/* * Copyright (C) 2006-2013 Tobias Brunner * Copyright (C) 2006 Daniel Roethlisberger * Copyright (C) 2005-2010 Martin Willi * Copyright (C) 2005 Jan Hutter * Hochschule fuer Technik Rapperswil * Copyright (C) 2010 revosec AG * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. See . * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. */ /* for struct in6_pktinfo */ #define _GNU_SOURCE #include "socket_dynamic_socket.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Maximum size of a packet */ #define MAX_PACKET 10000 /* these are not defined on some platforms */ #ifndef SOL_IP #define SOL_IP IPPROTO_IP #endif #ifndef SOL_IPV6 #define SOL_IPV6 IPPROTO_IPV6 #endif /* IPV6_RECVPKTINFO is defined in RFC 3542 which obsoletes RFC 2292 that * previously defined IPV6_PKTINFO */ #ifndef IPV6_RECVPKTINFO #define IPV6_RECVPKTINFO IPV6_PKTINFO #endif typedef struct private_socket_dynamic_socket_t private_socket_dynamic_socket_t; typedef struct dynsock_t dynsock_t; /** * Private data of an socket_t object */ struct private_socket_dynamic_socket_t { /** * public functions */ socket_dynamic_socket_t public; /** * Hashtable of bound sockets */ hashtable_t *sockets; /** * Lock for sockets hashtable */ rwlock_t *lock; /** * Notification pipe to signal receiver */ int notify[2]; /** * Maximum packet size to receive */ int max_packet; }; /** * Struct for a dynamically allocated socket */ struct dynsock_t { /** * File descriptor of socket */ int fd; /** * Address family */ int family; /** * Bound source port */ u_int16_t port; }; /** * Hash function for hashtable */ static u_int hash(dynsock_t *key) { return (key->family << 16) | key->port; } /** * Equals function for hashtable */ static bool equals(dynsock_t *a, dynsock_t *b) { return a->family == b->family && a->port == b->port; } /** * Create a fd_set from all bound sockets */ static int build_fds(private_socket_dynamic_socket_t *this, fd_set *fds) { enumerator_t *enumerator; dynsock_t *key, *value; int maxfd; FD_ZERO(fds); FD_SET(this->notify[0], fds); maxfd = this->notify[0]; this->lock->read_lock(this->lock); enumerator = this->sockets->create_enumerator(this->sockets); while (enumerator->enumerate(enumerator, &key, &value)) { FD_SET(value->fd, fds); maxfd = max(maxfd, value->fd); } enumerator->destroy(enumerator); this->lock->unlock(this->lock); return maxfd + 1; } /** * Find the socket select()ed */ static dynsock_t* scan_fds(private_socket_dynamic_socket_t *this, fd_set *fds) { enumerator_t *enumerator; dynsock_t *key, *value, *selected = NULL; this->lock->read_lock(this->lock); enumerator = this->sockets->create_enumerator(this->sockets); while (enumerator->enumerate(enumerator, &key, &value)) { if (FD_ISSET(value->fd, fds)) { selected = value; break; } } enumerator->destroy(enumerator); this->lock->unlock(this->lock); return selected; } /** * Receive a packet from a given socket fd */ static packet_t *receive_packet(private_socket_dynamic_socket_t *this, dynsock_t *skt) { host_t *source = NULL, *dest = NULL; ssize_t len; char buffer[this->max_packet]; chunk_t data; packet_t *packet; struct msghdr msg; struct cmsghdr *cmsgptr; struct iovec iov; char ancillary[64]; union { struct sockaddr_in in4; struct sockaddr_in6 in6; } src; msg.msg_name = &src; msg.msg_namelen = sizeof(src); iov.iov_base = buffer; iov.iov_len = this->max_packet; msg.msg_iov = &iov; msg.msg_iovlen = 1; msg.msg_control = ancillary; msg.msg_controllen = sizeof(ancillary); msg.msg_flags = 0; len = recvmsg(skt->fd, &msg, 0); if (len < 0) { DBG1(DBG_NET, "error reading socket: %s", strerror(errno)); return NULL; } if (msg.msg_flags & MSG_TRUNC) { DBG1(DBG_NET, "receive buffer too small, packet discarded"); return NULL; } DBG3(DBG_NET, "received packet %b", buffer, (u_int)len); /* read ancillary data to get destination address */ for (cmsgptr = CMSG_FIRSTHDR(&msg); cmsgptr != NULL; cmsgptr = CMSG_NXTHDR(&msg, cmsgptr)) { if (cmsgptr->cmsg_len == 0) { DBG1(DBG_NET, "error reading ancillary data"); return NULL; } if (cmsgptr->cmsg_level == SOL_IPV6 && cmsgptr->cmsg_type == IPV6_PKTINFO) { struct in6_pktinfo *pktinfo; struct sockaddr_in6 dst; pktinfo = (struct in6_pktinfo*)CMSG_DATA(cmsgptr); memset(&dst, 0, sizeof(dst)); memcpy(&dst.sin6_addr, &pktinfo->ipi6_addr, sizeof(dst.sin6_addr)); dst.sin6_family = AF_INET6; dst.sin6_port = htons(skt->port); dest = host_create_from_sockaddr((sockaddr_t*)&dst); } if (cmsgptr->cmsg_level == SOL_IP && cmsgptr->cmsg_type == IP_PKTINFO) { struct in_pktinfo *pktinfo; struct sockaddr_in dst; pktinfo = (struct in_pktinfo*)CMSG_DATA(cmsgptr); memset(&dst, 0, sizeof(dst)); memcpy(&dst.sin_addr, &pktinfo->ipi_addr, sizeof(dst.sin_addr)); dst.sin_family = AF_INET; dst.sin_port = htons(skt->port); dest = host_create_from_sockaddr((sockaddr_t*)&dst); } if (dest) { break; } } if (dest == NULL) { DBG1(DBG_NET, "error reading IP header"); return NULL; } source = host_create_from_sockaddr((sockaddr_t*)&src); DBG2(DBG_NET, "received packet: from %#H to %#H", source, dest); data = chunk_create(buffer, len); packet = packet_create(); packet->set_source(packet, source); packet->set_destination(packet, dest); packet->set_data(packet, chunk_clone(data)); return packet; } METHOD(socket_t, receiver, status_t, private_socket_dynamic_socket_t *this, packet_t **packet) { dynsock_t *selected; packet_t *pkt; bool oldstate; fd_set fds; int maxfd; while (TRUE) { maxfd = build_fds(this, &fds); DBG2(DBG_NET, "waiting for data on sockets"); oldstate = thread_cancelability(TRUE); if (select(maxfd, &fds, NULL, NULL, NULL) <= 0) { thread_cancelability(oldstate); return FAILED; } thread_cancelability(oldstate); if (FD_ISSET(this->notify[0], &fds)) { /* got notified, read garbage, rebuild fdset */ char buf[1]; ignore_result(read(this->notify[0], buf, sizeof(buf))); DBG2(DBG_NET, "rebuilding fdset due to newly bound ports"); continue; } selected = scan_fds(this, &fds); if (selected) { break; } } pkt = receive_packet(this, selected); if (pkt) { *packet = pkt; return SUCCESS; } return FAILED; } /** * Get the port allocated dynamically using bind() */ static bool get_dynamic_port(int fd, int family, u_int16_t *port) { union { struct sockaddr_storage ss; struct sockaddr s; struct sockaddr_in sin; struct sockaddr_in6 sin6; } addr; socklen_t addrlen; addrlen = sizeof(addr); if (getsockname(fd, &addr.s, &addrlen) != 0) { DBG1(DBG_NET, "unable to getsockname: %s", strerror(errno)); return FALSE; } switch (family) { case AF_INET: if (addrlen != sizeof(addr.sin) || addr.sin.sin_family != family) { break; } *port = ntohs(addr.sin.sin_port); return TRUE; case AF_INET6: if (addrlen != sizeof(addr.sin6) || addr.sin6.sin6_family != family) { break; } *port = ntohs(addr.sin6.sin6_port); return TRUE; default: return FALSE; } DBG1(DBG_NET, "received invalid getsockname() result"); return FALSE; } /** * open a socket to send and receive packets */ static int open_socket(private_socket_dynamic_socket_t *this, int family, u_int16_t *port) { union { struct sockaddr_storage ss; struct sockaddr s; struct sockaddr_in sin; struct sockaddr_in6 sin6; } addr; int on = TRUE; socklen_t addrlen; u_int sol, pktinfo = 0; int fd; memset(&addr, 0, sizeof(addr)); /* precalculate constants depending on address family */ switch (family) { case AF_INET: addr.sin.sin_family = AF_INET; addr.sin.sin_addr.s_addr = INADDR_ANY; addr.sin.sin_port = htons(*port); addrlen = sizeof(addr.sin); sol = SOL_IP; pktinfo = IP_PKTINFO; break; case AF_INET6: addr.sin6.sin6_family = AF_INET6; memset(&addr.sin6.sin6_addr, 0, sizeof(addr.sin6.sin6_addr)); addr.sin6.sin6_port = htons(*port); addrlen = sizeof(addr.sin6); sol = SOL_IPV6; pktinfo = IPV6_RECVPKTINFO; break; default: return 0; } fd = socket(family, SOCK_DGRAM, IPPROTO_UDP); if (fd < 0) { DBG1(DBG_NET, "could not open socket: %s", strerror(errno)); return 0; } if (setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (void*)&on, sizeof(on)) < 0) { DBG1(DBG_NET, "unable to set SO_REUSEADDR on socket: %s", strerror(errno)); close(fd); return 0; } if (bind(fd, &addr.s, addrlen) < 0) { DBG1(DBG_NET, "unable to bind socket: %s", strerror(errno)); close(fd); return 0; } if (*port == 0 && !get_dynamic_port(fd, family, port)) { close(fd); return 0; } /* get additional packet info on receive */ if (setsockopt(fd, sol, pktinfo, &on, sizeof(on)) < 0) { DBG1(DBG_NET, "unable to set IP_PKTINFO on socket: %s", strerror(errno)); close(fd); return 0; } if (!hydra->kernel_interface->bypass_socket(hydra->kernel_interface, fd, family)) { DBG1(DBG_NET, "installing IKE bypass policy failed"); } /* enable UDP decapsulation on each socket */ if (!hydra->kernel_interface->enable_udp_decap(hydra->kernel_interface, fd, family, *port)) { DBG1(DBG_NET, "enabling UDP decapsulation for %s on port %d failed", family == AF_INET ? "IPv4" : "IPv6", *port); } return fd; } /** * Get the first usable socket for an address family */ static dynsock_t *get_any_socket(private_socket_dynamic_socket_t *this, int family) { dynsock_t *key, *value, *found = NULL; enumerator_t *enumerator; this->lock->read_lock(this->lock); enumerator = this->sockets->create_enumerator(this->sockets); while (enumerator->enumerate(enumerator, &key, &value)) { if (value->family == family) { found = value; break; } } enumerator->destroy(enumerator); this->lock->unlock(this->lock); return found; } /** * Find/Create a socket to send from host */ static dynsock_t *find_socket(private_socket_dynamic_socket_t *this, int family, u_int16_t port) { dynsock_t *skt, lookup = { .family = family, .port = port, }; char buf[] = {0x01}; int fd; this->lock->read_lock(this->lock); skt = this->sockets->get(this->sockets, &lookup); this->lock->unlock(this->lock); if (skt) { return skt; } if (!port) { skt = get_any_socket(this, family); if (skt) { return skt; } } fd = open_socket(this, family, &port); if (!fd) { return NULL; } INIT(skt, .family = family, .port = port, .fd = fd, ); this->lock->write_lock(this->lock); this->sockets->put(this->sockets, skt, skt); this->lock->unlock(this->lock); /* notify receiver thread to reread socket list */ ignore_result(write(this->notify[1], buf, sizeof(buf))); return skt; } METHOD(socket_t, sender, status_t, private_socket_dynamic_socket_t *this, packet_t *packet) { dynsock_t *skt; host_t *src, *dst; int family; ssize_t len; chunk_t data; struct msghdr msg; struct cmsghdr *cmsg; struct iovec iov; src = packet->get_source(packet); dst = packet->get_destination(packet); family = src->get_family(src); skt = find_socket(this, family, src->get_port(src)); if (!skt) { return FAILED; } data = packet->get_data(packet); DBG2(DBG_NET, "sending packet: from %#H to %#H", src, dst); memset(&msg, 0, sizeof(struct msghdr)); msg.msg_name = dst->get_sockaddr(dst);; msg.msg_namelen = *dst->get_sockaddr_len(dst); iov.iov_base = data.ptr; iov.iov_len = data.len; msg.msg_iov = &iov; msg.msg_iovlen = 1; msg.msg_flags = 0; if (!src->is_anyaddr(src)) { if (family == AF_INET) { struct in_addr *addr; struct sockaddr_in *sin; char buf[CMSG_SPACE(sizeof(struct in_pktinfo))]; struct in_pktinfo *pktinfo; memset(buf, 0, sizeof(buf)); msg.msg_control = buf; msg.msg_controllen = sizeof(buf); cmsg = CMSG_FIRSTHDR(&msg); cmsg->cmsg_level = SOL_IP; cmsg->cmsg_type = IP_PKTINFO; cmsg->cmsg_len = CMSG_LEN(sizeof(struct in_pktinfo)); pktinfo = (struct in_pktinfo*)CMSG_DATA(cmsg); addr = &pktinfo->ipi_spec_dst; sin = (struct sockaddr_in*)src->get_sockaddr(src); memcpy(addr, &sin->sin_addr, sizeof(struct in_addr)); } else { char buf[CMSG_SPACE(sizeof(struct in6_pktinfo))]; struct in6_pktinfo *pktinfo; struct sockaddr_in6 *sin; memset(buf, 0, sizeof(buf)); msg.msg_control = buf; msg.msg_controllen = sizeof(buf); cmsg = CMSG_FIRSTHDR(&msg); cmsg->cmsg_level = SOL_IPV6; cmsg->cmsg_type = IPV6_PKTINFO; cmsg->cmsg_len = CMSG_LEN(sizeof(struct in6_pktinfo)); pktinfo = (struct in6_pktinfo*)CMSG_DATA(cmsg); sin = (struct sockaddr_in6*)src->get_sockaddr(src); memcpy(&pktinfo->ipi6_addr, &sin->sin6_addr, sizeof(struct in6_addr)); } } len = sendmsg(skt->fd, &msg, 0); if (len != data.len) { DBG1(DBG_NET, "error writing to socket: %s", strerror(errno)); return FAILED; } return SUCCESS; } METHOD(socket_t, get_port, u_int16_t, private_socket_dynamic_socket_t *this, bool nat_t) { /* we return 0 here for users that have no explicit port configured, the * sender will default to the default port in this case */ return 0; } METHOD(socket_t, supported_families, socket_family_t, private_socket_dynamic_socket_t *this) { /* we could return only the families of the opened sockets, but it could * be that both families are supported even if no socket is yet open */ return SOCKET_FAMILY_BOTH; } METHOD(socket_t, destroy, void, private_socket_dynamic_socket_t *this) { enumerator_t *enumerator; dynsock_t *key, *value; enumerator = this->sockets->create_enumerator(this->sockets); while (enumerator->enumerate(enumerator, &key, &value)) { close(value->fd); free(value); } enumerator->destroy(enumerator); this->sockets->destroy(this->sockets); this->lock->destroy(this->lock); close(this->notify[0]); close(this->notify[1]); free(this); } /* * See header for description */ socket_dynamic_socket_t *socket_dynamic_socket_create() { private_socket_dynamic_socket_t *this; INIT(this, .public = { .socket = { .send = _sender, .receive = _receiver, .get_port = _get_port, .supported_families = _supported_families, .destroy = _destroy, }, }, .lock = rwlock_create(RWLOCK_TYPE_DEFAULT), .max_packet = lib->settings->get_int(lib->settings, "%s.max_packet", MAX_PACKET, lib->ns), ); if (pipe(this->notify) != 0) { DBG1(DBG_NET, "creating notify pipe for dynamic socket failed"); free(this); return NULL; } this->sockets = hashtable_create((void*)hash, (void*)equals, 8); return &this->public; }