strongswan/src/libipsec/ipsec_sa_mgr.c

727 lines
17 KiB
C

/*
* Copyright (C) 2012-2017 Tobias Brunner
* Copyright (C) 2012 Giuliano Grassi
* Copyright (C) 2012 Ralf Sager
* HSR Hochschule fuer Technik Rapperswil
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version. See <http://www.fsf.org/copyleft/gpl.txt>.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*/
#include "ipsec.h"
#include "ipsec_sa_mgr.h"
#include <utils/debug.h>
#include <library.h>
#include <processing/jobs/callback_job.h>
#include <threading/condvar.h>
#include <threading/mutex.h>
#include <collections/hashtable.h>
#include <collections/linked_list.h>
typedef struct private_ipsec_sa_mgr_t private_ipsec_sa_mgr_t;
/**
* Private additions to ipsec_sa_mgr_t.
*/
struct private_ipsec_sa_mgr_t {
/**
* Public members of ipsec_sa_mgr_t.
*/
ipsec_sa_mgr_t public;
/**
* Installed SAs
*/
linked_list_t *sas;
/**
* SPIs allocated using get_spi()
*/
hashtable_t *allocated_spis;
/**
* Mutex used to synchronize access to the SA manager
*/
mutex_t *mutex;
/**
* RNG used to generate SPIs
*/
rng_t *rng;
};
/**
* Struct to keep track of locked IPsec SAs
*/
typedef struct {
/**
* IPsec SA
*/
ipsec_sa_t *sa;
/**
* Set if this SA is currently in use by a thread
*/
bool locked;
/**
* Condvar used by threads to wait for this entry
*/
condvar_t *condvar;
/**
* Number of threads waiting for this entry
*/
u_int waiting_threads;
/**
* Set if this entry is awaiting deletion
*/
bool awaits_deletion;
} ipsec_sa_entry_t;
/**
* Helper struct for expiration events
*/
typedef struct {
/**
* IPsec SA manager
*/
private_ipsec_sa_mgr_t *manager;
/**
* Entry that expired
*/
ipsec_sa_entry_t *entry;
/**
* SPI of the expired entry
*/
uint32_t spi;
/**
* 0 if this is a hard expire, otherwise the offset in s (soft->hard)
*/
uint32_t hard_offset;
} ipsec_sa_expired_t;
/*
* Used for the hash table of allocated SPIs
*/
static bool spi_equals(uint32_t *spi, uint32_t *other_spi)
{
return *spi == *other_spi;
}
static u_int spi_hash(uint32_t *spi)
{
return chunk_hash(chunk_from_thing(*spi));
}
/**
* Create an SA entry
*/
static ipsec_sa_entry_t *create_entry(ipsec_sa_t *sa)
{
ipsec_sa_entry_t *this;
INIT(this,
.condvar = condvar_create(CONDVAR_TYPE_DEFAULT),
.sa = sa,
);
return this;
}
/**
* Destroy an SA entry
*/
static void destroy_entry(ipsec_sa_entry_t *entry)
{
entry->condvar->destroy(entry->condvar);
entry->sa->destroy(entry->sa);
free(entry);
}
/**
* Makes sure an entry is safe to remove
* Must be called with this->mutex held.
*
* @return TRUE if entry can be removed, FALSE if entry is already
* being removed by another thread
*/
static bool wait_remove_entry(private_ipsec_sa_mgr_t *this,
ipsec_sa_entry_t *entry)
{
if (entry->awaits_deletion)
{
/* this will be deleted by another thread already */
return FALSE;
}
entry->awaits_deletion = TRUE;
while (entry->locked)
{
entry->condvar->wait(entry->condvar, this->mutex);
}
while (entry->waiting_threads > 0)
{
entry->condvar->broadcast(entry->condvar);
entry->condvar->wait(entry->condvar, this->mutex);
}
return TRUE;
}
/**
* Waits until an is available and then locks it.
* Must only be called with this->mutex held
*/
static bool wait_for_entry(private_ipsec_sa_mgr_t *this,
ipsec_sa_entry_t *entry)
{
while (entry->locked && !entry->awaits_deletion)
{
entry->waiting_threads++;
entry->condvar->wait(entry->condvar, this->mutex);
entry->waiting_threads--;
}
if (entry->awaits_deletion)
{
/* others may still be waiting, */
entry->condvar->signal(entry->condvar);
return FALSE;
}
entry->locked = TRUE;
return TRUE;
}
/**
* Flushes all entries
* Must be called with this->mutex held.
*/
static void flush_entries(private_ipsec_sa_mgr_t *this)
{
ipsec_sa_entry_t *current;
enumerator_t *enumerator;
DBG2(DBG_ESP, "flushing SAD");
enumerator = this->sas->create_enumerator(this->sas);
while (enumerator->enumerate(enumerator, (void**)&current))
{
if (wait_remove_entry(this, current))
{
this->sas->remove_at(this->sas, enumerator);
destroy_entry(current);
}
}
enumerator->destroy(enumerator);
}
CALLBACK(match_entry_by_sa_ptr, bool,
ipsec_sa_entry_t *item, va_list args)
{
ipsec_sa_t *sa;
VA_ARGS_VGET(args, sa);
return item->sa == sa;
}
CALLBACK(match_entry_by_spi_inbound, bool,
ipsec_sa_entry_t *item, va_list args)
{
uint32_t spi;
int inbound;
VA_ARGS_VGET(args, spi, inbound);
return item->sa->get_spi(item->sa) == spi &&
item->sa->is_inbound(item->sa) == inbound;
}
static bool match_entry_by_spi_src_dst(ipsec_sa_entry_t *item, uint32_t spi,
host_t *src, host_t *dst)
{
return item->sa->match_by_spi_src_dst(item->sa, spi, src, dst);
}
CALLBACK(match_entry_by_spi_src_dst_cb, bool,
ipsec_sa_entry_t *item, va_list args)
{
host_t *src, *dst;
uint32_t spi;
VA_ARGS_VGET(args, spi, src, dst);
return match_entry_by_spi_src_dst(item, spi, src, dst);
}
CALLBACK(match_entry_by_reqid_inbound, bool,
ipsec_sa_entry_t *item, va_list args)
{
uint32_t reqid;
int inbound;
VA_ARGS_VGET(args, reqid, inbound);
return item->sa->match_by_reqid(item->sa, reqid, inbound);
}
CALLBACK(match_entry_by_spi_dst, bool,
ipsec_sa_entry_t *item, va_list args)
{
host_t *dst;
uint32_t spi;
VA_ARGS_VGET(args, spi, dst);
return item->sa->match_by_spi_dst(item->sa, spi, dst);
}
/**
* Remove an entry
*/
static bool remove_entry(private_ipsec_sa_mgr_t *this, ipsec_sa_entry_t *entry)
{
ipsec_sa_entry_t *current;
enumerator_t *enumerator;
bool removed = FALSE;
enumerator = this->sas->create_enumerator(this->sas);
while (enumerator->enumerate(enumerator, (void**)&current))
{
if (current == entry)
{
if (wait_remove_entry(this, current))
{
this->sas->remove_at(this->sas, enumerator);
removed = TRUE;
}
break;
}
}
enumerator->destroy(enumerator);
return removed;
}
/**
* Callback for expiration events
*/
static job_requeue_t sa_expired(ipsec_sa_expired_t *expired)
{
private_ipsec_sa_mgr_t *this = expired->manager;
this->mutex->lock(this->mutex);
if (this->sas->find_first(this->sas, NULL, (void**)&expired->entry) &&
expired->spi == expired->entry->sa->get_spi(expired->entry->sa))
{ /* only if we find the right SA at this pointer location */
uint32_t hard_offset;
hard_offset = expired->hard_offset;
expired->entry->sa->expire(expired->entry->sa, hard_offset == 0);
if (hard_offset)
{ /* soft limit reached, schedule hard expire */
expired->hard_offset = 0;
this->mutex->unlock(this->mutex);
return JOB_RESCHEDULE(hard_offset);
}
/* hard limit reached */
if (remove_entry(this, expired->entry))
{
destroy_entry(expired->entry);
}
}
this->mutex->unlock(this->mutex);
return JOB_REQUEUE_NONE;
}
/**
* Schedule a job to handle IPsec SA expiration
*/
static void schedule_expiration(private_ipsec_sa_mgr_t *this,
ipsec_sa_entry_t *entry)
{
lifetime_cfg_t *lifetime = entry->sa->get_lifetime(entry->sa);
ipsec_sa_expired_t *expired;
callback_job_t *job;
uint32_t timeout;
if (!lifetime->time.life)
{ /* no expiration at all */
return;
}
INIT(expired,
.manager = this,
.entry = entry,
.spi = entry->sa->get_spi(entry->sa),
);
/* schedule a rekey first, a hard timeout will be scheduled then, if any */
expired->hard_offset = lifetime->time.life - lifetime->time.rekey;
timeout = lifetime->time.rekey;
if (lifetime->time.life <= lifetime->time.rekey ||
lifetime->time.rekey == 0)
{ /* no rekey, schedule hard timeout */
expired->hard_offset = 0;
timeout = lifetime->time.life;
}
job = callback_job_create((callback_job_cb_t)sa_expired, expired,
(callback_job_cleanup_t)free, NULL);
lib->scheduler->schedule_job(lib->scheduler, (job_t*)job, timeout);
}
/**
* Remove all allocated SPIs
*/
static void flush_allocated_spis(private_ipsec_sa_mgr_t *this)
{
enumerator_t *enumerator;
uint32_t *current;
DBG2(DBG_ESP, "flushing allocated SPIs");
enumerator = this->allocated_spis->create_enumerator(this->allocated_spis);
while (enumerator->enumerate(enumerator, NULL, (void**)&current))
{
this->allocated_spis->remove_at(this->allocated_spis, enumerator);
DBG2(DBG_ESP, " removed allocated SPI %.8x", ntohl(*current));
free(current);
}
enumerator->destroy(enumerator);
}
/**
* Pre-allocate an SPI for an inbound SA
*/
static bool allocate_spi(private_ipsec_sa_mgr_t *this, uint32_t spi)
{
uint32_t *spi_alloc;
if (this->allocated_spis->get(this->allocated_spis, &spi) ||
this->sas->find_first(this->sas, match_entry_by_spi_inbound,
NULL, spi, TRUE))
{
return FALSE;
}
spi_alloc = malloc_thing(uint32_t);
*spi_alloc = spi;
this->allocated_spis->put(this->allocated_spis, spi_alloc, spi_alloc);
return TRUE;
}
METHOD(ipsec_sa_mgr_t, get_spi, status_t,
private_ipsec_sa_mgr_t *this, host_t *src, host_t *dst, uint8_t protocol,
uint32_t *spi)
{
uint32_t spi_min, spi_max, spi_new;
spi_min = lib->settings->get_int(lib->settings, "%s.spi_min",
0x00000100, lib->ns);
spi_max = lib->settings->get_int(lib->settings, "%s.spi_max",
0xffffffff, lib->ns);
if (spi_min > spi_max)
{
spi_new = spi_min;
spi_min = spi_max;
spi_max = spi_new;
}
/* make sure the SPI is valid (not in range 0-255) */
spi_min = max(spi_min, 0x00000100);
spi_max = max(spi_max, 0x00000100);
this->mutex->lock(this->mutex);
if (!this->rng)
{
this->rng = lib->crypto->create_rng(lib->crypto, RNG_WEAK);
if (!this->rng)
{
this->mutex->unlock(this->mutex);
DBG1(DBG_ESP, "failed to create RNG for SPI generation");
return FAILED;
}
}
do
{
if (!this->rng->get_bytes(this->rng, sizeof(spi_new),
(uint8_t*)&spi_new))
{
this->mutex->unlock(this->mutex);
DBG1(DBG_ESP, "failed to allocate SPI");
return FAILED;
}
spi_new = spi_min + spi_new % (spi_max - spi_min + 1);
spi_new = htonl(spi_new);
}
while (!allocate_spi(this, spi_new));
this->mutex->unlock(this->mutex);
*spi = spi_new;
DBG2(DBG_ESP, "allocated SPI %.8x", ntohl(*spi));
return SUCCESS;
}
METHOD(ipsec_sa_mgr_t, add_sa, status_t,
private_ipsec_sa_mgr_t *this, host_t *src, host_t *dst, uint32_t spi,
uint8_t protocol, uint32_t reqid, mark_t mark, uint32_t tfc,
lifetime_cfg_t *lifetime, uint16_t enc_alg, chunk_t enc_key,
uint16_t int_alg, chunk_t int_key, ipsec_mode_t mode, uint16_t ipcomp,
uint16_t cpi, bool initiator, bool encap, bool esn, bool inbound,
bool update)
{
ipsec_sa_entry_t *entry;
ipsec_sa_t *sa_new;
DBG2(DBG_ESP, "adding SAD entry with SPI %.8x and reqid {%u}",
ntohl(spi), reqid);
DBG2(DBG_ESP, " using encryption algorithm %N with key size %d",
encryption_algorithm_names, enc_alg, enc_key.len * 8);
DBG2(DBG_ESP, " using integrity algorithm %N with key size %d",
integrity_algorithm_names, int_alg, int_key.len * 8);
sa_new = ipsec_sa_create(spi, src, dst, protocol, reqid, mark, tfc,
lifetime, enc_alg, enc_key, int_alg, int_key, mode,
ipcomp, cpi, encap, esn, inbound);
if (!sa_new)
{
DBG1(DBG_ESP, "failed to create SAD entry");
return FAILED;
}
this->mutex->lock(this->mutex);
if (update)
{ /* remove any pre-allocated SPIs */
uint32_t *spi_alloc;
spi_alloc = this->allocated_spis->remove(this->allocated_spis, &spi);
free(spi_alloc);
}
if (this->sas->find_first(this->sas, match_entry_by_spi_src_dst_cb, NULL,
spi, src, dst))
{
this->mutex->unlock(this->mutex);
DBG1(DBG_ESP, "failed to install SAD entry: already installed");
sa_new->destroy(sa_new);
return FAILED;
}
entry = create_entry(sa_new);
schedule_expiration(this, entry);
this->sas->insert_first(this->sas, entry);
this->mutex->unlock(this->mutex);
return SUCCESS;
}
METHOD(ipsec_sa_mgr_t, update_sa, status_t,
private_ipsec_sa_mgr_t *this, uint32_t spi, uint8_t protocol,
uint16_t cpi, host_t *src, host_t *dst, host_t *new_src, host_t *new_dst,
bool encap, bool new_encap, mark_t mark)
{
ipsec_sa_entry_t *entry = NULL;
DBG2(DBG_ESP, "updating SAD entry with SPI %.8x from %#H..%#H to %#H..%#H",
ntohl(spi), src, dst, new_src, new_dst);
if (!new_encap)
{
DBG1(DBG_ESP, "failed to update SAD entry: can't deactivate UDP "
"encapsulation");
return NOT_SUPPORTED;
}
this->mutex->lock(this->mutex);
if (this->sas->find_first(this->sas, match_entry_by_spi_src_dst_cb,
(void**)&entry, spi, src, dst) &&
wait_for_entry(this, entry))
{
entry->sa->set_source(entry->sa, new_src);
entry->sa->set_destination(entry->sa, new_dst);
/* checkin the entry */
entry->locked = FALSE;
entry->condvar->signal(entry->condvar);
}
this->mutex->unlock(this->mutex);
if (!entry)
{
DBG1(DBG_ESP, "failed to update SAD entry: not found");
return FAILED;
}
return SUCCESS;
}
METHOD(ipsec_sa_mgr_t, query_sa, status_t,
private_ipsec_sa_mgr_t *this, host_t *src, host_t *dst,
uint32_t spi, uint8_t protocol, mark_t mark,
uint64_t *bytes, uint64_t *packets, time_t *time)
{
ipsec_sa_entry_t *entry = NULL;
this->mutex->lock(this->mutex);
if (this->sas->find_first(this->sas, match_entry_by_spi_src_dst_cb,
(void**)&entry, spi, src, dst) &&
wait_for_entry(this, entry))
{
entry->sa->get_usestats(entry->sa, bytes, packets, time);
/* checkin the entry */
entry->locked = FALSE;
entry->condvar->signal(entry->condvar);
}
this->mutex->unlock(this->mutex);
return entry ? SUCCESS : NOT_FOUND;
}
METHOD(ipsec_sa_mgr_t, del_sa, status_t,
private_ipsec_sa_mgr_t *this, host_t *src, host_t *dst, uint32_t spi,
uint8_t protocol, uint16_t cpi, mark_t mark)
{
ipsec_sa_entry_t *current, *found = NULL;
enumerator_t *enumerator;
this->mutex->lock(this->mutex);
enumerator = this->sas->create_enumerator(this->sas);
while (enumerator->enumerate(enumerator, (void**)&current))
{
if (match_entry_by_spi_src_dst(current, spi, src, dst))
{
if (wait_remove_entry(this, current))
{
this->sas->remove_at(this->sas, enumerator);
found = current;
}
break;
}
}
enumerator->destroy(enumerator);
this->mutex->unlock(this->mutex);
if (found)
{
DBG2(DBG_ESP, "deleted %sbound SAD entry with SPI %.8x",
found->sa->is_inbound(found->sa) ? "in" : "out", ntohl(spi));
destroy_entry(found);
return SUCCESS;
}
return FAILED;
}
METHOD(ipsec_sa_mgr_t, checkout_by_reqid, ipsec_sa_t*,
private_ipsec_sa_mgr_t *this, uint32_t reqid, bool inbound)
{
ipsec_sa_entry_t *entry;
ipsec_sa_t *sa = NULL;
this->mutex->lock(this->mutex);
if (this->sas->find_first(this->sas, match_entry_by_reqid_inbound,
(void**)&entry, reqid, inbound) &&
wait_for_entry(this, entry))
{
sa = entry->sa;
}
this->mutex->unlock(this->mutex);
return sa;
}
METHOD(ipsec_sa_mgr_t, checkout_by_spi, ipsec_sa_t*,
private_ipsec_sa_mgr_t *this, uint32_t spi, host_t *dst)
{
ipsec_sa_entry_t *entry;
ipsec_sa_t *sa = NULL;
this->mutex->lock(this->mutex);
if (this->sas->find_first(this->sas, match_entry_by_spi_dst,
(void**)&entry, spi, dst) &&
wait_for_entry(this, entry))
{
sa = entry->sa;
}
this->mutex->unlock(this->mutex);
return sa;
}
METHOD(ipsec_sa_mgr_t, checkin, void,
private_ipsec_sa_mgr_t *this, ipsec_sa_t *sa)
{
ipsec_sa_entry_t *entry;
this->mutex->lock(this->mutex);
if (this->sas->find_first(this->sas, match_entry_by_sa_ptr,
(void**)&entry, sa))
{
if (entry->locked)
{
entry->locked = FALSE;
entry->condvar->signal(entry->condvar);
}
}
this->mutex->unlock(this->mutex);
}
METHOD(ipsec_sa_mgr_t, flush_sas, status_t,
private_ipsec_sa_mgr_t *this)
{
this->mutex->lock(this->mutex);
flush_entries(this);
this->mutex->unlock(this->mutex);
return SUCCESS;
}
METHOD(ipsec_sa_mgr_t, destroy, void,
private_ipsec_sa_mgr_t *this)
{
this->mutex->lock(this->mutex);
flush_entries(this);
flush_allocated_spis(this);
this->mutex->unlock(this->mutex);
this->allocated_spis->destroy(this->allocated_spis);
this->sas->destroy(this->sas);
this->mutex->destroy(this->mutex);
DESTROY_IF(this->rng);
free(this);
}
/**
* Described in header.
*/
ipsec_sa_mgr_t *ipsec_sa_mgr_create()
{
private_ipsec_sa_mgr_t *this;
INIT(this,
.public = {
.get_spi = _get_spi,
.add_sa = _add_sa,
.update_sa = _update_sa,
.query_sa = _query_sa,
.del_sa = _del_sa,
.checkout_by_spi = _checkout_by_spi,
.checkout_by_reqid = _checkout_by_reqid,
.checkin = _checkin,
.flush_sas = _flush_sas,
.destroy = _destroy,
},
.sas = linked_list_create(),
.mutex = mutex_create(MUTEX_TYPE_DEFAULT),
.allocated_spis = hashtable_create((hashtable_hash_t)spi_hash,
(hashtable_equals_t)spi_equals, 16),
);
return &this->public;
}