REPLAY_ESN_VAL &&
RTA_PAYLOAD(rta) >= sizeof(**replay_esn) + this->replay_bmp)
{
*replay_esn = malloc(RTA_PAYLOAD(rta));
memcpy(*replay_esn, RTA_DATA(rta), RTA_PAYLOAD(rta));
break;
}
rta = RTA_NEXT(rta, rtasize);
}
}
free(out);
}
METHOD(kernel_ipsec_t, query_sa, status_t,
private_kernel_netlink_ipsec_t *this, host_t *src, host_t *dst,
u_int32_t spi, u_int8_t protocol, mark_t mark, u_int64_t *bytes)
{
netlink_buf_t request;
struct nlmsghdr *out = NULL, *hdr;
struct xfrm_usersa_id *sa_id;
struct xfrm_usersa_info *sa = NULL;
status_t status = FAILED;
size_t len;
memset(&request, 0, sizeof(request));
if (mark.value)
{
DBG2(DBG_KNL, "querying SAD entry with SPI %.8x (mark %u/0x%8x)",
ntohl(spi), mark.value, mark.mask);
}
else
{
DBG2(DBG_KNL, "querying SAD entry with SPI %.8x", ntohl(spi));
}
hdr = (struct nlmsghdr*)request;
hdr->nlmsg_flags = NLM_F_REQUEST;
hdr->nlmsg_type = XFRM_MSG_GETSA;
hdr->nlmsg_len = NLMSG_LENGTH(sizeof(struct xfrm_usersa_id));
sa_id = (struct xfrm_usersa_id*)NLMSG_DATA(hdr);
host2xfrm(dst, &sa_id->daddr);
sa_id->spi = spi;
sa_id->proto = protocol;
sa_id->family = dst->get_family(dst);
if (mark.value)
{
struct xfrm_mark *mrk;
struct rtattr *rthdr = XFRM_RTA(hdr, struct xfrm_usersa_id);
rthdr->rta_type = XFRMA_MARK;
rthdr->rta_len = RTA_LENGTH(sizeof(struct xfrm_mark));
hdr->nlmsg_len += RTA_ALIGN(rthdr->rta_len);
if (hdr->nlmsg_len > sizeof(request))
{
return FAILED;
}
mrk = (struct xfrm_mark*)RTA_DATA(rthdr);
mrk->v = mark.value;
mrk->m = mark.mask;
}
if (this->socket_xfrm->send(this->socket_xfrm, hdr, &out, &len) == SUCCESS)
{
hdr = out;
while (NLMSG_OK(hdr, len))
{
switch (hdr->nlmsg_type)
{
case XFRM_MSG_NEWSA:
{
sa = (struct xfrm_usersa_info*)NLMSG_DATA(hdr);
break;
}
case NLMSG_ERROR:
{
struct nlmsgerr *err = NLMSG_DATA(hdr);
if (mark.value)
{
DBG1(DBG_KNL, "querying SAD entry with SPI %.8x "
"(mark %u/0x%8x) failed: %s (%d)",
ntohl(spi), mark.value, mark.mask,
strerror(-err->error), -err->error);
}
else
{
DBG1(DBG_KNL, "querying SAD entry with SPI %.8x "
"failed: %s (%d)", ntohl(spi),
strerror(-err->error), -err->error);
}
break;
}
default:
hdr = NLMSG_NEXT(hdr, len);
continue;
case NLMSG_DONE:
break;
}
break;
}
}
if (sa == NULL)
{
DBG2(DBG_KNL, "unable to query SAD entry with SPI %.8x", ntohl(spi));
}
else
{
*bytes = sa->curlft.bytes;
status = SUCCESS;
}
memwipe(out, len);
free(out);
return status;
}
METHOD(kernel_ipsec_t, del_sa, status_t,
private_kernel_netlink_ipsec_t *this, host_t *src, host_t *dst,
u_int32_t spi, u_int8_t protocol, u_int16_t cpi, mark_t mark)
{
netlink_buf_t request;
struct nlmsghdr *hdr;
struct xfrm_usersa_id *sa_id;
/* if IPComp was used, we first delete the additional IPComp SA */
if (cpi)
{
del_sa(this, src, dst, htonl(ntohs(cpi)), IPPROTO_COMP, 0, mark);
}
memset(&request, 0, sizeof(request));
if (mark.value)
{
DBG2(DBG_KNL, "deleting SAD entry with SPI %.8x (mark %u/0x%8x)",
ntohl(spi), mark.value, mark.mask);
}
else
{
DBG2(DBG_KNL, "deleting SAD entry with SPI %.8x", ntohl(spi));
}
hdr = (struct nlmsghdr*)request;
hdr->nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK;
hdr->nlmsg_type = XFRM_MSG_DELSA;
hdr->nlmsg_len = NLMSG_LENGTH(sizeof(struct xfrm_usersa_id));
sa_id = (struct xfrm_usersa_id*)NLMSG_DATA(hdr);
host2xfrm(dst, &sa_id->daddr);
sa_id->spi = spi;
sa_id->proto = protocol;
sa_id->family = dst->get_family(dst);
if (mark.value)
{
struct xfrm_mark *mrk;
struct rtattr *rthdr = XFRM_RTA(hdr, struct xfrm_usersa_id);
rthdr->rta_type = XFRMA_MARK;
rthdr->rta_len = RTA_LENGTH(sizeof(struct xfrm_mark));
hdr->nlmsg_len += RTA_ALIGN(rthdr->rta_len);
if (hdr->nlmsg_len > sizeof(request))
{
return FAILED;
}
mrk = (struct xfrm_mark*)RTA_DATA(rthdr);
mrk->v = mark.value;
mrk->m = mark.mask;
}
if (this->socket_xfrm->send_ack(this->socket_xfrm, hdr) != SUCCESS)
{
if (mark.value)
{
DBG1(DBG_KNL, "unable to delete SAD entry with SPI %.8x "
"(mark %u/0x%8x)", ntohl(spi), mark.value, mark.mask);
}
else
{
DBG1(DBG_KNL, "unable to delete SAD entry with SPI %.8x", ntohl(spi));
}
return FAILED;
}
if (mark.value)
{
DBG2(DBG_KNL, "deleted SAD entry with SPI %.8x (mark %u/0x%8x)",
ntohl(spi), mark.value, mark.mask);
}
else
{
DBG2(DBG_KNL, "deleted SAD entry with SPI %.8x", ntohl(spi));
}
return SUCCESS;
}
METHOD(kernel_ipsec_t, update_sa, status_t,
private_kernel_netlink_ipsec_t *this, u_int32_t spi, u_int8_t protocol,
u_int16_t cpi, host_t *src, host_t *dst, host_t *new_src, host_t *new_dst,
bool old_encap, bool new_encap, mark_t mark)
{
netlink_buf_t request;
u_char *pos;
struct nlmsghdr *hdr, *out = NULL;
struct xfrm_usersa_id *sa_id;
struct xfrm_usersa_info *out_sa = NULL, *sa;
size_t len;
struct rtattr *rta;
size_t rtasize;
struct xfrm_encap_tmpl* tmpl = NULL;
struct xfrm_replay_state *replay = NULL;
struct xfrm_replay_state_esn *replay_esn = NULL;
status_t status = FAILED;
/* if IPComp is used, we first update the IPComp SA */
if (cpi)
{
update_sa(this, htonl(ntohs(cpi)), IPPROTO_COMP, 0,
src, dst, new_src, new_dst, FALSE, FALSE, mark);
}
memset(&request, 0, sizeof(request));
DBG2(DBG_KNL, "querying SAD entry with SPI %.8x for update", ntohl(spi));
/* query the existing SA first */
hdr = (struct nlmsghdr*)request;
hdr->nlmsg_flags = NLM_F_REQUEST;
hdr->nlmsg_type = XFRM_MSG_GETSA;
hdr->nlmsg_len = NLMSG_LENGTH(sizeof(struct xfrm_usersa_id));
sa_id = (struct xfrm_usersa_id*)NLMSG_DATA(hdr);
host2xfrm(dst, &sa_id->daddr);
sa_id->spi = spi;
sa_id->proto = protocol;
sa_id->family = dst->get_family(dst);
if (this->socket_xfrm->send(this->socket_xfrm, hdr, &out, &len) == SUCCESS)
{
hdr = out;
while (NLMSG_OK(hdr, len))
{
switch (hdr->nlmsg_type)
{
case XFRM_MSG_NEWSA:
{
out_sa = NLMSG_DATA(hdr);
break;
}
case NLMSG_ERROR:
{
struct nlmsgerr *err = NLMSG_DATA(hdr);
DBG1(DBG_KNL, "querying SAD entry failed: %s (%d)",
strerror(-err->error), -err->error);
break;
}
default:
hdr = NLMSG_NEXT(hdr, len);
continue;
case NLMSG_DONE:
break;
}
break;
}
}
if (out_sa == NULL)
{
DBG1(DBG_KNL, "unable to update SAD entry with SPI %.8x", ntohl(spi));
goto failed;
}
get_replay_state(this, spi, protocol, dst, &replay_esn, &replay);
/* delete the old SA (without affecting the IPComp SA) */
if (del_sa(this, src, dst, spi, protocol, 0, mark) != SUCCESS)
{
DBG1(DBG_KNL, "unable to delete old SAD entry with SPI %.8x", ntohl(spi));
goto failed;
}
DBG2(DBG_KNL, "updating SAD entry with SPI %.8x from %#H..%#H to %#H..%#H",
ntohl(spi), src, dst, new_src, new_dst);
/* copy over the SA from out to request */
hdr = (struct nlmsghdr*)request;
memcpy(hdr, out, min(out->nlmsg_len, sizeof(request)));
hdr->nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK;
hdr->nlmsg_type = XFRM_MSG_NEWSA;
hdr->nlmsg_len = NLMSG_LENGTH(sizeof(struct xfrm_usersa_info));
sa = NLMSG_DATA(hdr);
sa->family = new_dst->get_family(new_dst);
if (!src->ip_equals(src, new_src))
{
host2xfrm(new_src, &sa->saddr);
}
if (!dst->ip_equals(dst, new_dst))
{
host2xfrm(new_dst, &sa->id.daddr);
}
rta = XFRM_RTA(out, struct xfrm_usersa_info);
rtasize = XFRM_PAYLOAD(out, struct xfrm_usersa_info);
pos = (u_char*)XFRM_RTA(hdr, struct xfrm_usersa_info);
while(RTA_OK(rta, rtasize))
{
/* copy all attributes, but not XFRMA_ENCAP if we are disabling it */
if (rta->rta_type != XFRMA_ENCAP || new_encap)
{
if (rta->rta_type == XFRMA_ENCAP)
{ /* update encap tmpl */
tmpl = (struct xfrm_encap_tmpl*)RTA_DATA(rta);
tmpl->encap_sport = ntohs(new_src->get_port(new_src));
tmpl->encap_dport = ntohs(new_dst->get_port(new_dst));
}
memcpy(pos, rta, rta->rta_len);
pos += RTA_ALIGN(rta->rta_len);
hdr->nlmsg_len += RTA_ALIGN(rta->rta_len);
}
rta = RTA_NEXT(rta, rtasize);
}
rta = (struct rtattr*)pos;
if (tmpl == NULL && new_encap)
{ /* add tmpl if we are enabling it */
rta->rta_type = XFRMA_ENCAP;
rta->rta_len = RTA_LENGTH(sizeof(struct xfrm_encap_tmpl));
hdr->nlmsg_len += RTA_ALIGN(rta->rta_len);
if (hdr->nlmsg_len > sizeof(request))
{
goto failed;
}
tmpl = (struct xfrm_encap_tmpl*)RTA_DATA(rta);
tmpl->encap_type = UDP_ENCAP_ESPINUDP;
tmpl->encap_sport = ntohs(new_src->get_port(new_src));
tmpl->encap_dport = ntohs(new_dst->get_port(new_dst));
memset(&tmpl->encap_oa, 0, sizeof (xfrm_address_t));
rta = XFRM_RTA_NEXT(rta);
}
if (replay_esn)
{
rta->rta_type = XFRMA_REPLAY_ESN_VAL;
rta->rta_len = RTA_LENGTH(sizeof(struct xfrm_replay_state_esn) +
this->replay_bmp);
hdr->nlmsg_len += RTA_ALIGN(rta->rta_len);
if (hdr->nlmsg_len > sizeof(request))
{
goto failed;
}
memcpy(RTA_DATA(rta), replay_esn,
sizeof(struct xfrm_replay_state_esn) + this->replay_bmp);
rta = XFRM_RTA_NEXT(rta);
}
else if (replay)
{
rta->rta_type = XFRMA_REPLAY_VAL;
rta->rta_len = RTA_LENGTH(sizeof(struct xfrm_replay_state));
hdr->nlmsg_len += RTA_ALIGN(rta->rta_len);
if (hdr->nlmsg_len > sizeof(request))
{
goto failed;
}
memcpy(RTA_DATA(rta), replay, sizeof(replay));
rta = XFRM_RTA_NEXT(rta);
}
else
{
DBG1(DBG_KNL, "unable to copy replay state from old SAD entry "
"with SPI %.8x", ntohl(spi));
}
if (this->socket_xfrm->send_ack(this->socket_xfrm, hdr) != SUCCESS)
{
DBG1(DBG_KNL, "unable to update SAD entry with SPI %.8x", ntohl(spi));
goto failed;
}
status = SUCCESS;
failed:
free(replay);
free(replay_esn);
memwipe(out, len);
free(out);
return status;
}
/**
* Add or update a policy in the kernel.
*
* Note: The mutex has to be locked when entering this function.
*/
static status_t add_policy_internal(private_kernel_netlink_ipsec_t *this,
policy_entry_t *policy, policy_sa_t *sa, bool update)
{
netlink_buf_t request;
policy_entry_t clone;
struct xfrm_userpolicy_info *policy_info;
struct nlmsghdr *hdr;
int i;
/* clone the policy so we are able to check it out again later */
memcpy(&clone, policy, sizeof(policy_entry_t));
memset(&request, 0, sizeof(request));
hdr = (struct nlmsghdr*)request;
hdr->nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK;
hdr->nlmsg_type = update ? XFRM_MSG_UPDPOLICY : XFRM_MSG_NEWPOLICY;
hdr->nlmsg_len = NLMSG_LENGTH(sizeof(struct xfrm_userpolicy_info));
policy_info = (struct xfrm_userpolicy_info*)NLMSG_DATA(hdr);
policy_info->sel = policy->sel;
policy_info->dir = policy->direction;
/* calculate priority based on selector size, small size = high prio */
policy_info->priority = sa->priority;
policy_info->action = sa->type != POLICY_DROP ? XFRM_POLICY_ALLOW
: XFRM_POLICY_BLOCK;
policy_info->share = XFRM_SHARE_ANY;
/* policies don't expire */
policy_info->lft.soft_byte_limit = XFRM_INF;
policy_info->lft.soft_packet_limit = XFRM_INF;
policy_info->lft.hard_byte_limit = XFRM_INF;
policy_info->lft.hard_packet_limit = XFRM_INF;
policy_info->lft.soft_add_expires_seconds = 0;
policy_info->lft.hard_add_expires_seconds = 0;
policy_info->lft.soft_use_expires_seconds = 0;
policy_info->lft.hard_use_expires_seconds = 0;
struct rtattr *rthdr = XFRM_RTA(hdr, struct xfrm_userpolicy_info);
if (sa->type == POLICY_IPSEC)
{
struct xfrm_user_tmpl *tmpl = (struct xfrm_user_tmpl*)RTA_DATA(rthdr);
struct {
u_int8_t proto;
bool use;
} protos[] = {
{ IPPROTO_COMP, sa->cfg.ipcomp.transform != IPCOMP_NONE },
{ IPPROTO_ESP, sa->cfg.esp.use },
{ IPPROTO_AH, sa->cfg.ah.use },
};
ipsec_mode_t proto_mode = sa->cfg.mode;
rthdr->rta_type = XFRMA_TMPL;
rthdr->rta_len = 0; /* actual length is set below */
for (i = 0; i < countof(protos); i++)
{
if (!protos[i].use)
{
continue;
}
rthdr->rta_len += RTA_LENGTH(sizeof(struct xfrm_user_tmpl));
hdr->nlmsg_len += RTA_ALIGN(RTA_LENGTH(sizeof(struct xfrm_user_tmpl)));
if (hdr->nlmsg_len > sizeof(request))
{
return FAILED;
}
tmpl->reqid = sa->cfg.reqid;
tmpl->id.proto = protos[i].proto;
tmpl->aalgos = tmpl->ealgos = tmpl->calgos = ~0;
tmpl->mode = mode2kernel(proto_mode);
tmpl->optional = protos[i].proto == IPPROTO_COMP &&
policy->direction != POLICY_OUT;
tmpl->family = sa->src->get_family(sa->src);
if (proto_mode == MODE_TUNNEL)
{ /* only for tunnel mode */
host2xfrm(sa->src, &tmpl->saddr);
host2xfrm(sa->dst, &tmpl->id.daddr);
}
tmpl++;
/* use transport mode for other SAs */
proto_mode = MODE_TRANSPORT;
}
rthdr = XFRM_RTA_NEXT(rthdr);
}
if (sa->mark.value)
{
struct xfrm_mark *mrk;
rthdr->rta_type = XFRMA_MARK;
rthdr->rta_len = RTA_LENGTH(sizeof(struct xfrm_mark));
hdr->nlmsg_len += RTA_ALIGN(rthdr->rta_len);
if (hdr->nlmsg_len > sizeof(request))
{
return FAILED;
}
mrk = (struct xfrm_mark*)RTA_DATA(rthdr);
mrk->v = sa->mark.value;
mrk->m = sa->mark.mask;
}
this->mutex->unlock(this->mutex);
if (this->socket_xfrm->send_ack(this->socket_xfrm, hdr) != SUCCESS)
{
return FAILED;
}
/* find the policy again */
this->mutex->lock(this->mutex);
policy = this->policies->get(this->policies, &clone);
if (!policy ||
policy->sas->find_first(policy->sas, NULL, (void**)&sa) != SUCCESS)
{ /* policy or sa is already gone, ignore */
this->mutex->unlock(this->mutex);
return SUCCESS;
}
/* install a route, if:
* - this is a forward policy (to just get one for each child)
* - we are in tunnel/BEET mode
* - routing is not disabled via strongswan.conf
*/
if (policy->direction == POLICY_FWD &&
sa->cfg.mode != MODE_TRANSPORT && this->install_routes)
{
route_entry_t *route = malloc_thing(route_entry_t);
if (hydra->kernel_interface->get_address_by_ts(hydra->kernel_interface,
sa->dst_ts, &route->src_ip) == SUCCESS)
{
/* get the nexthop to src (src as we are in POLICY_FWD).*/
route->gateway = hydra->kernel_interface->get_nexthop(
hydra->kernel_interface, sa->src);
/* install route via outgoing interface */
route->if_name = hydra->kernel_interface->get_interface(
hydra->kernel_interface, sa->dst);
route->dst_net = chunk_alloc(policy->sel.family == AF_INET ? 4 : 16);
memcpy(route->dst_net.ptr, &policy->sel.saddr, route->dst_net.len);
route->prefixlen = policy->sel.prefixlen_s;
if (!route->if_name)
{
this->mutex->unlock(this->mutex);
route_entry_destroy(route);
return SUCCESS;
}
if (policy->route)
{
route_entry_t *old = policy->route;
if (route_entry_equals(old, route))
{ /* keep previously installed route */
this->mutex->unlock(this->mutex);
route_entry_destroy(route);
return SUCCESS;
}
/* uninstall previously installed route */
if (hydra->kernel_interface->del_route(hydra->kernel_interface,
old->dst_net, old->prefixlen, old->gateway,
old->src_ip, old->if_name) != SUCCESS)
{
DBG1(DBG_KNL, "error uninstalling route installed with "
"policy %R === %R %N", sa->src_ts,
sa->dst_ts, policy_dir_names,
policy->direction);
}
route_entry_destroy(old);
policy->route = NULL;
}
DBG2(DBG_KNL, "installing route: %R via %H src %H dev %s",
sa->src_ts, route->gateway, route->src_ip, route->if_name);
switch (hydra->kernel_interface->add_route(
hydra->kernel_interface, route->dst_net,
route->prefixlen, route->gateway,
route->src_ip, route->if_name))
{
default:
DBG1(DBG_KNL, "unable to install source route for %H",
route->src_ip);
/* FALL */
case ALREADY_DONE:
/* route exists, do not uninstall */
route_entry_destroy(route);
break;
case SUCCESS:
/* cache the installed route */
policy->route = route;
break;
}
}
else
{
free(route);
}
}
this->mutex->unlock(this->mutex);
return SUCCESS;
}
METHOD(kernel_ipsec_t, add_policy, status_t,
private_kernel_netlink_ipsec_t *this, host_t *src, host_t *dst,
traffic_selector_t *src_ts, traffic_selector_t *dst_ts,
policy_dir_t direction, policy_type_t type, ipsec_sa_cfg_t *sa,
mark_t mark, bool routed)
{
policy_entry_t *policy, *current;
policy_sa_t *assigned_sa, *current_sa;
enumerator_t *enumerator;
bool found = FALSE, update = TRUE;
/* create a policy */
INIT(policy,
.sel = ts2selector(src_ts, dst_ts),
.mark = mark.value & mark.mask,
.direction = direction,
.sas = linked_list_create(),
);
/* find the policy, which matches EXACTLY */
this->mutex->lock(this->mutex);
current = this->policies->get(this->policies, policy);
if (current)
{
/* use existing policy */
if (mark.value)
{
DBG2(DBG_KNL, "policy %R === %R %N (mark %u/0x%8x) "
"already exists, increasing refcount",
src_ts, dst_ts, policy_dir_names, direction,
mark.value, mark.mask);
}
else
{
DBG2(DBG_KNL, "policy %R === %R %N "
"already exists, increasing refcount",
src_ts, dst_ts, policy_dir_names, direction);
}
policy_entry_destroy(policy);
policy = current;
found = TRUE;
}
else
{ /* apply the new one, if we have no such policy */
this->policies->put(this->policies, policy, policy);
}
/* cache the assigned IPsec SA */
INIT(assigned_sa,
.type = type,
.src = src->clone(src),
.dst = dst->clone(dst),
.src_ts = src_ts->clone(src_ts),
.dst_ts = dst_ts->clone(dst_ts),
.mark = mark,
.cfg = *sa,
);
/* calculate priority based on selector size, small size = high prio */
assigned_sa->priority = routed ? PRIO_LOW : PRIO_HIGH;
assigned_sa->priority -= policy->sel.prefixlen_s;
assigned_sa->priority -= policy->sel.prefixlen_d;
assigned_sa->priority <<= 2; /* make some room for the two flags */
assigned_sa->priority += policy->sel.sport_mask ||
policy->sel.dport_mask ? 0 : 2;
assigned_sa->priority += policy->sel.proto ? 0 : 1;
/* insert the SA according to its priority */
enumerator = policy->sas->create_enumerator(policy->sas);
while (enumerator->enumerate(enumerator, (void**)&current_sa))
{
if (current_sa->priority >= assigned_sa->priority)
{
break;
}
update = FALSE;
}
policy->sas->insert_before(policy->sas, enumerator, assigned_sa);
enumerator->destroy(enumerator);
if (!update)
{ /* we don't update the policy if the priority is lower than that of the
* currently installed one */
return SUCCESS;
}
if (mark.value)
{
DBG2(DBG_KNL, "%s policy %R === %R %N (mark %u/0x%8x)",
found ? "updating" : "adding", src_ts, dst_ts,
policy_dir_names, direction, mark.value, mark.mask);
}
else
{
DBG2(DBG_KNL, "%s policy %R === %R %N",
found ? "updating" : "adding", src_ts, dst_ts,
policy_dir_names, direction);
}
if (add_policy_internal(this, policy, assigned_sa, found) != SUCCESS)
{
DBG1(DBG_KNL, "unable to %s policy %R === %R %N",
found ? "update" : "add", src_ts, dst_ts,
policy_dir_names, direction);
return FAILED;
}
return SUCCESS;
}
METHOD(kernel_ipsec_t, query_policy, status_t,
private_kernel_netlink_ipsec_t *this, traffic_selector_t *src_ts,
traffic_selector_t *dst_ts, policy_dir_t direction, mark_t mark,
u_int32_t *use_time)
{
netlink_buf_t request;
struct nlmsghdr *out = NULL, *hdr;
struct xfrm_userpolicy_id *policy_id;
struct xfrm_userpolicy_info *policy = NULL;
size_t len;
memset(&request, 0, sizeof(request));
if (mark.value)
{
DBG2(DBG_KNL, "querying policy %R === %R %N (mark %u/0x%8x)",
src_ts, dst_ts, policy_dir_names, direction,
mark.value, mark.mask);
}
else
{
DBG2(DBG_KNL, "querying policy %R === %R %N", src_ts, dst_ts,
policy_dir_names, direction);
}
hdr = (struct nlmsghdr*)request;
hdr->nlmsg_flags = NLM_F_REQUEST;
hdr->nlmsg_type = XFRM_MSG_GETPOLICY;
hdr->nlmsg_len = NLMSG_LENGTH(sizeof(struct xfrm_userpolicy_id));
policy_id = (struct xfrm_userpolicy_id*)NLMSG_DATA(hdr);
policy_id->sel = ts2selector(src_ts, dst_ts);
policy_id->dir = direction;
if (mark.value)
{
struct xfrm_mark *mrk;
struct rtattr *rthdr = XFRM_RTA(hdr, struct xfrm_userpolicy_id);
rthdr->rta_type = XFRMA_MARK;
rthdr->rta_len = RTA_LENGTH(sizeof(struct xfrm_mark));
hdr->nlmsg_len += RTA_ALIGN(rthdr->rta_len);
if (hdr->nlmsg_len > sizeof(request))
{
return FAILED;
}
mrk = (struct xfrm_mark*)RTA_DATA(rthdr);
mrk->v = mark.value;
mrk->m = mark.mask;
}
if (this->socket_xfrm->send(this->socket_xfrm, hdr, &out, &len) == SUCCESS)
{
hdr = out;
while (NLMSG_OK(hdr, len))
{
switch (hdr->nlmsg_type)
{
case XFRM_MSG_NEWPOLICY:
{
policy = (struct xfrm_userpolicy_info*)NLMSG_DATA(hdr);
break;
}
case NLMSG_ERROR:
{
struct nlmsgerr *err = NLMSG_DATA(hdr);
DBG1(DBG_KNL, "querying policy failed: %s (%d)",
strerror(-err->error), -err->error);
break;
}
default:
hdr = NLMSG_NEXT(hdr, len);
continue;
case NLMSG_DONE:
break;
}
break;
}
}
if (policy == NULL)
{
DBG2(DBG_KNL, "unable to query policy %R === %R %N", src_ts, dst_ts,
policy_dir_names, direction);
free(out);
return FAILED;
}
if (policy->curlft.use_time)
{
/* we need the monotonic time, but the kernel returns system time. */
*use_time = time_monotonic(NULL) - (time(NULL) - policy->curlft.use_time);
}
else
{
*use_time = 0;
}
free(out);
return SUCCESS;
}
METHOD(kernel_ipsec_t, del_policy, status_t,
private_kernel_netlink_ipsec_t *this, traffic_selector_t *src_ts,
traffic_selector_t *dst_ts, policy_dir_t direction, u_int32_t reqid,
mark_t mark, bool unrouted)
{
policy_entry_t *current, policy, *to_delete = NULL;
netlink_buf_t request;
struct nlmsghdr *hdr;
struct xfrm_userpolicy_id *policy_id;
if (mark.value)
{
DBG2(DBG_KNL, "deleting policy %R === %R %N (mark %u/0x%8x)",
src_ts, dst_ts, policy_dir_names, direction,
mark.value, mark.mask);
}
else
{
DBG2(DBG_KNL, "deleting policy %R === %R %N",
src_ts, dst_ts, policy_dir_names, direction);
}
/* create a policy */
memset(&policy, 0, sizeof(policy_entry_t));
policy.sel = ts2selector(src_ts, dst_ts);
policy.mark = mark.value & mark.mask;
policy.direction = direction;
/* find the policy */
this->mutex->lock(this->mutex);
current = this->policies->get(this->policies, &policy);
if (current)
{
enumerator_t *enumerator;
policy_sa_t *sa;
bool is_installed = TRUE;
/* remove cached SA */
enumerator = current->sas->create_enumerator(current->sas);
while (enumerator->enumerate(enumerator, (void**)&sa))
{
if (reqid == sa->cfg.reqid)
{
current->sas->remove_at(current->sas, enumerator);
break;
}
is_installed = FALSE;
}
enumerator->destroy(enumerator);
if (current->sas->get_count(current->sas) > 0)
{ /* policy is used by more SAs, keep in kernel */
DBG2(DBG_KNL, "policy still used by another CHILD_SA, not removed");
if (!is_installed)
{ /* no need to update the policy as it was not installed */
this->mutex->unlock(this->mutex);
policy_sa_destroy(sa);
return SUCCESS;
}
policy_sa_destroy(sa);
if (mark.value)
{
DBG2(DBG_KNL, "updating policy %R === %R %N (mark %u/0x%8x)",
src_ts, dst_ts, policy_dir_names, direction,
mark.value, mark.mask);
}
else
{
DBG2(DBG_KNL, "updating policy %R === %R %N",
src_ts, dst_ts, policy_dir_names, direction);
}
current->sas->get_first(current->sas, (void**)&sa);
if (add_policy_internal(this, current, sa, TRUE) != SUCCESS)
{
DBG1(DBG_KNL, "unable to update policy %R === %R %N",
src_ts, dst_ts, policy_dir_names, direction);
return FAILED;
}
return SUCCESS;
}
/* remove if last reference */
policy_sa_destroy(sa);
this->policies->remove(this->policies, current);
to_delete = current;
}
this->mutex->unlock(this->mutex);
if (!to_delete)
{
if (mark.value)
{
DBG1(DBG_KNL, "deleting policy %R === %R %N (mark %u/0x%8x) "
"failed, not found", src_ts, dst_ts, policy_dir_names,
direction, mark.value, mark.mask);
}
else
{
DBG1(DBG_KNL, "deleting policy %R === %R %N failed, not found",
src_ts, dst_ts, policy_dir_names, direction);
}
return NOT_FOUND;
}
memset(&request, 0, sizeof(request));
hdr = (struct nlmsghdr*)request;
hdr->nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK;
hdr->nlmsg_type = XFRM_MSG_DELPOLICY;
hdr->nlmsg_len = NLMSG_LENGTH(sizeof(struct xfrm_userpolicy_id));
policy_id = (struct xfrm_userpolicy_id*)NLMSG_DATA(hdr);
policy_id->sel = to_delete->sel;
policy_id->dir = direction;
if (mark.value)
{
struct xfrm_mark *mrk;
struct rtattr *rthdr = XFRM_RTA(hdr, struct xfrm_userpolicy_id);
rthdr->rta_type = XFRMA_MARK;
rthdr->rta_len = RTA_LENGTH(sizeof(struct xfrm_mark));
hdr->nlmsg_len += RTA_ALIGN(rthdr->rta_len);
if (hdr->nlmsg_len > sizeof(request))
{
return FAILED;
}
mrk = (struct xfrm_mark*)RTA_DATA(rthdr);
mrk->v = mark.value;
mrk->m = mark.mask;
}
if (to_delete->route)
{
route_entry_t *route = to_delete->route;
if (hydra->kernel_interface->del_route(hydra->kernel_interface,
route->dst_net, route->prefixlen, route->gateway,
route->src_ip, route->if_name) != SUCCESS)
{
DBG1(DBG_KNL, "error uninstalling route installed with "
"policy %R === %R %N", src_ts, dst_ts,
policy_dir_names, direction);
}
}
if (this->socket_xfrm->send_ack(this->socket_xfrm, hdr) != SUCCESS)
{
if (mark.value)
{
DBG1(DBG_KNL, "unable to delete policy %R === %R %N "
"(mark %u/0x%8x)", src_ts, dst_ts, policy_dir_names,
direction, mark.value, mark.mask);
}
else
{
DBG1(DBG_KNL, "unable to delete policy %R === %R %N",
src_ts, dst_ts, policy_dir_names, direction);
}
policy_entry_destroy(to_delete);
return FAILED;
}
policy_entry_destroy(to_delete);
return SUCCESS;
}
METHOD(kernel_ipsec_t, bypass_socket, bool,
private_kernel_netlink_ipsec_t *this, int fd, int family)
{
struct xfrm_userpolicy_info policy;
u_int sol, ipsec_policy;
switch (family)
{
case AF_INET:
sol = SOL_IP;
ipsec_policy = IP_XFRM_POLICY;
break;
case AF_INET6:
sol = SOL_IPV6;
ipsec_policy = IPV6_XFRM_POLICY;
break;
default:
return FALSE;
}
memset(&policy, 0, sizeof(policy));
policy.action = XFRM_POLICY_ALLOW;
policy.sel.family = family;
policy.dir = XFRM_POLICY_OUT;
if (setsockopt(fd, sol, ipsec_policy, &policy, sizeof(policy)) < 0)
{
DBG1(DBG_KNL, "unable to set IPSEC_POLICY on socket: %s",
strerror(errno));
return FALSE;
}
policy.dir = XFRM_POLICY_IN;
if (setsockopt(fd, sol, ipsec_policy, &policy, sizeof(policy)) < 0)
{
DBG1(DBG_KNL, "unable to set IPSEC_POLICY on socket: %s",
strerror(errno));
return FALSE;
}
return TRUE;
}
METHOD(kernel_ipsec_t, destroy, void,
private_kernel_netlink_ipsec_t *this)
{
enumerator_t *enumerator;
policy_entry_t *policy;
if (this->job)
{
this->job->cancel(this->job);
}
if (this->socket_xfrm_events > 0)
{
close(this->socket_xfrm_events);
}
DESTROY_IF(this->socket_xfrm);
enumerator = this->policies->create_enumerator(this->policies);
while (enumerator->enumerate(enumerator, &policy, &policy))
{
policy_entry_destroy(policy);
}
enumerator->destroy(enumerator);
this->policies->destroy(this->policies);
this->mutex->destroy(this->mutex);
free(this);
}
/*
* Described in header.
*/
kernel_netlink_ipsec_t *kernel_netlink_ipsec_create()
{
private_kernel_netlink_ipsec_t *this;
struct sockaddr_nl addr;
int fd;
INIT(this,
.public = {
.interface = {
.get_spi = _get_spi,
.get_cpi = _get_cpi,
.add_sa = _add_sa,
.update_sa = _update_sa,
.query_sa = _query_sa,
.del_sa = _del_sa,
.add_policy = _add_policy,
.query_policy = _query_policy,
.del_policy = _del_policy,
.bypass_socket = _bypass_socket,
.destroy = _destroy,
},
},
.policies = hashtable_create((hashtable_hash_t)policy_hash,
(hashtable_equals_t)policy_equals, 32),
.mutex = mutex_create(MUTEX_TYPE_DEFAULT),
.install_routes = lib->settings->get_bool(lib->settings,
"%s.install_routes", TRUE, hydra->daemon),
.replay_window = lib->settings->get_int(lib->settings,
"%s.replay_window", DEFAULT_REPLAY_WINDOW, hydra->daemon),
);
this->replay_bmp = (this->replay_window + sizeof(u_int32_t) * 8 - 1) /
(sizeof(u_int32_t) * 8);
if (streq(hydra->daemon, "pluto"))
{ /* no routes for pluto, they are installed via updown script */
this->install_routes = FALSE;
}
/* disable lifetimes for allocated SPIs in kernel */
fd = open("/proc/sys/net/core/xfrm_acq_expires", O_WRONLY);
if (fd)
{
ignore_result(write(fd, "165", 3));
close(fd);
}
this->socket_xfrm = netlink_socket_create(NETLINK_XFRM);
if (!this->socket_xfrm)
{
destroy(this);
return NULL;
}
memset(&addr, 0, sizeof(addr));
addr.nl_family = AF_NETLINK;
/* create and bind XFRM socket for ACQUIRE, EXPIRE, MIGRATE & MAPPING */
this->socket_xfrm_events = socket(AF_NETLINK, SOCK_RAW, NETLINK_XFRM);
if (this->socket_xfrm_events <= 0)
{
DBG1(DBG_KNL, "unable to create XFRM event socket");
destroy(this);
return NULL;
}
addr.nl_groups = XFRMNLGRP(ACQUIRE) | XFRMNLGRP(EXPIRE) |
XFRMNLGRP(MIGRATE) | XFRMNLGRP(MAPPING);
if (bind(this->socket_xfrm_events, (struct sockaddr*)&addr, sizeof(addr)))
{
DBG1(DBG_KNL, "unable to bind XFRM event socket");
destroy(this);
return NULL;
}
this->job = callback_job_create_with_prio((callback_job_cb_t)receive_events,
this, NULL, NULL, JOB_PRIO_CRITICAL);
lib->processor->queue_job(lib->processor, (job_t*)this->job);
return &this->public;
}