strongswan/src/libstrongswan/plugins/chapoly/chapoly_drv_portable.c

434 lines
10 KiB
C

/*
* Copyright (C) 2015 Martin Willi
* Copyright (C) 2015 revosec AG
*
* Based on public domain code by Andrew Moon and Daniel J. Bernstein.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version. See <http://www.fsf.org/copyleft/gpl.txt>.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*/
#include "chapoly_drv_portable.h"
#define CHACHA_DOUBLEROUNDS 10
/* index of some state fields */
#define CHACHA_BLOCKCOUNT 12
#define CHACHA_NONCE1 13
#define CHACHA_NONCE2 14
#define CHACHA_NONCE3 15
typedef struct private_chapoly_drv_portable_t private_chapoly_drv_portable_t;
/**
* Private data of an chapoly_drv_portable_t object.
*/
struct private_chapoly_drv_portable_t {
/**
* Public chapoly_drv_portable_t interface.
*/
chapoly_drv_t public;
/**
* ChaCha20 state matrix
*/
uint32_t m[16];
/**
* Poly1305 update key
*/
uint32_t r[5];
/**
* Poly1305 state
*/
uint32_t h[5];
/**
* Poly1305 finalize key
*/
uint32_t s[4];
};
/**
* XOR a 32-bit integer into an unaligned destination
*/
static inline void xor32u(void *p, uint32_t x)
{
uint32_t y;
memcpy(&y, p, sizeof(y));
y ^= x;
memcpy(p, &y, sizeof(y));
}
/**
* Multiply two 64-bit words
*/
static inline uint64_t mlt(uint64_t a, uint64_t b)
{
return a * b;
}
/**
* Shift a 64-bit unsigned integer v right by n bits, clamp to 32 bit
*/
static inline uint32_t sr(uint64_t v, u_char n)
{
return v >> n;
}
/**
* Circular left shift by n bits
*/
static inline uint32_t rotl32(uint32_t v, u_char n)
{
return (v << n) | (v >> (sizeof(v) * 8 - n));
}
/**
* AND two values, using a native integer size >= sizeof(uint32_t)
*/
static inline u_long and(u_long v, u_long mask)
{
return v & mask;
}
/**
* XOR a Chacha20 keystream block into data, increment counter
*/
static void chacha_block_xor(private_chapoly_drv_portable_t *this, void *data)
{
uint32_t x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, xa, xb, xc, xd, xe, xf;
uint32_t *out = data;
u_int i;
x0 = this->m[ 0];
x1 = this->m[ 1];
x2 = this->m[ 2];
x3 = this->m[ 3];
x4 = this->m[ 4];
x5 = this->m[ 5];
x6 = this->m[ 6];
x7 = this->m[ 7];
x8 = this->m[ 8];
x9 = this->m[ 9];
xa = this->m[10];
xb = this->m[11];
xc = this->m[12];
xd = this->m[13];
xe = this->m[14];
xf = this->m[15];
for (i = 0; i < CHACHA_DOUBLEROUNDS; i++)
{
x0 += x4; xc = rotl32(xc ^ x0, 16);
x1 += x5; xd = rotl32(xd ^ x1, 16);
x2 += x6; xe = rotl32(xe ^ x2, 16);
x3 += x7; xf = rotl32(xf ^ x3, 16);
x8 += xc; x4 = rotl32(x4 ^ x8, 12);
x9 += xd; x5 = rotl32(x5 ^ x9, 12);
xa += xe; x6 = rotl32(x6 ^ xa, 12);
xb += xf; x7 = rotl32(x7 ^ xb, 12);
x0 += x4; xc = rotl32(xc ^ x0, 8);
x1 += x5; xd = rotl32(xd ^ x1, 8);
x2 += x6; xe = rotl32(xe ^ x2, 8);
x3 += x7; xf = rotl32(xf ^ x3, 8);
x8 += xc; x4 = rotl32(x4 ^ x8, 7);
x9 += xd; x5 = rotl32(x5 ^ x9, 7);
xa += xe; x6 = rotl32(x6 ^ xa, 7);
xb += xf; x7 = rotl32(x7 ^ xb, 7);
x0 += x5; xf = rotl32(xf ^ x0, 16);
x1 += x6; xc = rotl32(xc ^ x1, 16);
x2 += x7; xd = rotl32(xd ^ x2, 16);
x3 += x4; xe = rotl32(xe ^ x3, 16);
xa += xf; x5 = rotl32(x5 ^ xa, 12);
xb += xc; x6 = rotl32(x6 ^ xb, 12);
x8 += xd; x7 = rotl32(x7 ^ x8, 12);
x9 += xe; x4 = rotl32(x4 ^ x9, 12);
x0 += x5; xf = rotl32(xf ^ x0, 8);
x1 += x6; xc = rotl32(xc ^ x1, 8);
x2 += x7; xd = rotl32(xd ^ x2, 8);
x3 += x4; xe = rotl32(xe ^ x3, 8);
xa += xf; x5 = rotl32(x5 ^ xa, 7);
xb += xc; x6 = rotl32(x6 ^ xb, 7);
x8 += xd; x7 = rotl32(x7 ^ x8, 7);
x9 += xe; x4 = rotl32(x4 ^ x9, 7);
}
xor32u(out + 0, le32toh(x0 + this->m[ 0]));
xor32u(out + 1, le32toh(x1 + this->m[ 1]));
xor32u(out + 2, le32toh(x2 + this->m[ 2]));
xor32u(out + 3, le32toh(x3 + this->m[ 3]));
xor32u(out + 4, le32toh(x4 + this->m[ 4]));
xor32u(out + 5, le32toh(x5 + this->m[ 5]));
xor32u(out + 6, le32toh(x6 + this->m[ 6]));
xor32u(out + 7, le32toh(x7 + this->m[ 7]));
xor32u(out + 8, le32toh(x8 + this->m[ 8]));
xor32u(out + 9, le32toh(x9 + this->m[ 9]));
xor32u(out + 10, le32toh(xa + this->m[10]));
xor32u(out + 11, le32toh(xb + this->m[11]));
xor32u(out + 12, le32toh(xc + this->m[12]));
xor32u(out + 13, le32toh(xd + this->m[13]));
xor32u(out + 14, le32toh(xe + this->m[14]));
xor32u(out + 15, le32toh(xf + this->m[15]));
this->m[CHACHA_BLOCKCOUNT]++;
}
METHOD(chapoly_drv_t, set_key, bool,
private_chapoly_drv_portable_t *this, u_char *constant, u_char *key,
u_char *salt)
{
this->m[ 0] = uletoh32(constant + 0);
this->m[ 1] = uletoh32(constant + 4);
this->m[ 2] = uletoh32(constant + 8);
this->m[ 3] = uletoh32(constant + 12);
this->m[ 4] = uletoh32(key + 0);
this->m[ 5] = uletoh32(key + 4);
this->m[ 6] = uletoh32(key + 8);
this->m[ 7] = uletoh32(key + 12);
this->m[ 8] = uletoh32(key + 16);
this->m[ 9] = uletoh32(key + 20);
this->m[10] = uletoh32(key + 24);
this->m[11] = uletoh32(key + 28);
this->m[CHACHA_NONCE1] = uletoh32(salt);
return TRUE;
}
METHOD(chapoly_drv_t, init, bool,
private_chapoly_drv_portable_t *this, u_char *iv)
{
u_char key[CHACHA_BLOCK_SIZE];
this->m[CHACHA_BLOCKCOUNT] = 0;
this->m[CHACHA_NONCE2] = uletoh32(iv + 0);
this->m[CHACHA_NONCE3] = uletoh32(iv + 4);
memset(key, 0, CHACHA_BLOCK_SIZE);
chacha_block_xor(this, key);
/* r &= 0xffffffc0ffffffc0ffffffc0fffffff */
this->r[0] = (uletoh32(key + 0) >> 0) & 0x3ffffff;
this->r[1] = (uletoh32(key + 3) >> 2) & 0x3ffff03;
this->r[2] = (uletoh32(key + 6) >> 4) & 0x3ffc0ff;
this->r[3] = (uletoh32(key + 9) >> 6) & 0x3f03fff;
this->r[4] = (uletoh32(key + 12) >> 8) & 0x00fffff;
/* h = 0 */
memwipe(this->h, sizeof(this->h));
this->s[0] = uletoh32(key + 16);
this->s[1] = uletoh32(key + 20);
this->s[2] = uletoh32(key + 24);
this->s[3] = uletoh32(key + 28);
return TRUE;
}
METHOD(chapoly_drv_t, poly, bool,
private_chapoly_drv_portable_t *this, u_char *data, u_int blocks)
{
uint32_t r0, r1, r2, r3, r4;
uint32_t s1, s2, s3, s4;
uint32_t h0, h1, h2, h3, h4;
uint64_t d0, d1, d2, d3, d4;
u_int i;
r0 = this->r[0];
r1 = this->r[1];
r2 = this->r[2];
r3 = this->r[3];
r4 = this->r[4];
s1 = r1 * 5;
s2 = r2 * 5;
s3 = r3 * 5;
s4 = r4 * 5;
h0 = this->h[0];
h1 = this->h[1];
h2 = this->h[2];
h3 = this->h[3];
h4 = this->h[4];
for (i = 0; i < blocks; i++)
{
/* h += m[i] */
h0 += (uletoh32(data + 0) >> 0) & 0x3ffffff;
h1 += (uletoh32(data + 3) >> 2) & 0x3ffffff;
h2 += (uletoh32(data + 6) >> 4) & 0x3ffffff;
h3 += (uletoh32(data + 9) >> 6) & 0x3ffffff;
h4 += (uletoh32(data + 12) >> 8) | (1 << 24);
/* h *= r */
d0 = mlt(h0, r0) + mlt(h1, s4) + mlt(h2, s3) + mlt(h3, s2) + mlt(h4, s1);
d1 = mlt(h0, r1) + mlt(h1, r0) + mlt(h2, s4) + mlt(h3, s3) + mlt(h4, s2);
d2 = mlt(h0, r2) + mlt(h1, r1) + mlt(h2, r0) + mlt(h3, s4) + mlt(h4, s3);
d3 = mlt(h0, r3) + mlt(h1, r2) + mlt(h2, r1) + mlt(h3, r0) + mlt(h4, s4);
d4 = mlt(h0, r4) + mlt(h1, r3) + mlt(h2, r2) + mlt(h3, r1) + mlt(h4, r0);
/* (partial) h %= p */
d1 += sr(d0, 26); h0 = and(d0, 0x3ffffff);
d2 += sr(d1, 26); h1 = and(d1, 0x3ffffff);
d3 += sr(d2, 26); h2 = and(d2, 0x3ffffff);
d4 += sr(d3, 26); h3 = and(d3, 0x3ffffff);
h0 += sr(d4, 26) * 5; h4 = and(d4, 0x3ffffff);
h1 += h0 >> 26; h0 = h0 & 0x3ffffff;
data += POLY_BLOCK_SIZE;
}
this->h[0] = h0;
this->h[1] = h1;
this->h[2] = h2;
this->h[3] = h3;
this->h[4] = h4;
return TRUE;
}
METHOD(chapoly_drv_t, chacha, bool,
private_chapoly_drv_portable_t *this, u_char *stream)
{
memset(stream, 0, CHACHA_BLOCK_SIZE);
chacha_block_xor(this, stream);
return TRUE;
}
METHOD(chapoly_drv_t, encrypt, bool,
private_chapoly_drv_portable_t *this, u_char *data, u_int blocks)
{
u_int i;
for (i = 0; i < blocks; i++)
{
chacha_block_xor(this, data);
poly(this, data, 4);
data += CHACHA_BLOCK_SIZE;
}
return TRUE;
}
METHOD(chapoly_drv_t, decrypt, bool,
private_chapoly_drv_portable_t *this, u_char *data, u_int blocks)
{
u_int i;
for (i = 0; i < blocks; i++)
{
poly(this, data, 4);
chacha_block_xor(this, data);
data += CHACHA_BLOCK_SIZE;
}
return TRUE;
}
METHOD(chapoly_drv_t, finish, bool,
private_chapoly_drv_portable_t *this, u_char *mac)
{
uint32_t h0, h1, h2, h3, h4;
uint32_t g0, g1, g2, g3, g4;
uint32_t mask;
uint64_t f = 0;
/* fully carry h */
h0 = this->h[0];
h1 = this->h[1];
h2 = this->h[2];
h3 = this->h[3];
h4 = this->h[4];
h2 += (h1 >> 26); h1 = h1 & 0x3ffffff;
h3 += (h2 >> 26); h2 = h2 & 0x3ffffff;
h4 += (h3 >> 26); h3 = h3 & 0x3ffffff;
h0 += (h4 >> 26) * 5; h4 = h4 & 0x3ffffff;
h1 += (h0 >> 26); h0 = h0 & 0x3ffffff;
/* compute h + -p */
g0 = h0 + 5;
g1 = h1 + (g0 >> 26); g0 &= 0x3ffffff;
g2 = h2 + (g1 >> 26); g1 &= 0x3ffffff;
g3 = h3 + (g2 >> 26); g2 &= 0x3ffffff;
g4 = h4 + (g3 >> 26) - (1 << 26); g3 &= 0x3ffffff;
/* select h if h < p, or h + -p if h >= p */
mask = (g4 >> ((sizeof(uint32_t) * 8) - 1)) - 1;
g0 &= mask;
g1 &= mask;
g2 &= mask;
g3 &= mask;
g4 &= mask;
mask = ~mask;
h0 = (h0 & mask) | g0;
h1 = (h1 & mask) | g1;
h2 = (h2 & mask) | g2;
h3 = (h3 & mask) | g3;
h4 = (h4 & mask) | g4;
/* h = h % (2^128) */
h0 = (h0 >> 0) | (h1 << 26);
h1 = (h1 >> 6) | (h2 << 20);
h2 = (h2 >> 12) | (h3 << 14);
h3 = (h3 >> 18) | (h4 << 8);
/* mac = (h + s) % (2^128) */
f = (f >> 32) + h0 + this->s[0]; htoule32(mac + 0, f);
f = (f >> 32) + h1 + this->s[1]; htoule32(mac + 4, f);
f = (f >> 32) + h2 + this->s[2]; htoule32(mac + 8, f);
f = (f >> 32) + h3 + this->s[3]; htoule32(mac + 12, f);
return TRUE;
}
METHOD(chapoly_drv_t, destroy, void,
private_chapoly_drv_portable_t *this)
{
memwipe(this->m, sizeof(this->m));
memwipe(this->h, sizeof(this->h));
memwipe(this->r, sizeof(this->r));
memwipe(this->s, sizeof(this->s));
free(this);
}
/**
* See header
*/
chapoly_drv_t *chapoly_drv_portable_create()
{
private_chapoly_drv_portable_t *this;
INIT(this,
.public = {
.set_key = _set_key,
.init = _init,
.poly = _poly,
.chacha = _chacha,
.encrypt = _encrypt,
.decrypt = _decrypt,
.finish = _finish,
.destroy = _destroy,
},
);
return &this->public;
}