/* * Copyright (C) 2006-2008 Tobias Brunner * Copyright (C) 2005-2007 Martin Willi * Copyright (C) 2006-2007 Fabian Hartmann, Noah Heusser * Copyright (C) 2006 Daniel Roethlisberger * Copyright (C) 2005 Jan Hutter * Hochschule fuer Technik Rapperswil * Copyright (C) 2003 Herbert Xu. * * Based on xfrm code from pluto. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. See . * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * $Id$ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "kernel_interface.h" #include #include #include #include #include #include #include /** required for Linux 2.6.26 kernel and later */ #ifndef XFRM_STATE_AF_UNSPEC #define XFRM_STATE_AF_UNSPEC 32 #endif /** routing table for routes installed by us */ #ifndef IPSEC_ROUTING_TABLE #define IPSEC_ROUTING_TABLE 100 #endif #ifndef IPSEC_ROUTING_TABLE_PRIO #define IPSEC_ROUTING_TABLE_PRIO 100 #endif /** default priority of installed policies */ #define PRIO_LOW 3000 #define PRIO_HIGH 2000 /** delay before firing roam jobs (ms) */ #define ROAM_DELAY 100 #define BUFFER_SIZE 1024 /** * returns a pointer to the first rtattr following the nlmsghdr *nlh and the * 'usual' netlink data x like 'struct xfrm_usersa_info' */ #define XFRM_RTA(nlh, x) ((struct rtattr*)(NLMSG_DATA(nlh) + NLMSG_ALIGN(sizeof(x)))) /** * returns a pointer to the next rtattr following rta. * !!! do not use this to parse messages. use RTA_NEXT and RTA_OK instead !!! */ #define XFRM_RTA_NEXT(rta) ((struct rtattr*)(((char*)(rta)) + RTA_ALIGN((rta)->rta_len))) /** * returns the total size of attached rta data * (after 'usual' netlink data x like 'struct xfrm_usersa_info') */ #define XFRM_PAYLOAD(nlh, x) NLMSG_PAYLOAD(nlh, sizeof(x)) typedef struct kernel_algorithm_t kernel_algorithm_t; /** * Mapping from the algorithms defined in IKEv2 to * kernel level algorithm names and their key length */ struct kernel_algorithm_t { /** * Identifier specified in IKEv2 */ int ikev2_id; /** * Name of the algorithm, as used as kernel identifier */ char *name; /** * Key length in bits, if fixed size */ u_int key_size; }; #define END_OF_LIST -1 /** * Algorithms for encryption */ static kernel_algorithm_t encryption_algs[] = { /* {ENCR_DES_IV64, "***", 0}, */ {ENCR_DES, "des", 64}, {ENCR_3DES, "des3_ede", 192}, /* {ENCR_RC5, "***", 0}, */ /* {ENCR_IDEA, "***", 0}, */ {ENCR_CAST, "cast128", 0}, {ENCR_BLOWFISH, "blowfish", 0}, /* {ENCR_3IDEA, "***", 0}, */ /* {ENCR_DES_IV32, "***", 0}, */ {ENCR_NULL, "cipher_null", 0}, {ENCR_AES_CBC, "aes", 0}, /* {ENCR_AES_CTR, "***", 0}, */ {ENCR_AES_CCM_ICV8, "rfc4309(ccm(aes))", 64}, /* key_size = ICV size */ {ENCR_AES_CCM_ICV12, "rfc4309(ccm(aes))", 96}, /* key_size = ICV size */ {ENCR_AES_CCM_ICV16, "rfc4309(ccm(aes))", 128}, /* key_size = ICV size */ {ENCR_AES_GCM_ICV8, "rfc4106(gcm(aes))", 64}, /* key_size = ICV size */ {ENCR_AES_GCM_ICV12, "rfc4106(gcm(aes))", 96}, /* key_size = ICV size */ {ENCR_AES_GCM_ICV16, "rfc4106(gcm(aes))", 128}, /* key_size = ICV size */ {END_OF_LIST, NULL, 0}, }; /** * Algorithms for integrity protection */ static kernel_algorithm_t integrity_algs[] = { {AUTH_HMAC_MD5_96, "md5", 128}, {AUTH_HMAC_SHA1_96, "sha1", 160}, {AUTH_HMAC_SHA2_256_128, "sha256", 256}, {AUTH_HMAC_SHA2_384_192, "sha384", 384}, {AUTH_HMAC_SHA2_512_256, "sha512", 512}, /* {AUTH_DES_MAC, "***", 0}, */ /* {AUTH_KPDK_MD5, "***", 0}, */ {AUTH_AES_XCBC_96, "xcbc(aes)", 128}, {END_OF_LIST, NULL, 0}, }; /** * Algorithms for IPComp */ static kernel_algorithm_t compression_algs[] = { /* {IPCOMP_OUI, "***", 0}, */ {IPCOMP_DEFLATE, "deflate", 0}, {IPCOMP_LZS, "lzs", 0}, {IPCOMP_LZJH, "lzjh", 0}, {END_OF_LIST, NULL, 0}, }; /** * Look up a kernel algorithm name and its key size */ static char* lookup_algorithm(kernel_algorithm_t *kernel_algo, u_int16_t ikev2_algo, u_int16_t *key_size) { while (kernel_algo->ikev2_id != END_OF_LIST) { if (ikev2_algo == kernel_algo->ikev2_id) { /* match, evaluate key length */ if (key_size && *key_size == 0) { /* update key size if not set */ *key_size = kernel_algo->key_size; } return kernel_algo->name; } kernel_algo++; } return NULL; } typedef struct route_entry_t route_entry_t; /** * installed routing entry */ struct route_entry_t { /** Index of the interface the route is bound to */ int if_index; /** Source ip of the route */ host_t *src_ip; /** gateway for this route */ host_t *gateway; /** Destination net */ chunk_t dst_net; /** Destination net prefixlen */ u_int8_t prefixlen; }; /** * destroy an route_entry_t object */ static void route_entry_destroy(route_entry_t *this) { this->src_ip->destroy(this->src_ip); this->gateway->destroy(this->gateway); chunk_free(&this->dst_net); free(this); } typedef struct policy_entry_t policy_entry_t; /** * installed kernel policy. */ struct policy_entry_t { /** direction of this policy: in, out, forward */ u_int8_t direction; /** reqid of the policy */ u_int32_t reqid; /** parameters of installed policy */ struct xfrm_selector sel; /** associated route installed for this policy */ route_entry_t *route; /** by how many CHILD_SA's this policy is used */ u_int refcount; }; typedef struct addr_entry_t addr_entry_t; /** * IP address in an inface_entry_t */ struct addr_entry_t { /** The ip address */ host_t *ip; /** virtual IP managed by us */ bool virtual; /** scope of the address */ u_char scope; /** Number of times this IP is used, if virtual */ u_int refcount; }; /** * destroy a addr_entry_t object */ static void addr_entry_destroy(addr_entry_t *this) { this->ip->destroy(this->ip); free(this); } typedef struct iface_entry_t iface_entry_t; /** * A network interface on this system, containing addr_entry_t's */ struct iface_entry_t { /** interface index */ int ifindex; /** name of the interface */ char ifname[IFNAMSIZ]; /** interface flags, as in netdevice(7) SIOCGIFFLAGS */ u_int flags; /** list of addresses as host_t */ linked_list_t *addrs; }; /** * destroy an interface entry */ static void iface_entry_destroy(iface_entry_t *this) { this->addrs->destroy_function(this->addrs, (void*)addr_entry_destroy); free(this); } typedef struct private_kernel_interface_t private_kernel_interface_t; /** * Private variables and functions of kernel_interface class. */ struct private_kernel_interface_t { /** * Public part of the kernel_interface_t object. */ kernel_interface_t public; /** * mutex to lock access to netlink socket */ pthread_mutex_t nl_mutex; /** * mutex to lock access to various lists */ pthread_mutex_t mutex; /** * condition variable to signal virtual IP add/removal */ pthread_cond_t cond; /** * List of installed policies (policy_entry_t) */ linked_list_t *policies; /** * Cached list of interfaces and its adresses (iface_entry_t) */ linked_list_t *ifaces; /** * iterator used in hook() */ iterator_t *hiter; /** * job receiving netlink events */ callback_job_t *job; /** * current sequence number for netlink request */ int seq; /** * Netlink xfrm socket (IPsec) */ int socket_xfrm; /** * netlink xfrm socket to receive acquire and expire events */ int socket_xfrm_events; /** * Netlink rt socket (routing) */ int socket_rt; /** * Netlink rt socket to receive address change events */ int socket_rt_events; /** * time of the last roam_job */ struct timeval last_roam; /** * whether to install routes along policies */ bool install_routes; /** * routing table to install routes */ int routing_table; /** * priority of used routing table */ int routing_table_prio; }; /** * convert a IKEv2 specific protocol identifier to the kernel one */ static u_int8_t proto_ike2kernel(protocol_id_t proto) { switch (proto) { case PROTO_ESP: return IPPROTO_ESP; case PROTO_AH: return IPPROTO_AH; default: return proto; } } /** * reverse of ike2kernel */ static protocol_id_t proto_kernel2ike(u_int8_t proto) { switch (proto) { case IPPROTO_ESP: return PROTO_ESP; case IPPROTO_AH: return PROTO_AH; default: return proto; } } /** * convert a host_t to a struct xfrm_address */ static void host2xfrm(host_t *host, xfrm_address_t *xfrm) { chunk_t chunk = host->get_address(host); memcpy(xfrm, chunk.ptr, min(chunk.len, sizeof(xfrm_address_t))); } /** * convert a traffic selector address range to subnet and its mask. */ static void ts2subnet(traffic_selector_t* ts, xfrm_address_t *net, u_int8_t *mask) { /* there is no way to do this cleanly, as the address range may * be anything else but a subnet. We use from_addr as subnet * and try to calculate a usable subnet mask. */ int byte, bit; bool found = FALSE; chunk_t from, to; size_t size = (ts->get_type(ts) == TS_IPV4_ADDR_RANGE) ? 4 : 16; from = ts->get_from_address(ts); to = ts->get_to_address(ts); *mask = (size * 8); /* go trough all bits of the addresses, beginning in the front. * as long as they are equal, the subnet gets larger */ for (byte = 0; byte < size; byte++) { for (bit = 7; bit >= 0; bit--) { if ((1<get_from_port(ts); to = ts->get_to_port(ts); if (from == to) { *port = htons(from); *mask = ~0; } else { *port = 0; *mask = 0; } } /** * convert a pair of traffic_selectors to a xfrm_selector */ static struct xfrm_selector ts2selector(traffic_selector_t *src, traffic_selector_t *dst) { struct xfrm_selector sel; memset(&sel, 0, sizeof(sel)); sel.family = (src->get_type(src) == TS_IPV4_ADDR_RANGE) ? AF_INET : AF_INET6; /* src or dest proto may be "any" (0), use more restrictive one */ sel.proto = max(src->get_protocol(src), dst->get_protocol(dst)); ts2subnet(dst, &sel.daddr, &sel.prefixlen_d); ts2subnet(src, &sel.saddr, &sel.prefixlen_s); ts2ports(dst, &sel.dport, &sel.dport_mask); ts2ports(src, &sel.sport, &sel.sport_mask); sel.ifindex = 0; sel.user = 0; return sel; } /** * Creates an rtattr and adds it to the netlink message */ static void add_attribute(struct nlmsghdr *hdr, int rta_type, chunk_t data, size_t buflen) { struct rtattr *rta; if (NLMSG_ALIGN(hdr->nlmsg_len) + RTA_ALIGN(data.len) > buflen) { DBG1(DBG_KNL, "unable to add attribute, buffer too small"); return; } rta = (struct rtattr*)(((char*)hdr) + NLMSG_ALIGN(hdr->nlmsg_len)); rta->rta_type = rta_type; rta->rta_len = RTA_LENGTH(data.len); memcpy(RTA_DATA(rta), data.ptr, data.len); hdr->nlmsg_len = NLMSG_ALIGN(hdr->nlmsg_len) + rta->rta_len; } /** * process a XFRM_MSG_ACQUIRE from kernel */ static void process_acquire(private_kernel_interface_t *this, struct nlmsghdr *hdr) { u_int32_t reqid = 0; job_t *job; struct rtattr *rtattr = XFRM_RTA(hdr, struct xfrm_user_acquire); size_t rtsize = XFRM_PAYLOAD(hdr, struct xfrm_user_tmpl); if (RTA_OK(rtattr, rtsize)) { if (rtattr->rta_type == XFRMA_TMPL) { struct xfrm_user_tmpl* tmpl = (struct xfrm_user_tmpl*)RTA_DATA(rtattr); reqid = tmpl->reqid; } } if (reqid == 0) { DBG1(DBG_KNL, "received a XFRM_MSG_ACQUIRE, but no reqid found"); return; } DBG2(DBG_KNL, "received a XFRM_MSG_ACQUIRE"); DBG1(DBG_KNL, "creating acquire job for CHILD_SA with reqid %d", reqid); job = (job_t*)acquire_job_create(reqid); charon->processor->queue_job(charon->processor, job); } /** * process a XFRM_MSG_EXPIRE from kernel */ static void process_expire(private_kernel_interface_t *this, struct nlmsghdr *hdr) { job_t *job; protocol_id_t protocol; u_int32_t spi, reqid; struct xfrm_user_expire *expire; expire = (struct xfrm_user_expire*)NLMSG_DATA(hdr); protocol = proto_kernel2ike(expire->state.id.proto); spi = expire->state.id.spi; reqid = expire->state.reqid; DBG2(DBG_KNL, "received a XFRM_MSG_EXPIRE"); if (protocol != PROTO_ESP && protocol != PROTO_AH) { DBG2(DBG_KNL, "ignoring XFRM_MSG_EXPIRE for SA 0x%x (reqid %d) which is " "not a CHILD_SA", ntohl(spi), reqid); return; } DBG1(DBG_KNL, "creating %s job for %N CHILD_SA 0x%x (reqid %d)", expire->hard ? "delete" : "rekey", protocol_id_names, protocol, ntohl(spi), reqid); if (expire->hard) { job = (job_t*)delete_child_sa_job_create(reqid, protocol, spi); } else { job = (job_t*)rekey_child_sa_job_create(reqid, protocol, spi); } charon->processor->queue_job(charon->processor, job); } /** * start a roaming job. We delay it for a second and fire only one job * for multiple events. Otherwise we would create two many jobs. */ static void fire_roam_job(private_kernel_interface_t *this, bool address) { struct timeval now; if (gettimeofday(&now, NULL) == 0) { if (timercmp(&now, &this->last_roam, >)) { now.tv_usec += ROAM_DELAY * 1000; while (now.tv_usec > 1000000) { now.tv_sec++; now.tv_usec -= 1000000; } this->last_roam = now; charon->scheduler->schedule_job(charon->scheduler, (job_t*)roam_job_create(address), ROAM_DELAY); } } } /** * process RTM_NEWLINK/RTM_DELLINK from kernel */ static void process_link(private_kernel_interface_t *this, struct nlmsghdr *hdr, bool event) { struct ifinfomsg* msg = (struct ifinfomsg*)(NLMSG_DATA(hdr)); struct rtattr *rta = IFLA_RTA(msg); size_t rtasize = IFLA_PAYLOAD (hdr); iterator_t *iterator; iface_entry_t *current, *entry = NULL; char *name = NULL; bool update = FALSE; while(RTA_OK(rta, rtasize)) { switch (rta->rta_type) { case IFLA_IFNAME: name = RTA_DATA(rta); break; } rta = RTA_NEXT(rta, rtasize); } if (!name) { name = "(unknown)"; } switch (hdr->nlmsg_type) { case RTM_NEWLINK: { if (msg->ifi_flags & IFF_LOOPBACK) { /* ignore loopback interfaces */ break; } iterator = this->ifaces->create_iterator_locked(this->ifaces, &this->mutex); while (iterator->iterate(iterator, (void**)¤t)) { if (current->ifindex == msg->ifi_index) { entry = current; break; } } if (!entry) { entry = malloc_thing(iface_entry_t); entry->ifindex = msg->ifi_index; entry->flags = 0; entry->addrs = linked_list_create(); this->ifaces->insert_last(this->ifaces, entry); } memcpy(entry->ifname, name, IFNAMSIZ); entry->ifname[IFNAMSIZ-1] = '\0'; if (event) { if (!(entry->flags & IFF_UP) && (msg->ifi_flags & IFF_UP)) { update = TRUE; DBG1(DBG_KNL, "interface %s activated", name); } if ((entry->flags & IFF_UP) && !(msg->ifi_flags & IFF_UP)) { update = TRUE; DBG1(DBG_KNL, "interface %s deactivated", name); } } entry->flags = msg->ifi_flags; iterator->destroy(iterator); break; } case RTM_DELLINK: { iterator = this->ifaces->create_iterator_locked(this->ifaces, &this->mutex); while (iterator->iterate(iterator, (void**)¤t)) { if (current->ifindex == msg->ifi_index) { /* we do not remove it, as an address may be added to a * "down" interface and we wan't to know that. */ current->flags = msg->ifi_flags; break; } } iterator->destroy(iterator); break; } } /* send an update to all IKE_SAs */ if (update && event) { fire_roam_job(this, TRUE); } } /** * process RTM_NEWADDR/RTM_DELADDR from kernel */ static void process_addr(private_kernel_interface_t *this, struct nlmsghdr *hdr, bool event) { struct ifaddrmsg* msg = (struct ifaddrmsg*)(NLMSG_DATA(hdr)); struct rtattr *rta = IFA_RTA(msg); size_t rtasize = IFA_PAYLOAD (hdr); host_t *host = NULL; iterator_t *ifaces, *addrs; iface_entry_t *iface; addr_entry_t *addr; chunk_t local = chunk_empty, address = chunk_empty; bool update = FALSE, found = FALSE, changed = FALSE; while(RTA_OK(rta, rtasize)) { switch (rta->rta_type) { case IFA_LOCAL: local.ptr = RTA_DATA(rta); local.len = RTA_PAYLOAD(rta); break; case IFA_ADDRESS: address.ptr = RTA_DATA(rta); address.len = RTA_PAYLOAD(rta); break; } rta = RTA_NEXT(rta, rtasize); } /* For PPP interfaces, we need the IFA_LOCAL address, * IFA_ADDRESS is the peers address. But IFA_LOCAL is * not included in all cases (IPv6?), so fallback to IFA_ADDRESS. */ if (local.ptr) { host = host_create_from_chunk(msg->ifa_family, local, 0); } else if (address.ptr) { host = host_create_from_chunk(msg->ifa_family, address, 0); } if (host == NULL) { /* bad family? */ return; } ifaces = this->ifaces->create_iterator_locked(this->ifaces, &this->mutex); while (ifaces->iterate(ifaces, (void**)&iface)) { if (iface->ifindex == msg->ifa_index) { addrs = iface->addrs->create_iterator(iface->addrs, TRUE); while (addrs->iterate(addrs, (void**)&addr)) { if (host->ip_equals(host, addr->ip)) { found = TRUE; if (hdr->nlmsg_type == RTM_DELADDR) { changed = TRUE; addrs->remove(addrs); if (!addr->virtual) { DBG1(DBG_KNL, "%H disappeared from %s", host, iface->ifname); } addr_entry_destroy(addr); } else if (hdr->nlmsg_type == RTM_NEWADDR && addr->virtual) { addr->refcount = 1; } } } addrs->destroy(addrs); if (hdr->nlmsg_type == RTM_NEWADDR) { if (!found) { found = TRUE; changed = TRUE; addr = malloc_thing(addr_entry_t); addr->ip = host->clone(host); addr->virtual = FALSE; addr->refcount = 1; addr->scope = msg->ifa_scope; iface->addrs->insert_last(iface->addrs, addr); if (event) { DBG1(DBG_KNL, "%H appeared on %s", host, iface->ifname); } } } if (found && (iface->flags & IFF_UP)) { update = TRUE; } break; } } ifaces->destroy(ifaces); host->destroy(host); /* send an update to all IKE_SAs */ if (update && event && changed) { fire_roam_job(this, TRUE); } } /** * Receives events from kernel */ static job_requeue_t receive_events(private_kernel_interface_t *this) { char response[1024]; struct nlmsghdr *hdr = (struct nlmsghdr*)response; struct sockaddr_nl addr; socklen_t addr_len = sizeof(addr); int len, oldstate, maxfd, selected; fd_set rfds; FD_ZERO(&rfds); FD_SET(this->socket_xfrm_events, &rfds); FD_SET(this->socket_rt_events, &rfds); maxfd = max(this->socket_xfrm_events, this->socket_rt_events); pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &oldstate); selected = select(maxfd + 1, &rfds, NULL, NULL, NULL); pthread_setcancelstate(oldstate, NULL); if (selected <= 0) { DBG1(DBG_KNL, "selecting on sockets failed: %s", strerror(errno)); return JOB_REQUEUE_FAIR; } if (FD_ISSET(this->socket_xfrm_events, &rfds)) { selected = this->socket_xfrm_events; } else if (FD_ISSET(this->socket_rt_events, &rfds)) { selected = this->socket_rt_events; } else { return JOB_REQUEUE_DIRECT; } len = recvfrom(selected, response, sizeof(response), MSG_DONTWAIT, (struct sockaddr*)&addr, &addr_len); if (len < 0) { switch (errno) { case EINTR: /* interrupted, try again */ return JOB_REQUEUE_DIRECT; case EAGAIN: /* no data ready, select again */ return JOB_REQUEUE_DIRECT; default: DBG1(DBG_KNL, "unable to receive from xfrm event socket"); sleep(1); return JOB_REQUEUE_FAIR; } } if (addr.nl_pid != 0) { /* not from kernel. not interested, try another one */ return JOB_REQUEUE_DIRECT; } while (NLMSG_OK(hdr, len)) { /* looks good so far, dispatch netlink message */ if (selected == this->socket_xfrm_events) { switch (hdr->nlmsg_type) { case XFRM_MSG_ACQUIRE: process_acquire(this, hdr); break; case XFRM_MSG_EXPIRE: process_expire(this, hdr); break; default: break; } } else if (selected == this->socket_rt_events) { switch (hdr->nlmsg_type) { case RTM_NEWADDR: case RTM_DELADDR: process_addr(this, hdr, TRUE); pthread_cond_signal(&this->cond); break; case RTM_NEWLINK: case RTM_DELLINK: process_link(this, hdr, TRUE); pthread_cond_signal(&this->cond); break; case RTM_NEWROUTE: case RTM_DELROUTE: fire_roam_job(this, FALSE); break; default: break; } } hdr = NLMSG_NEXT(hdr, len); } return JOB_REQUEUE_DIRECT; } /** * send a netlink message and wait for a reply */ static status_t netlink_send(private_kernel_interface_t *this, int socket, struct nlmsghdr *in, struct nlmsghdr **out, size_t *out_len) { int len, addr_len; struct sockaddr_nl addr; chunk_t result = chunk_empty, tmp; struct nlmsghdr *msg, peek; pthread_mutex_lock(&this->nl_mutex); in->nlmsg_seq = ++this->seq; in->nlmsg_pid = getpid(); memset(&addr, 0, sizeof(addr)); addr.nl_family = AF_NETLINK; addr.nl_pid = 0; addr.nl_groups = 0; while (TRUE) { len = sendto(socket, in, in->nlmsg_len, 0, (struct sockaddr*)&addr, sizeof(addr)); if (len != in->nlmsg_len) { if (errno == EINTR) { /* interrupted, try again */ continue; } pthread_mutex_unlock(&this->nl_mutex); DBG1(DBG_KNL, "error sending to netlink socket: %s", strerror(errno)); return FAILED; } break; } while (TRUE) { char buf[4096]; tmp.len = sizeof(buf); tmp.ptr = buf; msg = (struct nlmsghdr*)tmp.ptr; memset(&addr, 0, sizeof(addr)); addr.nl_family = AF_NETLINK; addr.nl_pid = getpid(); addr.nl_groups = 0; addr_len = sizeof(addr); len = recvfrom(socket, tmp.ptr, tmp.len, 0, (struct sockaddr*)&addr, &addr_len); if (len < 0) { if (errno == EINTR) { DBG1(DBG_KNL, "got interrupted"); /* interrupted, try again */ continue; } DBG1(DBG_KNL, "error reading from netlink socket: %s", strerror(errno)); pthread_mutex_unlock(&this->nl_mutex); return FAILED; } if (!NLMSG_OK(msg, len)) { DBG1(DBG_KNL, "received corrupted netlink message"); pthread_mutex_unlock(&this->nl_mutex); return FAILED; } if (msg->nlmsg_seq != this->seq) { DBG1(DBG_KNL, "received invalid netlink sequence number"); if (msg->nlmsg_seq < this->seq) { continue; } pthread_mutex_unlock(&this->nl_mutex); return FAILED; } tmp.len = len; result = chunk_cata("cc", result, tmp); /* NLM_F_MULTI flag does not seem to be set correctly, we use sequence * numbers to detect multi header messages */ len = recvfrom(socket, &peek, sizeof(peek), MSG_PEEK | MSG_DONTWAIT, (struct sockaddr*)&addr, &addr_len); if (len == sizeof(peek) && peek.nlmsg_seq == this->seq) { /* seems to be multipart */ continue; } break; } *out_len = result.len; *out = (struct nlmsghdr*)clalloc(result.ptr, result.len); pthread_mutex_unlock(&this->nl_mutex); return SUCCESS; } /** * send a netlink message and wait for its acknowlegde */ static status_t netlink_send_ack(private_kernel_interface_t *this, int socket, struct nlmsghdr *in) { struct nlmsghdr *out, *hdr; size_t len; if (netlink_send(this, socket, in, &out, &len) != SUCCESS) { return FAILED; } hdr = out; while (NLMSG_OK(hdr, len)) { switch (hdr->nlmsg_type) { case NLMSG_ERROR: { struct nlmsgerr* err = (struct nlmsgerr*)NLMSG_DATA(hdr); if (err->error) { DBG1(DBG_KNL, "received netlink error: %s (%d)", strerror(-err->error), -err->error); free(out); return FAILED; } free(out); return SUCCESS; } default: hdr = NLMSG_NEXT(hdr, len); continue; case NLMSG_DONE: break; } break; } DBG1(DBG_KNL, "netlink request not acknowlegded"); free(out); return FAILED; } /** * Initialize a list of local addresses. */ static status_t init_address_list(private_kernel_interface_t *this) { char request[BUFFER_SIZE]; struct nlmsghdr *out, *current, *in; struct rtgenmsg *msg; size_t len; iterator_t *ifaces, *addrs; iface_entry_t *iface; addr_entry_t *addr; DBG1(DBG_KNL, "listening on interfaces:"); memset(&request, 0, sizeof(request)); in = (struct nlmsghdr*)&request; in->nlmsg_len = NLMSG_LENGTH(sizeof(struct rtgenmsg)); in->nlmsg_flags = NLM_F_REQUEST | NLM_F_MATCH | NLM_F_ROOT; msg = (struct rtgenmsg*)NLMSG_DATA(in); msg->rtgen_family = AF_UNSPEC; /* get all links */ in->nlmsg_type = RTM_GETLINK; if (netlink_send(this, this->socket_rt, in, &out, &len) != SUCCESS) { return FAILED; } current = out; while (NLMSG_OK(current, len)) { switch (current->nlmsg_type) { case NLMSG_DONE: break; case RTM_NEWLINK: process_link(this, current, FALSE); /* fall through */ default: current = NLMSG_NEXT(current, len); continue; } break; } free(out); /* get all interface addresses */ in->nlmsg_type = RTM_GETADDR; if (netlink_send(this, this->socket_rt, in, &out, &len) != SUCCESS) { return FAILED; } current = out; while (NLMSG_OK(current, len)) { switch (current->nlmsg_type) { case NLMSG_DONE: break; case RTM_NEWADDR: process_addr(this, current, FALSE); /* fall through */ default: current = NLMSG_NEXT(current, len); continue; } break; } free(out); ifaces = this->ifaces->create_iterator_locked(this->ifaces, &this->mutex); while (ifaces->iterate(ifaces, (void**)&iface)) { if (iface->flags & IFF_UP) { DBG1(DBG_KNL, " %s", iface->ifname); addrs = iface->addrs->create_iterator(iface->addrs, TRUE); while (addrs->iterate(addrs, (void**)&addr)) { DBG1(DBG_KNL, " %H", addr->ip); } addrs->destroy(addrs); } } ifaces->destroy(ifaces); return SUCCESS; } /** * iterator hook to iterate over addrs */ static hook_result_t addr_hook(private_kernel_interface_t *this, addr_entry_t *in, host_t **out) { if (in->virtual) { /* skip virtual interfaces added by us */ return HOOK_SKIP; } if (in->scope >= RT_SCOPE_LINK) { /* skip addresses with a unusable scope */ return HOOK_SKIP; } *out = in->ip; return HOOK_NEXT; } /** * iterator hook to iterate over ifaces */ static hook_result_t iface_hook(private_kernel_interface_t *this, iface_entry_t *in, host_t **out) { if (!(in->flags & IFF_UP)) { /* skip interfaces not up */ return HOOK_SKIP; } if (this->hiter == NULL) { this->hiter = in->addrs->create_iterator(in->addrs, TRUE); this->hiter->set_iterator_hook(this->hiter, (iterator_hook_t*)addr_hook, this); } while (this->hiter->iterate(this->hiter, (void**)out)) { return HOOK_AGAIN; } this->hiter->destroy(this->hiter); this->hiter = NULL; return HOOK_SKIP; } /** * Implements kernel_interface_t.create_address_iterator. */ static iterator_t *create_address_iterator(private_kernel_interface_t *this) { iterator_t *iterator; /* This iterator is not only hooked, is is double-hooked. As we have stored * our addresses in iface_entry->addr_entry->ip, we need to iterate the * entries in each interface we iterate. This does the iface_hook. The * addr_hook returns the ip instead of the addr_entry. */ iterator = this->ifaces->create_iterator_locked(this->ifaces, &this->mutex); iterator->set_iterator_hook(iterator, (iterator_hook_t*)iface_hook, this); return iterator; } /** * implementation of kernel_interface_t.get_interface_name */ static char *get_interface_name(private_kernel_interface_t *this, host_t* ip) { iterator_t *ifaces, *addrs; iface_entry_t *iface; addr_entry_t *addr; char *name = NULL; DBG2(DBG_KNL, "getting interface name for %H", ip); ifaces = this->ifaces->create_iterator_locked(this->ifaces, &this->mutex); while (ifaces->iterate(ifaces, (void**)&iface)) { addrs = iface->addrs->create_iterator(iface->addrs, TRUE); while (addrs->iterate(addrs, (void**)&addr)) { if (ip->ip_equals(ip, addr->ip)) { name = strdup(iface->ifname); break; } } addrs->destroy(addrs); if (name) { break; } } ifaces->destroy(ifaces); if (name) { DBG2(DBG_KNL, "%H is on interface %s", ip, name); } else { DBG2(DBG_KNL, "%H is not a local address", ip); } return name; } /** * Tries to find an ip address of a local interface that is included in the * supplied traffic selector. */ static status_t get_address_by_ts(private_kernel_interface_t *this, traffic_selector_t *ts, host_t **ip) { iterator_t *ifaces, *addrs; iface_entry_t *iface; addr_entry_t *addr; host_t *host; int family; bool found = FALSE; DBG2(DBG_KNL, "getting a local address in traffic selector %R", ts); /* if we have a family which includes localhost, we do not * search for an IP, we use the default */ family = ts->get_type(ts) == TS_IPV4_ADDR_RANGE ? AF_INET : AF_INET6; if (family == AF_INET) { host = host_create_from_string("127.0.0.1", 0); } else { host = host_create_from_string("::1", 0); } if (ts->includes(ts, host)) { *ip = host_create_any(family); host->destroy(host); DBG2(DBG_KNL, "using host %H", *ip); return SUCCESS; } host->destroy(host); ifaces = this->ifaces->create_iterator_locked(this->ifaces, &this->mutex); while (ifaces->iterate(ifaces, (void**)&iface)) { addrs = iface->addrs->create_iterator(iface->addrs, TRUE); while (addrs->iterate(addrs, (void**)&addr)) { if (ts->includes(ts, addr->ip)) { found = TRUE; *ip = addr->ip->clone(addr->ip); break; } } addrs->destroy(addrs); if (found) { break; } } ifaces->destroy(ifaces); if (!found) { DBG1(DBG_KNL, "no local address found in traffic selector %R", ts); return FAILED; } DBG2(DBG_KNL, "using host %H", *ip); return SUCCESS; } /** * get the interface of a local address */ static int get_interface_index(private_kernel_interface_t *this, host_t* ip) { iterator_t *ifaces, *addrs; iface_entry_t *iface; addr_entry_t *addr; int ifindex = 0; DBG2(DBG_KNL, "getting iface for %H", ip); ifaces = this->ifaces->create_iterator_locked(this->ifaces, &this->mutex); while (ifaces->iterate(ifaces, (void**)&iface)) { addrs = iface->addrs->create_iterator(iface->addrs, TRUE); while (addrs->iterate(addrs, (void**)&addr)) { if (ip->ip_equals(ip, addr->ip)) { ifindex = iface->ifindex; break; } } addrs->destroy(addrs); if (ifindex) { break; } } ifaces->destroy(ifaces); if (ifindex == 0) { DBG1(DBG_KNL, "unable to get interface for %H", ip); } return ifindex; } /** * get the refcount of a virtual ip */ static int get_vip_refcount(private_kernel_interface_t *this, host_t* ip) { iterator_t *ifaces, *addrs; iface_entry_t *iface; addr_entry_t *addr; int refcount = 0; ifaces = this->ifaces->create_iterator(this->ifaces, TRUE); while (ifaces->iterate(ifaces, (void**)&iface)) { addrs = iface->addrs->create_iterator(iface->addrs, TRUE); while (addrs->iterate(addrs, (void**)&addr)) { if (addr->virtual && (iface->flags & IFF_UP) && ip->ip_equals(ip, addr->ip)) { refcount = addr->refcount; break; } } addrs->destroy(addrs); if (refcount) { break; } } ifaces->destroy(ifaces); return refcount; } /** * Manages the creation and deletion of ip addresses on an interface. * By setting the appropriate nlmsg_type, the ip will be set or unset. */ static status_t manage_ipaddr(private_kernel_interface_t *this, int nlmsg_type, int flags, int if_index, host_t *ip) { unsigned char request[BUFFER_SIZE]; struct nlmsghdr *hdr; struct ifaddrmsg *msg; chunk_t chunk; memset(&request, 0, sizeof(request)); chunk = ip->get_address(ip); hdr = (struct nlmsghdr*)request; hdr->nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK | flags; hdr->nlmsg_type = nlmsg_type; hdr->nlmsg_len = NLMSG_LENGTH(sizeof(struct ifaddrmsg)); msg = (struct ifaddrmsg*)NLMSG_DATA(hdr); msg->ifa_family = ip->get_family(ip); msg->ifa_flags = 0; msg->ifa_prefixlen = 8 * chunk.len; msg->ifa_scope = RT_SCOPE_UNIVERSE; msg->ifa_index = if_index; add_attribute(hdr, IFA_LOCAL, chunk, sizeof(request)); return netlink_send_ack(this, this->socket_rt, hdr); } /** * Manages source routes in the routing table. * By setting the appropriate nlmsg_type, the route added or r. */ static status_t manage_srcroute(private_kernel_interface_t *this, int nlmsg_type, int flags, route_entry_t *route) { unsigned char request[BUFFER_SIZE]; struct nlmsghdr *hdr; struct rtmsg *msg; chunk_t chunk; /* if route is 0.0.0.0/0, we can't install it, as it would * overwrite the default route. Instead, we add two routes: * 0.0.0.0/1 and 128.0.0.0/1 */ if (this->routing_table == 0 && route->prefixlen == 0) { route_entry_t half; status_t status; half.dst_net = chunk_alloca(route->dst_net.len); memset(half.dst_net.ptr, 0, half.dst_net.len); half.src_ip = route->src_ip; half.gateway = route->gateway; half.if_index = route->if_index; half.prefixlen = 1; status = manage_srcroute(this, nlmsg_type, flags, &half); half.dst_net.ptr[0] |= 0x80; status = manage_srcroute(this, nlmsg_type, flags, &half); return status; } memset(&request, 0, sizeof(request)); hdr = (struct nlmsghdr*)request; hdr->nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK | flags; hdr->nlmsg_type = nlmsg_type; hdr->nlmsg_len = NLMSG_LENGTH(sizeof(struct rtmsg)); msg = (struct rtmsg*)NLMSG_DATA(hdr); msg->rtm_family = route->src_ip->get_family(route->src_ip); msg->rtm_dst_len = route->prefixlen; msg->rtm_table = this->routing_table; msg->rtm_protocol = RTPROT_STATIC; msg->rtm_type = RTN_UNICAST; msg->rtm_scope = RT_SCOPE_UNIVERSE; add_attribute(hdr, RTA_DST, route->dst_net, sizeof(request)); chunk = route->src_ip->get_address(route->src_ip); add_attribute(hdr, RTA_PREFSRC, chunk, sizeof(request)); chunk = route->gateway->get_address(route->gateway); add_attribute(hdr, RTA_GATEWAY, chunk, sizeof(request)); chunk.ptr = (char*)&route->if_index; chunk.len = sizeof(route->if_index); add_attribute(hdr, RTA_OIF, chunk, sizeof(request)); return netlink_send_ack(this, this->socket_rt, hdr); } /** * create or delete an rule to use our routing table */ static status_t manage_rule(private_kernel_interface_t *this, int nlmsg_type, u_int32_t table, u_int32_t prio) { unsigned char request[BUFFER_SIZE]; struct nlmsghdr *hdr; struct rtmsg *msg; chunk_t chunk; memset(&request, 0, sizeof(request)); hdr = (struct nlmsghdr*)request; hdr->nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK; hdr->nlmsg_type = nlmsg_type; if (nlmsg_type == RTM_NEWRULE) { hdr->nlmsg_flags |= NLM_F_CREATE | NLM_F_EXCL; } hdr->nlmsg_len = NLMSG_LENGTH(sizeof(struct rtmsg)); msg = (struct rtmsg*)NLMSG_DATA(hdr); msg->rtm_table = table; msg->rtm_family = AF_INET; msg->rtm_protocol = RTPROT_BOOT; msg->rtm_scope = RT_SCOPE_UNIVERSE; msg->rtm_type = RTN_UNICAST; chunk = chunk_from_thing(prio); add_attribute(hdr, RTA_PRIORITY, chunk, sizeof(request)); return netlink_send_ack(this, this->socket_rt, hdr); } /** * check if an address (chunk) addr is in subnet (net with net_len net bits) */ static bool addr_in_subnet(chunk_t addr, chunk_t net, int net_len) { int bit, byte; if (addr.len != net.len) { return FALSE; } /* scan through all bits, beginning in the front */ for (byte = 0; byte < addr.len; byte++) { for (bit = 7; bit >= 0; bit--) { /* check if bits are equal (or we reached the end of the net) */ if (bit + byte * 8 > net_len) { return TRUE; } if (((1<nlmsg_flags = NLM_F_REQUEST | NLM_F_DUMP | NLM_F_ROOT; hdr->nlmsg_type = RTM_GETROUTE; hdr->nlmsg_len = NLMSG_LENGTH(sizeof(struct rtmsg)); msg = (struct rtmsg*)NLMSG_DATA(hdr); msg->rtm_family = dest->get_family(dest); chunk = dest->get_address(dest); add_attribute(hdr, RTA_DST, chunk, sizeof(request)); if (netlink_send(this, this->socket_rt, hdr, &out, &len) != SUCCESS) { DBG1(DBG_KNL, "getting address to %H failed", dest); return NULL; } current = out; while (NLMSG_OK(current, len)) { switch (current->nlmsg_type) { case NLMSG_DONE: break; case RTM_NEWROUTE: { struct rtattr *rta; size_t rtasize; chunk_t rta_gtw, rta_src, rta_dst; u_int32_t rta_oif = 0; rta_gtw = rta_src = rta_dst = chunk_empty; msg = (struct rtmsg*)(NLMSG_DATA(current)); rta = RTM_RTA(msg); rtasize = RTM_PAYLOAD(current); while (RTA_OK(rta, rtasize)) { switch (rta->rta_type) { case RTA_PREFSRC: rta_src = chunk_create(RTA_DATA(rta), RTA_PAYLOAD(rta)); break; case RTA_GATEWAY: rta_gtw = chunk_create(RTA_DATA(rta), RTA_PAYLOAD(rta)); break; case RTA_DST: rta_dst = chunk_create(RTA_DATA(rta), RTA_PAYLOAD(rta)); break; case RTA_OIF: if (RTA_PAYLOAD(rta) == sizeof(rta_oif)) { rta_oif = *(u_int32_t*)RTA_DATA(rta); } break; } rta = RTA_NEXT(rta, rtasize); } /* apply the route if: * - it is not from our own ipsec routing table * - is better than a previous one * - is the default route or * - its destination net contains our destination */ if ((this->routing_table == 0 ||msg->rtm_table != this->routing_table) && msg->rtm_dst_len > best && (msg->rtm_dst_len == 0 || /* default route */ (rta_dst.ptr && addr_in_subnet(chunk, rta_dst, msg->rtm_dst_len)))) { iterator_t *ifaces, *addrs; iface_entry_t *iface; addr_entry_t *addr; best = msg->rtm_dst_len; if (nexthop) { DESTROY_IF(gtw); gtw = host_create_from_chunk(msg->rtm_family, rta_gtw, 0); } else if (rta_src.ptr) { DESTROY_IF(src); src = host_create_from_chunk(msg->rtm_family, rta_src, 0); if (get_vip_refcount(this, src)) { /* skip source address if it is installed by us */ DESTROY_IF(src); src = NULL; current = NLMSG_NEXT(current, len); continue; } } else { /* no source addr, get one from the interfaces */ ifaces = this->ifaces->create_iterator_locked( this->ifaces, &this->mutex); while (ifaces->iterate(ifaces, (void**)&iface)) { if (iface->ifindex == rta_oif) { addrs = iface->addrs->create_iterator( iface->addrs, TRUE); while (addrs->iterate(addrs, (void**)&addr)) { chunk_t ip = addr->ip->get_address(addr->ip); if (msg->rtm_dst_len == 0 || addr_in_subnet(ip, rta_dst, msg->rtm_dst_len)) { DESTROY_IF(src); src = addr->ip->clone(addr->ip); break; } } addrs->destroy(addrs); } } ifaces->destroy(ifaces); } } /* FALL through */ } default: current = NLMSG_NEXT(current, len); continue; } break; } free(out); if (nexthop) { if (gtw) { return gtw; } return dest->clone(dest); } return src; } /** * Implementation of kernel_interface_t.get_source_addr. */ static host_t* get_source_addr(private_kernel_interface_t *this, host_t *dest) { return get_route(this, dest, FALSE); } /** * Implementation of kernel_interface_t.add_ip. */ static status_t add_ip(private_kernel_interface_t *this, host_t *virtual_ip, host_t *iface_ip) { iface_entry_t *iface; addr_entry_t *addr; iterator_t *addrs, *ifaces; int ifindex; DBG2(DBG_KNL, "adding virtual IP %H", virtual_ip); ifaces = this->ifaces->create_iterator_locked(this->ifaces, &this->mutex); while (ifaces->iterate(ifaces, (void**)&iface)) { bool iface_found = FALSE; addrs = iface->addrs->create_iterator(iface->addrs, TRUE); while (addrs->iterate(addrs, (void**)&addr)) { if (iface_ip->ip_equals(iface_ip, addr->ip)) { iface_found = TRUE; } else if (virtual_ip->ip_equals(virtual_ip, addr->ip)) { addr->refcount++; DBG2(DBG_KNL, "virtual IP %H already installed on %s", virtual_ip, iface->ifname); addrs->destroy(addrs); ifaces->destroy(ifaces); return SUCCESS; } } addrs->destroy(addrs); if (iface_found) { ifindex = iface->ifindex; addr = malloc_thing(addr_entry_t); addr->ip = virtual_ip->clone(virtual_ip); addr->refcount = 0; addr->virtual = TRUE; addr->scope = RT_SCOPE_UNIVERSE; iface->addrs->insert_last(iface->addrs, addr); if (manage_ipaddr(this, RTM_NEWADDR, NLM_F_CREATE | NLM_F_EXCL, ifindex, virtual_ip) == SUCCESS) { while (get_vip_refcount(this, virtual_ip) == 0) { /* wait until address appears */ pthread_cond_wait(&this->cond, &this->mutex); } ifaces->destroy(ifaces); return SUCCESS; } ifaces->destroy(ifaces); DBG1(DBG_KNL, "adding virtual IP %H failed", virtual_ip); return FAILED; } } ifaces->destroy(ifaces); DBG1(DBG_KNL, "interface address %H not found, unable to install" "virtual IP %H", iface_ip, virtual_ip); return FAILED; } /** * Implementation of kernel_interface_t.del_ip. */ static status_t del_ip(private_kernel_interface_t *this, host_t *virtual_ip) { iface_entry_t *iface; addr_entry_t *addr; iterator_t *addrs, *ifaces; status_t status; int ifindex; DBG2(DBG_KNL, "deleting virtual IP %H", virtual_ip); ifaces = this->ifaces->create_iterator_locked(this->ifaces, &this->mutex); while (ifaces->iterate(ifaces, (void**)&iface)) { addrs = iface->addrs->create_iterator(iface->addrs, TRUE); while (addrs->iterate(addrs, (void**)&addr)) { if (virtual_ip->ip_equals(virtual_ip, addr->ip)) { ifindex = iface->ifindex; if (addr->refcount == 1) { status = manage_ipaddr(this, RTM_DELADDR, 0, ifindex, virtual_ip); if (status == SUCCESS) { /* wait until the address is really gone */ while (get_vip_refcount(this, virtual_ip) > 0) { pthread_cond_wait(&this->cond, &this->mutex); } } addrs->destroy(addrs); ifaces->destroy(ifaces); return status; } else { addr->refcount--; } DBG2(DBG_KNL, "virtual IP %H used by other SAs, not deleting", virtual_ip); addrs->destroy(addrs); ifaces->destroy(ifaces); return SUCCESS; } } addrs->destroy(addrs); } ifaces->destroy(ifaces); DBG2(DBG_KNL, "virtual IP %H not cached, unable to delete", virtual_ip); return FAILED; } /** * Get an SPI for a specific protocol from the kernel. */ static status_t get_spi_internal(private_kernel_interface_t *this, host_t *src, host_t *dst, u_int8_t proto, u_int32_t min, u_int32_t max, u_int32_t reqid, u_int32_t *spi) { unsigned char request[BUFFER_SIZE]; struct nlmsghdr *hdr, *out; struct xfrm_userspi_info *userspi; u_int32_t received_spi = 0; size_t len; memset(&request, 0, sizeof(request)); hdr = (struct nlmsghdr*)request; hdr->nlmsg_flags = NLM_F_REQUEST; hdr->nlmsg_type = XFRM_MSG_ALLOCSPI; hdr->nlmsg_len = NLMSG_LENGTH(sizeof(struct xfrm_userspi_info)); userspi = (struct xfrm_userspi_info*)NLMSG_DATA(hdr); host2xfrm(src, &userspi->info.saddr); host2xfrm(dst, &userspi->info.id.daddr); userspi->info.id.proto = proto; userspi->info.mode = TRUE; /* tunnel mode */ userspi->info.reqid = reqid; userspi->info.family = src->get_family(src); userspi->min = min; userspi->max = max; if (netlink_send(this, this->socket_xfrm, hdr, &out, &len) == SUCCESS) { hdr = out; while (NLMSG_OK(hdr, len)) { switch (hdr->nlmsg_type) { case XFRM_MSG_NEWSA: { struct xfrm_usersa_info* usersa = NLMSG_DATA(hdr); received_spi = usersa->id.spi; break; } case NLMSG_ERROR: { struct nlmsgerr *err = NLMSG_DATA(hdr); DBG1(DBG_KNL, "allocating SPI failed: %s (%d)", strerror(-err->error), -err->error); break; } default: hdr = NLMSG_NEXT(hdr, len); continue; case NLMSG_DONE: break; } break; } free(out); } if (received_spi == 0) { return FAILED; } *spi = received_spi; return SUCCESS; } /** * Implementation of kernel_interface_t.get_spi. */ static status_t get_spi(private_kernel_interface_t *this, host_t *src, host_t *dst, protocol_id_t protocol, u_int32_t reqid, u_int32_t *spi) { DBG2(DBG_KNL, "getting SPI for reqid %d", reqid); if (get_spi_internal(this, src, dst, proto_ike2kernel(protocol), 0xc0000000, 0xcFFFFFFF, reqid, spi) != SUCCESS) { DBG1(DBG_KNL, "unable to get SPI for reqid %d", reqid); return FAILED; } DBG2(DBG_KNL, "got SPI 0x%x for reqid %d", *spi, reqid); return SUCCESS; } /** * Implementation of kernel_interface_t.get_cpi. */ static status_t get_cpi(private_kernel_interface_t *this, host_t *src, host_t *dst, u_int32_t reqid, u_int16_t *cpi) { u_int32_t received_spi = 0; DBG2(DBG_KNL, "getting CPI for reqid %d", reqid); if (get_spi_internal(this, src, dst, IPPROTO_COMP, 0x100, 0xEFFF, reqid, &received_spi) != SUCCESS) { DBG1(DBG_KNL, "unable to get CPI for reqid %d", reqid); return FAILED; } *cpi = htons((u_int16_t)ntohl(received_spi)); DBG2(DBG_KNL, "got CPI 0x%x for reqid %d", *cpi, reqid); return SUCCESS; } /** * Implementation of kernel_interface_t.add_sa. */ static status_t add_sa(private_kernel_interface_t *this, host_t *src, host_t *dst, u_int32_t spi, protocol_id_t protocol, u_int32_t reqid, u_int64_t expire_soft, u_int64_t expire_hard, u_int16_t enc_alg, u_int16_t enc_size, u_int16_t int_alg, u_int16_t int_size, prf_plus_t *prf_plus, mode_t mode, u_int16_t ipcomp, bool encap, bool replace) { unsigned char request[BUFFER_SIZE]; char *alg_name; /* additional 4 octets KEYMAT required for AES-GCM as of RFC4106 8.1. */ u_int16_t add_keymat = 32; struct nlmsghdr *hdr; struct xfrm_usersa_info *sa; memset(&request, 0, sizeof(request)); DBG2(DBG_KNL, "adding SAD entry with SPI 0x%x and reqid %d", spi, reqid); hdr = (struct nlmsghdr*)request; hdr->nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK; hdr->nlmsg_type = replace ? XFRM_MSG_UPDSA : XFRM_MSG_NEWSA; hdr->nlmsg_len = NLMSG_LENGTH(sizeof(struct xfrm_usersa_info)); sa = (struct xfrm_usersa_info*)NLMSG_DATA(hdr); host2xfrm(src, &sa->saddr); host2xfrm(dst, &sa->id.daddr); sa->id.spi = spi; sa->id.proto = proto_ike2kernel(protocol); sa->family = src->get_family(src); sa->mode = mode; sa->replay_window = (protocol == IPPROTO_COMP) ? 0 : 32; sa->flags |= XFRM_STATE_AF_UNSPEC; sa->reqid = reqid; /* we currently do not expire SAs by volume/packet count */ sa->lft.soft_byte_limit = XFRM_INF; sa->lft.hard_byte_limit = XFRM_INF; sa->lft.soft_packet_limit = XFRM_INF; sa->lft.hard_packet_limit = XFRM_INF; /* we use lifetimes since added, not since used */ sa->lft.soft_add_expires_seconds = expire_soft; sa->lft.hard_add_expires_seconds = expire_hard; sa->lft.soft_use_expires_seconds = 0; sa->lft.hard_use_expires_seconds = 0; struct rtattr *rthdr = XFRM_RTA(hdr, struct xfrm_usersa_info); switch (enc_alg) { case ENCR_UNDEFINED: /* no encryption */ break; case ENCR_AES_CCM_ICV8: case ENCR_AES_CCM_ICV12: case ENCR_AES_CCM_ICV16: /* AES-CCM needs only 3 additional octets KEYMAT as of RFC 4309 7.1. */ add_keymat = 24; /* fall-through */ case ENCR_AES_GCM_ICV8: case ENCR_AES_GCM_ICV12: case ENCR_AES_GCM_ICV16: { u_int16_t icv_size = 0; rthdr->rta_type = XFRMA_ALG_AEAD; alg_name = lookup_algorithm(encryption_algs, enc_alg, &icv_size); if (alg_name == NULL) { DBG1(DBG_KNL, "algorithm %N not supported by kernel!", encryption_algorithm_names, enc_alg); return FAILED; } DBG2(DBG_KNL, " using encryption algorithm %N with key size %d", encryption_algorithm_names, enc_alg, enc_size); /* additional KEYMAT required */ enc_size += add_keymat; rthdr->rta_len = RTA_LENGTH(sizeof(struct xfrm_algo_aead) + enc_size / 8); hdr->nlmsg_len += rthdr->rta_len; if (hdr->nlmsg_len > sizeof(request)) { return FAILED; } struct xfrm_algo_aead* algo = (struct xfrm_algo_aead*)RTA_DATA(rthdr); algo->alg_key_len = enc_size; algo->alg_icv_len = icv_size; strcpy(algo->alg_name, alg_name); prf_plus->get_bytes(prf_plus, enc_size / 8, algo->alg_key); rthdr = XFRM_RTA_NEXT(rthdr); break; } default: { rthdr->rta_type = XFRMA_ALG_CRYPT; alg_name = lookup_algorithm(encryption_algs, enc_alg, &enc_size); if (alg_name == NULL) { DBG1(DBG_KNL, "algorithm %N not supported by kernel!", encryption_algorithm_names, enc_alg); return FAILED; } DBG2(DBG_KNL, " using encryption algorithm %N with key size %d", encryption_algorithm_names, enc_alg, enc_size); rthdr->rta_len = RTA_LENGTH(sizeof(struct xfrm_algo) + enc_size / 8); hdr->nlmsg_len += rthdr->rta_len; if (hdr->nlmsg_len > sizeof(request)) { return FAILED; } struct xfrm_algo* algo = (struct xfrm_algo*)RTA_DATA(rthdr); algo->alg_key_len = enc_size; strcpy(algo->alg_name, alg_name); prf_plus->get_bytes(prf_plus, enc_size / 8, algo->alg_key); rthdr = XFRM_RTA_NEXT(rthdr); break; } } if (int_alg != AUTH_UNDEFINED) { rthdr->rta_type = XFRMA_ALG_AUTH; alg_name = lookup_algorithm(integrity_algs, int_alg, &int_size); if (alg_name == NULL) { DBG1(DBG_KNL, "algorithm %N not supported by kernel!", integrity_algorithm_names, int_alg); return FAILED; } DBG2(DBG_KNL, " using integrity algorithm %N with key size %d", integrity_algorithm_names, int_alg, int_size); rthdr->rta_len = RTA_LENGTH(sizeof(struct xfrm_algo) + int_size / 8); hdr->nlmsg_len += rthdr->rta_len; if (hdr->nlmsg_len > sizeof(request)) { return FAILED; } struct xfrm_algo* algo = (struct xfrm_algo*)RTA_DATA(rthdr); algo->alg_key_len = int_size; strcpy(algo->alg_name, alg_name); prf_plus->get_bytes(prf_plus, int_size / 8, algo->alg_key); rthdr = XFRM_RTA_NEXT(rthdr); } if (ipcomp != IPCOMP_NONE) { rthdr->rta_type = XFRMA_ALG_COMP; alg_name = lookup_algorithm(compression_algs, ipcomp, NULL); if (alg_name == NULL) { DBG1(DBG_KNL, "algorithm %N not supported by kernel!", ipcomp_transform_names, ipcomp); return FAILED; } DBG2(DBG_KNL, " using compression algorithm %N", ipcomp_transform_names, ipcomp); rthdr->rta_len = RTA_LENGTH(sizeof(struct xfrm_algo)); hdr->nlmsg_len += rthdr->rta_len; if (hdr->nlmsg_len > sizeof(request)) { return FAILED; } struct xfrm_algo* algo = (struct xfrm_algo*)RTA_DATA(rthdr); algo->alg_key_len = 0; strcpy(algo->alg_name, alg_name); rthdr = XFRM_RTA_NEXT(rthdr); } if (encap) { rthdr->rta_type = XFRMA_ENCAP; rthdr->rta_len = RTA_LENGTH(sizeof(struct xfrm_encap_tmpl)); hdr->nlmsg_len += rthdr->rta_len; if (hdr->nlmsg_len > sizeof(request)) { return FAILED; } struct xfrm_encap_tmpl* tmpl = (struct xfrm_encap_tmpl*)RTA_DATA(rthdr); tmpl->encap_type = UDP_ENCAP_ESPINUDP; tmpl->encap_sport = htons(src->get_port(src)); tmpl->encap_dport = htons(dst->get_port(dst)); memset(&tmpl->encap_oa, 0, sizeof (xfrm_address_t)); /* encap_oa could probably be derived from the * traffic selectors [rfc4306, p39]. In the netlink kernel implementation * pluto does the same as we do here but it uses encap_oa in the * pfkey implementation. BUT as /usr/src/linux/net/key/af_key.c indicates * the kernel ignores it anyway * -> does that mean that NAT-T encap doesn't work in transport mode? * No. The reason the kernel ignores NAT-OA is that it recomputes * (or, rather, just ignores) the checksum. If packets pass * the IPsec checks it marks them "checksum ok" so OA isn't needed. */ rthdr = XFRM_RTA_NEXT(rthdr); } if (netlink_send_ack(this, this->socket_xfrm, hdr) != SUCCESS) { DBG1(DBG_KNL, "unable to add SAD entry with SPI 0x%x", spi); return FAILED; } return SUCCESS; } /** * Get the replay state (i.e. sequence numbers) of an SA. */ static status_t get_replay_state(private_kernel_interface_t *this, u_int32_t spi, protocol_id_t protocol, host_t *dst, struct xfrm_replay_state *replay) { unsigned char request[BUFFER_SIZE]; struct nlmsghdr *hdr, *out = NULL; struct xfrm_aevent_id *out_aevent = NULL, *aevent_id; size_t len; struct rtattr *rta; size_t rtasize; memset(&request, 0, sizeof(request)); DBG2(DBG_KNL, "querying replay state from SAD entry with SPI 0x%x", spi); hdr = (struct nlmsghdr*)request; hdr->nlmsg_flags = NLM_F_REQUEST; hdr->nlmsg_type = XFRM_MSG_GETAE; hdr->nlmsg_len = NLMSG_LENGTH(sizeof(struct xfrm_aevent_id)); aevent_id = (struct xfrm_aevent_id*)NLMSG_DATA(hdr); aevent_id->flags = XFRM_AE_RVAL; host2xfrm(dst, &aevent_id->sa_id.daddr); aevent_id->sa_id.spi = spi; aevent_id->sa_id.proto = proto_ike2kernel(protocol); aevent_id->sa_id.family = dst->get_family(dst); if (netlink_send(this, this->socket_xfrm, hdr, &out, &len) == SUCCESS) { hdr = out; while (NLMSG_OK(hdr, len)) { switch (hdr->nlmsg_type) { case XFRM_MSG_NEWAE: { out_aevent = NLMSG_DATA(hdr); break; } case NLMSG_ERROR: { struct nlmsgerr *err = NLMSG_DATA(hdr); DBG1(DBG_KNL, "querying replay state from SAD entry failed: %s (%d)", strerror(-err->error), -err->error); break; } default: hdr = NLMSG_NEXT(hdr, len); continue; case NLMSG_DONE: break; } break; } } if (out_aevent == NULL) { DBG1(DBG_KNL, "unable to query replay state from SAD entry with SPI 0x%x", spi); free(out); return FAILED; } rta = XFRM_RTA(out, struct xfrm_aevent_id); rtasize = XFRM_PAYLOAD(out, struct xfrm_aevent_id); while(RTA_OK(rta, rtasize)) { if (rta->rta_type == XFRMA_REPLAY_VAL) { memcpy(replay, RTA_DATA(rta), rta->rta_len); free(out); return SUCCESS; } rta = RTA_NEXT(rta, rtasize); } DBG1(DBG_KNL, "unable to query replay state from SAD entry with SPI 0x%x", spi); free(out); return FAILED; } /** * Implementation of kernel_interface_t.update_sa. */ static status_t update_sa(private_kernel_interface_t *this, u_int32_t spi, protocol_id_t protocol, host_t *src, host_t *dst, host_t *new_src, host_t *new_dst, bool encap) { unsigned char request[BUFFER_SIZE], *pos; struct nlmsghdr *hdr, *out = NULL; struct xfrm_usersa_id *sa_id; struct xfrm_usersa_info *out_sa = NULL, *sa; size_t len; struct rtattr *rta; size_t rtasize; struct xfrm_encap_tmpl* tmpl = NULL; bool got_replay_state; struct xfrm_replay_state replay; memset(&request, 0, sizeof(request)); DBG2(DBG_KNL, "querying SAD entry with SPI 0x%x for update", spi); /* query the exisiting SA first */ hdr = (struct nlmsghdr*)request; hdr->nlmsg_flags = NLM_F_REQUEST; hdr->nlmsg_type = XFRM_MSG_GETSA; hdr->nlmsg_len = NLMSG_LENGTH(sizeof(struct xfrm_usersa_id)); sa_id = (struct xfrm_usersa_id*)NLMSG_DATA(hdr); host2xfrm(dst, &sa_id->daddr); sa_id->spi = spi; sa_id->proto = proto_ike2kernel(protocol); sa_id->family = dst->get_family(dst); if (netlink_send(this, this->socket_xfrm, hdr, &out, &len) == SUCCESS) { hdr = out; while (NLMSG_OK(hdr, len)) { switch (hdr->nlmsg_type) { case XFRM_MSG_NEWSA: { out_sa = NLMSG_DATA(hdr); break; } case NLMSG_ERROR: { struct nlmsgerr *err = NLMSG_DATA(hdr); DBG1(DBG_KNL, "querying SAD entry failed: %s (%d)", strerror(-err->error), -err->error); break; } default: hdr = NLMSG_NEXT(hdr, len); continue; case NLMSG_DONE: break; } break; } } if (out_sa == NULL) { DBG1(DBG_KNL, "unable to update SAD entry with SPI 0x%x", spi); free(out); return FAILED; } /* try to get the replay state */ got_replay_state = (get_replay_state( this, spi, protocol, dst, &replay) == SUCCESS); /* delete the old SA */ if (this->public.del_sa(&this->public, dst, spi, protocol) != SUCCESS) { DBG1(DBG_KNL, "unable to delete old SAD entry with SPI 0x%x", spi); free(out); return FAILED; } DBG2(DBG_KNL, "updating SAD entry with SPI 0x%x from %#H..%#H to %#H..%#H", spi, src, dst, new_src, new_dst); /* copy over the SA from out to request */ hdr = (struct nlmsghdr*)request; memcpy(hdr, out, min(out->nlmsg_len, sizeof(request))); hdr->nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK; hdr->nlmsg_type = XFRM_MSG_NEWSA; hdr->nlmsg_len = NLMSG_LENGTH(sizeof(struct xfrm_usersa_info)); sa = NLMSG_DATA(hdr); sa->family = new_dst->get_family(new_dst); if (!src->ip_equals(src, new_src)) { host2xfrm(new_src, &sa->saddr); } if (!dst->ip_equals(dst, new_dst)) { host2xfrm(new_dst, &sa->id.daddr); } rta = XFRM_RTA(out, struct xfrm_usersa_info); rtasize = XFRM_PAYLOAD(out, struct xfrm_usersa_info); pos = (u_char*)XFRM_RTA(hdr, struct xfrm_usersa_info); while(RTA_OK(rta, rtasize)) { /* copy all attributes, but not XFRMA_ENCAP if we are disabling it */ if (rta->rta_type != XFRMA_ENCAP || encap) { if (rta->rta_type == XFRMA_ENCAP) { /* update encap tmpl */ tmpl = (struct xfrm_encap_tmpl*)RTA_DATA(rta); tmpl->encap_sport = ntohs(new_src->get_port(new_src)); tmpl->encap_dport = ntohs(new_dst->get_port(new_dst)); } memcpy(pos, rta, rta->rta_len); pos += RTA_ALIGN(rta->rta_len); hdr->nlmsg_len += RTA_ALIGN(rta->rta_len); } rta = RTA_NEXT(rta, rtasize); } rta = (struct rtattr*)pos; if (tmpl == NULL && encap) { /* add tmpl if we are enabling it */ rta->rta_type = XFRMA_ENCAP; rta->rta_len = RTA_LENGTH(sizeof(struct xfrm_encap_tmpl)); hdr->nlmsg_len += rta->rta_len; if (hdr->nlmsg_len > sizeof(request)) { return FAILED; } tmpl = (struct xfrm_encap_tmpl*)RTA_DATA(rta); tmpl->encap_type = UDP_ENCAP_ESPINUDP; tmpl->encap_sport = ntohs(new_src->get_port(new_src)); tmpl->encap_dport = ntohs(new_dst->get_port(new_dst)); memset(&tmpl->encap_oa, 0, sizeof (xfrm_address_t)); rta = XFRM_RTA_NEXT(rta); } if (got_replay_state) { /* copy the replay data if available */ rta->rta_type = XFRMA_REPLAY_VAL; rta->rta_len = RTA_LENGTH(sizeof(struct xfrm_replay_state)); hdr->nlmsg_len += rta->rta_len; if (hdr->nlmsg_len > sizeof(request)) { return FAILED; } memcpy(RTA_DATA(rta), &replay, sizeof(replay)); rta = XFRM_RTA_NEXT(rta); } if (netlink_send_ack(this, this->socket_xfrm, hdr) != SUCCESS) { DBG1(DBG_KNL, "unable to update SAD entry with SPI 0x%x", spi); free(out); return FAILED; } free(out); return SUCCESS; } /** * Implementation of kernel_interface_t.query_sa. */ static status_t query_sa(private_kernel_interface_t *this, host_t *dst, u_int32_t spi, protocol_id_t protocol, u_int32_t *use_time) { unsigned char request[BUFFER_SIZE]; struct nlmsghdr *out = NULL, *hdr; struct xfrm_usersa_id *sa_id; struct xfrm_usersa_info *sa = NULL; size_t len; DBG2(DBG_KNL, "querying SAD entry with SPI 0x%x", spi); memset(&request, 0, sizeof(request)); hdr = (struct nlmsghdr*)request; hdr->nlmsg_flags = NLM_F_REQUEST; hdr->nlmsg_type = XFRM_MSG_GETSA; hdr->nlmsg_len = NLMSG_LENGTH(sizeof(struct xfrm_usersa_info)); sa_id = (struct xfrm_usersa_id*)NLMSG_DATA(hdr); host2xfrm(dst, &sa_id->daddr); sa_id->spi = spi; sa_id->proto = proto_ike2kernel(protocol); sa_id->family = dst->get_family(dst); if (netlink_send(this, this->socket_xfrm, hdr, &out, &len) == SUCCESS) { hdr = out; while (NLMSG_OK(hdr, len)) { switch (hdr->nlmsg_type) { case XFRM_MSG_NEWSA: { sa = NLMSG_DATA(hdr); break; } case NLMSG_ERROR: { struct nlmsgerr *err = NLMSG_DATA(hdr); DBG1(DBG_KNL, "querying SAD entry failed: %s (%d)", strerror(-err->error), -err->error); break; } default: hdr = NLMSG_NEXT(hdr, len); continue; case NLMSG_DONE: break; } break; } } if (sa == NULL) { DBG1(DBG_KNL, "unable to query SAD entry with SPI 0x%x", spi); free(out); return FAILED; } *use_time = sa->curlft.use_time; free (out); return SUCCESS; } /** * Implementation of kernel_interface_t.del_sa. */ static status_t del_sa(private_kernel_interface_t *this, host_t *dst, u_int32_t spi, protocol_id_t protocol) { unsigned char request[BUFFER_SIZE]; struct nlmsghdr *hdr; struct xfrm_usersa_id *sa_id; memset(&request, 0, sizeof(request)); DBG2(DBG_KNL, "deleting SAD entry with SPI 0x%x", spi); hdr = (struct nlmsghdr*)request; hdr->nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK; hdr->nlmsg_type = XFRM_MSG_DELSA; hdr->nlmsg_len = NLMSG_LENGTH(sizeof(struct xfrm_usersa_id)); sa_id = (struct xfrm_usersa_id*)NLMSG_DATA(hdr); host2xfrm(dst, &sa_id->daddr); sa_id->spi = spi; sa_id->proto = proto_ike2kernel(protocol); sa_id->family = dst->get_family(dst); if (netlink_send_ack(this, this->socket_xfrm, hdr) != SUCCESS) { DBG1(DBG_KNL, "unable to delete SAD entry with SPI 0x%x", spi); return FAILED; } DBG2(DBG_KNL, "deleted SAD entry with SPI 0x%x", spi); return SUCCESS; } /** * Implementation of kernel_interface_t.add_policy. */ static status_t add_policy(private_kernel_interface_t *this, host_t *src, host_t *dst, traffic_selector_t *src_ts, traffic_selector_t *dst_ts, policy_dir_t direction, protocol_id_t protocol, u_int32_t reqid, bool high_prio, mode_t mode, u_int16_t ipcomp) { iterator_t *iterator; policy_entry_t *current, *policy; bool found = FALSE; unsigned char request[BUFFER_SIZE]; struct xfrm_userpolicy_info *policy_info; struct nlmsghdr *hdr; /* create a policy */ policy = malloc_thing(policy_entry_t); memset(policy, 0, sizeof(policy_entry_t)); policy->sel = ts2selector(src_ts, dst_ts); policy->direction = direction; /* find the policy, which matches EXACTLY */ pthread_mutex_lock(&this->mutex); iterator = this->policies->create_iterator(this->policies, TRUE); while (iterator->iterate(iterator, (void**)¤t)) { if (memcmp(¤t->sel, &policy->sel, sizeof(struct xfrm_selector)) == 0 && policy->direction == current->direction) { /* use existing policy */ current->refcount++; DBG2(DBG_KNL, "policy %R===%R already exists, increasing " "refcount", src_ts, dst_ts); free(policy); policy = current; found = TRUE; break; } } iterator->destroy(iterator); if (!found) { /* apply the new one, if we have no such policy */ this->policies->insert_last(this->policies, policy); policy->refcount = 1; } DBG2(DBG_KNL, "adding policy %R===%R", src_ts, dst_ts); memset(&request, 0, sizeof(request)); hdr = (struct nlmsghdr*)request; hdr->nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK; hdr->nlmsg_type = XFRM_MSG_UPDPOLICY; hdr->nlmsg_len = NLMSG_LENGTH(sizeof(struct xfrm_userpolicy_info)); policy_info = (struct xfrm_userpolicy_info*)NLMSG_DATA(hdr); policy_info->sel = policy->sel; policy_info->dir = policy->direction; /* calculate priority based on source selector size, small size = high prio */ policy_info->priority = high_prio ? PRIO_HIGH : PRIO_LOW; policy_info->priority -= policy->sel.prefixlen_s * 10; policy_info->priority -= policy->sel.proto ? 2 : 0; policy_info->priority -= policy->sel.sport_mask ? 1 : 0; policy_info->action = XFRM_POLICY_ALLOW; policy_info->share = XFRM_SHARE_ANY; pthread_mutex_unlock(&this->mutex); /* policies don't expire */ policy_info->lft.soft_byte_limit = XFRM_INF; policy_info->lft.soft_packet_limit = XFRM_INF; policy_info->lft.hard_byte_limit = XFRM_INF; policy_info->lft.hard_packet_limit = XFRM_INF; policy_info->lft.soft_add_expires_seconds = 0; policy_info->lft.hard_add_expires_seconds = 0; policy_info->lft.soft_use_expires_seconds = 0; policy_info->lft.hard_use_expires_seconds = 0; struct rtattr *rthdr = XFRM_RTA(hdr, struct xfrm_userpolicy_info); rthdr->rta_type = XFRMA_TMPL; rthdr->rta_len = RTA_LENGTH(sizeof(struct xfrm_user_tmpl)); hdr->nlmsg_len += rthdr->rta_len; if (hdr->nlmsg_len > sizeof(request)) { return FAILED; } struct xfrm_user_tmpl *tmpl = (struct xfrm_user_tmpl*)RTA_DATA(rthdr); if (ipcomp != IPCOMP_NONE) { tmpl->reqid = reqid; tmpl->id.proto = IPPROTO_COMP; tmpl->aalgos = tmpl->ealgos = tmpl->calgos = ~0; tmpl->mode = mode; tmpl->optional = direction != POLICY_OUT; tmpl->family = src->get_family(src); host2xfrm(src, &tmpl->saddr); host2xfrm(dst, &tmpl->id.daddr); /* add an additional xfrm_user_tmpl */ rthdr->rta_len += RTA_LENGTH(sizeof(struct xfrm_user_tmpl)); hdr->nlmsg_len += RTA_LENGTH(sizeof(struct xfrm_user_tmpl)); if (hdr->nlmsg_len > sizeof(request)) { return FAILED; } tmpl++; } tmpl->reqid = reqid; tmpl->id.proto = proto_ike2kernel(protocol); tmpl->aalgos = tmpl->ealgos = tmpl->calgos = ~0; tmpl->mode = mode; tmpl->family = src->get_family(src); host2xfrm(src, &tmpl->saddr); host2xfrm(dst, &tmpl->id.daddr); if (netlink_send_ack(this, this->socket_xfrm, hdr) != SUCCESS) { DBG1(DBG_KNL, "unable to add policy %R===%R", src_ts, dst_ts); return FAILED; } /* install a route, if: * - we are NOT updating a policy * - this is a forward policy (to just get one for each child) * - we are in tunnel mode * - we are not using IPv6 (does not work correctly yet!) * - routing is not disabled via strongswan.conf */ if (policy->route == NULL && direction == POLICY_FWD && mode != MODE_TRANSPORT && src->get_family(src) != AF_INET6 && this->install_routes) { policy->route = malloc_thing(route_entry_t); if (get_address_by_ts(this, dst_ts, &policy->route->src_ip) == SUCCESS) { /* get the nexthop to src (src as we are in POLICY_FWD).*/ policy->route->gateway = get_route(this, src, TRUE); policy->route->if_index = get_interface_index(this, dst); policy->route->dst_net = chunk_alloc(policy->sel.family == AF_INET ? 4 : 16); memcpy(policy->route->dst_net.ptr, &policy->sel.saddr, policy->route->dst_net.len); policy->route->prefixlen = policy->sel.prefixlen_s; if (manage_srcroute(this, RTM_NEWROUTE, NLM_F_CREATE | NLM_F_EXCL, policy->route) != SUCCESS) { DBG1(DBG_KNL, "unable to install source route for %H", policy->route->src_ip); route_entry_destroy(policy->route); policy->route = NULL; } } else { free(policy->route); policy->route = NULL; } } return SUCCESS; } /** * Implementation of kernel_interface_t.query_policy. */ static status_t query_policy(private_kernel_interface_t *this, traffic_selector_t *src_ts, traffic_selector_t *dst_ts, policy_dir_t direction, u_int32_t *use_time) { unsigned char request[BUFFER_SIZE]; struct nlmsghdr *out = NULL, *hdr; struct xfrm_userpolicy_id *policy_id; struct xfrm_userpolicy_info *policy = NULL; size_t len; memset(&request, 0, sizeof(request)); DBG2(DBG_KNL, "querying policy %R===%R", src_ts, dst_ts); hdr = (struct nlmsghdr*)request; hdr->nlmsg_flags = NLM_F_REQUEST; hdr->nlmsg_type = XFRM_MSG_GETPOLICY; hdr->nlmsg_len = NLMSG_LENGTH(sizeof(struct xfrm_userpolicy_id)); policy_id = (struct xfrm_userpolicy_id*)NLMSG_DATA(hdr); policy_id->sel = ts2selector(src_ts, dst_ts); policy_id->dir = direction; if (netlink_send(this, this->socket_xfrm, hdr, &out, &len) == SUCCESS) { hdr = out; while (NLMSG_OK(hdr, len)) { switch (hdr->nlmsg_type) { case XFRM_MSG_NEWPOLICY: { policy = (struct xfrm_userpolicy_info*)NLMSG_DATA(hdr); break; } case NLMSG_ERROR: { struct nlmsgerr *err = NLMSG_DATA(hdr); DBG1(DBG_KNL, "querying policy failed: %s (%d)", strerror(-err->error), -err->error); break; } default: hdr = NLMSG_NEXT(hdr, len); continue; case NLMSG_DONE: break; } break; } } if (policy == NULL) { DBG2(DBG_KNL, "unable to query policy %R===%R", src_ts, dst_ts); free(out); return FAILED; } *use_time = (time_t)policy->curlft.use_time; free(out); return SUCCESS; } /** * Implementation of kernel_interface_t.del_policy. */ static status_t del_policy(private_kernel_interface_t *this, traffic_selector_t *src_ts, traffic_selector_t *dst_ts, policy_dir_t direction) { policy_entry_t *current, policy, *to_delete = NULL; route_entry_t *route; unsigned char request[BUFFER_SIZE]; struct nlmsghdr *hdr; struct xfrm_userpolicy_id *policy_id; iterator_t *iterator; DBG2(DBG_KNL, "deleting policy %R===%R", src_ts, dst_ts); /* create a policy */ memset(&policy, 0, sizeof(policy_entry_t)); policy.sel = ts2selector(src_ts, dst_ts); policy.direction = direction; /* find the policy */ iterator = this->policies->create_iterator_locked(this->policies, &this->mutex); while (iterator->iterate(iterator, (void**)¤t)) { if (memcmp(¤t->sel, &policy.sel, sizeof(struct xfrm_selector)) == 0 && policy.direction == current->direction) { to_delete = current; if (--to_delete->refcount > 0) { /* is used by more SAs, keep in kernel */ DBG2(DBG_KNL, "policy still used by another CHILD_SA, not removed"); iterator->destroy(iterator); return SUCCESS; } /* remove if last reference */ iterator->remove(iterator); break; } } iterator->destroy(iterator); if (!to_delete) { DBG1(DBG_KNL, "deleting policy %R===%R failed, not found", src_ts, dst_ts); return NOT_FOUND; } memset(&request, 0, sizeof(request)); hdr = (struct nlmsghdr*)request; hdr->nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK; hdr->nlmsg_type = XFRM_MSG_DELPOLICY; hdr->nlmsg_len = NLMSG_LENGTH(sizeof(struct xfrm_userpolicy_id)); policy_id = (struct xfrm_userpolicy_id*)NLMSG_DATA(hdr); policy_id->sel = to_delete->sel; policy_id->dir = direction; route = to_delete->route; free(to_delete); if (netlink_send_ack(this, this->socket_xfrm, hdr) != SUCCESS) { DBG1(DBG_KNL, "unable to delete policy %R===%R", src_ts, dst_ts); return FAILED; } if (route) { if (manage_srcroute(this, RTM_DELROUTE, 0, route) != SUCCESS) { DBG1(DBG_KNL, "error uninstalling route installed with " "policy %R===%R", src_ts, dst_ts); } route_entry_destroy(route); } return SUCCESS; } /** * Implementation of kernel_interface_t.destroy. */ static void destroy(private_kernel_interface_t *this) { if (this->routing_table) { manage_rule(this, RTM_DELRULE, this->routing_table, this->routing_table_prio); } this->job->cancel(this->job); close(this->socket_xfrm_events); close(this->socket_xfrm); close(this->socket_rt_events); close(this->socket_rt); this->policies->destroy(this->policies); this->ifaces->destroy_function(this->ifaces, (void*)iface_entry_destroy); free(this); } /* * Described in header. */ kernel_interface_t *kernel_interface_create() { private_kernel_interface_t *this = malloc_thing(private_kernel_interface_t); struct sockaddr_nl addr; /* public functions */ this->public.get_spi = (status_t(*)(kernel_interface_t*,host_t*,host_t*,protocol_id_t,u_int32_t,u_int32_t*))get_spi; this->public.get_cpi = (status_t(*)(kernel_interface_t*,host_t*,host_t*,u_int32_t,u_int16_t*))get_cpi; this->public.add_sa = (status_t(*)(kernel_interface_t *,host_t*,host_t*,u_int32_t,protocol_id_t,u_int32_t,u_int64_t,u_int64_t,u_int16_t,u_int16_t,u_int16_t,u_int16_t,prf_plus_t*,mode_t,u_int16_t,bool,bool))add_sa; this->public.update_sa = (status_t(*)(kernel_interface_t*,u_int32_t,protocol_id_t,host_t*,host_t*,host_t*,host_t*,bool))update_sa; this->public.query_sa = (status_t(*)(kernel_interface_t*,host_t*,u_int32_t,protocol_id_t,u_int32_t*))query_sa; this->public.del_sa = (status_t(*)(kernel_interface_t*,host_t*,u_int32_t,protocol_id_t))del_sa; this->public.add_policy = (status_t(*)(kernel_interface_t*,host_t*,host_t*,traffic_selector_t*,traffic_selector_t*,policy_dir_t,protocol_id_t,u_int32_t,bool,mode_t,u_int16_t))add_policy; this->public.query_policy = (status_t(*)(kernel_interface_t*,traffic_selector_t*,traffic_selector_t*,policy_dir_t,u_int32_t*))query_policy; this->public.del_policy = (status_t(*)(kernel_interface_t*,traffic_selector_t*,traffic_selector_t*,policy_dir_t))del_policy; this->public.get_interface = (char*(*)(kernel_interface_t*,host_t*))get_interface_name; this->public.create_address_iterator = (iterator_t*(*)(kernel_interface_t*))create_address_iterator; this->public.get_source_addr = (host_t*(*)(kernel_interface_t*, host_t *dest))get_source_addr; this->public.add_ip = (status_t(*)(kernel_interface_t*,host_t*,host_t*)) add_ip; this->public.del_ip = (status_t(*)(kernel_interface_t*,host_t*)) del_ip; this->public.destroy = (void(*)(kernel_interface_t*)) destroy; /* private members */ this->policies = linked_list_create(); this->ifaces = linked_list_create(); this->hiter = NULL; this->seq = 200; pthread_mutex_init(&this->mutex, NULL); pthread_mutex_init(&this->nl_mutex, NULL); pthread_cond_init(&this->cond, NULL); timerclear(&this->last_roam); this->install_routes = lib->settings->get_bool(lib->settings, "charon.install_routes", TRUE); this->routing_table = lib->settings->get_int(lib->settings, "charon.routing_table", IPSEC_ROUTING_TABLE); this->routing_table_prio = lib->settings->get_int(lib->settings, "charon.routing_table_prio", IPSEC_ROUTING_TABLE_PRIO); memset(&addr, 0, sizeof(addr)); addr.nl_family = AF_NETLINK; /* create and bind RT socket */ this->socket_rt = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE); if (this->socket_rt <= 0) { charon->kill(charon, "unable to create RT netlink socket"); } addr.nl_groups = 0; if (bind(this->socket_rt, (struct sockaddr*)&addr, sizeof(addr))) { charon->kill(charon, "unable to bind RT netlink socket"); } /* create and bind RT socket for events (address/interface/route changes) */ this->socket_rt_events = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE); if (this->socket_rt_events <= 0) { charon->kill(charon, "unable to create RT event socket"); } addr.nl_groups = RTMGRP_IPV4_IFADDR | RTMGRP_IPV6_IFADDR | RTMGRP_IPV4_ROUTE | RTMGRP_IPV4_ROUTE | RTMGRP_LINK; if (bind(this->socket_rt_events, (struct sockaddr*)&addr, sizeof(addr))) { charon->kill(charon, "unable to bind RT event socket"); } /* create and bind XFRM socket */ this->socket_xfrm = socket(AF_NETLINK, SOCK_RAW, NETLINK_XFRM); if (this->socket_xfrm <= 0) { charon->kill(charon, "unable to create XFRM netlink socket"); } addr.nl_groups = 0; if (bind(this->socket_xfrm, (struct sockaddr*)&addr, sizeof(addr))) { charon->kill(charon, "unable to bind XFRM netlink socket"); } /* create and bind XFRM socket for ACQUIRE & EXPIRE */ this->socket_xfrm_events = socket(AF_NETLINK, SOCK_RAW, NETLINK_XFRM); if (this->socket_xfrm_events <= 0) { charon->kill(charon, "unable to create XFRM event socket"); } addr.nl_groups = XFRMGRP_ACQUIRE | XFRMGRP_EXPIRE; if (bind(this->socket_xfrm_events, (struct sockaddr*)&addr, sizeof(addr))) { charon->kill(charon, "unable to bind XFRM event socket"); } this->job = callback_job_create((callback_job_cb_t)receive_events, this, NULL, NULL); charon->processor->queue_job(charon->processor, (job_t*)this->job); if (init_address_list(this) != SUCCESS) { charon->kill(charon, "unable to get interface list"); } if (this->routing_table) { if (manage_rule(this, RTM_NEWRULE, this->routing_table, this->routing_table_prio) != SUCCESS) { DBG1(DBG_KNL, "unable to create routing table rule"); } } return &this->public; }