strongswan/src/libstrongswan/plugins/ntru/ntru_private_key.c

886 lines
20 KiB
C

/*
* Copyright (C) 2014-2016 Andreas Steffen
* HSR Hochschule fuer Technik Rapperswil
*
* Copyright (C) 2009-2013 Security Innovation
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version. See <http://www.fsf.org/copyleft/gpl.txt>.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*/
#include "ntru_private_key.h"
#include "ntru_trits.h"
#include "ntru_poly.h"
#include "ntru_convert.h"
#include <utils/debug.h>
#include <utils/test.h>
typedef struct private_ntru_private_key_t private_ntru_private_key_t;
/**
* Private data of an ntru_private_key_t object.
*/
struct private_ntru_private_key_t {
/**
* Public ntru_private_key_t interface.
*/
ntru_private_key_t public;
/**
* NTRU Parameter Set
*/
const ntru_param_set_t *params;
/**
* Polynomial F which is the private key
*/
ntru_poly_t *privkey;
/**
* Polynomial h which is the public key
*/
uint16_t *pubkey;
/**
* Encoding of the private key
*/
chunk_t encoding;
/**
* Deterministic Random Bit Generator
*/
ntru_drbg_t *drbg;
};
METHOD(ntru_private_key_t, get_id, ntru_param_set_id_t,
private_ntru_private_key_t *this)
{
return this->params->id;
}
METHOD(ntru_private_key_t, get_public_key, ntru_public_key_t*,
private_ntru_private_key_t *this)
{
return ntru_public_key_create(this->drbg, this->params, this->pubkey);
}
/**
* Generate NTRU encryption private key encoding
*/
static void generate_encoding(private_ntru_private_key_t *this)
{
size_t pubkey_len, privkey_len, privkey_trits_len, privkey_indices_len;
int privkey_pack_type;
uint16_t *indices;
uint8_t *trits;
u_char *enc;
/* compute public key length encoded as packed coefficients */
pubkey_len = (this->params->N * this->params->q_bits + 7) / 8;
/* compute private key length encoded as packed trits coefficients */
privkey_trits_len = (this->params->N + 4) / 5;
/* compute private key length encoded as packed indices */
privkey_indices_len = (this->privkey->get_size(this->privkey) *
this->params->N_bits + 7) / 8;
if (this->params->is_product_form ||
privkey_indices_len <= privkey_trits_len)
{
privkey_pack_type = NTRU_KEY_PACKED_INDICES;
privkey_len = privkey_indices_len;
}
else
{
privkey_pack_type = NTRU_KEY_PACKED_TRITS;
privkey_len = privkey_trits_len;
}
/* allocate memory for private key encoding */
this->encoding = chunk_alloc(2 + NTRU_OID_LEN + pubkey_len + privkey_len);
enc = this->encoding.ptr;
/* format header and packed public key */
*enc++ = NTRU_PRIVKEY_DEFAULT_TAG;
*enc++ = NTRU_OID_LEN;
memcpy(enc, this->params->oid, NTRU_OID_LEN);
enc += NTRU_OID_LEN;
ntru_elements_2_octets(this->params->N, this->pubkey,
this->params->q_bits, enc);
enc += pubkey_len;
/* add packed private key */
indices = this->privkey->get_indices(this->privkey);
if (privkey_pack_type == NTRU_KEY_PACKED_TRITS)
{
/* encode private key as packed trits */
trits = malloc(this->params->N);
ntru_indices_2_packed_trits(indices, this->params->dF_r,
this->params->dF_r, this->params->N, trits, enc);
memwipe(trits, this->params->N);
free(trits);
}
else
{
/* encode private key as packed indices */
ntru_elements_2_octets(this->privkey->get_size(this->privkey),
indices, this->params->N_bits, enc);
}
}
METHOD(ntru_private_key_t, get_encoding, chunk_t,
private_ntru_private_key_t *this)
{
return this->encoding;
}
/**
* Checks that the number of 0, +1, and -1 trinary ring elements meet or exceed
* a minimum weight.
*
* @param N degree of polynomial
* @param t array of trinary ring elements
* @param min_wt minimum weight
* @return TRUE if minimum weight met or exceeded
*/
bool ntru_check_min_weight(uint16_t N, uint8_t *t, uint16_t min_wt)
{
uint16_t wt[3];
bool success;
int i;
wt[0] = wt[1] = wt[2] = 0;
for (i = 0; i < N; i++)
{
++wt[t[i]];
}
success = (wt[0] >= min_wt) && (wt[1] >= min_wt) && (wt[2] >= min_wt);
DBG2(DBG_LIB, "minimum weight = %u, so -1: %u, 0: %u, +1: %u is %sok",
min_wt, wt[2], wt[0], wt[1], success ? "" : "not ");
return success;
}
METHOD(ntru_private_key_t, decrypt, bool,
private_ntru_private_key_t *this, chunk_t ciphertext, chunk_t *plaintext)
{
ext_out_function_t alg;
size_t t_len, seed1_len, seed2_len;
uint16_t *t1, *t2, *t = NULL;
uint16_t mod_q_mask, q_mod_p, cmprime_len, cm_len = 0, num_zeros;
uint8_t *Mtrin, *M, *cm, *mask_trits, *ptr;
int16_t m1 = 0;
chunk_t seed = chunk_empty;
ntru_trits_t *mask;
ntru_poly_t *r_poly;
bool msg_rep_good, success = TRUE;
int i;
*plaintext = chunk_empty;
if (ciphertext.len != (this->params->N * this->params->q_bits + 7) / 8)
{
DBG1(DBG_LIB, "wrong NTRU ciphertext length");
return FALSE;
}
/* allocate temporary array t */
t_len = 2 * this->params->N * sizeof(uint16_t);
t = malloc(t_len);
t1 = t;
t2 = t + this->params->N;
Mtrin = (uint8_t *)t1;
M = Mtrin + this->params->N;
/* set MGF1 algorithm type based on security strength */
alg = (this->params->sec_strength_len <= 20) ? XOF_MGF1_SHA1 :
XOF_MGF1_SHA256;
/* set constants */
mod_q_mask = this->params->q - 1;
q_mod_p = this->params->q % 3;
/* unpack the ciphertext */
ntru_octets_2_elements(ciphertext.len, ciphertext.ptr,
this->params->q_bits, t2);
/* form cm':
* F * e
* A = e * (1 + pF) mod q = e + pFe mod q
* a = A in the range [-q/2, q/2)
* cm' = a mod p
*/
this->privkey->ring_mult(this->privkey, t2, t1);
cmprime_len = this->params->N;
if (this->params->is_product_form)
{
--cmprime_len;
for (i = 0; i < cmprime_len; i++)
{
t1[i] = (t2[i] + 3 * t1[i]) & mod_q_mask;
if (t1[i] >= (this->params->q / 2))
{
t1[i] -= q_mod_p;
}
Mtrin[i] = (uint8_t)(t1[i] % 3);
if (Mtrin[i] == 1)
{
++m1;
}
else if (Mtrin[i] == 2)
{
--m1;
}
}
}
else
{
for (i = 0; i < cmprime_len; i++)
{
t1[i] = (t2[i] + 3 * t1[i]) & mod_q_mask;
if (t1[i] >= (this->params->q / 2))
{
t1[i] -= q_mod_p;
}
Mtrin[i] = (uint8_t)(t1[i] % 3);
}
}
/**
* check that the candidate message representative meets
* minimum weight requirements
*/
if (this->params->is_product_form)
{
msg_rep_good = (abs(m1) <= this->params->min_msg_rep_wt);
}
else
{
msg_rep_good = ntru_check_min_weight(cmprime_len, Mtrin,
this->params->min_msg_rep_wt);
}
if (!msg_rep_good)
{
DBG1(DBG_LIB, "decryption failed due to unsufficient minimum weight");
success = FALSE;
}
/* form cR = e - cm' mod q */
for (i = 0; i < cmprime_len; i++)
{
if (Mtrin[i] == 1)
{
t2[i] = (t2[i] - 1) & mod_q_mask;
}
else if (Mtrin[i] == 2)
{
t2[i] = (t2[i] + 1) & mod_q_mask;
}
}
if (this->params->is_product_form)
{
t2[i] = (t2[i] + m1) & mod_q_mask;
}
/* allocate memory for the larger of the two seeds */
seed1_len = (this->params->N + 3)/4;
seed2_len = 3 + 2*this->params->sec_strength_len + this->params->m_len_max;
seed = chunk_alloc(max(seed1_len, seed2_len));
seed.len = seed1_len;
/* form cR mod 4 */
ntru_coeffs_mod4_2_octets(this->params->N, t2, seed.ptr);
/* form mask */
mask = ntru_trits_create(this->params->N, alg, seed);
if (!mask)
{
DBG1(DBG_LIB, "mask creation failed");
success = FALSE;
goto err;
}
mask_trits = mask->get_trits(mask);
/* form cMtrin by subtracting mask from cm', mod p */
for (i = 0; i < cmprime_len; i++)
{
Mtrin[i] -= mask_trits[i];
if (Mtrin[i] >= 3)
{
Mtrin[i] += 3;
}
}
mask->destroy(mask);
if (this->params->is_product_form)
{
/* set the last trit to zero since that's what it was, and
* because it can't be calculated from (cm' - mask) since
* we don't have the correct value for the last cm' trit
*/
Mtrin[i] = 0;
}
/* convert cMtrin to cM (Mtrin to Mbin) */
if (!ntru_trits_2_bits(Mtrin, this->params->N, M))
{
success = FALSE;
goto err;
}
/* skip the random padding */
ptr = M + this->params->sec_strength_len;
/* validate the padded message cM and copy cm to m_buf */
if (this->params->m_len_len == 2)
{
cm_len = (uint16_t)(*ptr++) << 16;
}
cm_len |= (uint16_t)(*ptr++);
if (cm_len > this->params->m_len_max)
{
cm_len = this->params->m_len_max;
DBG1(DBG_LIB, "NTRU message length is larger than maximum length");
success = FALSE;
}
cm = ptr;
ptr += cm_len;
/* check if the remaining padding consists of zeros */
num_zeros = this->params->m_len_max - cm_len + 1;
for (i = 0; i < num_zeros; i++)
{
if (ptr[i] != 0)
{
DBG1(DBG_LIB, "non-zero trailing padding detected");
success = FALSE;
break;
}
}
/* form sData (OID || m || b || hTrunc) */
ptr = seed.ptr;
memcpy(ptr, this->params->oid, 3);
ptr += 3;
memcpy(ptr, cm, cm_len);
ptr += cm_len;
memcpy(ptr, M, this->params->sec_strength_len);
ptr += this->params->sec_strength_len;
memcpy(ptr, this->encoding.ptr + 2 + NTRU_OID_LEN,
this->params->sec_strength_len);
ptr += this->params->sec_strength_len;
seed.len = ptr - seed.ptr;
/* generate cr */
DBG2(DBG_LIB, "generate polynomial r");
r_poly = ntru_poly_create_from_seed(alg, seed, this->params->c_bits,
this->params->N, this->params->q, this->params->dF_r,
this->params->dF_r, this->params->is_product_form);
if (!r_poly)
{
success = FALSE;
goto err;
}
/* output plaintext in allocated chunk */
*plaintext = chunk_clone(chunk_create(cm, cm_len));
/* form cR' = h * cr */
r_poly->ring_mult(r_poly, this->pubkey, t1);
r_poly->destroy(r_poly);
/* compare cR' to cR */
for (i = 0; i < this->params->N; i++)
{
if (t[i] != t2[i])
{
DBG1(DBG_LIB, "cR' does not equal cR'");
chunk_clear(plaintext);
success = FALSE;
break;
}
}
memwipe(t, t_len);
err:
/* cleanup */
chunk_clear(&seed);
free(t);
return success;
}
METHOD(ntru_private_key_t, destroy, void,
private_ntru_private_key_t *this)
{
DESTROY_IF(this->privkey);
this->drbg->destroy(this->drbg);
chunk_clear(&this->encoding);
free(this->pubkey);
free(this);
}
/**
* Multiplies ring element (polynomial) "a" by ring element (polynomial) "b"
* to produce ring element (polynomial) "c" in (Z/qZ)[X]/(X^N - 1).
* This is a convolution operation.
*
* Ring element "b" has coefficients in the range [0,N).
*
* This assumes q is 2^r where 8 < r < 16, so that overflow of the sum
* beyond 16 bits does not matter.
*
* @param a polynomial a
* @param b polynomial b
* @param N no. of coefficients in a, b, c
* @param q large modulus
* @param c polynomial c = a * b
*/
static void ring_mult_c(uint16_t *a, uint16_t *b, uint16_t N, uint16_t q,
uint16_t *c)
{
uint16_t *bptr = b;
uint16_t mod_q_mask = q - 1;
int i, k;
/* c[k] = sum(a[i] * b[k-i]) mod q */
memset(c, 0, N * sizeof(uint16_t));
for (k = 0; k < N; k++)
{
i = 0;
while (i <= k)
{
c[k] += a[i++] * *bptr--;
}
bptr += N;
while (i < N)
{
c[k] += a[i++] * *bptr--;
}
c[k] &= mod_q_mask;
++bptr;
}
}
/**
* Finds the inverse of a polynomial a in (Z/2^rZ)[X]/(X^N - 1).
*
* This assumes q is 2^r where 8 < r < 16, so that operations mod q can
* wait until the end, and only 16-bit arrays need to be used.
*
* @param a polynomial a
* @param N no. of coefficients in a
* @param q large modulus
* @param t temporary buffer of size 2N elements
* @param a_inv polynomial for inverse of a
*/
static bool ring_inv(uint16_t *a, uint16_t N, uint16_t q, uint16_t *t,
uint16_t *a_inv)
{
uint8_t *b = (uint8_t *)t;
uint8_t *c = b + N;
uint8_t *f = c + N;
uint8_t *g = (uint8_t *)a_inv;
uint16_t *t2 = t + N;
uint16_t deg_b, deg_c, deg_f, deg_g;
bool done = FALSE;
int i, j, k = 0;
/* form a^-1 in (Z/2Z)[X]/X^N - 1) */
memset(b, 0, 2 * N); /* clear to init b, c */
/* b(X) = 1 */
b[0] = 1;
deg_b = 0;
/* c(X) = 0 (cleared above) */
deg_c = 0;
/* f(X) = a(X) mod 2 */
for (i = 0; i < N; i++)
{
f[i] = (uint8_t)(a[i] & 1);
}
deg_f = N - 1;
/* g(X) = X^N - 1 */
g[0] = 1;
memset(g + 1, 0, N - 1);
g[N] = 1;
deg_g = N;
/* until f(X) = 1 */
while (!done)
{
/* while f[0] = 0, f(X) /= X, c(X) *= X, k++ */
for (i = 0; (i <= deg_f) && (f[i] == 0); ++i);
if (i > deg_f)
{
return FALSE;
}
if (i)
{
f = f + i;
deg_f = deg_f - i;
deg_c = deg_c + i;
for (j = deg_c; j >= i; j--)
{
c[j] = c[j-i];
}
for (j = 0; j < i; j++)
{
c[j] = 0;
}
k = k + i;
}
/* adjust degree of f(X) if the highest coefficients are zero
* Note: f[0] = 1 from above so the loop will terminate.
*/
while (f[deg_f] == 0)
{
--deg_f;
}
/* if f(X) = 1, done
* Note: f[0] = 1 from above, so only check the x term and up
*/
for (i = 1; (i <= deg_f) && (f[i] == 0); ++i);
if (i > deg_f)
{
done = TRUE;
break;
}
/* if deg_f < deg_g, f <-> g, b <-> c */
if (deg_f < deg_g)
{
uint8_t *x;
x = f;
f = g;
g = x;
deg_f ^= deg_g;
deg_g ^= deg_f;
deg_f ^= deg_g;
x = b;
b = c;
c = x;
deg_b ^= deg_c;
deg_c ^= deg_b;
deg_b ^= deg_c;
}
/* f(X) += g(X), b(X) += c(X) */
for (i = 0; i <= deg_g; i++)
{
f[i] ^= g[i];
}
if (deg_c > deg_b)
{
deg_b = deg_c;
}
for (i = 0; i <= deg_c; i++)
{
b[i] ^= c[i];
}
}
/* a^-1 in (Z/2Z)[X]/(X^N - 1) = b(X) shifted left k coefficients */
j = 0;
if (k >= N)
{
k = k - N;
}
for (i = k; i < N; i++)
{
a_inv[j++] = (uint16_t)(b[i]);
}
for (i = 0; i < k; i++)
{
a_inv[j++] = (uint16_t)(b[i]);
}
/* lift a^-1 in (Z/2Z)[X]/(X^N - 1) to a^-1 in (Z/qZ)[X]/(X^N -1) */
for (j = 0; j < 4; ++j) /* assumes 256 < q <= 65536 */
{
/* a^-1 = a^-1 * (2 - a * a^-1) mod q */
memcpy(t2, a_inv, N * sizeof(uint16_t));
ring_mult_c(a, t2, N, q, t);
for (i = 0; i < N; ++i)
{
t[i] = q - t[i];
}
t[0] = t[0] + 2;
ring_mult_c(t2, t, N, q, a_inv);
}
return TRUE;
}
/*
* Described in header.
*/
ntru_private_key_t *ntru_private_key_create(ntru_drbg_t *drbg,
const ntru_param_set_t *params)
{
private_ntru_private_key_t *this;
size_t t_len;
uint16_t *t1, *t2, *t = NULL;
uint16_t mod_q_mask;
ext_out_function_t alg;
ntru_poly_t *g_poly;
chunk_t seed;
int i;
INIT(this,
.public = {
.get_id = _get_id,
.get_public_key = _get_public_key,
.get_encoding = _get_encoding,
.decrypt = _decrypt,
.destroy = _destroy,
},
.params = params,
.pubkey = malloc(params->N * sizeof(uint16_t)),
.drbg = drbg->get_ref(drbg),
);
/* set hash algorithm and seed length based on security strength */
alg = (params->sec_strength_len <= 20) ? XOF_MGF1_SHA1 :
XOF_MGF1_SHA256;
seed =chunk_alloc(params->sec_strength_len + 8);
/* get random seed for generating trinary F as a list of indices */
if (!drbg->generate(drbg, params->sec_strength_len * BITS_PER_BYTE,
seed.len, seed.ptr))
{
goto err;
}
DBG2(DBG_LIB, "generate polynomial F");
this->privkey = ntru_poly_create_from_seed(alg, seed, params->c_bits,
params->N, params->q,
params->dF_r, params->dF_r,
params->is_product_form);
if (!this->privkey)
{
goto err;
}
/* allocate temporary array t */
t_len = 3 * params->N * sizeof(uint16_t);
t = malloc(t_len);
t1 = t + 2 * params->N;
/* extend sparse private key polynomial f to N array elements */
this->privkey->get_array(this->privkey, t1);
/* set mask for large modulus */
mod_q_mask = params->q - 1;
/* form f = 1 + pF */
for (i = 0; i < params->N; i++)
{
t1[i] = (t1[i] * 3) & mod_q_mask;
}
t1[0] = (t1[0] + 1) & mod_q_mask;
/* use the public key array as a temporary buffer */
t2 = this->pubkey;
/* find f^-1 in (Z/qZ)[X]/(X^N - 1) */
if (!ring_inv(t1, params->N, params->q, t, t2))
{
goto err;
}
/* get random seed for generating trinary g as a list of indices */
if (!drbg->generate(drbg, params->sec_strength_len * BITS_PER_BYTE,
seed.len, seed.ptr))
{
goto err;
}
DBG2(DBG_LIB, "generate polynomial g");
g_poly = ntru_poly_create_from_seed(alg, seed, params->c_bits,
params->N, params->q, params->dg + 1,
params->dg, FALSE);
if (!g_poly)
{
goto err;
}
/* compute public key polynomial h = p * (f^-1 * g) mod q */
g_poly->ring_mult(g_poly, t2, t2);
g_poly->destroy(g_poly);
for (i = 0; i < params->N; i++)
{
this->pubkey[i] = (t2[i] * 3) & mod_q_mask;
}
/* cleanup temporary storage */
chunk_clear(&seed);
memwipe(t, t_len);
free(t);
/* generate private key encoding */
generate_encoding(this);
return &this->public;
err:
chunk_free(&seed);
free(t);
destroy(this);
return NULL;
}
/*
* Described in header.
*/
ntru_private_key_t *ntru_private_key_create_from_data(ntru_drbg_t *drbg,
chunk_t data)
{
private_ntru_private_key_t *this;
size_t header_len, pubkey_packed_len, privkey_packed_len;
size_t privkey_packed_trits_len, privkey_packed_indices_len;
uint8_t *privkey_packed, tag;
uint16_t *indices, dF;
const ntru_param_set_t *params;
header_len = 2 + NTRU_OID_LEN;
/* check the NTRU public key header format */
if (data.len < header_len ||
!(data.ptr[0] == NTRU_PRIVKEY_DEFAULT_TAG ||
data.ptr[0] == NTRU_PRIVKEY_TRITS_TAG ||
data.ptr[0] == NTRU_PRIVKEY_INDICES_TAG) ||
data.ptr[1] != NTRU_OID_LEN)
{
DBG1(DBG_LIB, "loaded NTRU private key with invalid header");
return NULL;
}
tag = data.ptr[0];
params = ntru_param_set_get_by_oid(data.ptr + 2);
if (!params)
{
DBG1(DBG_LIB, "loaded NTRU private key with unknown OID");
return NULL;
}
pubkey_packed_len = (params->N * params->q_bits + 7) / 8;
privkey_packed_trits_len = (params->N + 4) / 5;
/* check packing type for product-form private keys */
if (params->is_product_form && tag == NTRU_PRIVKEY_TRITS_TAG)
{
DBG1(DBG_LIB, "a product-form NTRU private key cannot be trits-encoded");
return NULL;
}
/* set packed-key length for packed indices */
if (params->is_product_form)
{
dF = (uint16_t)((params->dF_r & 0xff) + /* df1 */
((params->dF_r >> 8) & 0xff) + /* df2 */
((params->dF_r >> 16) & 0xff)); /* df3 */
}
else
{
dF = (uint16_t)params->dF_r;
}
privkey_packed_indices_len = (2 * dF * params->N_bits + 7) / 8;
/* set private-key packing type if defaulted */
if (tag == NTRU_PRIVKEY_DEFAULT_TAG)
{
if (params->is_product_form ||
privkey_packed_indices_len <= privkey_packed_trits_len)
{
tag = NTRU_PRIVKEY_INDICES_TAG;
}
else
{
tag = NTRU_PRIVKEY_TRITS_TAG;
}
}
privkey_packed_len = (tag == NTRU_PRIVKEY_TRITS_TAG) ?
privkey_packed_trits_len : privkey_packed_indices_len;
if (data.len < header_len + pubkey_packed_len + privkey_packed_len)
{
DBG1(DBG_LIB, "loaded NTRU private key with wrong packed key size");
return NULL;
}
INIT(this,
.public = {
.get_id = _get_id,
.get_public_key = _get_public_key,
.get_encoding = _get_encoding,
.decrypt = _decrypt,
.destroy = _destroy,
},
.params = params,
.pubkey = malloc(params->N * sizeof(uint16_t)),
.encoding = chunk_clone(data),
.drbg = drbg->get_ref(drbg),
);
/* unpack the encoded public key */
ntru_octets_2_elements(pubkey_packed_len, data.ptr + header_len,
params->q_bits, this->pubkey);
/* allocate temporary memory for indices */
indices = malloc(2 * dF * sizeof(uint16_t));
/* unpack the private key */
privkey_packed = data.ptr + header_len + pubkey_packed_len;
if (tag == NTRU_PRIVKEY_TRITS_TAG)
{
ntru_packed_trits_2_indices(privkey_packed, params->N,
indices, indices + dF);
}
else
{
ntru_octets_2_elements(privkey_packed_indices_len, privkey_packed,
params->N_bits, indices);
}
this->privkey = ntru_poly_create_from_data(indices, params->N, params->q,
params->dF_r, params->dF_r,
params->is_product_form);
/* cleanup */
memwipe(indices, 2 * dF * sizeof(uint16_t));
free(indices);
return &this->public;
}
EXPORT_FUNCTION_FOR_TESTS(ntru, ntru_private_key_create);
EXPORT_FUNCTION_FOR_TESTS(ntru, ntru_private_key_create_from_data);