strongswan/src/libstrongswan/utils/utils.c

738 lines
13 KiB
C

/*
* Copyright (C) 2008-2014 Tobias Brunner
* Copyright (C) 2005-2008 Martin Willi
* Hochschule fuer Technik Rapperswil
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version. See <http://www.fsf.org/copyleft/gpl.txt>.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*/
#define _GNU_SOURCE /* for memrchr */
#include <sys/stat.h>
#include <string.h>
#include <stdio.h>
#include <unistd.h>
#include <inttypes.h>
#include <stdint.h>
#include <limits.h>
#include <dirent.h>
#include <time.h>
#include <pthread.h>
#include "utils.h"
#include "collections/enumerator.h"
#include "utils/debug.h"
#include "utils/chunk.h"
ENUM(status_names, SUCCESS, NEED_MORE,
"SUCCESS",
"FAILED",
"OUT_OF_RES",
"ALREADY_DONE",
"NOT_SUPPORTED",
"INVALID_ARG",
"NOT_FOUND",
"PARSE_ERROR",
"VERIFY_ERROR",
"INVALID_STATE",
"DESTROY_ME",
"NEED_MORE",
);
/**
* Described in header.
*/
void memxor(u_int8_t dst[], u_int8_t src[], size_t n)
{
int m, i;
/* byte wise XOR until dst aligned */
for (i = 0; (uintptr_t)&dst[i] % sizeof(long) && i < n; i++)
{
dst[i] ^= src[i];
}
/* try to use words if src shares an aligment with dst */
switch (((uintptr_t)&src[i] % sizeof(long)))
{
case 0:
for (m = n - sizeof(long); i <= m; i += sizeof(long))
{
*(long*)&dst[i] ^= *(long*)&src[i];
}
break;
case sizeof(int):
for (m = n - sizeof(int); i <= m; i += sizeof(int))
{
*(int*)&dst[i] ^= *(int*)&src[i];
}
break;
case sizeof(short):
for (m = n - sizeof(short); i <= m; i += sizeof(short))
{
*(short*)&dst[i] ^= *(short*)&src[i];
}
break;
default:
break;
}
/* byte wise XOR of the rest */
for (; i < n; i++)
{
dst[i] ^= src[i];
}
}
/**
* Described in header.
*/
void memwipe_noinline(void *ptr, size_t n)
{
memwipe_inline(ptr, n);
}
/**
* Described in header.
*/
void *memstr(const void *haystack, const char *needle, size_t n)
{
const u_char *pos = haystack;
size_t l;
if (!haystack || !needle || (l = strlen(needle)) == 0)
{
return NULL;
}
for (; n >= l; ++pos, --n)
{
if (memeq(pos, needle, l))
{
return (void*)pos;
}
}
return NULL;
}
/**
* Described in header.
*/
void *utils_memrchr(const void *s, int c, size_t n)
{
const u_char *pos;
if (!s || !n)
{
return NULL;
}
for (pos = s + n - 1; pos >= (u_char*)s; pos--)
{
if (*pos == (u_char)c)
{
return (void*)pos;
}
}
return NULL;
}
/**
* Described in header.
*/
char* translate(char *str, const char *from, const char *to)
{
char *pos = str;
if (strlen(from) != strlen(to))
{
return str;
}
while (pos && *pos)
{
char *match;
if ((match = strchr(from, *pos)) != NULL)
{
*pos = to[match - from];
}
pos++;
}
return str;
}
/**
* Described in header.
*/
char* strreplace(const char *str, const char *search, const char *replace)
{
size_t len, slen, rlen, count = 0;
char *res, *pos, *found, *dst;
if (!str || !*str || !search || !*search || !replace)
{
return (char*)str;
}
slen = strlen(search);
rlen = strlen(replace);
if (slen != rlen)
{
for (pos = (char*)str; (pos = strstr(pos, search)); pos += slen)
{
found = pos;
count++;
}
if (!count)
{
return (char*)str;
}
len = (found - str) + strlen(found) + count * (rlen - slen);
}
else
{
len = strlen(str);
}
found = strstr(str, search);
if (!found)
{
return (char*)str;
}
dst = res = malloc(len + 1);
pos = (char*)str;
do
{
len = found - pos;
memcpy(dst, pos, len);
dst += len;
memcpy(dst, replace, rlen);
dst += rlen;
pos = found + slen;
}
while ((found = strstr(pos, search)));
strcpy(dst, pos);
return res;
}
/**
* Described in header.
*/
char* path_dirname(const char *path)
{
char *pos;
pos = path ? strrchr(path, '/') : NULL;
if (pos && !pos[1])
{ /* if path ends with slashes we have to look beyond them */
while (pos > path && *pos == '/')
{ /* skip trailing slashes */
pos--;
}
pos = memrchr(path, '/', pos - path + 1);
}
if (!pos)
{
return strdup(".");
}
while (pos > path && *pos == '/')
{ /* skip superfluous slashes */
pos--;
}
return strndup(path, pos - path + 1);
}
/**
* Described in header.
*/
char* path_basename(const char *path)
{
char *pos, *trail = NULL;
if (!path || !*path)
{
return strdup(".");
}
pos = strrchr(path, '/');
if (pos && !pos[1])
{ /* if path ends with slashes we have to look beyond them */
while (pos > path && *pos == '/')
{ /* skip trailing slashes */
pos--;
}
if (pos == path && *pos == '/')
{ /* contains only slashes */
return strdup("/");
}
trail = pos + 1;
pos = memrchr(path, '/', trail - path);
}
pos = pos ? pos + 1 : (char*)path;
return trail ? strndup(pos, trail - pos) : strdup(pos);
}
/**
* Described in header.
*/
bool mkdir_p(const char *path, mode_t mode)
{
int len;
char *pos, full[PATH_MAX];
pos = full;
if (!path || *path == '\0')
{
return TRUE;
}
len = snprintf(full, sizeof(full)-1, "%s", path);
if (len < 0 || len >= sizeof(full)-1)
{
DBG1(DBG_LIB, "path string %s too long", path);
return FALSE;
}
/* ensure that the path ends with a '/' */
if (full[len-1] != '/')
{
full[len++] = '/';
full[len] = '\0';
}
/* skip '/' at the beginning */
while (*pos == '/')
{
pos++;
}
while ((pos = strchr(pos, '/')))
{
*pos = '\0';
if (access(full, F_OK) < 0)
{
if (mkdir(full, mode) < 0)
{
DBG1(DBG_LIB, "failed to create directory %s", full);
return FALSE;
}
}
*pos = '/';
pos++;
}
return TRUE;
}
ENUM(tty_color_names, TTY_RESET, TTY_BG_DEF,
"\e[0m",
"\e[1m",
"\e[4m",
"\e[5m",
"\e[30m",
"\e[31m",
"\e[32m",
"\e[33m",
"\e[34m",
"\e[35m",
"\e[36m",
"\e[37m",
"\e[39m",
"\e[40m",
"\e[41m",
"\e[42m",
"\e[43m",
"\e[44m",
"\e[45m",
"\e[46m",
"\e[47m",
"\e[49m",
);
/**
* Get the escape string for a given TTY color, empty string on non-tty FILE
*/
char* tty_escape_get(int fd, tty_escape_t escape)
{
if (!isatty(fd))
{
return "";
}
switch (escape)
{
case TTY_RESET:
case TTY_BOLD:
case TTY_UNDERLINE:
case TTY_BLINKING:
case TTY_FG_BLACK:
case TTY_FG_RED:
case TTY_FG_GREEN:
case TTY_FG_YELLOW:
case TTY_FG_BLUE:
case TTY_FG_MAGENTA:
case TTY_FG_CYAN:
case TTY_FG_WHITE:
case TTY_FG_DEF:
case TTY_BG_BLACK:
case TTY_BG_RED:
case TTY_BG_GREEN:
case TTY_BG_YELLOW:
case TTY_BG_BLUE:
case TTY_BG_MAGENTA:
case TTY_BG_CYAN:
case TTY_BG_WHITE:
case TTY_BG_DEF:
return enum_to_name(tty_color_names, escape);
/* warn if a excape code is missing */
}
return "";
}
#ifndef HAVE_CLOSEFROM
/**
* Described in header.
*/
void closefrom(int lowfd)
{
char fd_dir[PATH_MAX];
int maxfd, fd, len;
/* try to close only open file descriptors on Linux... */
len = snprintf(fd_dir, sizeof(fd_dir), "/proc/%u/fd", getpid());
if (len > 0 && len < sizeof(fd_dir) && access(fd_dir, F_OK) == 0)
{
enumerator_t *enumerator = enumerator_create_directory(fd_dir);
if (enumerator)
{
char *rel;
while (enumerator->enumerate(enumerator, &rel, NULL, NULL))
{
fd = atoi(rel);
if (fd >= lowfd)
{
close(fd);
}
}
enumerator->destroy(enumerator);
return;
}
}
/* ...fall back to closing all fds otherwise */
maxfd = (int)sysconf(_SC_OPEN_MAX);
if (maxfd < 0)
{
maxfd = 256;
}
for (fd = lowfd; fd < maxfd; fd++)
{
close(fd);
}
}
#endif /* HAVE_CLOSEFROM */
/**
* Return monotonic time
*/
time_t time_monotonic(timeval_t *tv)
{
#if defined(HAVE_CLOCK_GETTIME) && \
(defined(HAVE_CONDATTR_CLOCK_MONOTONIC) || \
defined(HAVE_PTHREAD_COND_TIMEDWAIT_MONOTONIC))
/* as we use time_monotonic() for condvar operations, we use the
* monotonic time source only if it is also supported by pthread. */
timespec_t ts;
if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0)
{
if (tv)
{
tv->tv_sec = ts.tv_sec;
tv->tv_usec = ts.tv_nsec / 1000;
}
return ts.tv_sec;
}
#endif /* HAVE_CLOCK_GETTIME && (...) */
/* Fallback to non-monotonic timestamps:
* On MAC OS X, creating monotonic timestamps is rather difficult. We
* could use mach_absolute_time() and catch sleep/wakeup notifications.
* We stick to the simpler (non-monotonic) gettimeofday() for now.
* But keep in mind: we need the same time source here as in condvar! */
if (!tv)
{
return time(NULL);
}
if (gettimeofday(tv, NULL) != 0)
{ /* should actually never fail if passed pointers are valid */
return -1;
}
return tv->tv_sec;
}
/**
* return null
*/
void *return_null()
{
return NULL;
}
/**
* returns TRUE
*/
bool return_true()
{
return TRUE;
}
/**
* returns FALSE
*/
bool return_false()
{
return FALSE;
}
/**
* returns FAILED
*/
status_t return_failed()
{
return FAILED;
}
/**
* returns SUCCESS
*/
status_t return_success()
{
return SUCCESS;
}
/**
* nop operation
*/
void nop()
{
}
#ifndef HAVE_GCC_ATOMIC_OPERATIONS
/**
* We use a single mutex for all refcount variables.
*/
static pthread_mutex_t ref_mutex = PTHREAD_MUTEX_INITIALIZER;
/**
* Increase refcount
*/
refcount_t ref_get(refcount_t *ref)
{
refcount_t current;
pthread_mutex_lock(&ref_mutex);
current = ++(*ref);
pthread_mutex_unlock(&ref_mutex);
return current;
}
/**
* Decrease refcount
*/
bool ref_put(refcount_t *ref)
{
bool more_refs;
pthread_mutex_lock(&ref_mutex);
more_refs = --(*ref) > 0;
pthread_mutex_unlock(&ref_mutex);
return !more_refs;
}
/**
* Single mutex for all compare and swap operations.
*/
static pthread_mutex_t cas_mutex = PTHREAD_MUTEX_INITIALIZER;
/**
* Compare and swap if equal to old value
*/
#define _cas_impl(name, type) \
bool cas_##name(type *ptr, type oldval, type newval) \
{ \
bool swapped; \
pthread_mutex_lock(&cas_mutex); \
if ((swapped = (*ptr == oldval))) { *ptr = newval; } \
pthread_mutex_unlock(&cas_mutex); \
return swapped; \
}
_cas_impl(bool, bool)
_cas_impl(ptr, void*)
#endif /* HAVE_GCC_ATOMIC_OPERATIONS */
#ifdef HAVE_FMEMOPEN_FALLBACK
static int fmemread(chunk_t *cookie, char *buf, int size)
{
int len;
len = min(size, cookie->len);
memcpy(buf, cookie->ptr, len);
*cookie = chunk_skip(*cookie, len);
return len;
}
static int fmemwrite(chunk_t *cookie, const char *buf, int size)
{
int len;
len = min(size, cookie->len);
memcpy(cookie->ptr, buf, len);
*cookie = chunk_skip(*cookie, len);
return len;
}
static int fmemclose(void *cookie)
{
free(cookie);
return 0;
}
FILE *fmemopen(void *buf, size_t size, const char *mode)
{
chunk_t *cookie;
INIT(cookie,
.ptr = buf,
.len = size,
);
return funopen(cookie, (void*)fmemread, (void*)fmemwrite, NULL, fmemclose);
}
#endif /* FMEMOPEN fallback*/
/**
* Described in header.
*/
int time_printf_hook(printf_hook_data_t *data, printf_hook_spec_t *spec,
const void *const *args)
{
static const char* months[] = {
"Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
};
time_t *time = *((time_t**)(args[0]));
bool utc = *((int*)(args[1]));
struct tm t;
if (*time == UNDEFINED_TIME)
{
return print_in_hook(data, "--- -- --:--:--%s----",
utc ? " UTC " : " ");
}
if (utc)
{
gmtime_r(time, &t);
}
else
{
localtime_r(time, &t);
}
return print_in_hook(data, "%s %02d %02d:%02d:%02d%s%04d",
months[t.tm_mon], t.tm_mday, t.tm_hour, t.tm_min,
t.tm_sec, utc ? " UTC " : " ", t.tm_year + 1900);
}
/**
* Described in header.
*/
int time_delta_printf_hook(printf_hook_data_t *data, printf_hook_spec_t *spec,
const void *const *args)
{
char* unit = "second";
time_t *arg1 = *((time_t**)(args[0]));
time_t *arg2 = *((time_t**)(args[1]));
u_int64_t delta = llabs(*arg1 - *arg2);
if (delta > 2 * 60 * 60 * 24)
{
delta /= 60 * 60 * 24;
unit = "day";
}
else if (delta > 2 * 60 * 60)
{
delta /= 60 * 60;
unit = "hour";
}
else if (delta > 2 * 60)
{
delta /= 60;
unit = "minute";
}
return print_in_hook(data, "%" PRIu64 " %s%s", delta, unit,
(delta == 1) ? "" : "s");
}
/**
* Number of bytes per line to dump raw data
*/
#define BYTES_PER_LINE 16
static char hexdig_upper[] = "0123456789ABCDEF";
/**
* Described in header.
*/
int mem_printf_hook(printf_hook_data_t *data,
printf_hook_spec_t *spec, const void *const *args)
{
char *bytes = *((void**)(args[0]));
u_int len = *((int*)(args[1]));
char buffer[BYTES_PER_LINE * 3];
char ascii_buffer[BYTES_PER_LINE + 1];
char *buffer_pos = buffer;
char *bytes_pos = bytes;
char *bytes_roof = bytes + len;
int line_start = 0;
int i = 0;
int written = 0;
written += print_in_hook(data, "=> %u bytes @ %p", len, bytes);
while (bytes_pos < bytes_roof)
{
*buffer_pos++ = hexdig_upper[(*bytes_pos >> 4) & 0xF];
*buffer_pos++ = hexdig_upper[ *bytes_pos & 0xF];
ascii_buffer[i++] =
(*bytes_pos > 31 && *bytes_pos < 127) ? *bytes_pos : '.';
if (++bytes_pos == bytes_roof || i == BYTES_PER_LINE)
{
int padding = 3 * (BYTES_PER_LINE - i);
while (padding--)
{
*buffer_pos++ = ' ';
}
*buffer_pos++ = '\0';
ascii_buffer[i] = '\0';
written += print_in_hook(data, "\n%4d: %s %s",
line_start, buffer, ascii_buffer);
buffer_pos = buffer;
line_start += BYTES_PER_LINE;
i = 0;
}
else
{
*buffer_pos++ = ' ';
}
}
return written;
}